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Abstract

Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) is a valuable

diagnostic tool due to the combination of anatomical and physiological information

it provides. However, the sequential sampling of MRI presents an inherent tradeoff

between spatial and temporal resolution. Compressed Sensing (CS) methods have

been applied to undersampled MRI to reconstruct full-resolution images at sub-

Nyquist sampling rates. In exchange for shorter data acquisition times, CS-MRI

requires more computationally intensive iterative reconstruction methods.

We present several model-based image reconstruction (MBIR) methods to improve

the spatial and temporal resolution of MR images and/or the computational time

for multi-coil MRI reconstruction. We propose efficient variable splitting (VS) meth-

ods for support-constrained MRI reconstruction, image reconstruction and denoising

with non-circulant boundary conditions, and improved temporal regularization for

breast DCE-MRI. These proposed VS algorithms decouple the system model and

sparsity terms of the convex optimization problem. By leveraging matrix structures

in the system model and sparsifying operator, we perform alternating minimization

over a list of auxiliary variables, each of which can be performed efficiently. We

demonstrate the computational benefits of our proposed VS algorithms compared

to similar proposed methods. We also demonstrate convergence guarantees for two

xix



proposed methods, ADMM-tridiag and ADMM-FP-tridiag. With simulation exper-

iments, we demonstrate lower error in spatial and temporal dimensions for these VS

methods compared to other object models.

We also propose a method for indirect motion compensation in 5D liver DCE-MRI.

5D MRI separates temporal changes due to contrast from anatomical changes due to

respiratory motion into two distinct dimensions. This work applies a pre-computed

motion model to perform motion-compensated regularization across the respiratory

dimension and improve the conditioning of this highly sparse 5D reconstruction prob-

lem. We demonstrate a proof of concept using a digital phantom with contrast and

respiratory changes, and we show preliminary results for motion model-informed

regularization on in vivo patient data.
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Chapter 1

Introduction

1.1 Motivation: Radiation Therapy for Cancer

Cancer is now the second largest cause of death of Americans, behind only heart

disease [3]. As the global population grows wealthier and older, rates of cancer are

likely to increase, as will the demand for treatments such as radiation therapy. To

help physicians monitor radiation therapy treatments, accurate parameterization of

organ pharmacokinetics is increasingly valuable.

To measure tumor position and metabolic behavior, patients are injected with a con-

trast agent that perfuses normally into healthy tissues and more dramatically into

tumorous lesions. Malignant lesions exhibit angiogenesis, the creation of additional

blood vessels that feed their abnormal growth. By measuring the rate of contrast

uptake, we can quantify lesion aggressiveness. Both Magnetic Resonance Imaging

(MRI) and X-ray Computed Tomography (X-ray CT) can capture a series of dy-

namic contrast-enhanced (DCE) images, and the temporal changes measured from
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those dynamic images determine pharmacokinetic parameter values. Pharmacoki-

netic parameters describe the bloodflow relationships between different tissues and

blood vessels, characterizing processes such as absorption and distribution. These

pharmacokinetic values serve as important indicators for diagnosis, treatment design

and assessment, and prognosis.

Though X-ray CT acquisitions are fast and can easily yield high resolution images,

they also feature a significant drawback– ionizing radiation. Unlike carefully targeted

radiation therapy, X-ray CT radiation doses raise the concern of possible long-term

health effects, particularly cancer [4]. As patients are imaged repeatedly for radiation

therapy assessment, the risk from accumulated radiation doses multiplies. For this

reason, MRI, with its safe, non-ionizing radiation, is a more compelling modality for

the future of dynamic contrast enhanced imaging.

The use of MRI for DCE imaging does not come without its own challenges. Due

to the nature of MRI, measurements must be made sequentially, so hardware limits

the number of samples that can be acquired over a specific amount of time. To

increase spatial resolution, more samples must be acquired, and more time elapses

between temporal frames of the DCE images. The primary goal of DCE-MRI is to

overcome this inherent tradeoff between spatial resolution and temporal resolution.

For accurate pharmacokinetic parameter maps, DCE-MRI must have both.

The challenge of preserving spatial resolution while increasing temporal resolution is

further complicated by patient motion. Patients cannot control involuntary motion,

such as cardiac motion or intestinal peristalsis. Though patients may be asked to
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hold their breath for some types of abdominal imaging, this request becomes unrea-

sonable for the duration of a typical DCE-MRI scan, e.g., two minutes. The growing

popularity of free-breathing DCE-MRI [5] [6] [7] means greater patient comfort but

also presents a bigger challenge for image reconstruction.

1.2 About this Thesis

This thesis focuses on model-based image reconstruction (MBIR) methods to improve

spatial resolution, temporal resolution, and pharmacokinetic parameter accuracy for

anatomical and DCE-MRI. With each proposed model, we also present tailored op-

timization strategies to lessen the burden of computation that MBIR presents.

To move beyond the spatial resolution-temporal resolution tradeoff, we exploit spatial

and temporal redundacies in DCE images to dramatically undersample data com-

pared to conventional techniques. For example, the smoothness of contrast agent

concentration time curves in tissue allows us to create an object model that lies in a

smoothly varying temporal subspace consisting of B-splines. By modeling the tem-

poral evolution between frames using these basis functions, we can estimate contrast

agent dynamics with higher temporal resolution. Our minds use this principle often,

such as when viewing time lapse nature photography. Because the changes being

recorded occur so slowly, fewer photographs are needed to depict the overall story.

The viewer assumes smooth changes between the moments captured.

Similarly, we wish to achieve a nonlinear "dimensionality reduction" on dynamic

images, describing them by a small set of pharmacokinetic parameters rather than
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values at each time point. The full set of samples over time is redundant when it can

be adequately described with five pharmacokinetic parameters, as in the liver.

Perhaps the biggest opportunity for exploiting redundancy that we investigated is

the redundancy across respiratory states. Neighboring respiratory states are likely to

have many common voxel values, and we expect the similarities to increase after com-

pensating for estimated motion. Just as camera stabilization makes for a smoother

viewing experience, we explored computing a motion model from pre-contrast injec-

tion free-breathing dynamic MRI data and used it to help isolate the truly interesting

signal changes from the interference of motion.

Ultimately we hope that the combination of the strategies proposed in this thesis

leads to more accurate and reproducible pharmacokinetic parameter maps that can

aid in patient treatment, particularly radiation therapy. The proposed optimization

methods that accompany the proposed object models are intended to make this work

accessible, fast, and attractive enough for further use.

1.3 Organization and Contributions of the Thesis

This thesis is constructed as follows:

Chapter 2 reviews the derivation of MRI’s discrete, linear system model from MR

physics. We also describe popular approaches for accelerating MRI and variable

splitting optimization methods that we utilize in our proposed work. Lastly, we

describe challenges specific to breast and liver DCE-MRI, including nonlinear
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pharmacokinetic parameter estimation and motion compensation.

Chapter 3 presents a novel variable splitting method for efficient computation of

a support-constrained image reconstruction problem. The proposed method is

compared against similar variable splitting methods for speed. This chapter is

based on [8].

Chapter 4 presents a variable splitting method for spatially regularized image re-

construction, designed specifically for parallelizable variable updates. This al-

gorithm is shown to have convergence guarantees through equivalence with the

Alternating Direction Method of Multipliers. This chapter is based on [9].

Chapter 5 presents a temporal spline interpolation method for breast DCE-MRI

that increases apparent temporal resolution of contrast enhancement curves. In

simulation, the proposed method outperformed traditional models in pharma-

cokinetic parameter accuracy, and the accompanying variable splitting method

provided greater computational speed. This chapter is based on [10].

Chapter 6 proposes a method for indirect motion compensation in 5D MRI. By

exploiting redundancy in respiratory states as well as redundancy across adja-

cent temporal frames, 5D motion model-informed reconstruction demonstrates

some ability to reduce motion artifacts in simulation.

Chapter 7 summarizes the thesis and outlines several proposed future projects on

liver DCE-MRI. We suggest several methods for improving 5D motion model-

informed reconstruction for patient data. Lastly, we propose methods that

combine the typical 2-step approach of estimating pharmacokinetic paramters
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into a single direct estimation approach, while also exploiting respiratory re-

dundancies.
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Chapter 2

Background

2.1 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a method of medical imaging that uses non-

ionizing electromagnetic fields to excite magnetic spins in the body. It offers ex-

cellent soft tissue contrast and has many specialized applications, including func-

tional MRI to measure brain function and diffusion MRI for diagnosing neurological

conditions and disorders. This thesis will focus on reconstruction techniques for

anatomical imaging and Dynamic Contrast-Enhanced (DCE) MRI. We begin by de-

scribing an overview of signal generation and acquisition common to all applications

of MRI.

2.1.1 Spins and Magnetic Fields

Atomic nuclei that possess both a magnetic moment and angular momentum pos-

sess the nuclear magnetic resonance property and are referred to as "spins". Since
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the human body consists largely of water, 1H is very abundant in the body. It is

these protons that are primarily imaged in MR. In the absence of a strong external

magnetic field, the spins inside a material are oriented randomly, resulting in a weak

net magnetization in an arbitrary direction. However, an external magnetic field

induces spins to align parallel or anti-parallel to the field. For MR signal genera-

tion, this large, external magnetic field is referred to as the main field, ~B0 [Tesla or

Gauss]. By convention, this direction is usually chosen as the z-axis or longitudinal

direction:

~B0 = Bz0
~k, (2.1)

where ~k is the unit vector in the z-direction. This field is generated by superconduct-

ing coils or large permanent magnets and remains static. Since the anti-parallel state

has a higher energy than the parallel state (with energy difference ∆E), nuclei are

more likely to align parallel to ~B0, along the z-direction, creating a net magnetization

vector, denoted ~M(r, t) [Am/m].

When a magnetic moment, ~µ, is placed in a external magnetic field, ~B0, it will precess

like a top at a frequency proportional to the applied magnetic field, known as the

Larmor frequency.

The following relationship is fundamental to nuclear magnetic resonance (NMR) and

MRI:

f0 = γBz0 or ω0 = γBz0 (2.2)

8



where f0 is the angular frequency of the spin precession [Hz], ω0 is the resonant

frequency, Bz0 is the strength of the applied magnetic field, and γ = γ
2π

is the

gyromagnetic ratio of the material, [MHz T−1]. For 1H, γ = 42.28 MHz/Tesla.

2.1.2 Excitation with an RF pulse

In the excitation phase of a scan, a very short time-varying radiofrequency (RF) field,

~B1(t) is applied perpendicular to the main field, ~B0. This is an amplitude-modulated

pulse transmitted through quadrature RF coils and is often called the "excitation

field". This pulse is tuned to the resonant frequency of the material. This causes the

magnetization to precess, and for ease of notation, the precession is usually analyzed

in a rotating frame of reference. In the rotating frame of reference, ~M(~r, t) can be

decomposed into a transverse component, MXY (~r, t) and the longitudinal compo-

nent, Mz(~r, t)~k. We express the transverse magnetization as a complex quantity for

convenience:

MXY (~r, t) = MX(~r, t) + iMY (~r, t). (2.3)

The RF pulse tips the magnetization vector away from the main field so that a

portion of it lies in the x-y plane, with some energy perpendicular to ~k. After the

RF pulse, the magnetization vector will relax to its equilibrium state, parallel to

~k. Magnetization behavior during and after the RF pulse is described by the Bloch
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equation [11]:

d ~M

dt
= ~M × γ ~B − MX

~i+MY
~j

T2

− (MZ −Mz0)~k

T1

(2.4)

whereMz0 is the largest possible magnitude,Mz(~r, 0
−), or the value ofMz an instant

before the RF pulse is applied.

The Bloch Equation has the following solutions after the RF pulse is turned off. The

longitudinal component recovers according to Equation (2.5), whereas the magnitude

of the transverse component decays according to Equation (2.6), as follows:

Mz(~r, t) = Mz0(~r)
(
1− e−t/T1(~r)

)
+Mz(~r, 0)e−t/T1(~r) (2.5)

|Mxy(~r, t)| = |Mxy(~r, 0)|e−t/T2(~r). (2.6)

T1 and T2 values vary depending on the material and thus provide anatomical con-

trast. T1 is the spin-lattice constant, and T2 is the spin-spin time constant. Typical

values for T1 are 100-1000 msec, and typical values for T2 are 10-100 msec. MRI

acquisition sequences can be designed to produce T1- or T2- weighted images.

As the magnetization precesses, its transverse component, Mxy(~r, t), is detected by

the receiving coil via Faraday’s Law of Induction. By measuring the rate at which

Mz(~r, t) recovers and at which |Mxy(~r, t)| decays, it is possible to measure the T1 and

T2 constants for the object at hand. However, this does not provide any localization
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of signal, so images cannot be produced from this information alone.

2.1.3 Localization with Field Gradients

From Equation (2.2), we know that the angular frequency of the precession is di-

rectly proportional to the overall magnetic field. By varying the magnetic field along

the x and y directions, we can encode location information into the frequencies of

precession. More specifically, we can design ~B(~r) as follows:

~B(~r) = (Bz0 + xGx + yGy + zGz︸ ︷︷ ︸
~r· ~G

)~k (2.7)

where Gx, Gy, Gz indicate linear field gradients, with typical values less than 1

Gauss/cm. Application of these field gradients causes spins at different locations

to precess at different frequencies, thus encoding location information into the pre-

cession frequency. For this pioneering work, Paul Lauterbur and Peter Mansfield

earned a Nobel Prize in 2003.

2.1.4 Signal Equation

The signal detected by the RF receiver coils can be approximated as:

s(t) ≈ −iω0B1xye
−iω0t

∫ ∫ ∫
Mxy(~r, 0)e−t/T2(~r)e−iφ(~r,t)d~r, (2.8)

where the phase term φ(~r, t) depends on the design of the field gradients over
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time:

φ(~r, t) = γ

∫ t

0

~r · ~G(τ)dτ. (2.9)

After I/Q demodulation, the baseband signal is then

s(t) ,
∫ ∫ ∫

Mxy(~r, 0)e−t/T2(~r)e−iφ(~r,t)d~r. (2.10)

Introducing the notion of k-space, the Fourier domain of image space, the following

useful formulation arises:

s(t) ≈
∫ ∫ ∫

M(~r, 0)e−t/T2(~r)e−i2π(~r·
~k(t))d~r, (2.11)

where k-space coordinates ~k(t) is defined as follows:

~k(t) = γ

∫ t

0

~G(τ)dτ. (2.12)

Further approximation of the relaxation and encoding terms allows us to define an

image of the transverse magnetization over a selected rectangular slice of thickness

∆z centered at z0. We define the image m(~r) as:
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m(~r) ,
∫ z0+ ∆z

2

z0−∆z
2

M(~r, 0)e−t/T2(~r)dz. (2.13)

This generates a familiar relationship between s(t) and m(~r):

s(t) =

∫ ∫
m(~r)e−i2π(~r·

~k(t))d~r =M(~k(t)). (2.14)

We can recognizeM(~k(t)) = F{m(~r)}, the Fourier transform of the image m(~r) [12].

K-space can be interpreted as spatial frequencies, the inverse of image space.

F
→
F−1

←

Figure 2.1: A T1-weighted simulated brain image (via Brainweb) and its k-space
representation are related via the Fourier Transform. (a) m(~r) in the image domain
(b) log scale of magnitude ofM(~k) in k-space

2.1.5 Imaging

Since the signal measured by the RF coils directly samples the 2D Fourier Transform

of the image, the field gradients can be designed so that the k-space trajectories
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adequately sample M(~k(t)), from which m(~r) can be reconstructed via a simple

inverse FFT.

This is traditionally done by sampling k-space in a Cartesian pattern with sampling

rate that satisfies the Nyquist criterion. To prevent spatial aliasing, the sampling

rate in k-space, ∆k, is chosen depending on the field of view (FOV) of the object:

∆k ≤ 1
FOV

. The data acquired after RF excitation, during the readout portion of the

pulse sequence, corresponds to a single line of samples in Cartesian imaging, often

referred to as a "readout". For 3D Cartesian imaging, these lines are also called

"phase encodes".

Non-Cartesian sampling trajectories, such as radial, spiral and rosette sampling, are

popular as fast imaging methods. We will discuss radial sampling in more detail in

Section 2.5.3. Cartesian sampling itself is quite broad and can be accomplished with

a variety of acquisition sequences, such as Echo Planar Imaging (EPI).

Examples of Cartesian and radial sampling trajectories are shown in Figure 2.2.

14



k
x

k
y

 } ∆
k
 

k
x

k
y

}

∆
RO

} ∆
θ

Figure 2.2: (a) Cartesian trajectory with 10 readout lines and sampling rate ∆k; (b)
radial trajectory with 8 spokes (i.e., readouts), angular spacing ∆θ, and sampling
rate of ∆RO in a given readout.
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2.1.6 Discrete Model

The measurements made by the receiving coil are sampled by an A/D converter,

leading to noisy discrete measurements:

yi = s(ti) + εi (2.15)

where yi is the ith element of the discretized signal y, and εi represents complex

Gaussian noise. The discrete signal s(ti) can be approximated by discretizing the

continuous image m(~r):
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m(~r) ≈
Nr∑
j=1

mjb(~r − ~rj), (2.16)

where b(~r) denotes a spatial basis function, usually rectangular pixels, b(~r) = rect(x, y, z).

The number of voxels in the image is Nr. This yields the following approximation

for s(ti):

s(ti) ≈
Nr∑
j=1

mj

∫ ∫
b(~r − ~rj)e−i2π[~r·~k(ti)]d~r (2.17)

=
Nr∑
j=1

ai,jmj, (2.18)

where ai,j =

∫ ∫
b(~r − ~rj)e−i2π[~r·~k(ti)]d~r. (2.19)

Finally, we arrive at a convenient matrix model for the imaging system:

y = Am+ ε (2.20)

where A is the system matrix containing the ai,j entries, and m is the vector of

unknown pixel values. For the remainder of this report,m will be renamed x to follow

convention. We can recognize A as being the Discrete Fourier Transform.
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Figure 2.3: Discrete k-space measurements y relate to the Discrete Fourier Transform
of the voxels of the discretized object, m.

.

2.1.7 Non-Iterative Reconstruction

For Cartesian sampling, the desired image x can be efficiently recovered from the

data y by the inverse Fast Fourier Transform. This section describes other common

non-iterative methods for MRI reconstruction.

Many non-Cartesian sampling trajectories result in non-uniform sampling density.

For example, the radial trajectory pictured in Figure 2.2 has a higher density of

samples toward the center of k-space, with 8 repeated measurements of the origin

itself. Towards the periphery, the spacing between samples grows. Because most of

the information in k-space is located at or near the center of k-space, many trajec-

tories have been proposed with a higher density of samples in the center, such as

spirals [13] and rosettes [14].

To adjust for the non-uniformity of samples, a density compensation function is

usually applied to the samples before application of the inverse Fourier transform.
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The density compensation function weights samples proportionally to the sampling

density at that k-space location. For regular sampling patterns, such as radial and

spiral trajectories, this density compensation function can be determined analytically.

For more complicated non-Cartesian trajectories, the density compensation function

is often computed according to the area of Voronoi cells of that trajectory [15].

Voronoi cells encapsulate the region of k-space points that are closest to a given

sample. Figure 2.4 depicts a Voronoi diagram for a radial trajectory.

k
x

k
y

Figure 2.4: Voronoi diagram for a radial sampling trajectory with 8 spokes. Samples
are weighted proportionally to the area in its Voronoi cell to account for non-uniform
sampling density.

.

To efficiently perform the Fourier transform for non-Cartesian samples of k-space,

the samples must be interpolated to the Cartesian grid, in a process called "grid-

ding" [16]. This is often done practically with a Kaiser-Bessel interpolation kernel
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[17].

2.2 Accelerated MRI

2.2.1 Motivation for MRI Acceleration

In clinical practice, a typical suite of MRI scans can take up to 90 minutes to perform.

Lengthy scan times are disadvantageous for a number of reasons. Firstly, the longer

a patient is in the MRI scanner, the more costly the procedure is. The capital spent

on a new MRI scanner is distributed over the number of patients that it services,

so improving patient throughput reduces cost per patient. MRI acceleration may

also make MRI a more attractive choice of imaging modality for physicians. MRI

is slow compared to X-Ray CT, but it does not harm the patient with ionizing

radiation. Though MRI cannot compete against ultrasound on compactness or real-

time imaging, MRI is able to provide higher resolution images and able to penetrate

more anatomical areas. More prevalent use of MRI by physicians could result in

better outcomes for some patients.

Additionally, the longer the duration of acquisition, the more likely motion artifacts

will degrade image quality. Motion artifacts arise from conscious movement, as

well as from essential body functions such as breathing, cardiac movement, and

blood flow. Just as a longer exposure for a film camera makes photographs more

susceptible to blur, patient movement similarly degrades organ and lesion contrast

in MR images.
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Acceleration is also particularly useful for DCE-MRI, since accurate estimation of

contrast agent concentration time series requires both high spatial resolution and

high temporal resolution. Unfortunately, there exists a fundamental tradeoff be-

tween spatial resolution and temporal resolution. Increasing the number of k-space

locations sampled in a given frame also increases the time between frames (and tem-

poral sampling rate).

Because MRI samples are acquired sequentially, the primary method of acceleration

is to undersample k-space, i.e., sample fewer points than required by the Nyquist

sampling theorem. However, undersampling causes Equation (2.20) to be underde-

termined, which necessitates the introduction of additional information. One class

of methods, parallel imaging, acquires spatially encoded information on multiple re-

ceive coils simultaneously. Another method is to introduce assumptions about image

smoothness or sparsity in particular domains.

2.2.2 Sensitivity Encoding (SENSE)

Parallel imaging methods utilize additional RF surface coils placed adjacent to the

body. Parallel imaging accelerates MRI acquisition by collecting redundant informa-

tion on multiple receive coils in parallel, thus permitting undersampling. Each coil

is able to detect RF signals close to it with a spatially-varying strength, described

by its sensitivity map. This is in contrast to traditional MRI that uses a single body

coil designed to have uniform sensitivity throughout.

In this report, we focus on one parallel imaging paradigm, Sensitivity Encoding
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(SENSE). In SENSE, the sensitivity maps are explicitly estimated and applied in

the image domain. The estimation of sensitivity maps is an active research field [18].

Other reconstruction methods for parallel imaging include Simultaneous Acquisition

of Spatial Harmonics (SMASH) [19] and Generalized Autocalibrating Partially Par-

allel Acquistions (GRAPPA) [20].

Though SENSE was initially developed as a method for increasing local SNR, the

use of multiple receive coils also permits undersampling of k-space. In its original

formulation, SENSE was combined with a structured undersampling scheme: entire

readout lines are omitted such that only 1 out of R readout lines are acquired, where

the reduction (or undersampling) factor R is less than or equal to Nc, the number of

sensitivity coils. The undersampled k-space data produces a series of Nc aliased coil

images, that can be unmixed to reconstruct the original image [21].

For a general (unstructured) undersampling scheme, SENSE can be formulated as a

least squares problem:

x = argmin
x

1

2
‖yMC −AMCSx‖2 (2.21)
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yMC =


y1

...

yNc

 ; AMC = INc ⊗A; S =


S1

...

SNc

 . (2.22)

In this multicoil setup, Nsamp is the number of positions sampled in k-space, yMC ∈

CNcNsamp stacks each coil’s data, yi, AMC applies the undersampled Fourier encoding

operator A to each coil image, and S is a stack of the diagonalized sensitivity maps

for each of the Nc coils. An undersampled Fourier encoding operator simply omits

the outputs that are not sampled and can be pictured as a fat matrix. Figure 2.5

shows simulated coil images that correspond to Sx.

Figure 2.5: Simulated brain image with 4 simulated sensitivity coil maps applied. In
the generalized SENSE framework, multi-coil samples yMC are modeled as k-space
samples of these images.

.
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Depending on the desired spatial and temporal resolution, coil geometry, and anatom-

ical challenges, this problem can still be ill-posed despite the additional information

from the Nc receive coils. For example, if the object field of view (FOV) is large, the

sensitivity of the receive coils might be weak at the center of the object, resulting in

poor SNR. This can be remedied by introducing regularization.

2.2.3 Regularization

Regularization is a method of introducing prior information to an ill-conditioned

inverse problem. In the case of undersampled MRI, there exist more unknowns

than data. Thus, a multitude of solutions (reconstructed images) fit the limited

acquired data. By assuming the image has certain properties, e.g., smoothly varying

or piece-wise constant, it is possible to penalize solutions that do not fit the a priori

assumptions and improve the condition number of the reconstruction problem.

It has been demonstrated that regularization reduces noise and aliasing artifacts

in SENSE reconstruction [22][23], and various types of regularizers have been pro-

posed, including Tikhonov regularization [22], nuclear norm regularization [24], and

Bregman iteration regularization [25].

Regularization involves the choice of the potential function as well as the domain of

regularization. A general form for a regularization term is R(x) = λ
∑K

k=1 ψk ([Cx]k),

where C transforms x to the domain over which we evaluate the potential function, ψ.

For many of the following experiments, we chose C to be first-order finite-differences,

measuring the difference between neighboring pixels in space or time. Wavelets are
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another popular choice for C. A crucial design component of regularization is the

regularization parameter, here denoted λ, that controls the balance between the

datafit term and the regularization term in the cost function. In many of the following

methods, the potential function ψ was chosen to be the `1 norm to promote sparsity

of Cx. Sparsity is a desirable property for applications of compressed sensing.

2.2.4 Compressed Sensing MRI

In recent years, the field of Compressed Sensing (CS) has been applied to MRI

reconstruction with great success [26]. MRI is a natural fit for CS for a number of

reasons. Firstly, MR images are compressible. Angiograms, images of blood vessels,

are sparse in the image domain, and anatomical images are often approximately

piece-wise constant and thus approximately sparse after finite-differencing. Dynamic

images are often further compressible than static images, because large portions of

the image remain constant or undergo limited movement. Thus it is often possible

to find transforms under which MR images become sparse.

Secondly, MRI samples are acquired in k-space, and k-space is often incoherent with

respect to the sparsifying transform domain. This is important because randomized

or irregular sampling in k-space causes incoherent aliasing in the image domain. In

other words, the aliasing, or leakage of energy from a given pixel to surrounding

pixels, does not combine in a constructive or destructive manner as overlapping

replicas but rather appears as noise. The recovery of the sparse coefficients can be

performed with a nonlinear iterative thresholding algorithm. Non-iterative methods,
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such as those described in Section 2.2.6 can be used to initialize these iterative

reconstruction methods.

Though many of the theoretical results for CS hinge on the assumption of truly

random sampling, it is simply a sufficient, not necessary, condition for applying CS

theory [27]. This random undersampling condition is particularly troublesome for

MRI, as energy is not uniformly distributed in k-space. For this reason, sampling

schemes used in CS-MRI are an active field of research.

2.2.5 Undersampling Methods

Various sampling methods have been proposed that balance randomness and ensuring

a particular density (or uniformity) of samples. One such method is Poisson Disk

Sampling.

A Poisson sampling distribution is generated by selecting coordinates of samples

independently from a uniform distribution. Because the number of samples in a

given area is Poisson distributed, this is called the Poisson distribution. However,

this can lead to "clumping" of samples in some areas and large voids in others.

To remedy this, the Poisson disk sampling method generates samples in the same

manner, with the additional restriction that points must be a minimum distance

from each other [28]. This method can be used to select a subset of Cartesian grid

points or lattice grid points [29] for acquisition.

Undersampling in k-space presents particular challenges. The majority of the energy

of k-space, and thus most of the image information, resides at or near DC. For this
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reason, it is desirable to have a higher density of samples in the region close to

the center, or DC. One method of doing this is to use a variable density sampling

pattern, such as in [30]. Another method is to fully sample central k-space and

undersample only the higher frequencies. Because this method has demonstrated

satisfactory image quality [26], this approach was chosen for many of the following

Cartesian simulations and experiments.

Cartesian sampling patterns have also been adapted to mimic the motion robustness

of radial sampling [31], and several experiments in 5 were implemented using this

sampling scheme.

For liver DCE-MRI experiments in Section 7, data was acquired in a radial sampling

pattern. More specifically, the 3D volume was sampled in a stack-of-stars configura-

tion, in which the sampling is Cartesian along z but radial in each axial slice. This

trajectory is pictured in Figure 2.6. Radial sampling also provides a higher density

of samples near the center of k-space.
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Figure 2.6: Golden-angle stack-of-stars trajectory with 5 golden-angle spokes and 10
slices. The center-of-k-space is denoted with a large black dot.

.

2.2.6 Datasharing Methods for Dynamic MRI

Several popular methods have been proposed for simply reconstructing dynamic MR

images from undersampled data. These methods rely on temporal interpolation of

specially designed undersampling patterns to achieve a balance between spatial and

temporal resolution in the resulting dynamic MRI image. In other words, data is

shared from one frame to another to fill in missing samples. After datasharing is

applied, standard non-iterative reconstruction methods, such as the FFT or NUFFT

can be used for efficient reconstruction.

In the keyhole method [32] [33], a fully sampled reference image is measured before
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or well after contrast injection, when dynamic changes are minimal. During the

injection of contrast, only the low-frequency k-space locations are sampled. This

results in fewer sampling locations in each frame and higher temporal resolution.

Rather than reconstructing the undersampled DCE data alone, which would result

in poor spatial resolution, the contrast data is combined with the higher-frequency

data of the reference image, and a higher spatial resolution frame is reconstructed

from the combination of the two datasets. This can be viewed as an sampling pattern

in which the center of k-space is fully sampled in each frame, and the outer regions

are completely unsampled, with the exception of a fully sampled initial frame. The

intuition is that higher frequency data describe details such as edges, and these edges

are not expected to change much during a breath hold scan.

Datasharing is a generalization of the keyhole method, in which the undersampling

pattern is not restricted the keyhole design. Outer regions of k-space can be sampled

during the course of a dynamic imaging experiment, resulting in less severe temporal

interpolation in outer regions of k-space.

Radial trajectories acquire high spatial frequency samples at little extra cost, so key-

hole and traditional datasharing methods are less efficient. Instead, radial datashar-

ing methods combine portions of spokes (i.e., readouts) from neighboring frames to

the full spokes of the pertinent frame. K-space Weighted Image Contrast (KWIC)

divides k-space into annular regions, including more neighboring frames’ spoke seg-

ments in outer annuli [34]. KWIC is also particularly useful for sampling trajectories

that don’t ensure repeated sampling of k-space locations, such as the golden angle

radial sampling scheme, discussed in Section 2.5.3.

28



For these datasharing methods, the notion of temporal resolution is no longer straight-

forward. In traditional dynamic image reconstruction, only data acquired during a

specific frame is used to reconstruct that frame. Datasharing uses data from many

other frames to reconstruct a given frame, with a temporal “footprint” that is of-

ten much larger than the reported temporal resolution. For datasharing methods,

temporal resolution is often reported as the full duration of the experiment divided

by the number of reconstructed frames, which does not account for the temporal

footprint of datasharing.

Figure 2.7 shows the radial datasharing method as applied to a toy example with 24

golden angle radial spokes apportioned over 3 frames. Each spoke readout consists

of 20 samples and has a gradient delay, resulting in a constant in-spoke offset of 0.75

samples in k-space. In the top left, we show the full and partial spokes included

in frame 2. For reference, the annuli based on Nyquist limits are drawn, and pairs

of points that violate the maximum distance allowed by Nyquist are adorned with

circles. Beyond the largest annuli, we have included all possible spokes and cannot

satisfy Nyquist.

2.3 Optimization Methods for Image Reconstruction

Many cost functions designed for MR image reconstruction have structures that can

be expoited for faster computation. General purpose methods for unconstrained

minimization of differentiable cost functions include gradient methods such as gra-

dient descent and preconditioned conjugate gradient. Here we discuss computation-
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ally efficient variable splitting alternatives for solving proposed image reconstruction

problems.

2.3.1 Variable Splitting

The simplest variable splitting method for use on regularized cost functions is the

Split Bregman method [35]. Here we explore this variable splitting in additional

detail to illustrate the intuition behind this and more complex variable splitting

schemes. The following discussion will focus on the application of Generalized Split

Bregman to an `1-regularized problem.

Consider the following optimization problem, with convex functions |Φ(x)|1 and

H(x):

min
x
H(x) + |Φ(x)|1. (2.23)

Furthermore, assume Φ(·) to be differentiable. Equation (2.23) is equivalent to the

following constrained optimization problem:

min
x,u

H(x) + |u|1 s.t. u = Φ(x). (2.24)

Constrained problems can be converted into unconstrained problems using a quadratic

penalty function:

min
x,u

H(x) + |u|1 +
µ

2
‖u− Φ(x)‖2

2 . (2.25)

One method to enforce equivalence with the problem in (2.24) is to make µ → ∞,
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called continuation. Instead, we apply a Bregman iteration, iteratively minimizing

original variable x and auxiliary variable u:

(
x(n+1), u(n+1)

)
= min

x,u
H(x) + |u|1 +

µ

2
||u− Φ(x)− η(n)||22 (2.26)

η(n+1) = η(n) +
(
Φ(x(n+1))− u(n+1)

)
. (2.27)

We update the Bregman parameter η with the constraint error. Rather than mini-

mizing x and u jointly, we apply alternating minimization:

x(n+1) = min
x
H(x) + |u(n)|1 +

µ

2
||u(n) − Φ(x)− η(n)||22 (2.28)

u(n+1) = min
u
H(x(n+1)) + |u|1 +

µ

2
||u− Φ(x(n+1))− η(n)||22. (2.29)

By now, we have decoupled the `1 and `2 portions of the cost function into two

simpler problems. The x-update is now differentiable, and can be solved through

a variety of methods, such as conjugate gradient. The u-update has a closed form

solution that consists of shrinkage. For the `1 norm, the shrinkage function is a very

fast operation, soft thresholding:
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u(n+1) = soft

(
Φ(x(n+1)) + η(n),

1

µ

)
(2.30)

soft(x, γ) = sign(x) max (|x| − γ, 0) (2.31)

Split Bregman
1: Input y,F,S,M,Cs

2: Select µ.
3: Initialize x
4: Initialize u = Φ(x) and η = 0.
5: for N iterations do
6: for M iterations do
7: x(n+1) = minxH(x) + |u(n)|1 + µ

2
||u(n) − Φ(x)− η(n)||22.

8: u(n+1) = soft
(

Φ(x(n+1)) + η(n), 1
µ

)
.

9: end for
10: η(n+1) = η(n) +

(
Φ(x(n+1))− u(n+1)

)
.

11: j = j + 1
12: end for

In practice, only M = 1 inner iteration is often used for updating x and u. This

is because the Split Bregman method is robust to numerical imprecision and the

Bregman parameter update often obviates the need for precision in Equation (2.26)

[35].

Split Bregman has been shown to have faster convergence for cost functions with

`1-regularization compared to continuation methods. Smart choice of parameter µ

can reduce the condition number for the subproblem (2.28) and avoid numerical in-

stabilities that arise with continuation schemes. The speed gains from Split Bregman
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result from decoupling the `1 denoising problem from the `2 data consistency term,

each of which can be independently solved faster via alternating minimization than

a joint minimization.

2.3.2 Alternating Direction Method of Multipliers

Additional variable splits can be added to decouple exploitable structures in the cost

function. Speed gains usually result as each inner problem becomes easier to solve,

making outer iterations faster. However, the addition of many auxiliary variables

can have diminishing speed returns, complicate parameter tuning, occupy lots of

memory, and obfuscate convergence guarantees.

Consider a more general optimization problem:

minf(x) + g(z) (2.32)

s.t. Mx = z (2.33)

with closed, proper convex functions f : Rn 7→ (−∞,+∞] and g : Rs 7→ (−∞,+∞]

and matrix M with size s×n. Then the Alternating Direction Method of Multipliers

(ADMM) solution consists of the following recursive steps:
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x(n+1) = argmin
x∈Rn

{f(x) + 〈p(n),Mx〉+
λ

2

∥∥Mx− z(n)
∥∥2

(2.34)

z(n+2) = argmin
z∈Rs

{g(z)− 〈p(n), z〉+
λ

2

∥∥Mx(n+1) − z
∥∥2

(2.35)

p(n+1) = p(n) + λ
(
Mx(n+1) − z(n+1)

)
(2.36)

for λ > 0 [36] [37]. The objective is guaranteed to approach the optimal value, and

the iterates approach feasibility, i.e., constraint satisfaction.

Variable splitting approaches for image reconstruction can be designed to satisfy

equivalence with ADMM, thus ensuring convergence. In particular, if the matrix

describing the ensemble variable splitting scheme has full rank [38], we can rely on

its equivalence with ADMM.

2.4 Dynamic Contrast Enhanced MRI

Dynamic Contrast Enhanced (DCE) MRI is a method of MRI in which a series of

images are acquired in succession to characterize changes in contrast agent uptake

over time. During the scan, the patient is intravenously injected with a contrast agent

that shortens T1 in the surrounding tissues. Because the amount of T1 shortening is

proportional to the concentration of contrast agent, it is possible to infer the levels

of contrast uptake for a particular region. For breast and liver DCE-MRI studies,

gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA) is commonly used as the
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contrast agent. By acquiring a series of images over time, it is possible to visualize

rates at which areas of the body uptake the contrast agent and quantitative changes

in contrast agent concentration change over time. These contrast changes are then

used to measure pharmacokinetic parameters, for use in diagnosis and radiation

therapy assessment. DCE-MRI is a useful tool because of its ability to depict both

physiology and morphology.

2.4.1 Effect of Contrast Agent on Image Signal

For a given voxel, the concentration of contrast agent in the tissue, Ct(t), affects the

T1(t) value as follows:

1

T1(t)
=

1

T10

+ r1Ct(t). (2.37)

Relaxivity parameter r1 is particular to the contrast agent (e.g., 4.50 mM −1 s−1 at

3T for Gd-DTPA [39]). T10 is the inherent spin-lattice constant of the tissue (e.g.,

812 ms for liver at 3T, 1194 ms for kidney at 3T [40]), and T1(t) is the dynamically

changing spin-lattice constant. As the tissue contrast agent concentration increases,

the T1 value of the tissue decreases.

For steady state Spoiled Gradient Recalled (SPGR) sequences, the MR signal equa-

tion is:

m0 = ρ0 sin(θ)

(
1− E1

1− E1 cos(θ)

)
e
−TE
T∗2 ; E1 , e

− TR
T1(t) . (2.38)
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The signal intensity, m0, is a function of the proton density, ρ0, the flip angle, θ, the

dynamically changing spin-lattice constant, T1(t), repetition time, TR, echo time,

TE, and effective T2 (which includes effects of field inhomogeneities). The presence

of contrast agent lowers T1 values, and subsequently E1 values, increasing the signal

m0, making the tissue appear brighter. We group together the product of several

unknowns in the signal equation as κ6(~r) = ρ0(~r)e
−TE
T∗2 . From initial pre-enhancement

image estimates and T1 maps, we can precompute this quantity. An alternative

approach is to estimate this quantity from post-contrast data.

For DCE imaging, a T1 mapping scan with multiple flip angles is done prior to

contrast injection. This scan is usually short in duration, approximately 10 seconds

for each flip angle, so patients are trained to hold their breath for the scan. This

allows for isolation of E1 term from measured m0 in Equation (2.38).

2.4.2 Breast Pharmacokinetic Model

For the breast, a popular pharmacokinetic model is the single-compartment Tofts

model [41]. We apply this model voxel-by-voxel. This model describes three phar-

macokinetic parameters: the volume transfer constant, Ktrans, the flux rate constant,

kep, and the volume of extravascular extracellular space per unit volume of tissue,

ve. These parameters are interrelated: kep = Ktrans/ve, so only two need to be calcu-

lated. These parameters describe the relationships between various time series. The

primary time series of interest is the concentration of contrast agent in the breast

tissue over time, Ct(t). This quantity is related to the contrast agent concentration
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in the blood plasma near the breast, Cp(t) [2]. Cp(t) is closely related to the arterial

input function (AIF) through h, the hematocrit (or volume percentage of cells in

blood), as follows:

AIF = (1− h)Cp(t). (2.39)

A value of h = 0.45 has used in previous breast DCE-MRI studies [42].

To estimate the values for Ktrans, kep, and ve, it is necessary to measure or estimate

two time series: Cp(t) and Ct(t). Ktrans, kep, and ve describe how Cp(t) and Ct(t)

are related:

Ct(t) = KtransCp(t) ∗ (e−keptu(t)). (2.40)

Here, ∗ denotes convolution and u(t) is the unit step function. The unknown time

delay of the bolus arrival (first arrival of concentration agent in the breast) is hidden

within Cp(t). Tissue concentration can be measured from reconstructed DCE-MRI

images by manual selection of the tissue voxels. Several different approaches are used

to estimate the AIF, and consequently Cp(t).

The AIF can be directly measured from a manually chosen region of interest (ROI)

within internal mammary arteries or axillary arteries, but these small vessels can be

affected by motion. Alternatively, the AIF can be derived from measurements in
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other vessels, such as the descending or ascending aorta, which can be included in

the FOV [43]. Yet another approach is to avoid estimating patient-specific AIFs and

use population-averaged values [44].

2.4.2.1 Method of Moments Approach to Tissue Concentration

The noisy measurements of DCE imaging, y, depend on the unknown DCE image,

m0, through system A in a setting with complex Gaussian noise:

y = Am0 + ε, ε ∼ CN . (2.41)

Overall system matrix A can consist of many components, such as AMC and S as

described for multi-coil imaging in (2.21). As described in Section 2.2.3, the penalized

likelihood estimator for m0 is:

m̂0 = argmin
m0

‖y −Am0‖2 + λR(m0). (2.42)

From the estimate for m0, we seek to estimate the unknown pharmacokinetic param-

eters through a method of moments approach to estimating tissue concentration,

Ct(t). With a precomputed κ6(~r), we isolate Ct(t) by combining (2.37) and (2.38)

as follows:
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Ê1(~r, t) =

(
m̂0(~r,t)

κ6(~r) sin(θ(~r))

)
− 1(

m̂0(~r,t) cos(θ(~r))
κ6(~r)sin(θ(~r))

)
− 1

(2.43)

Ĉt(~r, t) = − 1

TRr1

ln

(
Ê1(~r, t)

e
− TR
T10(~r)

)
. (2.44)

From estimated tissue contrast agent concentration, Ĉt, we can estimate the remain-

ing pharmacokinetic parameters through the variable projection method described

below.

2.4.2.2 Introduction to Variable Projection

Variable projection is a method which separates the linear variables cj from the

nonlinear variables d within the following problem [45]:

min
c,d

∥∥∥∥∥ai −
n∑
j=1

cjbj(d; ti)

∥∥∥∥∥
2

. (2.45)

Each measurement ai corresponds to independent variables ti through a linear com-

bination of n nonlinear functions, bj(d; ti). Collecting the nonlinear contributions

bj(d; ti) into a matrix B(d), we can describe the problem as:
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d̂ = argmin
d

∥∥(I −B(d)B(d)+
)

a
∥∥2 (2.46)

where B(d)+ is the generalized Moore-Penrose pseudo-inverse of B(d). Equation

(2.46) minimizes the variable projection of d into the orthogonal complement of

B(d).

The linear variable estimates are computed based on the optimal nonlinear variable

values:

ĉ = B(d̂)+a. (2.47)

Variable projection is a powerful method because the optimization for the nonlinear

variables is performed in a reduced space. Furthermore, the minima for the reduced

problem are better defined than the full nonlinear estimation problem, often resulting

in faster convergence [45].

2.4.2.3 Variable Projection for Breast Pharmacokinetic Parameter Esti-

mation

For variable projection, we will estimate the pharmacokinetic parameters voxel-by-

voxel, omitting argument ~r. Recall Equation (2.40):
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Ct(t) = Ktransb(kep; t) where,

b(kep; ti) = Cp(t) ∗ (e−keptu(t))

∣∣∣∣
t=ti

. (2.48)

Recognizing kep as the single nonlinear variable and Ktrans as the single linear vari-

able, we can estimate the two quantities using variable projection as follows:

k̂ep = argmin
kep

∥∥∥(I −B(kep)B(kep)+
)

Ĉt

∥∥∥2

(2.49)

ˆKtrans = B(k̂ep)+Ĉt. (2.50)

For convenience, we arrange values of ˆCt(t) as a vector: Ĉt =

[
Ĉt(t1) · · · Ĉt(tNt)

]T
.

Because B(kep) is a column vector, the solution for k̂ep can be simplified to maxi-

mization of an inner product as follows:
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k̂ep = argmin
kep

∥∥∥∥(I −B(kep)
B(kep)T

B(kep)TB(kep)

)
Ct

∥∥∥∥2

(2.51)

= argmin
kep

‖Ct‖2 −
(
B(kep)TCt

)2

B(kep)TB(kep)
(2.52)

= argmax
kep

(
B(kep)TCt

)2

B(kep)TB(kep)
(2.53)

= argmax
kep

∣∣∣∣∣∣∣
(

B(kep)

‖B(kep)‖

)T
Ct

∣∣∣∣∣∣∣
2

(2.54)

Since this is a one-dimensional optimization problem, we choose to solve it with

a simple global search over the feasible space for kep, defined by values found in

literature. With the estimate for kep, we compute the estimate for Ktrans using

(2.50). This method was outlined by [2].

2.4.3 Liver Pharmacokinetic Model

In contrast to the breast, the liver is commonly modeled as a dual-input, single-

compartment system [46]. We apply this model voxel-by-voxel. Blood enters the

liver through two main blood supplies, the aorta and the portal vein. Aortic blood

supply reaches the liver first through the hepatic artery, and the portal vein carries

blood from the gastrointestinal tract and spleen to the capillary beds in the liver

for detoxification. We model liver in its entirety, including the tissue, capillaries,

and extracellular extravascular space (EES), as one compartment. From this single
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compartment, outflow or leakage occurs. This relationship can be modeled with the

following differential equation:

dCL(t)

dt
= k1aCa(t) + k1pCp(t)− k2CL(t). (2.55)

Ca(t) and Cp(t) represent the contrast agent concentration in the aorta and portal

vein. CL(t) represents the concentration agent enhancement curve for a particular

voxel in the liver. Pharmacokinetic parameters k1a and k1p are the aortic and portal

venous inflow rate constants, and k2 is the outflow rate constant. Solving for CL(t)

and adding two parameters, τa and τp, to describe the transit time along each of the

blood input routes, we obtain:

CL(t) =

∫ t

0

[k1aCa(t
′ − τa) + k1pCp(t

′ − τp)] e−k2(t−t′)dt′ (2.56)

= [k1a(~r)Ca(t− τa(~r)) + k1p(~r)Cp(t− τp(~r))] ∗ e−k2(~r)t

This yields five (NPK) unknown pharmacokinetic parameters at each liver voxel: k1a,

k1p, k2, τa, τp. Note that portal vein input always occurs after the aortic input, so τp

is always larger than τa.

To measure liver pharmacokinetic parameters from a dynamic image, we first esti-

mate the contrast enhancement curves Ca(t) and Cp(t). Then we can use a combina-

tion of a method of moments approach described in Section 2.4.2.1 to estimate CL(t)

and variable projection to estimate the five pharmacokinetic parameters from ĈL(t),

Ca(t), and Cp(t). The method of moments approach to estimating CL(t) is the same
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as for breast, described in Section 2.4.2.1. The variable projection method for liver

pharmacokinetics is described below.

2.4.3.1 Variable Projection for Liver Pharmacokinetic Parameter Esti-

mation

From CL(t), we can use variable projection [45] to estimate the five unknown phar-

macokinetic parameters separately for each voxel. For the liver pharmacokinetic

estimation problem, n = 2, and the following quantities correspond to the variable

projection framework described in Equation (2.45):

c =

k1a

k1p

 , d =


τa

τp

k2

 (2.57)

We construct vector CL similar to Ct for the breast. We also define two new vectors

for ease of notation:

va(d; ti) , Ca(t− τa) ∗ e−k2t

∣∣∣∣
t=ti

, vp(d; ti) , Cp(t− τp) ∗ e−k2t

∣∣∣∣
t=ti

. (2.58)
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In matrix form, we have the following solution for the linear parameters c:

B(d) =


| |

va(d) vp(d)

| |

 (2.59)

ĉ = B(d)+ĈL. (2.60)

The generalized Moore-Penrose pseudo-inverse of B(d) ∈ RNt×2, B(d)+ ∈ R2×Nt

is:

B(d)+ =
(
B(d)TB(d)

)−1
B(d)T (2.61)

=


va(d)Tva(d) va(d)Tvp(d)

vp(d)Tva(d) vp(d)Tvp(d)



−1 –va(d)T–

–vp(d)T–

 (2.62)

To solve for nonlinear parameters, d, we minimize the following cost functions:

d = argmin
d

1

2

∥∥CL −B(d)B(d)+CL

∥∥2 (2.63)

= argmin
d

1

2

∥∥∥∥∥∥∥∥∥∥
CL −


| |

va(d) vp(d)

| |



va(d)Tva(d) va(d)Tvp(d)

vp(d)Tva(d) vp(d)Tvp(d)



−1 –va(d)T–

–vp(d)T–

CL

∥∥∥∥∥∥∥∥∥∥

2

(2.64)
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A sweep over the parameters would be cumbersome for 3D d in Equation (2.57).

Other methods, such as the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm

for unconstrained nonlinear problems may prove useful for this step. Because τa < τp,

we can reduce the feasible set by one half. Other constraints on the feasible set of d,

such as using bounds based on values found in literature, may also prove useful.

2.4.4 Motion Compensation for Abdominal Imaging

Liver imaging presents a greater challenge than breast imaging due to the greater

effect of respiration. Beyond the usual degradatory effects of motion, respiration is

complicated by hysteresis. The exertion of the diaphragm creates differences in the

relationship between lung volume and air pressure during inhalation and exhalation.

This also results in a different anatomical trajectories [47]. Ignoring irregularities,

breathing can be modeled as smoothly cycling between a small number of discrete

respiratory phases [48].

2.5 Previous Approaches to Motion Compensated Dynamic

Image Reconstruction

Here we review several existing methods for motion compensation in image recon-

struction. These methods are presented for completeness and as a theoretical basis

for comparison.
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2.5.1 Navigators and Respiratory Gating

One of the simplest approaches to dealing with motion is to categorize the data

according to respiratory state and only use data correspoding to the desired respi-

ratory state. This process, known as "gating", circumvents the need to compensate

for motion at all, assuming that little motion occurs among the gated data. Though

it is simple to implement, this can complicate pharmacokinetic parameter estima-

tion, particularly if crucial temporal changes occur during an undesired respiratory

state.

Respiratory gating requires information about the patient’s underlying respiratory

state. This information is described with a navigator signal. In the past, this infor-

mation was measured by means of an external device, such as a belt or bellows, or

additional RF-pulses. The experimental data presented in Chapter 5 uses a naviga-

tor measured during adapted pre-winder gradients for phase encodes [49], pictured

in Figure 2.8.
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Figure 2.8: A Butterfly navigator from a pediatric abdominal imaging dataset.

Experiments proposed in Chapter 7 use self-navigation, in which the respiratory
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state is estimated without additional measurements. For trajectories that repeatedly

sample the center of k-space, the DC value works as a good proxy for respiratory

state. As organs move in and out of the FOV, the total magnetization (DC value)

changes accordingly.

2.5.2 Joint Motion Estimation and Image Reconstruction

One sophisticated approach to compensating for motion in image reconstruction is

to estimate the underlying dynamic image and the motion corrupting the image of

interest simultaneously. This approach may improve motion and image estimates

but is also very challenging [50] [51].

2.5.3 Golden Angle Radial Sparse Parallel Imaging (GRASP)

GRASP, sometimes called iGRASP (iterative Golden angle RAdial Sparse Parallel

imaging), [52] is a popular method for dynamic image reconstruction that has been

applied to various MR applications, such as prostate [53], liver [54], and breast[52].

The two core ideas of GRASP are the use of golden-angle radial sampling and a

penalty on temporal differences.

Golden angle sampling is radial sampling in which the angular increment of the

spokes is the golden angle, π(3 −
√

5) radians. The use of golden-angle radial sam-

pling in a free-breathing paradigm results in sampling patterns that are robust to

motion and permit compressed-sensing reconstruction methods. More specifically,

for a Fibonacci number of spokes, the resulting sampling patterns are somewhat
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angularly uniform and have increasing density toward the center of k-space. The

randomness of the undersampling reduces the effect of respiratory gating on the

gated sampling pattern. Furthermore, the formula for generating spoke angles is

simple and easily reproduceable. In the absence of gradient-induced eddy currents,

which cause shifts in actual sample locations, radial spokes repeatedly sample the

center-of-k-space, allowing for easy self-navigation. This golden-angle stack-of-stars

trajectory is pictured in Figure 2.6.

The main contribution of GRASP is the application of temporal regularization to

the golden angle radial sampling framework. GRASP reconstructs dynamic image x

by minimizing the following cost function:

x̂ = argmin
x
‖y − FSx‖2 + λ ‖Ctx‖1 , (2.65)

where Ct computes temporal finite differences, S applies sensitivity encoding iden-

tically over each temporal frame, and F is the NUFFT operator defined on the

sampling pattern assigned to each frame of x. Feng et al. initially minimized this

cost fuction using nonlinear conjugate gradient in Matlab, but later implemented it

via L-BFGS in C++ combined with coil compression and slice-by-slice parallelization

for clinical use.

GRASP performed better than methods without temporal considerations on physi-

cian rated image quality and temporal fidelity metrics [52]. As expected, results

demonstrated a reduction of streaking artifacts as well. However, GRASP does not

account for motion between neighboring frames and its results can exhibit motion
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artifacts.

2.5.4 Extra-Dimensional GRASP (XD-GRASP)

Recently, the GRASP method was extended to include respiratory and cardiac di-

mensions in eXtra-Dimensional GRASP (XD-GRASP) [55]. Parameterization of the

unknown object along dimensions of motion (rather than time) reduced motion ar-

tifacts, increased organ edge sharpness, and improved vessel clarity. In further work

[56] [57], Feng et al. parameterized a liver DCE-MRI image with a combination of

time and respiratory state, also showing improved image quality. This method is

also called 5D MRI due to the five dimensions of the estimated object: x, y, and z

in space, time, and respiratory state.

We illustrate this concept with a 2D Shepp-Logan phantom, modified to include

contrast dynamics, shown in Figure 2.9. Tiles progress in time from left to right,

and occupy different motion states from top to bottom. In a single row, highlighted

for convenience in yellow, the motion state is fixed but time varies. Among this set of

image volumes, only contrast changes occur. Along a single column, also highlighted

in yellow, the temporal frame is fixed, but motion state varies, resulting in only

motion changes between the selected volumes.
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Figure 2.9: Illustration of 5D MRI, separating respiratory motion from contrast
changes across time. The x-axis represents discrete time values. The y-axis represents
discrete motion state values.
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Figure 2.10: Illustration of 5D MRI, showing the samples that can be realistically
acquired from k-space corresponding to Figure 2.9.

Because only one respiratory phase can be sampled at any given time, the estima-

tion problem for a 5D respiratory-DCE object is quite ill-conditioned. Figure 2.10

emphasizes the degree of undersampling, showing an example Golden Angle radial

sampling pattern for the k-space corresponding to the 5D object in Figure 2.9. Be-

cause sampling is limited to certain respiratory states at certain time values, the

remaining motion-time state pairs must be estimated using regularization. The cost

function for DCE XD-GRASP penalizes changes along the additional respiratory
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dimension as well as time:

x̂ = argmin
x
‖y − FSx‖2 + λ1 ‖Ctx‖1 + λ2 ‖Crx‖1 . (2.66)

Cr computes finite differences across neighboring respiratory states. For Nresp desired

respiratory states, the unknown x has size [Nx ×Ny ×Nz ×Nt ×Nresp], Nresp larger

than the unknown DCE object in GRASP without additional data. Feng et al.

did not report great computational burden for few temporal frames, Nt ≤ 40. For

accurate pharmacokinetic parameter estimation, finer temporal resolution (i.e., Nt >

40 for a 2 minute scan) may prove necessary, which in turn may require additional

regularization.

2.5.5 Direct Pharmacokinetic Parameter Estimation

Rather than measuring pharmacokinetic parameters from reconstructed dynamic

images, several works have proposed directly estimating pharmacokinetic values from

raw k-space data. This has been demonstrated in the brain for two pharmacokinetic

parameters [58] and prostate for four pharmacokinetic parameters [59].

For the direct estimation of brain pharmacokinetic parameters, [58] minimized:

(K̂t, v̂p) = argmin
Kt,vp

‖y − FSP (Kt, vp)‖2 + λ1 ‖WKt‖1 + λ2 ‖Wvp‖1 , (2.67)

with a sparsifying wavelet transform W and nonlinear operator P representing the

brain pharmacokinetic model and MR physics. This optimization was performed
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using limited-memory BFGS.

This work leaves open the opportunity for more sophisticated regularization and tai-

lored optimization. Additionally, DCE brain images are not as susceptible to motion

as other organs, because head motion can be minimized due to restraints. For this

reason, [58] does not compensate for motion. Additionally, the brain pharmacoki-

netic model was used for the entire FOV, a strategy that may not translate well to

abdominal imaging, where many organs with different pharmacokinetic behavior are

in the FOV.

For prostate direct pharmacokinetic estimation, [59] used a Bayesian inference method

that incorporated a low rank prior for the dynamic signal and a Gaussian prior for the

pharmacokinetic parameters. This method was initialized with global population-

based pharmacokinetic parameter values, and required tuning of various threshold

parameterss. The Bayesian inference was implemented as a Metroplis-Hastings al-

gorithm and demonstrated significant computational cost, with some experiment

calculations lasting 17 hours.

This method did not explicitly accomodate for motion, but showed increased robust-

ness in the face of simulated abdominal motion compared to indirect pharmacokinetic

estimation methods. Furthermore, respiratory motion in the prostate is less prob-

lematic than respiratory motion in abdominal imaging: 2.7± 1.9 mm for prostate in

the superior/inferior (S/I) direction [60] as opposed to 17.9 ± 5.1 mm for liver [61].

This work did not distinguish between voxels that adhere to the given pharmacoki-

netic model and those that do not: the prostate pharmacokinetic model is used over
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the entire pelvic region.
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Figure 2.7: Radial datasharing for a toy example. (a) full and partial pokes included
in datashared frame 2 of 3; (b) Voronoi map used for density compensated gridding
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Chapter 3

Efficient Support-Constrained Image Reconstruction

3.1 Theoretical Motivations

1 The conventional method for storing image data is in a two-dimensional array that

describes the values of all Nx × Ny pixels in the field of view. However the region

of interest in MRI images is defined by edges of the human body, a object that

does not hold a rectangular shape. MRI pulse sequences are designed to select a

FOV that encapsulates the entire bodily cross-section of interest. Traditional image

reconstruction methods are designed to reconstruct the entirety of this FOV, without

regard to which of these pixels are located within the body and are of interest for

diagnosis and to which of the pixels lie outside the body and can be safely assumed

to be air. Ideally, we would like to estimate a reduced number of pixels within the

image, spending computation only on the unknown pixel values inside the body.

However, it is still necessary to display these pixel values in a rectangular image
1This chapter is based on [8].
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and to preserve two-dimensional spatial relationships for multiplying by the system

matrix described in (2.21). To do so, we define a logical array, called a "mask" over

the rectangular matrix that indicates which pixels will be estimated and which will

be assumed to be air.

Though it is not possible to know exactly which pixels lie in and outside the body,

we can select a mask from a fast approximate image. A fast approximate image

can obtained from the sum-of-squares (SoS) of the Nc images reconstructed from

zero-filling k-space and performing an IFFT.

3.2 Static MRI Variable Splitting Algorithm

To introduce the support constraint into SENSE reconstruction, we construct the

following system model:

y = FSMx+ ε (3.1)

Nmask denotes the number of pixels in the support constraint.

Np denotes the number of pixels in the rectangular image to be reconstructed.

Nsamp denotes the number of samples collected, i.e., the number of non-zero elements

in the sampling pattern.

Nc is the number of receiving coils.

y is a NsampNc length vector containing the data from the Nc sensitivity coils.

F is an NsampNc ×NpNc undersampled Fourier encoding matrix. In one dimension,
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this would be equivalent to omitting rows from the standard DFT matrix.

F = INc⊗F̃, where F̃ is the Nsamp×Np undersampled Fourier encoding matrix,

where Nsamp < Np.

S is a stack of diagonal matrices, S1,S2, . . . ,SNc , each of which contains the sensi-

tivity data of each of the coils. Each Si is Np ×Np, and S is NpNc ×Np.

M is the Np×Nmask masking matrix that embeds a short vector x (of length Nmask)

into a longer vector corresponding to the 2D indexing of the image (of length

Np).

ε is complex Gaussian noise from thermal fluctuations in the patient.

Note that this matrix M is a column-reduced identity matrix such that M′M = INmask

and MM′ = diag(mask(:)), where Nmask is the number of pixels in the mask. Note

also that for Nc >
Np

Nsamp
, this optimization problem is over-determined. To improve

the conditioning of this problem as motivated in Section 2.2.3, we introduce an `1

regularization term, which yields the following optimization problem:

x̂ = argmin
x
||y − FSMx||22 + λ||CsMx||1 (3.2)

Cs is the regularization operator, chosen such that C′sCs is circulant to facilitate

fast computation.

λ is the regularization parameter that controls the balance between the fitting the

data and the a priori assumptions.
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This cost function is challenging to minimize directly for several reasons. The Hes-

sian for the datafit term, M′S′F′FSM, is highly shift-variant and lacking any easily

exploitable structure (e.g., circulant, diagonal). Furthermore, the `1 -norm regular-

ization term is non-differentiable.

Many proposed methods, such as [62], [63], for `1 regularized problems are compu-

tationally intensive and slow.

3.2.1 Variable Splitting

To make Equation (3.2) more tractable, we introduce auxiliary variables related to

x such that when those relations are enforced, the optimization problem is equiva-

lent to that in Equation (3.2). This allows us to decouple the system matrix, FSM,

into Hessian matrices with amenable structures. The following constrained optimiza-

tion problem is equivalent to the unconstrained optimization problem in Equation

(3.2):

x̂ = argmin
x,u,v,z

||y − Fu||22 + ||z||1 s.t. u = SMx, v = Mx, z = Csv (3.3)

In other words, Equations (3.2) and (3.3) have the same minimizer, x(∗), and the

same optimal objective function value. We designed the number of splittings and

the nesting structure of the constraints to yield favorable optimization problems for

each of the auxiliary variables, as discussed in Section 3.2.3.
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3.2.2 Introduction of the Augmented Lagrangian

Through the framework established in [64], and further developed and analyzed

in [65] and [66] and applied to Parallel MRI in [67], ((3.3)) yields the following

Augmented Lagrangian (AL) function:

L(x, u, v, z, ηu, ηv, ηz;µu, µv, µz) =
1

2
||y − Fu||22 + λ||z||1 +

µu
2
||u− SMx− ηu||22

+
µv
2
||v −Mx− ηv||22 +

µz
2
||z −Csv − ηz||22

(3.4)

The additional variables ηu, ηv, ηz are Augmented Lagrangian-like variables that in-

dicate how closely the auxiliary variables reflect the original constraints in ((3.3)).

The parameters µu, µv, µz control the speed of convergence but do not affect the

solution.

The AL framework yields the following algorithm:
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1: Input y,F,S,M,Cs.
2: Select µu, µv, µz.
3: Initialize x.
4: Initialize u = SMx, v = Mx, z = Csv, and ηu, ηv, ηz = 0.
5: for n iterations do
6: {x(n+1), u(n+1), v(n+1), z(n+1)} = argminx,u,v,z L(x(n), u(n), v(n), z(n), η

(n)
u , η

(n)
v , η

(n)
z ).

7: η
(n+1)
u = η

(n)
u − (u(n+1) − SMx(n+1)).

8: η
(n+1)
v = η

(n)
v − (v(n+1) −Mx(n+1)).

9: η
(n+1)
z = η

(n)
z − (z(n+1) −Csv

(n+1)).
10: j = j + 1
11: end for

3.2.3 Alternating Minimization

Rather than jointly minimizing x, u, v, and z, as required in line 5 of the AL

framework, we choose instead to minimize each variable in turn within a particular

iteration. To derive the x-update equation for the (j + 1)th iteration, we need only

minimize over the two quadratic terms of Equation (3.4) containing x. Recalling

that M′M = INmask
, this yields the following update rule:

x(n+1) =

(
M′S′SM +

µv
µu

I

)−1 [
M′S′

(
u(n) − η(n)

u

)
+
µv
µu

M′ (v(n) − η(n)
v

)]
. (3.5)

Just as S′S is diagonal, so too is M′S′SM, albeit with only Nmask elements. The

diagonal structure allows for easy inversion of the Hessian matrix Hx = M′S′SM +

µv
µu

I and a direct solution for (3.5).
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We derive the update for auxiliary variable u in a similar way. If each of the DFT

blocks of F is denoted Fi, for i = 1, . . . , Nc, then each F′iFi is block circulant. Thus,

the Hessian is circulant and can be diagonalized as follows: Hu = F′F + µuI =

QNc
′(ΛFF +µuI)QNc . Note that since u is the concatenation of the estimated image

under each sensitivity coil, QNc denotes a block DFT matrix with Nc blocks:

QNc =


Q(1)

. . .

Q(Nc)

 ; Q(i) = 2-D Nx ×Ny DFT (3.6)

u(n+1) = (F′F + µuI)−1(F′y + µu(SMx(n+1) + η(n)
u )) (3.7)

u(n+1) = Q′(ΛFF + µuI)−1Q(F′y + µu(SMx(n+1) + η(n)
u )). (3.8)

By using the precomputed eigenvalues of Hu, we update u efficiently and exactly.

The choice of u = SMx in the variable splitting scheme was motivated by the

separation of the circulant behavior of F′F from the diagonal structure of M′S′SM.

Though minimization of the datafit term in Equation (3.2) now requires updating

two variables instead of one, performing both of these updates is simpler and faster

than inverting M′S′F′FSM.

The resulting Hessian for the minimization of v is Hv = C′sCs + µv
µz

I. Since we have

chosen Cs such that C′sCs is circulant, Hv is also circulant and can be diagonalized

as Hv = Q
(
ΛCC + µv

µz
I
)

Q′, where Q is the 2-D Nx ×Ny DFT matrix. The choice
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of v = Mx and z = Csv in the variable splitting was motivated by isolation of C′sCs

from the influence of the masking matrix M. If this nested auxiliary variable split

were omitted, then the Hessian would have the form M′C′sCsM + cI. This Hessian

is neither diagonal nor circulant, and this update would have required an iterative

method to solve. The update for v is:

v(n+1) = (C′sCs +
µv
µz

I)−1

(
(C′sz

(n) −C′sηz) +
µv
µz

(Mx(n) + ηv)

)
(3.9)

v(n+1) = Q′
(

ΛCC +
µv
µz

I

)−1

Q

(
(C′sz

(n) −C′sηz) +
µv
µz

(Mx(n) + ηv)

)
(3.10)

The auxiliary variable z was designed to encompass the entire `1 term in Equation

(3.2) so that we are able to employ soft-thresholding in the following manner to

exactly minimize z:

z(n+1) = shrink

(
Csv + ηz,

λ

µz

)
, (3.11)

where the shrinkage operator is defined as:

shrink(x, γ) = sign(x) max{|x| − γ, 0} (3.12)

This yields the following algorithm:
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Algorithm 1 Masked AL Static SENSE algorithm
1: Input y,F,S,M,Cs

2: Select µu, µv, µz.
3: Initialize x
4: Initialize u = SMx, v = Mx, z = Csv, and ηu, ηv, ηz = 0.
5: for n iterations do
6: x(n+1) =

(
M′S′SM + µv

µu
I
)−1 [

M′S′
(
u(n) − η(n)

u

)
+ µv

µu
M′
(
v(n) − η(n)

v

)]
.

7: u(n+1) = Q′Nc(ΛFF + µuI)−1QNc(F
′y + µu(SMx(n+1) + η

(n)
u )).

8: v(n+1) = Q′
(
ΛCsCs + µv

µz
I
)−1

Q
(
C′s(z

(n) − η(n)
z ) + µv

µz
(Mx(n+1) + η

(n)
v )
)
.

9: z(n+1) = shrink
(
Csv

(n+1) + η
(n+1)
z , λ

µz

)
.

10: η
(n+1)
u = η

(n)
u − (u(n+1) − SMx(n+1)).

11: η
(n+1)
v = η

(n)
v − (v(n+1) −Mx(n+1)).

12: η
(n+1)
z = η

(n)
z − (z(n+1) −Csv

(n+1)).
13: j = j + 1
14: end for

3.3 Comparison with Other Variable Splitting Algorithms

3.3.1 Comparison with AL-P2

A recently proposed variable splitting algorithm was proposed for SENSE recon-

struction by Ramani et al. in [67]. This algorithm, AL-P2, was not designed for

the model in Equation (3.1), but its variable splitting scheme can be extrapolated

to match the model, resulting in the following algorithm.

x(∗) = argmin
x,u,v,z

||y − Fu||22 + ||z||1 s.t. u = SMx, v = x, z = CsMv (3.13)
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1: Input y,S,M
2: Initialize x
3: for n iterations do
4: x(n+1) =

(
M′S′SM + µv

µu
I
)−1 [

M′S′
(
u(n) − η(n)

u

)
+ µv

µu

(
v(n) − η(n)

v

)]
.

5: u(n+1) = (F′F + µuI)−1(F′y + µu(SMx(n) + η
(n)
u )).

6: v(n+1) = (M′C′sCsM + µv
µz

I)−1
(

(M′C′sz
(n) −M′C′sη

(n)
z ) + µv

µz
(x(n) + η

(n)
v )
)
.

7: z(n+1) = shrink
(
CsMv + η

(n)
z , λ

µz

)
.

8: η
(n+1)
u = η

(n)
u − (u(n+1) − SMx(n+1)).

9: η
(n+1)
v = η

(n)
v − (v(n+1) − x(n+1)).

10: η
(n+1)
z = η

(n)
z − (z(n+1) −CsMv(n+1)).

11: j = j + 1
12: end for

The most significant difference between the proposed method and AL-P2 is the v

update, line 6. For AL-P2, the Hessian is Hv = M′C′sCsM + µv
µz

I, which is neither

circulant or diagonalizable. Thus, the v update itself would require an iterative

method to solve, such as Conjugate Gradient (CG).

3.3.2 Comparison with Chambolle-Pock’s Primal Dual Algorithm

Chambolle-Pock’s Primal Dual Algorithm solves a saddlepoint problem that is the

primal-dual problem of the original minimization problem [68] . As such, it does

not rely on variable splitting or the Augmented Lagrangian formulation, though

Chambolle et al. demonstrate that it is equivalent to the preconditioned version of

the Alternating Direction Method of Multipliers (ADMM). ADMM is also known as

the "decomposable method of multipliers", because it alternatingly minimizes over

sets of variables in a separable objective function [37]. Though the proposed variable
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splitting method does not satisfy the conditions for ADMM convergence guarantees,

it too is based on alternating minimization followed by a Augmented-Langrangian-

like vector update.

3.3.3 Comparison with Split Bregman

The Split Bregman method was developed by Goldstein et al. for `1 regularized

problems in [35]. We discuss the Split Bregman method in more detail in Section

2.3.1. Like the proposed method, the Split Bregman algorithm decouples the `1 and

`2 terms in the objective function by introducing a single auxiliary variable. The

method then converts a constrained optimization problem into an unconstrained

optimization problem by introduction of a quadratic penalty term followed by alter-

nating minimization over the original and auxiliary variable within each iteration.

The Split Bregman method departs from the proposed method in its single variable

splitting, which yields more complicated inner optimization problems. In particular,

the Hessian for the variable update of x does not demonstrate any circulant or di-

agonal structure to exploit during inversion, so this step must be performed with an

iterative method. For the purpose of comparison, we chose to perform this step with

the Conjugate Gradient (CG) method.
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3.4 Results

3.4.1 Simulation

We used a T1-weighted 258×258 image from BrainWeb as ground truth for simula-

tion. We also simulated sensitivity maps for an 8-channel coil based on [69]. The

mask was an ellipse hand-placed based on the fast sum-of-squares (SoS) estimate, as

shown in Figure 3.1. Figure 3.2 shows the sampling scheme used— a Poisson disk

sampling scheme with the central 9×9 central phase encodes added, as motivated by

Section 2.2.5. This sampling scheme used code available from [70]. We chose R to

be anisotropic total variation (TV), measuring first-order differences with all eight

cardinal and diagonal neighbors. We added complex i.i.d. white Gaussian noise to

the simulated sensitivity encoded k-space for an SNR of 40 dB. We implemented all

algorithms in Matlab, utilizing the Fessler Image Reconstruction Toolbox [71] and

executed on a 3.30 GHz CPU. Figure 3.3 shows the objective function value from

Equation (3.2) as a function of iteration.
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Figure 3.1: User selected elliptical mask overlaid on top of ground truth image.

69



k
y

k
z

Figure 3.2: Sampling scheme used for simulation— union of a Poisson disk sampling
pattern and the central 9×9 phase encodes, total reduction factor of ≈ 5.6
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Figure 3.3: Original cost function as a function of iteration for a simulation with 40
dB SNR and undersampling of 5.6.

To further justify the use of a support constraint in the model proposed in Equation

(3.1), we performed experiments varying reduction factors and sizes of the support

constraint. Figure 3.5 shows the Normalized Root Mean Squared Error (NRMSE)

of the reconstructed image after 800 iterations as a function of acceleration factor.

Using the masked model and the mask depicted in Figure 3.1, the proposed method

achieved lower NRMSE using the same model without a support constraint. The

difference in quality becomes more dramatic at higher acceleration factors.
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Figure 3.4: (a) Reconstructed image using tight mask after 800 iterations; (b) Recon-
structed image using no mask after 800 iterations; (c) Normalized absolute difference
with true image for masked model (left) and unmasked model (right).
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Figure 3.5: Normalized root mean squared error (NRMSE) after 800 iterations as
a function of reduction factor and masking. NRMSE was calculated only over the
tightly masked region for a fair comparison.

Figure 3.6 shows how NRMSE decreases as the mask fits more tightly around the

object. The NRMSE for both Figures 3.5 and 3.6 were computed after 800 iterations

and only over the tightest defined mask.
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Figure 3.6: Normalized root mean squared error after 800 iterations as a function of
the size of the mask for a reduction factor of 5.77. NRMSE was calculated only over
the tightly masked region for a fair comparison.

3.4.2 In-vivo experiment

We used a 3D in-vivo human data set acquired with a GE 3T scanner with TR = 25

ms, TE = 5.172 ms, an 8-channel coil, and a voxel size of 1×1.35×1 mm3. The slices

were 256× 144 in size with 128 samples in the readout direction and were acquired

with a 3D spoiled gradient echo routine.

For the sampling pattern, we used a Poisson-disk-based undersampling pattern with

its central 32 × 18 phase-encodes fully sampled. We retrospectively undersampled

the 3D dataset using the pattern pictured in Figure 3.7 in the ky-kz plane, while fully

sampling along kx. Thus, the black pixels indicate the location of the quasi-randomly

located readout lines along kx.
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Figure 3.7: Poisson-disk-based sampling including fully sampled central 32 × 18
phase-encodes, with overall reduction factor of ≈ 5.65

We used the fully sampled center of k-space to generate a low-resolution image that

we then used for estimation of the sensitivity maps. We estimated the sensitivity

maps using [1], and they are shown in Figure 3.8. We used the sum of squares (SoS)

of the zero-filled iFFT-reconstructed coil images, depicted in Figure 3.9 as a guide

for the user selection of the spatial mask and as the initial estimate in each of the

algorithms below.
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Figure 3.8: Sensitivity maps for 8-channel coil as estimated by [1] based on low-
resolution images.

Figure 3.9: User selected elliptical mask overlaid on sum of squares (SoS) of iFFT
zero-filled central k-space data.

Table 3.1 lists the three algorithms used in the convergence speed comparison in

Figure 3.10 and describes the method used in the inner iteration step (if applica-
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ble).

Table 3.1: Algorithms used in speed comparison

Algorithm Name Abbreviation Number of Method for
inner iterations inner iterations

Split Bregman [35] SB 2 CG
Ramani AL Method [67] AL-P2 2 PCG

Chambolle-Pock Primal Dual Algorithm [68] CP-PDA N/A N/A
Proposed Method AL-Mask N/A N/A

0 5 10 15 20 25 30 35

−220

−200

−180

−160

−140

−120

−100

−80

−60

−40

−20

time (sec)

no
rm

al
iz

ed
 s

qu
ar

ed
 d

is
ta

nc
e 

to
 x

( *)  (
in

 d
B

)

Comparison of NRMSD over time for proposed method 
 and other variable splitting algorithms.         
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Figure 3.10: Comparison of convergence rates over computation time for proposed
method, AL-Mask, with the Chambolle-Pock Primal Dual Algorithm, the Split Breg-
man method, and AL-P2. Convergence was measured as normalized root mean
square distance (NRMSD) to the true solution, x(∗).

To compare the convergence speed of the algorithms, we compared the normalized

root mean squared distance (NRMSD) from the current iterate to the optimum x(∗).
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We approximated x(∗) by running SB with 10 inner CG iterations for 2000 outer

iterations. Since the µu, µv, µz parameters affect the convergence rate of AL-Mask

(as corresponding convergence parameters affect the other algorithms), we chose the

parameters of each algorithm based on the thresholding step that results from the

`1 norm of the regularization term. After setting the thresholding value to be the

same for all the algorithms, the remaining parameter values were chosen to yield

Hessian matrices with condition numbers in the range of [10, 36] as described in [67].

The regularization parameter λ was chosen manually to yield an image of acceptable

quality.

To assess image quality, we also compared the result of the proposed reconstruction

algorithm at 1200 iterations (Figure 3.11a) with the body coil image (Figure 3.11b),

reconstructed from data received by the full body coil, as opposed to the 8-channel

receiving sensitivity coils. The absolute difference image is shown in Figure 3.11c on

the same colorscale as the reconstructed and bodycoil image.

(a)

 

 

(b) (c)

Figure 3.11: (a) The reconstructed image after 1200 iterations of AL-Mask; (b) A
body coil image for comparison; (c) Absolute differences image between (a) and (b)
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3.5 Conclusions

Though AL-mask demonstrated modest image quality and speed improvements over

unmasked competitors, the overall potential gain in implementing the mask was

not dramatic. The opportunity to crop out large air regions is also reduced in many

applications, such as abdominal imaging. Furthermore, a rectangular choice of mask,

which may be preferable for certain slice orientations and MRI applications, erases

the benefits of the AL-Mask method compared to AL-P2.

The principles of AL-mask will manifest in some of the following proposed methods

as an enforcement of a logical mask over the operators that act directly on dynamic

images, such as S and Cs, and by estimating only the unknown Nmask pixels.
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Chapter 4

Variable Splitting with an Efficient Tridiagonal

Solver

4.1 Introduction

1 Accelerated scan time benefits many applications of Magnetic Resonance Imaging

(MRI), reducing cost and motion blurring. A popular strategy for reducing scan

time is to acquire fewer k-space samples. To compensate for the reduced sampling,

parallel MRI and Compressed Sensing (CS) are often used. SENSitivity Encoded

(SENSE) MRI is a popular framework for parallel MRI [21]. By simultaneously

acquiring data from multiple receive coils with spatially varying sensitivities, more

data can be collected without additional scan time. SENSE can be combined with

CS-inspired techniques to further reduce acquisition time [26]. Irregular undersam-

pling patterns enable higher acceleration but require iterative model-based image
1

This chapter is based on [9].

80



reconstruction.

CS MRI reconstructs images assuming image sparsity in some transform domain. To

balance adherence of the estimated image to the noisy, undersampled data with the

prior assumption of sparsity, we seek to minimize a cost function that describes both.

These methods employ regularization with `1 norms that promote sparsity but also

present computational challenges.

Variable splitting (VS) [72] [67] [73] is a versatile optimization approach for these

cost functions. VS decouples a costly nonlinear optimization into simpler problems

via the augmented Lagrangian (AL) framework. VS converts the original cost func-

tion into a constrained cost function involving additional auxiliary variables updated

with alternating minimization. The AL-P2 algorithm proposed in [67] demonstrated

that VS combined with AL can yield significant speed gains over conjugate gradients

(CG) and monotone fast iterative shrinkage-thresholding algorithm (MFISTA) [74]

for CS-SENSE-MRI. However, AL-P2 lacks a convergence guarantee and uses peri-

odic boundary conditions when applying sparsifying transforms. This assumption

leads to a circulant Hessian and an O(n log n) FFT-based solution for one of the

inner problems, where n is the number of pixels.

The use of periodic boundary conditions is not reasonable for reconstructing 2D

axial slices of the brain, when it is surrounded by air at all boundaries. However,

when reconstructing an entire 3D volume, it could be undesirable to impose peri-

odic boundary conditions across the top and bottom slices. Non-periodic boundary

conditions are also useful in dynamic imaging with acyclic temporal behavior. For
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example, Dynamic Contrast Enhanced (DCE) images differ significantly in the final

frame compared to the initial frame.

Here we present two related variable splitting methods for CS-SENSE-MRI: ADMM-

tridiag and AL-tridiag. ADMM-tridiag leverages [75] to ensure convergence. Both

proposed algorithms use a regularizer with non-periodic boundary conditions to more

accurately reflect the reality of the unknown image. Both algorithms incorporate

parallelizable tridiagonal solvers that efficiently handle the non-periodic boundary

conditions with O(n) operations. We present numerical results with real in vivo

data to demonstrate the efficacy of the proposed methods.

We also apply the principles to describe novel VS algorithms for the simpler “special

case” of image inpainting using regularization based on a combination of wavelets

and anisotropic total variation (TV) with non-periodic boundary conditions.

4.2 Problem Formulation

The analysis formulation often used for SENSE MRI reconstruction estimates the

unknown image, x̂, by seeking the minimizer of a cost function consisting of a datafit

term plus a regularizer. Regularization is particularly important for undersampled

problems.

Many regularizers have been used for SENSE MRI reconstruction. For CS-SENSE-

MRI, sparsifying transforms such as wavelets and first-order finite differences are

often used with an `1 norm to promote sparsity [26]. This chapter focuses on Carte-
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sian SENSE reconstruction with regularizers having non-periodic boundary condi-

tions.

Let Nc denote the number of sensitivity coils, Ns the number of samples received from

each coil, and Nr = NxNy the number of pixels in the latent image x. We formulate

regularized SENSE reconstruction as the following optimization problem:

x̂ = argmin
x

1

2
‖y − FSx‖2

2 + λ ‖CHx‖1 + λ ‖CVx‖1 (4.1)

where y ∈ CNcNs is the undersampled k-space data from all coils, F ∈ CNcNs×NcNr is

a block diagonal matrix consisting of undersampled DFT matrices, S ∈ CNcNr×Nr is

a stack of diagonal matrices containing the sensitivity maps, CH ∈ RNr×Nr and CV ∈

RNr×Nr denote finite differences in the horizontal and vertical directions (equivalent

to anisotropic TV), and x̂ is the reconstructed image. The regularization parameter

λ > 0 balances adherence to noisy data and prior assumptions that inform choice

of regularizers. Section 4.3.5 extends (4.1) to include discrete wavelet transforms.

Although we focus on 2D imaging for notational simplicity, the methods generalize

readily to 3D problems by adding another term to (4.1).

We choose CH and CV to have non-periodic boundary conditions. This is in con-

trast to many proposed algorithms that use finite differences with periodic boundary

conditions, such as AL-P2 [67], RecPF [76], and recMRI [77]. Periodic boundary

conditions have been used for computational convenience, despite being physically

unnatural. Non-periodic boundary conditions are preferable in most applications

[78, 79, 18]. Differences across the boundaries of medical images do not provide use-
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ful information for reconstruction. Furthermore, penalizing differences across spatial

boundaries may degrade image quality when the region of interest extends to the

boundary. For example, a coronal abdominal image depicts different anatomy at the

top and bottom boundaries. Thus this chapter focuses on developing methods that

are fast yet suitable for non-periodic boundary conditions.

4.3 Variable Splitting Methods

The non-differentiable `1 norms make (4.1) a challenging optimization problem. Vari-

able splitting methods like [80, 81, 67] are useful for such problems. Here, we re-

formulate (4.1) in an equivalent constrained form using the following novel variable

splitting scheme:

û = argmin
u

f (u) (4.2)

f (u) =
1

2
‖y − Fu2‖2 + λ ‖u0‖1 + λ ‖u1‖1

s.t. u0 = CHx, u1 = CVu3,

u2 =
1

2
Su3 +

1

2
Sx, u3 = x. (4.3)

For convenience, we group x and the auxiliary variables u0, . . . , u3 into one column

vector: u , (u0, u1, u2, u3, x).

This variable splitting scheme intentionally separates the horizontal and vertical finite
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differences operators, applying them to different auxiliary variables. This separates

the tridiagonal structures in the Hessians resulting from AL, permitting decoupled,

computationally efficient variable updates further detailed in Section 4.3.4. If the

finite difference matrices were combined in the same auxiliary variable as in AL-P2

[67], the resulting Hessians would have a block-tridiagonal with tridiagonal blocks

(BTTB) structure that cannot take advantage of an O(Nr) tridiagonal solver.

4.3.1 Direct AL Approach: AL-tridiag

Here we detail the algorithm resulting from directly applying AL with alternating

minimization to (4.2). The resulting algorithm, AL-tridiag, does not satisfy the suffi-

cient conditions for convergence in [75], so currently it lacks convergence guarantees.

However, it has worked well in all of our experiments, so it is possible that future

generalized convergence proofs could be applicable.

We rewrite constrained cost function (4.2) with a matrix constraint as follows:

min
u
f(u) s.t. Pu = 0 (4.4)

P ,



−INr 0 0 0 CH

0 −INr 0 CV 0

0 0 −INrNc
1
2
S 1

2
S

0 0 0 −INr INr


.
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The constraint Pu = 0 enforces (4.3). The augmented Lagrangian corresponding to

(4.4) is:

L
(
u, η; M

)
= f (u) +

1

2

∥∥Pu− η∥∥2

M
. (4.5)

This formulation introduces dual variables, stacked in a vector: η , (η0, . . . , η3) ∈

C(3+Nc)Nr . Matrix M is a positive definite diagonal matrix, consisting of user-selected

AL penalty parameters. The diagonal block corresponding to the ith segment of u

is denoted Mi. The choice of M does not affect the final solution of (4.5), but it

can affect the convergence rate of the resulting algorithm. For many multiplier

methods, using positive penalty parameters guarantees convergence to the solution

of the original problem that does not involve the penalty parameters [65]. Section

4.4.4 discusses heuristics for selecting M.

Ideally, an AL method would update block variables u and η at iteration n + 1 as

follows:

u(n+1) = argmin
u
L
(
u, η(n)

)
(4.6)

η(n+1) = η(n) −Pu(n+1). (4.7)

Our proposed AL-tridiag algorithm uses alternating minimization across u0, . . . , u3, x

to descend the AL term in (4.6). Section 4.3.4 and the supplement describe the u

variable updates in more detail. Due to the variable splitting design of (4.3), each

variable update has a direct, closed-form solution with an efficient implementation,
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e.g., by FFTs or a parallelizable tridiagonal solver.

4.3.2 Variable updates for AL-tridiag

This section describes the block-variable updates for alternating minimization of

(4.6). These variable updates are very similar for both proposed methods, AL-tridiag

and ADMM-tridiag, differing only in tuning parameter indices and use of v and η on

the right-hand side of these updates.

u
(n+1)
0 =soft

(
CHx

(n) − η(n)
0 ,

λ

µ0

)
(4.8)

u
(n+1)
1 =soft

(
CVu

(n)
3 − η

(n)
1 ,

λ

µ1

)
(4.9)

u
(n+1)
2 =H−1

2

(
F′y + µ2

(
1

2
Su

(n)
3 +

1

2
Sx(n) − η(n)

2

))
(4.10)

u
(n+1)
3 =H−1

3

(
µ1C

′
V

(
u

(n+1)
1 + η

(n)
1

)
+
µ2

2
S′
(
u

(n+1)
2 − 1

2
Sx(n) + η

(n)
2

)
+ M3

(
x(n) − η(n)

3

))
(4.11)

x(n+1) =H−1
x

(
µ0C

′
H

(
u

(n)
0 + η

(n)
0

)
+
µ2

2
S′
(
u

(n+1)
2 − 1

2
Su

(n+1)
3 ) + η

(n)
2

)
+ M3

(
u

(n)
3 + η

(n)
3

))
,

(4.12)

where the Hessians H2 and H3 are the same as for ADMM-tridiag, defined in Equa-

tions (4.29)-(4.30). In AL-tridiag, Hx , µ0C
′
HCH + µ2

4
S′S+M3. The updates for u0,

u1, and u2, (4.8)-(4.10) are identical to those in ADMM-tridiag. The updates for u3

and x differ only in the rightmost term containing η3 and in the Hessian Hx.
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In practice, the implementation differences between AL-tridiag and ADMM-tridiag

are further diminished by choosing the same Hx for both algorithms. Due to the pa-

rameter selection technique for ADMM-tridiag described in (4.4.4), both algorithms

use the same Hessians.

4.3.3 ADMM Equivalence for ADMM-tridiag

To design a minimization algorithm with convergence guarantees, we reformulate

(4.2) as an instance of the generalized Alternating Direction Method of Multipliers

(ADMM) [75] [38]. This formulation allows us to invoke the convergence proof in

[75] for our second proposed algorithm, ADMM-tridiag.

We first express the matrix constraint P in (4.4) as a product of two matrices,

P = BA, and incorporate the left matrix B into the following convex cost func-

tion:

min
u,v

f(u) + g(v) s.t. Au = v (4.13)

g(v) =


0, Bv = 0

+∞, Bv 6= 0.

(4.14)

For (4.13) to satisfy the sufficient conditions for convergence of ADMM in [75], A

must have full rank. For our proposed algorithm, ADMM-tridiag, we design B and
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A as follows:

BAu = 0 (4.15)

B ,



INr 0 0 0 0

0 INr 0 0 0

0 0 INrNc 0 0

0 0 0 INr INr



A ,



−INr 0 0 0 CH

0 −INr 0 CV 0

0 0 −INrNc
1
2
S 1

2
S

0 0 0 −INr 0

0 0 0 0 INr


.

For convenience, we describe v in terms of its block elements: v , (v0, · · · , v4). The

full rank of A, combined with the following alternating minimization framework,

satisfies the convergence conditions for ADMM [75]. Thus, (4.13)-(4.15) describe an

instance of ADMM and guarantees convergence to a minimizer of (4.13). To handle

the constraints of (4.13), ADMM-tridiag uses the following augmented Lagrangian,

similar to Section 4.3.1:

L
(
u, v, η; M

)
= f(u) + g(v) +

1

2

∥∥Au− v − η
∥∥2

M
. (4.16)

The dual variables η , (η0, . . . , η4) ∈ CNr(4+Nc) have an additional block-element
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compared to the AL case. For convenience, we reuse the notation for the dual

variables for both algorithms. The matrix M for ADMM-tridiag is also larger than

in the AL case, consisting of blocks {Mi}i=0,...,4.

Following [65] [75], ADMM-tridiag alternates between updating u, v, and the dual

variables η. Examining the v update and recalling (4.14), we see that the role of v

simplifies greatly by considering the feasible set of v, Ω , {v ∈ C(4+Nc)Nr : Bv = 0},

resulting in the following alternating updates:

u(n+1) ≈
εn

argmin
u

f (u) +
1

2

∥∥Au− v(n) − η(n)
∥∥2

M
(4.17)

v(n+1) ≈
ζn

argmin
v∈Ω

1

2

∥∥Au(n+1) − v − η(n)
∥∥2

M
(4.18)

η(n+1) = η(n) −
(
Au(n+1) − v(n+1)

)
. (4.19)

Here, we allow for some inexactness in the updates of u and v at each iteration, {εn}

and {ζn}, respectively. ADMM convergence holds if the inexactness sequences are

summable [72, Theorem 8] [75, Theorem 2.1].

The update for v is simple and exact to machine precision. Due to the simple

structure of B, we have v0, v1, v2 = 0 and v4 = −v3. The entire update for v reduces

to a quadratic minimization problem for the auxiliary variable v3 of size Nr with

simple, closed-form solution:

v
(n+1)
3 = (M3 + M4)−1

M3

(
−u(n+1)

3 − η(n)
3

)
+ M4

(
−x(n+1) + η

(n)
4

). (4.20)
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For the joint minimization of u in (4.17), ADMM-tridiag employs alternating mini-

mization, as detailed in Section 4.3.4. If one round of alternating minimization suf-

ficiently approximates the joint minimizer of (4.17), the iterates of ADMM-tridiag,

{x(n)}, converge to a minimizer of (4.1), per [75]. This alternating minimization

approach is common in other ADMM methods, such as [78] [18].

Compared to AL-tridiag in Section 4.3.1, the direct AL approach to (4.3), ADMM-

tridiag involves one additional variable split. An alternative way to understand the

effect of (4.15) is to describe this ADMM algorithm as the result of applying AL to

the following variable splitting scheme for (4.1):

min
u

1

2
‖y − Fu2‖2 + λ ‖u0‖1 + λ ‖u1‖1 (4.21)

s.t. u0 = CHx, u2 =
1

2
Su3 +

1

2
Sx,

u1 = CVu3, u3 = −v3, v3 = −x (4.22)

This formulation indirectly enforces u3 = x through additional auxiliary variable v3.

However, written in this form it is less clear that the full-rank condition of [75] is

satisfied, whereas that is clear in (4.13)-(4.15).

4.3.4 Variable Updates with Parallelizable Tridiagonal Solvers

This section describes the block-variable updates for alternating minimization of

(4.17). These variable updates are very similar for both proposed methods, AL-

tridiag and ADMM-tridiag, differing only in tuning parameter indices and use of v
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and η on the right-hand side of these updates.

First, we consider the special case where some blocks of M are constant diagonal

matrices. We leave M3 and M4 as general positive definite diagonal matrices for

reasons explained in Section 4.4.4. Letting Mi , µiI, µi > 0 for i = 0, 1, 2 and

leveraging the constraint that v4 = −v3, (4.17) expands to:

u(n+1) = argmin
x,u0,...,u3

1

2
‖y − Fu2‖2 + λ ‖u0‖1 + λ ‖u1‖1 +

µ0

2

∥∥∥−u0 + CHx− η(n)
0

∥∥∥2

+
µ1

2

∥∥∥−u1 + CVu3 − η(n)
1

∥∥∥2

+
µ2

2

∥∥∥∥−u2 +
1

2
Su3 +

1

2
Sx− η(n)

2

∥∥∥∥2

+
1

2

∥∥∥−u3 − v(n)
3 − η

(n)
3

∥∥∥2

M3

+
1

2

∥∥∥x+ v
(n)
3 − η

(n)
4

∥∥∥2

M4

.

(4.23)

ADMM-tridiag uses alternating minimization to update the blocks of u. The result-

ing variable updates are:

u
(n+1)
0 = soft

(
CHx

(n) − η(n)
0 ,

λ

µ0

)
(4.24)

u
(n+1)
1 = soft

(
CVu

(n)
3 − η

(n)
1 ,

λ

µ1

)
(4.25)

u
(n+1)
2 = H−1

2

F′yµ2

(
1

2
Su

(n)
3 +

1

2
Sx(n) − η(n)

2

) (4.26)

u
(n+1)
3 = H−1

3

µ1C
′
V

(
u

(n+1)
1 + η

(n)
1

)
+
µ2

2
S′
(
u

(n+1)
2 − 1

2
Sx(n) + η

(n)
2

)
+ M3

(
−v(n)

3 − η
(n)
3

)
(4.27)
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x(n+1) =H−1
x

µ0C
′
H

(
u

(n+1)
0 + η

(n)
0

)
+
µ2

2
S′
(
u

(n+1)
2 − 1

2
Su

(n+1)
3 + η

(n)
2

)
+ M4

(
−v(n)

3 + η
(n)
4

).
(4.28)

The soft-thresholding operator performs element-wise shrinkage for the `1 norm using

a given threshold

τ : soft(x, τ) , sign(x) max (|x| − τ, 0). Thus, (4.24) and (4.25) provide simple, direct

solutions for updating u0 and u1. The bulk of the computation is “inverting” the

following Hessians:

H2 , F′F + µ2I = Q (ΛF + µ2I) Q′ (4.29)

H3 , µ1C
′
VCV +

µ2

4
S′S + M3 (4.30)

Hx , µ0C
′
HCH +

µ2

4
S′S + M4. (4.31)

Due to Cartesian undersampling, H2 is diagonalizable via Nc FFTs, each of which

operate efficiently in O(Nr logNr) time. The multi-coil FFT operator is denoted Q.

The x update in (4.28) uses Hx in (4.31), a block diagonal matrix with tridiagonal

blocks (BDTB) that can be “inverted” in O(Nr) time via Gaussian elimination. Be-

cause it is block diagonal, we parallelize this variable update over the Ny independent

blocks. We reformulate the u3 update as another instance of the same BDTB inverse

problem through permutation and solve (4.27) using a tridiagonal solver parallelized

over Nx blocks. Each variable update is exact and easy to implement.
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We designed the proposed variable splitting in (4.2) to enable these efficient variable

updates. The separation of horizontal and vertical finite differences into u0 and u1

allows for BDTB structures in H3 and Hx. If the finite difference matrices were

combined in the same auxiliary variable as in AL-P2 [67], the resulting Hessian

would have a block-tridiagonal with tridiagonal blocks (BTTB) structure and the

associated variable update would require a more computationally costly solution [82]

[83].

Algorithm 1 summarizes the overall procedure for ADMM-tridiag. All of the variable

updates are done in place, so the memory requirements for storing x, u0, . . . , u3, v3,

and η are 8Nr(4 + Nc) bytes for Nr(4 + Nc) complex single-precision values. For

AL-tridiag, the u updates are very similar.

Algorithm 2 ADMM-Tridiag
1: Initialize x to square root of sum-of-squares (SoS)

of zero-filled iFFT images.
2: Initialize u0 = CHx, u1 = CVu3, u3 = x,

u2 = 1
2
Su3 + 1

2
Sx, v3 = −x, η = 0

3: for n ≤ total iterations do
4: Compute u(n+1)

0 via soft-thresholding (4.24)
5: Compute u(n+1)

1 via soft-thresholding (4.25)
6: Compute u(n+1)

2 via FFTs (4.26)
7: Compute u(n+1)

3 via tridiagonal solver (4.27)
8: Compute x(n+1) via tridiagonal solver (4.28)
9: Compute v(n+1)

3 via (4.20)
10: Compute η(n+1) via (4.19)
11: end for
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4.3.5 Regularization with Finite Differences and Wavelets

The variable splitting scheme in (4.22) readily generalizes to combinations of finite

difference and orthonormal wavelet regularization. Let W be an orthonormal wavelet

transform (e.g., Haar wavelets). Then the following combined TV / wavelet sparsity

cost-function can be manipulated to resemble (4.1):

1

2
‖y − FSx‖2

2 + λ1 ‖CHx‖1

+ λ1 ‖CVx‖1 + λ2 ‖Wx‖1 (4.32)

=
1

2
‖y − FSx‖2

2 + λ1

∥∥∥C̃Hx
∥∥∥

1
+ λ1

∥∥∥C̃Vx
∥∥∥

1
(4.33)

C̃H ,

 CH

αwλ2

λ1
W

 ; C̃V ,

 CV

(1−αw)λ2

λ1
W

 . (4.34)

An additional spatial regularization parameter, λ2, controls the weight of the wavelet

regularization. Due to the orthonormality of W, we can use this regularizer for both

AL-tridiag and ADMM-tridiag, with only minor changes to variable updates (4.24)

- (4.28). For ADMM-tridiag, the only Hessians affected by introducing wavelets

are:

H̃3 , µ1C
′
VCV +

µ2

4
S′S + M̃3 (4.35)

H̃x , µ0C
′
HCH +

µ2

4
S′S + M̃4, (4.36)

with positive definite matrices M̃3 = M3 +
(1−αw)2λ2

2

λ2
1

I and M̃4 = M4 +
α2
wλ

2
2

λ2
1

I. Hes-
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sians H̃3 and H̃x are still BDTB, and they can be “inverted” efficiently with a par-

allelizable tridiagonal solver routine. This wavelet-inclusive variation is featured in

experimental results in Section 4.6.3.

4.4 Fully Parallelized ADMM: ADMM-FP-Tridiag

In this supplementary material, we introduce another variation of ADMM-tridiag [9]

that expands constraint matrix P in (4.4) even further. ADMM-tridiag leverages

[75] to ensure convergence via equivalence with the Alternating Direction Method of

Multipliers (ADMM). As discussed in (4.3.3), ADMM-tridiag relies on one cycle of

alternating minimization to solve the joint minimization problem in (4.17). Though

this is a common approach in many ADMM methods, we also investigate a fully

parallelized alternative, called ADMM-FP-tridiag, which decomposes the constraint

matrix in such a way that the resulting joint minimization problem and the alternat-

ing minimization approach are identical. This lessens the degree to which this update

is inexact, but does not compensate for other sources of inexact computation, such

as machine precision. This algorithm is inspired by the fully parallelized ADMM in

[38].

To design a fully parallelized variable update scheme, we define constraint matrices

AFP and BFP as follows:
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BFP ,



I I 0 0 0 0 0 0

0 0 I I 0 0 0 0 0

0 0 0 0 I I I 0 0

0 0 0 0 0 0 0 I I


, AFP ,



−I 0 0 0 0

0 0 0 0 CH

0 −I 0 0 0

0 0 0 CV 0

0 0 −I 0 0

0 0 0 1
2
S 0

0 0 0 0 1
2
S

0 0 0 −I 0

0 0 0 0 I



. (4.37)

This results in a joint minimization problem for u that is entirely decoupled for each

block of u. Tradeoffs include vFP (∈ C7Nr+2NcNr) that is much larger than v in

ADMM-tridiag and more non-trivial blocks of vFP to update. Likewise, η
FP

is also

larger than in ADMM-tridiag.

Choosing Mi , µiI, µi ∈ R for i = 0, . . . , 6, the expansion of (4.17) is:

u(n+1) = argmin
x,u0,u1,u2,3

1

2
‖y − Fu2‖2 + λ ‖u0‖1 + λ ‖u1‖1 +

µ0

2

∥∥∥−u(n)
0 − v

(n)
0 − η

(n)
0

∥∥∥2

+
µ1

2

∥∥∥CHx
(n) − v(n)

1 − η
(n)
1

∥∥∥2

+
µ2

2

∥∥∥−u(n)
1 − v

(n)
2 − η

(n)
3

∥∥∥2

+
µ3

2

∥∥∥CVu
(n)
3 − v

(n)
3 − η

(n)
3

∥∥∥2

+
µ4

2

∥∥∥−u(n)
2 − v

(n)
4 − η

(n)
4

∥∥∥2

+
µ5

2

∥∥∥∥1

2
Su

(n)
3 − v

(n)
5 − η

(n)
5

∥∥∥∥2

+
µ6

2

∥∥∥∥1

2
Sx(n) − v(n)

6 − η
(n)
6

∥∥∥∥2

+
1

2

∥∥∥−u(n)
3 − v

(n)
7 − η

(n)
7

∥∥∥2

M7

+
1

2

∥∥∥x(n) − v(n)
8 − η

(n)
8

∥∥∥2

M8

. (4.38)
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The variable updates that result from alternating minimization are:

u
(n+1)
0 =soft

(
v

(n)
0 − η

(n)
0 ,

λ

µ0

)
(4.39)

u
(n+1)
1 =soft

(
v

(n)
2 − η

(n)
3 ,

λ

µ2

)
(4.40)

u
(n+1)
2 =H−1

2,FP

(
F′y + µ4

(
v

(n)
4 − η

(n)
4

))
(4.41)

u
(n+1)
3 =H−1

3,FP

(
µ3C

′
V

(
v

(n)
3 + η

(n)
3

)
+
µ5

2
S′
(
v

(n)
5 + η

(n)
5

)
+ µ7

(
−v(n)

7 − η
(n)
7

))
(4.42)

x(n+1) =H−1
x,FP

(
µ1C

′
H

(
v

(n)
1 + η

(n)
1

)
+
µ6

2
S′
(
v

(n)
6 + η

(n)
6

)
+ µ8

(
v

(n)
8 + η

(n)
8

))
.

(4.43)

The soft-thresholding operator performs element-wise shrinkage for the `1 norm using

a given threshold τ : soft(x, τ) , sign(x) max (x− τ, 0). The bulk of the computa-

tional cost lies in inverting the following Hessians:

H2,FP , F′F + µ4I = Q (ΛF + µ4I) Q′ (4.44)

H3,FP , µ3C
′
VCV +

µ5

4
S′S + µ7I (4.45)

Hx,FP , µ1C
′
HCH +

µ6

4
S′S + µ8I. (4.46)

As in AL-P2, H2,FP is diagonalizable via FFTs, which operate efficiently in O(n log n)

time. The x update in (4.43) requires inverting Hx,FP , µ1C
′
HCH + 1

2
1
2
µ6S

′S + µ8I,

a block diagonal matrix with tridiagonal blocks that can be inverted in O(n) time

via Gaussian elimination. Because it is block diagonal, we parallelize this variable
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update over the Ny blocks, whose computations are independent of one another. As

in ADMM-tridiag, we reformulate the u3 update as another instance of the same

minimization problem through permutation. The remaining variable updates are

exact and easy to implement.

The updates for vFP all simplify to quadratic problems and can be implemented
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directly as follows:

v
(n+1)
0 =

1

µ0 + µ1

µ0

(
−u(n+1)

0 − η(n)
0

)
+ µ1

(
−CHx

(n+1) + η
(n)
1

) (4.47)

v
(n+1)
1 =− v(n)

0 (4.48)

v
(n+1)
2 =

1

µ2 + µ3

µ2

(
−u(n+1)

1 − η(n)
2

)
+ µ3

(
−CVu

(n+1)
3 + η

(n)
3

) (4.49)

v
(n+1)
3 =− v(n)

2 (4.50)

v
(n+1)
4 =

1

µ4µ5 + µ5µ6 + µ4µ5

(µ5 + µ6)

(
µ4

(
−u(n+1)

2 + η
(n)
2

)
+ µ6

(
1

2
Sx(n+1) − η(n)

6

))

− µ6

(
µ5

(
1

2
Su

(n+1)
3 − η(n)

5

)
− µ6

(
1

2
Sx(n+1) − η(n)

6

)) (4.51)

v
(n+1)
5 =

1

µ4µ5 + µ5µ6 + µ4µ5

− µ6

(
µ4

(
−u(n+1)

2 + η
(n)
2

)
+ µ6

(
1

2
Sx(n+1) − η(n)

6

))

(µ4 + µ6)

(
µ5

(
1

2
Su

(n+1)
3 − η(n)

5

)
+ µ6

(
1

2
Sx(n+1) − η(n)

6

)) (4.52)

v
(n+1)
6 =− v(n+1)

4 − v(n+1)
5 (4.53)

v
(n+1)
7 =

1

µ7 + µ8

µ7

(
−u(n+1)

3 − η(n)
7

)
+ µ8

(
−x(n+1) + η

(n)
8

) (4.54)

v
(n+1)
8 =− v(n+1)

7 . (4.55)
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By enforcing constraints arising from the structure of BFP, the full minimization of

vFP reduces to the computation of just five of the nine block variables: v0, v2, v4, v5,

and v7. The extraneous four variables can be expressed in terms of the remaining

four and omitted from the algorithm altogether.

Finally, the dual variables are updated as follows:

η(n+1)

FP
= η(n)

FP
−
(
AFPu

(n+1) − v(n+1)
FP

)
. (4.56)

ADMM-FP-tridiag is highly amenable to parallelization. Each block update for u

can be done in parallel, as can each block update of vFP, as described in 3. This

opportunity for parallelization helps to offset some of the additional computational

cost incurred from the greater number of variable updates per iteration.

In summary, ADMM-FP-tridiag eliminates alternating minimization across the blocks

of u and vFP by decoupling each of the four original variable splitting constraints

(4.2). This results in additional auxiliary variables in vFP and dual variables η
FP

.

However, each block-variable has blocks that can be updated in parallel with one an-

other. This approach also provides exact variable updates (to within numerical pre-

cision) by avoiding alternating minimization. The procedure for ADMM-FP-tridiag

is summarized in Algorithm 3.
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Algorithm 3 ADMM-FP-tridiag
1: Initialize: u0, u1, u2, u3, x, v0, v2, v4, v5, v7, ηFP
2: for n ≤ total iterations do
3: do in parallel
4: Compute u(n+1)

0 using soft-thresholding (4.39)
5: Compute u(n+1)

1 using soft-thresholding (4.40)
6: Compute u(n+1)

2 using FFTs (4.41)
7: Compute u(n+1)

3 using parallelized tridiagonal solver (4.42)
8: Compute x(n+1) using parallelized tridiagonal solver (4.43)
9: end parfor

10: do in parallel
11: Compute v(n+1)

0 using (4.47)
12: Compute v(n+1)

2 using (4.49)
13: Compute v(n+1)

4 using (4.51)
14: Compute v(n+1)

5 using (4.52)
15: Compute v(n+1)

7 using (4.54)
16: end parfor
17: Compute η(n+1)

FP
using (4.56)

18: end for
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4.4.1 Parameter Selection for ADMM-FP-tridiag

This proposed algorithm, ADMM-FP-tridiag, has a total of nine AL tuning pa-

rameters, substantially more than for ADMM-tridiag. Using the condition number

heuristics from [67] on Hessians (4.45)-(4.46) leaves six remaining degrees of freedom.

This is a result of the two tridiagonal Hessians that include entirely different tuning

parameters, unlike the case with ADMM-tridiag:

H3,FP , µ3C
′
VCV +

µ5

4
S′S + M7

Hx,FP , µ1C
′
HCH +

µ6

4
S′S + M8.

The difficulty of designing these parameters is one of the tradeoffs in choosing the

fully parallelized alternative of ADMM-tridiag. Tuning parameters for the following

speed comparisons were chosen to enforce the aforementioned Hessian values, leaving

some degrees of freedom unexplored.

4.4.2 Special Case: Image Inpainting

To highlight the value of non-periodic boundary conditions, we examine a specific

application of the proposed variable splitting scheme in (4.2), namely inpainting.

Image inpainting fills in image data that is lost or corrupted. Many image inpainting,

deblurring, and denoising methods use finite difference regularizers like anisotropic

total variation (TV) [84] [79] [85].

103



Let D be a binary, diagonal matrix whose nonzero entries denote the set of indices in

the inpainting domain. Setting FS = D in the CS-SENSE-MRI cost function (4.1)

leads to the following simpler image inpainting problem:

x̂ = argmin
x

1

2
‖y −Dx‖2

2 + λ
∥∥∥C̃Hx

∥∥∥
1

+ λ
∥∥∥C̃Vx

∥∥∥
1
, (4.57)

where C̃H and C̃V are defined in (4.34).

For inpainting, we simplify the VS scheme developed for SENSE MRI in (4.2)

to:

û = argmin
u

f (u) (4.58)

f (u) =
1

2

∥∥∥∥y −D

(
1

2
u2 +

1

2
x

)∥∥∥∥2

+ λ ‖u0‖1 + λ ‖u1‖1

s.t. u0 = C̃Hx, u1 = C̃Vu2, u2 = x.

The resulting VS algorithm is a simplification of AL-tridiag, which we denote AL-

tridiag-inpaint. Due to the entirely diagonal system matrix, the variable updates

consist only of shrinkage and tridiagonal solver updates, eliminating the need for any

FFT-based updates. Similarly, we can generalize ADMM-tridiag to the inpainting

problem by applying an extra variable splitting, resulting in an additional quadratic

minimization problem in each iteration. Section 4.6.3 illustrates the effect of non-

periodic boundary conditions for noisy inpainting.
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4.4.3 Comparison with AL-P2

We compare ADMM-tridiag with AL-P2 [67], a fast VS scheme designed for CS-

SENSE-MRI. The original AL-P2 version in [67] used periodic boundary conditions,

whereas here we modify it for the non-periodic conditions of (4.1) and call the mod-

ified algorithm AL-P2-NC. The suffix “NC” refers to the non-circulant Hessian we

describe in this section. To define AL-P2-NC, we stack the finite difference matrices

into a tall matrix, R , [CH; CV]. Applying the AL-P2 variable splitting scheme to

(4.1) yields the following constrained cost function:

min
x,u,v,z

‖y − Fu‖2 + λ ‖v‖1 (4.59)

s.t. u = Sx, v = Rz, z = x. (4.60)

Applying the augmented Lagrangian to the constrained cost function (4.59) and

using alternating minimization results in variable updates like in [67]:

x(n+1) = H−1
x

µuS′ (u(n) − ηu(n)
)

+ µz
(
z(n) − ηz(n)

) (4.61)

u(n+1) = H−1
u

(
F′y + µu

(
Sx(n) + ηu

(n)
))

(4.62)
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v(n+1) = soft

(
Rz(n) + ηv

(n),
λ

µv

)
(4.63)

z(n+1) = H−1
z

µvR′ (v(n+1) − ηv(n)
)

+ µz
(
x(n+1) + ηz

(n)
). (4.64)

The scalar AL penalty parameters, µu, µv, µz > 0, do not affect the final solution but

do affect convergence rate. The Hessians for x and u are simple to invert and are

the same as in ADMM-tridiag:

Hx = µuS
′S + µzI (4.65)

Hu = F′F + µuI = Q (ΛF + µuI) Q′. (4.66)

The Hessian Hz for the z update is BTTB (non-circulant) as follows:

Hz = µvR
′R + µzI, (4.67)

for which there is no O (Nr) solver. To “invert” Hz for (4.64) we applied one iteration

of preconditioned gradient descent with a circulant preconditioner. The resulting

computation per iteration is essentially identical to that of the original AL-P2 with

periodic boundary conditions in [67].

4.4.4 Parameter Selection

For all of the experiments shown in Section 4.6 and in the supplement, we manually

chose the spatial regularization parameter, λ, so that the converged image x(∞)
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resembled the true image (for inpainting and CS-SENSE-MRI simulations in the

supplement) or the fully-sampled body coil image (for in vivo data).

As with other AL algorithms, the tuning parameters M0, . . . ,M4 � 0 do not affect

the solution x̂, but they can greatly affect the convergence rate. To facilitate com-

parison with AL-P2-NC, we chose the AL tuning parameters of AL-P2-NC based on

the guidelines provided in [67, Eqns. (40)-(41)] as follows:

κ (Hu) = 24; κ (Hz) = 12;

κ (Hx) = 0.9κ(S′S). (4.68)

For consistency, we selected the AL tuning parameters of AL-tridiag and ADMM-

tridiag with a similar heuristic strategy. For the Hessian of the multi-coil FFT

step (4.26) we selected its associated parameter, µ2, such that κ (H2) = 24, exactly

as in AL-P2. Our proposed variable splitting (4.2) results in Hessians in which the

regularizer is combined with the sensitivity encoding, so the remaining AL-P2 tuning

rules are inapplicable. Instead, we selected the remaining tuning parameters (µ0, µ1,

M3, and M4) to enforce κ (H3) = κ (Hx) = 12. Because our remaining Hessians H3

and Hx partially consist of C′VCV and C′HCH, respectively, we choose to enforce the

condition number of 12 used for Hz of AL-P2, which is characterized by the periodic

boundary finite differences. We choose to apply this heuristic over the alternative

guideline based on κ(S′S) because our choices of M3 and M4 in (4.74)-(4.75) below

make H3 and Hx approximately circulant, but far from diagonal.

First we chose the parameters that interact with the thresholding steps, µ0 and µ1,
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based on the maximum value of the initial image, xmax, and spatial regularization

parameter, λ:

µ0 = µ1 =
λ

0.02 xmax

. (4.69)

This sets the threshold of the shrinkage step in (4.24) and (4.25) at 2% of the max-

imum initial image value. This threshold worked well for the noise level of the

following simulated and in vivo experiments. Recalling the BDTB structures of H3

(4.30) and Hx (4.31), we designed M3 and M4 to enforce the following conditions

for scalar c3, c4 > 0:

c3I =
µ2

4
S′S + M3 (4.70)

c4I =
µ2

4
S′S + M4. (4.71)

The constant diagonal term results from allowing a spatially varying M3 and M4.

Therefore, M3 is higher in regions where the sum-of-squares (SoS) of the sensitivity

maps is low and vice versa. Intuitively this results in stronger enforcement of the u3 =

−v3 and x = −v3 constraints in spatial regions where the u2 = 1
2
Su3 + 1

2
Sx constraint

provides less information. We use [86] for an analytical solution for maximum and

minimum eigenvalues of C′HCH and C′VCV. Due to (4.70)-(4.71), H3 and Hx are
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approximately circulant, and eigenvalue analysis of H3 and Hx becomes simple:

κ (H3) =
µ1λmax (C′VCV) + c3

µ1λmin (C′VCV) + c3

(4.72)

κ (Hx) =
µ0λmax (C′HCH) + c4

µ0λmin (C′HCH) + c4

. (4.73)

Let ĉ3 and ĉx be the respective solutions for (4.72) and (4.73) for κ (H3) = κ (Hx) =

12. Then the values for M3 and M4 are as follows:

M3 , max
(
ĉ3I −

µ2

4
S′S, 10−3

)
(4.74)

M4 , max
(
ĉ4I −

µ2

4
S′S, 10−3

)
. (4.75)

This choice of M3 and M4 is informed by the thresholding levels through (4.69) but

also enforces the positive-definite condition for M3 and M4. We selected AL-tridiag

parameters using the same procedure.

4.5 Variable Splitting Balance Parameter

This section describes possible variations of the proposed algorithms in which the

variable splitting scheme does not exhibit the symmetry in (4.3), namely,

û = argmin
u

f (u) (4.76)

f (u) =
1

2
‖y − Fu2‖2 + λ ‖u0‖1 + λ ‖u1‖1
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s.t. u0 = CHx, u1 = CVu3,

u2 = (1− α)Su3 + αSx, u3 = x, (4.77)

in which the variable splitting balance parameter, α ∈ [0, 1]. In principle, using

different choices of α for AL-tridiag, such as in (4.76)-(4.77) could lead to different

limits than when α = 1
2
, due to the lack of convergence theory. However, we found

empirically that varying α = {0, 1
4
, 1

2
, 3

4
, 1} in AL-tridiag-inpaint resulted in solutions

identical to machine precision.

The convergence guarantees of ADMM-tridiag and ADMM-FP-tridiag ensure that

the algorithm will converge to the same solution for any α ∈ [0, 1]. However, the

choice of α may affect the convergence rate and is closely intertwined with the AL

parameters.

Unlike the balance parameter for orthonormal wavelets, αw, described in Section

4.3.5, α has a negligible effect on computation time per iteration. Rather, α affects

the convergence rate by controlling the connectivity between the auxiliary variables

and the extent to which one round of alternating minimization solves (4.6).

To investigate the effect of α on convergence rate, we conducted timing experiments

for AL-tridiag-inpaint for varying α. The simpler inpainting problem includes fewer

additional parameters that may obfuscate the role of α.

For the inpainting problem (4.58), the resulting Hessians for AL-tridiag-inpaint
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are:

H2 = (1− α)2 D′D + µ1C̃
′
VC̃V + M2 (4.78)

Hx = α2D′D + µ0C̃
′
HC̃H + M2. (4.79)

Because we tune AL parameters µ0, µ1, and M2 to enforce κ (H2) = κ (Hx), this

suggests that an even distribution of the influence of the inpainting operator D across

u2 and x also allows for even influence of C̃H and C̃V.

Figure 4.1 shows computation time comparisons to the MFISTA x(∞) for AL-tridiag-

inpaint for varying values of α. The clear speed margin for α = 0.5 reinforces the

specific choice of α in [9].
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Figure 4.1: Convergence of |x(n) − x(∞)| in dB versus computation time for AL-
tridiag-inpaint as a function of balance parameter α.
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4.6 Results

4.6.1 Simulated Data

4.6.1.1 Axial Slice Reconstruction

We also conducted additional experiments on an undersampled digital phantom to

measure reconstruction error. We simulated noisy multi-coil data from a T1-weighted

240 × 200 BrainWeb image with linear phase. We generated sensitivity maps for

a 6-channel head coil array and generated noisy k-space data with SNR of 40. A

Poisson-disk based sampling pattern [70] containing the central 16×16 phase encodes

and with an overall undersampling factor of 6 was used for undersampling, as shown

in Figure 4.2.

Figure 4.2: Poisson-disk-based undersampling pattern used for retrospective under-
sampling, with reduction factor of 6 and fully sampled central 16×16 phase-encodes.

The central phase encodes were included to capture the rich information near the

center of k-space. The Poisson disk sampling pattern reduces clustering of sample

points in the outer regions of k-space. As with the in vivo experimental data, we

chose to compare the proposed methods to AL-P2-NC [67] and MFISTA [74]. To
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measure the convergence rate of these algorithms, we computed the normalized root

mean squared distance (NRMSD) between a given iterate x(n) and the converged

solution, x(∞), in terms of decibels (4.80).

We generated the solution, x(∞), by running MFISTA for 50000 outer iterations with

5 inner NCG iterations. We solved the inner iterative update for z in AL-P2-NC

with preconditioned conjugate gradient using a circulant preconditioner and 1 inner

iteration. We also computed the normalized root mean squared error (NRMSE)

between a given iterate x(n) and xtrue, the noiseless BrainWeb image used to generate

the synthetic data. Convergence toward to the true image xtrue provides useful

context for a termination condition for these iterative algorithms.

As in the in vivo experiments, time spent computing the maximum eigenvalue of

S′F′FS via power iteration, required for MFISTA, was not included in computation

time. For these simulations, this computation took 60.4 seconds.

Figure 4.3 shows that the fully parallelized variant, ADMM-FP-tridiag has signif-

icant computational overhead due to the additional auxiliary variables updated in

each iteration. In terms of NRMSD to the solution x(∞), ADMM-tridiag and AL-

tridiag outperform AL-P2-NC and other methods in the first hundred iterations,

having already achieved -40 dB NRMSD or better. AL-P2-NC eventually overtakes

the proposed methods around -50 dB difference to x(∞). By comparing distance

to the noiseless BrainWeb image used for xtrue, AL-tridiag and ADMM-tridiag are

very competitive with AL-P2-NC, reaching similar error levels at similar computa-

tion times and iteration numbers. The proposed algorithms show little improvement
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(b) Close up of (a).
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(c) NRMSE to noiseless
xtrue as a function of com-
putation time.
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(d) NRMSD to solution
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(e) Close up of (d).
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Figure 4.3: Speed comparison of ADMM-tridiag, AL-tridiag, ADMM-FP-tridiag,
MFISTA, and AL-P2-NC for simulated axial data. Top row shows speed as a function
of computation time. Bottom row shows speed as a function of iteration. From left
to right: NRMSD to x(∞), a close-up of performance over the first 100 iterations,
and NRMSE to xtrue.

in NRMSE after 10 seconds of computation or roughly 120 iterations. Further pro-

gression of image estimates to x(∞) do not translate to image quality improvements.

In this simulation, ADMM-FP-tridiag compares more favorably in terms of NRMSE

convergence than in the in vivo experiments.

The blur in the initial estimate is greatly reduced after 5000 iterations of ADMM-

tridiag. The reconstructed image differs from the true, fully-sampled, noiseless image,
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Figure 4.4: Left to right: (a) sum-of-squares of the zero-filled iFFT coil images, used
as an initial estimate used for all algorithms; (b) ADMM-tridiag solution x̂ after
5000 iterations; (c) xtrue fully sampled, noiseless image; (d) difference between x̂ and
xtrue after 5000 iterations.

xtrue, primarily at anatomical edges and centrally located ventricles, as shown in

Figure 4.4. The reconstructed image at 5000 iterations has an NRMSE of −21.6

dB.

4.6.1.2 Sagittal Slice Reconstruction

4.6.2 in vivo Experiment Setup

Following [67], we used a 3D in-vivo volunteer data set acquired from a GE 3T

scanner (TR = 25 ms, TE = 5.172 ms, voxel size = 1×1.35×1 mm3) with an 8-channel

head coil. A corresponding body coil dataset was also acquired for sensitivity map

estimation and image quality comparison. The fully-sampled data was 256 × 144

with 128 samples in the read-out direction along z. We performed the proposed

reconstruction algorithms for two 2D axial slices from retrospectively undersampled

data. To promote FFT efficiency, we resampled the data to correspond to an image

size of 256 × 128. Fig. 4.5 shows the Poisson-disk-based undersampling pattern
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(reduction factor 6) in the kx-ky phase-encode plane that included the central 16 ×

16 phase-encodes, pictured in Figure 4.5. This sampling corresponds to one slice of

a 3D acquisition with frequency encoding in kz.

Figure 4.5: Retrospective Poisson-disk-based undersampling pattern used for in vivo
experiments, with reduction factor of 6 and fully sampled central 16×16 phase-
encodes.

We used the central 16 × 16 phase-encodes to generate low resolution images that

were then used with the body coil image to estimate smooth sensitivity maps [18],

shown in Figure 4.10 of the Supplement. The sensitivity values in the air regions

were truncated in magnitude to control the maximum value in the sum-of-squares of

the sensitivity maps and aid in tuning AL penalty parameters.

Computation was done on a Genuine Intel Xeon CPU E5-2680 with a 2.8 GHz 20

core machine with hyper-threading. The operating system was 64-bit Red Hat 6.7

running gcc version 4.4.7. All algorithms were implemented in Matlab version 8.6

using the image reconstruction toolbox [71], and all algorithms operated on single

precision data. We performed parallelization of variable updates in (4.27) and (4.28)

with a Pthreaded MEX function. The Pthreaded MEX function performed blockwise

Gaussian elimination in parallel across each of the tridiagonal blocks of H3 and Hx.

We allocated 20 Pthreads for these operations.
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Figure 4.6: Axial slice 38 of volunteer data (a) square root of sum-of-squares of
the zero-filled iFFT coil images, used as an initial estimate for all algorithms; (b)
separately acquired body coil image; (c) x(∞) calculated by MFISTA; (d) difference
between body coil and x(∞).

The initial estimate for axial slice 38 was the square-root of the sum-of-squares of the

zero-filled iFFT coil images, shown in Figure 4.6. Figure 4.6 also shows the qualitative

similarity between the separately acquired body coil image and the MFISTA solution

of (4.1).

We repeated the experiment with axial slice 90 from the same in vivo dataset and

using the same sampling pattern. The sensitivity maps estimated for this axial slice

are shown in Figure 4.10 of the supplement. Figure 4.7 shows the initial sum-of-

squares estimate, the separately acquired body coil image, and MFISTA solution,

and the difference between the body coil and MFISTA solution. For both slice 38 and

90, the converged MFISTA solution shows lower noise than the body coil image.

For both slice 38 and 90, both proposed algorithms reached the solution x(∞) (to

within machine precision), shown in Figure 4.6c and 4.7c. For brevity, Figures 4.6c

and 4.7c do not include x(∞) for AL-tridiag or ADMM-tridiag, because they are
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Figure 4.7: Axial slice 90 of volunteer data (a) square root of sum-of-squares of
the zero-filled iFFT coil images, used as an initial estimate for all algorithms; (b)
separately acquired body coil image; (c) x(∞) calculated by MFISTA; (d) difference
between body coil and x(∞).

visually indistinguishable from the MFISTA solution. The solutions x(∞) were also

visually similar to the fully sampled SENSE reconstruction without regularization,

x̂SENSE. Image comparisons are presented in the supplement.

4.6.2.1 Computation Speed Results for in vivo MRI data

We quantified the convergence rate of these algorithms using the normalized root

mean squared distance (NRMSD) between a given iterate x(n) and the converged

solution, x(∞), in decibels:

NRMSD , 20 log10

(∥∥x(n) − x(∞)
∥∥

2

‖x(∞)‖2

)
(4.80)

To generate the solution, x(∞), we ran MFISTA for 50000 outer iterations with 5

inner NCG iterations. We also calculated the normalized root mean squared error
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Figure 4.8: Axial slice 38: (a, b) NRMSD comparison of AL-tridiag, ADMM-tridiag,
MFISTA, and AL-P2-NC to x(∞); (c, d) NRMSE comparison of AL-tridiag, ADMM-
tridiag, MFISTA, and AL-P2-NC to fully sampled SENSE reconstruction.
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Figure 4.9: Axial slice 90: (a, b) NRMSD comparison of AL-tridiag, ADMM-tridiag,
MFISTA, and AL-P2-NC to x(∞); (c, d) NRMSE comparison of AL-tridiag, ADMM-
tridiag, MFISTA, and AL-P2-NC to fully sampled SENSE reconstruction.

(NRMSE) between a given iterate x(n) and the fully-sampled SENSE reconstruction,

x̂SENSE, computed without any regularization.

For computation speed, we measured the wall time of each algorithm. For the AL and

ADMM algorithms, we omitted time spent tuning AL penalty parameters and com-

piling Pthreaded MEX functions. The MFISTA method requires precomputation of

the maximum eigenvalue of S′F′FS via power iteration, which took approximately

4.3 seconds for in vivo experiments, whereas all the VS methods avoid this over-

head. Computation time excludes time spent computing this maximum eigenvalue.

For all algorithms, we omitted the time spent computing the initial sum-of-squares
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estimate.

As demonstrated in Figure 4.8, MFISTA is costlier per iteration than the proposed

methods and AL-P2-NC. AL-tridiag converges slightly faster than ADMM-tridiag

due to having fewer auxiliary and dual variables to update. AL-P2-NC converged

the fastest for this slice.

Figure 4.9 shows that axial slice 90 presented a change in relative computation speed

toward x(∞): AL-tridiag and ADMM-tridiag converge faster than AL-P2-NC down

to -65 dB NRMSD and up to 500 iterations. In the simulation results shown in

the supplement, ADMM-tridiag also converged faster than AL-P2-NC in the early

iterations. Overall, the speed of ADMM-tridiag is generally comparable to that of

AL-P2-NC. For all AL/ADMM methods, the convergence rate depends on param-

eter selection; the heuristics used for parameter design in [67] may perform better

under some conditions than others. One possible reason for the difference in relative

convergence speeds in experiments for slice 38 and slice 90 is the smaller anatomical

support in slice 90. Due to the head coil geometry, the smaller head circumference

at slice 90 results in a lower signals from the surface coils, which may present a more

difficult reconstruction problem.

For these axial slices, we also examined the NRMSE between iterates x(n) and the

fully sampled SENSE reconstruction x̂SENSE without regularization. AL-tridiag and

ADMM-tridiag reach the minimum NRMSE after similar amounts of computation

as AL-P2-NC, approximately 4 seconds and 60 iterations. By this metric, MFISTA

performs slightly worse as a function of computation time and iterations, and would
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be far worse when one accounts for the overhead of running the power iteration to

find the maximum eigenvalue of S′F′FS.

4.6.2.2 in vivo Experiment Results for ADMM-FP-tridiag

For the same 3D in-vivo volunteer data set used in [9], we tested the convergence

speed of ADMM-FP-tridiag. We applied ADMM-FP-tridiag to the same undersam-

pled data from axial slices 38 and 90 using the same estimated smooth sensitivity

maps, shown in Figure 4.10 and undersampling patterns, shown in Figure 4.5 of [9].

We initialized ADMM-FP-tridiag with the same zero-filled iFFT image as the other

algorithms, shown in Figures 4.6 and 4.7 of [9].

Figure 4.10: Magnitudes of the sensitivity maps estimated using central 16 ×16
phase encodes for axial slice 38 (left) and axial slice 90 (right).

The proposed ADMM-FP-tridiag algorithm was implemented with 20 Pthreads al-

located to the tridiagonal updates in (4.42) and (4.43), but no parallelization was

implemented across the blocks of u or v. Here we present the same results as shown

in Figures 4.8 and 4.9 in [9], with additional convergence speed measurements for
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ADMM-FP-tridiag. As was the case for AL-tridiag and ADMM-tridiag, time spent

tuning AL penalty parameters for ADMM-FP-tridiag was not included in computa-

tion time.
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Figure 4.11: Axial slice 38: (a, b) NRMSD comparison of proposed algorithms,
MFISTA, and AL-P2-NC to x(∞); (c, d) NRMSE comparison of proposed algorithms,
MFISTA, and AL-P2-NC to fully sampled SENSE reconstruction..

The fully parallelizable proposed method, ADMM-FP-tridiag, was not implemented

with parallelization across the blocks of u, vFP, or ηFP. For this reason, as well as

the substantially larger number of auxiliary and dual variables, ADMM-FP-tridiag
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performs the slowest of the algorithms in this comparison. It is likely that finely

tuning the AL penalty parameters of ADMM-FP-tridiag would result in improved

speed, but these speed gains likely will not offset the additional bookkeeping required

for vFP and η
FP

. The use of additional auxiliary variables in ADMM-FP-tridiag may

also require more iterations for information to propagate across block elements of u

and vFP.
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Figure 4.12: Axial slice 90: (a,b) NRMSD comparison of proposed algorithms,
MFISTA, and AL-P2-NC to x(∞); (c,d) NRMSE comparison of proposed algorithms,
MFISTA, and AL-P2-NC to fully sampled SENSE reconstruction.

For axial slice 90, ADMM-FP-tridiag remains the slowest method. However, due
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to enforcing equivalence with ADMM, the solution to ADMM-FP-tridiag is within

machine precision of x∗, despite the much longer convergence time. For this reason,

we omit images of the solution to ADMM-FP-tridiag for slices 38 and 90.

4.6.2.3 Image Quality Comparison for in vivo Data

In this section, we compare the image quality of the solution to (4.1) to the body

coil image and the fully sampled SENSE reconstruction x̂SENSE. For both axial slices

38 and 90, all algorithms in the comparison eventually reach the same solution,

x(∞). The reconstructed image from ADMM-tridiag at 5000 iterations, x̂ is visually

similar to the bodycoil, shown in Figures 4.13 and 4.14. ADMM-tridiag is able to

reconstruct many of the anatomical details missing in the initial zero-filled iFFT

images. The estimated images for AL-tridiag at 5000 iterations is very similar to

that of ADMM-tridiag and are not pictured.

Figures 4.13 and 4.14 also show the absolute difference of the body coil and recon-

structed image, as well as the fully sampled SENSE reconstruction without regu-

larization, x̂SENSE and the difference between the reconstructed image and SENSE

image. The difference image between x̂ and x̂SENSE show that the regions with the

highest error are those in which the g-factor is low due to the head coil geometry.

The reconstructed image more closely resembles the fully sampled SENSE image

than the relatively noisy body coil image.
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Figure 4.13: in vivo experiment for axial slice 38. Left to right: (a) body coil
image; (b) differences between body coil and ADMM-tridiag; (c) ADMM-tridiag
reconstruction; (d) fully sampled SENSE reconstruction; (e) differences between fully
sampled SENSE reconstruction and ADMM-tridiag.
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Figure 4.14: in vivo experiment for axial slice 90. Left to right: (a) body coil
image; (b) differences between body coil and ADMM-tridiag; (c) ADMM-tridiag
reconstruction; (d) fully sampled SENSE reconstruction; (e) differences between fully
sampled SENSE reconstruction and ADMM-tridiag.

4.6.3 Image Inpainting

This section illustrates the benefits of non-periodic boundary conditions and the

proposed variable splitting scheme for an inpainting problem. Unlike medical images

that often have air at one or more boundaries, natural scenes typically contain useful,

distinct information at the boundaries.

To test the effect of AL-tridiag-inpaint, we took a 432×540 digital photograph using

a Samsung SM-G930V camera, randomly discarded 75% of the pixels, and added
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white Gaussian noise corresponding to 20 dB SNR to the remaining pixels. We used

2D nearest neighbor interpolation to initialize the inpainting estimate, pictured in

Fig. 4.15.

To demonstrate the ease with which the proposed formulation accommodates or-

thonormal wavelets, we estimated the inpainted image using AL-tridiag-inpaint with

the modified regularization operators in (4.34). We selected regularization param-

eters λ1 and λ2 for good image reconstruction quality, and set αw = 1 to limit

additional memory usage. We also applied the AL-P2 variable splitting scheme to

the inpainting problem, using finite-differences with periodic boundary conditions

and Haar wavelets. We show the inpainting images estimated using non-periodic

boundary conditions in Fig. 4.15. All images are displayed on the same grayscale

axis as the original image, unless otherwise noted.

Figure 4.16 shows the error between the inpainting estimates using non-periodic vs.

periodic boundary conditions. The use of periodic boundary conditions results in

higher error near the boundaries of the image.

We conducted the inpainting computational speed experiments on the machine de-

scribed in Section 4.6.2, and we compute wall time using the same rules as in Section

4.4.4, excluding time spent tuning AL parameters. We measure NRMSD to the

MFISTA solution, x(∞), as a function of wall time. As in the CS-SENSE-MRI exper-

iments, we compare AL-tridiag-inpaint to a variant of AL-P2 to better understand

the effect of the proposed variable splitting scheme. We apply the AL-P2 variable

splitting scheme to the inpainting problem with non-periodic boundary conditions
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(a) xtrue (b) x(0) (c) Non-Circ. (d) Circ.

Figure 4.15: Inpainting images (a) true image; (b) nearest neighbor interpolation of
noisy, partial data (SNR = 20 dB, 75% discarded); (c) inpainting estimate using finite
differences with non-periodic boundary conditions and Haar wavelet regularization;
(d) inpainting estimate using finite differences with periodic boundary conditions
and Haar wavelet regularization.

(a) (b) (c) (d)

Figure 4.16: Absolute difference image between true image and inpainting recon-
struction (× 10) (a) using finite differences with non-periodic boundary conditions
and Haar wavelets (NRMSE = 0.153); (b) using finite differences with periodic
boundary conditions and Haar wavelets (NRMSE = 0.155); (c) corner detail of (a);
(d) corner detail of (b).
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Figure 4.17: NRMSD to x(∞) as a function of elapsed computational time for the pro-
posed inpainting algorithms, AL-tridiag-inpaint and ADMM-tridiag-inpaint, com-
pared with existing methods AL-P2-NC, Split Bregman, and MFISTA.

(4.57), and we call the resulting AL algorithm AL-P2-NC-inpaint. Similar to AL-P2-

NC, it requires an inner iterative variable update due to the non-circulant Hessian.

We solve this inner step using one iteration of preconditioned gradient descent with

a circulant preconditioner.

Supposing that boundary artifacts are a secondary concern to computational speed,

we also compare the speed of AL-tridiag-inpaint to AL-P2-inpaint. AL-P2-inpaint

is distinct from AL-P2-NC-inpaint due to its cost function, which uses regularizers

with periodic boundary conditions. AL-P2-inpaint is not handicapped by an inner

iterative update, because the circulant Hessian can be diagonalized efficiently via

FFTs. Though AL-tridiag-inpaint must complete two tridiagonal solver variable

updates for each of AL-P2-inpaint’s FFT-based variable updates, the O (n) runtime

of the tridiagonal solver and the parallelized implementation result in comparably fast

iterations for AL-tridiag-inpaint. The average computation time for each iteration

was 0.0543 seconds for AL-P2-inpaint, 0.1193 seconds for AL-P2-NC-inpaint, 0.0583
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seconds for AL-tridiag-inpaint, and 0.0745 seconds for ADMM-tridiag-inpaint. Both

methods converge with less computation time than MFISTA and Split Bregman

[35].

Figure 4.17 also demonstrates convergence benefits of the proposed variable splitting

scheme. Both AL-tridiag-inpaint and ADMM-tridiag-inpaint were able to reach the

same x(∞) as MFISTA, unlike AL-P2-NC. AL-P2-NC reaches a different solution with

the same objective value as the MFISTA x(∞). An investigation into the convergence

behavior of AL-P2-NC can be future work.

4.7 Discussion

The ADMM-tridiag algorithm provides a simple way to ensure convergence for vari-

able splitting methods. By examining the constraint matrix and designing B, we

show equivalence between the variable splitting scheme in (4.13) and ADMM. The

additional variable split and variable update led to parallelizability of two of the

resulting variable updates. For applications as sensitive as medical diagnosis, an

algorithm with convergence guarantees may be preferable to those having unknown

convergence properties.

Unlike AL-P2 [67], the proposed algorithm, ADMM-tridiag, has a convergence guar-

antee and addresses non-periodic boundary conditions, while demonstrating com-

parable computational speed. Using heuristic parameter tuning based on condition

numbers of variable update Hessians, we demonstrated that the speeds of AL-P2-

NC and ADMM-tridiag are similar but can vary depending on experimental condi-
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tions.

The proposed variable splitting scheme can be useful for a variety of image processing

problems, because many natural scenes have non-zero values at the boundaries that

do not relate periodically to opposite boundaries. As shown in Section 4.4.2, the

proposed method AL-tridiag is readily adapted to image denoising and inpainting

problems. Image deblurring is also a good candidate for this proposed variable

splitting. Separation of horizontal and vertical differences has also been explored in

image segmentation [87].

To fully benefit from the max(Nx, Ny) parallelizable tridiagonal updates of AL-tridiag

and ADMM-tridiag, one should use a highly parallel computing platform1, such as

a GPU.

The algorithms proposed in this work have several limitations. Though the pro-

posed algorithms are designed to facilitate fast computation, the convergence speed

is highly dependent on good penalty parameter choice. Though we present some

useful heuristics for choosing the AL convergence parameters, the optimal procedure

for designing these parameters is a difficult analysis problem and still unknown. (For

some simpler ADMM methods, optimal parameter tuning has been analyzed [88].)

Moreover, the complexity of convergence parameter design increases with the number

of variable splits, and this work is built around an additional separation of horizon-

tal and vertical differences into distinct auxiliary variables. The increased number of

tuning parameters introduces another degree of freedom. Using non-scalar penalty

parameter matrices M3 and M4 further increases the degrees of freedom compared
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to the simple scalar choice used in most AL methods.

Though the proposed variable splitting scheme can be easily extended to 3D re-

construction problems, this would require introducing two additional variable splits,

separating each of the three finite difference directions and introducing a second

auxiliary variable proxy for x. Though the corresponding variable updates can be

quickly computed with shrinkage and the parallelizable tridiagonal solver, this 3D

variable splitting scheme could further complicate penalty parameter analysis.

Finally, the variable splitting scheme at the center of the proposed algorithms is appli-

cable only for regularization with first-order finite differences. Though Section 4.3.5

shows that the formulation also accommodates orthonormal wavelet penalties com-

bined with finite differences, this variable splitting scheme yields no benefit for other

sparsity transforms, e.g., non-orthonormal wavelets and learned dictionaries.

4.8 Summary and Conclusion

This chapter proposed a variable splitting algorithm for SENSE MRI reconstruction,

ADMM-tridiag. The proposed method offers convergence guarantees and efficient

variable updates for non-periodic boundary conditions. ADMM-tridiag efficiently

handles the non-periodic boundary conditions by separating the finite differences

in the horizontal and vertical directions to create easily solvable and parallelizable

tridiagonal problems. The method for inducing ADMM equivalence requires only

one additional variable split and variable update.
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We also presented a simpler variation of this algorithm: AL-tridiag. AL-tridiag was

derived from the same variable splitting scheme as ADMM-tridiag, but has a simpler

update procedure, resulting in a slight speed increase albeit without any convergence

guarantees. We showed a simple relationship between AL-tridiag and ADMM-tridiag

and compared their convergence speeds to that of AL-P2-NC and MFISTA. Conver-

gence speed was evaluated in terms of distance to the solution of the proposed cost

function (4.1) as well as to the fully sampled SENSE reconstruction. For retrospec-

tively undersampled in vivo data, the proposed algorithms demonstrated comparable

convergence speed and produced reconstructed images with good image quality. AL-

tridiag was also applied to a noisy image inpainting problem, demonstrating faster

convergence speed than AL-P2-NC, and improved image fidelity at the boundaries

than AL-P2 with periodic boundary conditions.

All of the proposed algorithms require selection of penalty parameters. We use

heuristics determined in [67] to select these AL penalty parameters, although we

exploited a more general version of tuning parameters to enable computation of con-

dition numbers for tridiagonal Hessians. Using methods that adapt the parameters

as a function of iteration [89] might simplify and accelerate AL methods.
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Chapter 5

Spline Temporal Basis for Improved

Pharmacokinetic Parameter Estimation

5.1 Introduction

1 Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) is an ap-

plication of MRI for visualizing perfusion in various organs. During the dynamic

imaging, a series of k-space samples are acquired in succession to characterize MR

changes in tissue over time. DCE-MRI is a useful tool because of its ability to depict

both physiology and morphology. It is routinely used for assessing targeted radiation

therapy procedures.

For breast DCE-MRI studies, a T1-shortening contrast agent such as gadolinium

diethylenetriaminepentaacetic acid (Gd-DTPA) is injected into the patient, passing

from major blood vessels into the blood plasma and into organ tissue. Measuring the

contrast agent enhancement curves in the lesions allows for classifying malignant and
1This chapter is based on [10].
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benign tumors, which are distinguished by different levels of angiogenesis, the growth

of new blood vessels. In particular, we wish to estimate several pharmacokinetic

parameters: the volume transfer constant, Ktrans, the flux rate constant, kep, and

the volume of extravascular extracellular space per unit volume of tissue, ve. These

parameters describe the relationships between contrast agent concentrations in blood

plasma and breast tissue, as shown in Fig. 5.1 and are interrelated: kep = Ktrans/ve.

The primary time series of interest is the amount of contrast agent in the breast

plasma:
Cp(t)

tissue:
Ct(t)

Ktrans

kep

Figure 5.1: Two-compartment model for breast pharmacokinetics.

tissue over time, Ct(t). This quantity is related to the contrast agent concentration

in the blood plasma near the breast, Cp(t). Ktrans, kep , and ve describe how Cp(t)

and Ct(t) are related.

To estimate these pharmacokinetic parameters accurately, we desire high resolution

images to delineate tumors from other tissues, as well as highly detailed time series

to accurately estimate Ktrans and kep. However, dynamic MRI presents a tradeoff

between spatial and temporal resolution because of the sequential nature of k-space

sampling. To overcome this tradeoff, we turn to MRI acceleration methods.

Numerous studies have shown that applying compressed sensing methods can com-

pensate for randomly undersampling in k-space [26]. The power of compressed sens-

ing is amplified for dynamic MRI data because dynamic images can be also be spar-
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sified in time. Compressed sensing ideas can be combined with parallel imaging tech-

niques, such as SENSitivity Encoded (SENSE) MRI [21]. Parallel imaging consists

of simultaneously collecting spatially-encoded k-space data from multiple receiving

coils.

In this work, we seek to further improve the condition of the inverse problem by

restricting the dynamic image to a predefined, easily computable, spatio-temporal

subspace of B-splines. This has the twofold goal of easing computation by reduc-

ing the number of unknown parameters and improving accuracy of the estimated

enhancement curves by preventing spurious highly changing temporal components.

Temporal spline functions have been used for dynamic MRI image reconstruction

problems [90], and it has been investigated for PET [91].

5.2 Problem Formulation

Intuitively, injected contrast agent perfuses through the body in a slow and steady

manner. This expectation of slowly-varying contrast agent concentrations is captured

in the two-compartment model in Fig. 5.1. The contrast agent concentration of

interest, Ct(t), is modeled as a convolution of Cp(t) with Ktranse−kept to represent

the flow back and forth from the blood plasma and breast tissue. These standard

pharmacokinetic modeling equations further reinforce the idea that Ct(t) should be

smooth and slowly varying.

Temporal regularization is one method for encouraging smooth and slowly varying

temporal dynamics. This work uses this assumption more explicitly by enforcing
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that the dynamic object, traditionally characterized by Np pixels over Nf frames, be

expressed with fewer than NpNf parameters. Rather than representing an arbitrary

time series, we choose to restrict the object to having time series representable by

wide, overlapping, smoothly varying temporal basis functions.
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Figure 5.2: The red curve is a simulated tissue contrast concentration over time,
using parameters from [2]. The blue curves are the quadratic B-splines whose sum
best approximates the tissue contrast concentration curve. The green curve shows
the sum of the B-splines, the approximation of the true time series.

5.2.1 Object Model

The object we wish to estimate is f(r, t), the transverse magnetization at pixel r

(including the effect of T ∗2 ) at time t near echo time. For ease of notation, this

section will use one-dimensional notation for spatial location r, but this model can
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be expanded to three-dimensional volumes. The most common object model in

dynamic imaging studies implicitly assumes a non-overlapping rectangular temporal

basis function. That is to say, the object is described over every discrete time point,

implying that the measurement at time ti is affected only by the object parameters

associated with time ti (though this is often balanced with a temporal regularizer to

introduce temporal correlations). It is also common to assume a spatial rectangular

basis function. Together, a rectangular spatial basis and a rectangular temporal basis

yield a tensor product object model as follows:

f(r, t) =

Nr
2
−1∑

jr=−Nr2

Nt−1∑
jt=0

fjr,jtrect(r − jr∆r)rect(t− jt∆t) (5.1)

Pixel spacing is denoted by ∆r, and frame duration is ∆t. Discretizing f(r, t) ap-

propriately will result in the samples coinciding with the unknown fjr,jt coefficients.

Estimating these coefficients (often organized in a Casorati matrix) describes the

unknown spatiotemporal object via Equation (5.1).

In this work, we consider a more flexible temporal basis, in which the basis functions

overlap each other and are smoothly varying. In particular, we focus on splines for

their finite support and high degree of smoothness. Assuming that the dynamic

object lies reasonably close to the subspace spanned by the particular spatial basis

and temporal splines, the goal is to express the dynamic object more succinctly with

fewer spline coefficients. For now, we consider a general spatial basis, br(r).
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A generalized version of the object model in Equation (5.1) is:

f(r, t) =

Nr
2
−1∑

jr=−Nr2

Nt−1∑
jt=0

fjr,jtbr(r − jr∆r)b(t− jt∆t). (5.2)

To make the problem more tractable computationally, we choose a temporal basis b(t)

that is constant over small intervals of length MTR, an integer number of readouts.

This duration can be considered a “subframe", in that it may be shorter in length

than a typical MRI frame. Our goal is not to estimate the object at all subframes,

just the image coefficients that coincide with particular subframes. The resulting

object model is:

f(r, t) ≈

Nr
2
−1∑

jr=−Nr2

Nt−1∑
jt=0

fjr,jtbr(r − jr∆r)b

(
MTR

⌊
t− jt∆t

MTR

⌋)
. (5.3)

5.2.2 System Model

For parallel MRI, the signal received from the lth coil at time t is a function of the

coil’s sensitivity map, Cl(r), the T ∗2 value at pixel r, and the k-space trajectory kr(t)

as follows:

sl(t) =

∫
Cl(r)f(r, t)e−t/T

∗
2 (r)e−i2π(rkr(t))dr, l = 1, . . . , Nc. (5.4)

Hereafter, we ignore the effect of T ∗2 decay because readout duration is small com-
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pared to TE, so this term will not change much over the course of a readout. (For

an example T ∗2 value of 36 ms [92], readout of 1 ms, and TE of 3 ms, the decay from

e−t/T
∗
2 would be approximately 3%).

By assuming a rectangular spatial basis for the sensitivity maps with coefficients

cl,jr and substituting the proposed object model Eqn.(5.3), we can rewrite the signal

Equation in terms of object coefficients fjr,jt :

sl(t) ≈
Nt−1∑
jt=0

b

(
MTR

⌊
t− jt∆t

MTR

⌋) Nr
2
−1∑

jr=−Nr2

cl,jrfjr,jt

∫
br(r − jr∆r)e

−i2π(r·kr(t))dr

≈
Nt−1∑
jt=0

b

(
MTR

⌊
t− jt∆t

MTR

⌋) Nr
2
−1∑

jr=−Nr2

al,jr(t)fjr,jt , (5.5)

where al,jr(t) , cl,jre
−i2π(jr∆r·kr(t))for choice of br(r) = δ(r).

We define the sequence b[n] as the samples of the temporal spline basis function b(t)

of support W with a sampling period of MTR = ∆f ,

b[n] , b(nMTR), for n = −
⌈
W

2∆f

⌉
, . . . ,

⌈
W

2∆f

⌉
, (5.6)

with Q samples between the centers of each spline (∆t = Q∆f ), as shown in Fig.

5.3.

Using the samples of the temporal basis function b(t), we can describe the signal at
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Figure 5.3: Diagram of temporal spline basis spacing parameters.

discrete time points {ti}
MNf
i=1 as

sl(ti) ≈ sl,i ,
Nt−1∑
jt=0

bi[jt]

Nr
2
−1∑

jr=−Nr2

al,i,jrfjr,jt . (5.7)

We define al,i,jr and bi[jt] as follows:

al,i,jr , al,jr(ti) = cl,jre
−i2πjr∆rkr(ti) (5.8)

bi[jt] , b

(
MTR

⌊
ti − jt∆t

MTR

⌋)
= b[ni − jtQ] for ni =

ti
MTR

. (5.9)

By applying the sifting property in reverse and switching the order of summation,

we can expand the signal approximation in Equation (5.7) into a useful formula-

tion:

sl(ti) =
Nr−1∑
k=0

Nf−1∑
n=0

δ[k − ki, n− ni]
Nt−1∑
jt=0

b[n− jtQ]
Nr−1∑
jr=0

F̃k,jrcl,jrfjr,jt with ki , kr(ti).

(5.10)
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F̃k,jr , e−i2πkjr/Nr represents the contribution of the jrth pixel to the kth k-space

location, and F̃ ∈ CNr×Nr . In this chapter, we restrict our analysis to Cartesian

sampling, so this Fourier transform can be performed with FFTs. To yield a useful

and concise formulation, we arrange the other terms in Equation (5.10) into matrix

form.

We define Sl ∈ CNr×Nr to be a diagonal matrix, where the ith diagonal element is

the sensitivity of the lth coil for the ith pixel, cl,i.

The operator T̃ ∈ RNrQNt×NrNt , so named for inTerpolation, is a Kronecker product

T̃ = T̂⊗INr , where T̂ ∈ RQNt×Nt , which has elements T̂i,j = b[ni−jQ]. T̃ effectively

takes a weighted linear combination of k-space for different temporal basis frames to

interpolate the values for time samples that lie in between the centers of the temporal

basis functions. We efficiently implemented this via upsampling and convolution with

b[n] as the filter.

Finally, P̃ ∈ {0, 1}Ns×NrQNt is a sampling matrix that selects the appropriate k-space

location and interpolation index, with elements P̃i,j = δ[li − kj,mi − nj]. li denotes

the k-space location and mi the subframe index associated with the ith sample, for

i = 0, . . . , Ns − 1. Pairs {kj, nj} denote the k-space location and subframe index of

the jth output element of T̃, for j = 0, . . . , NrQNt − 1.

Vectorizing the signals of the lth coil as sl ∈ CNs×1 and the object coefficients as

f ∈ RNrNt×1 leads to the following matrix-vector expression for the lth coil:

sl = P̃T̃
(
INt ⊗ F̃

)
(INt ⊗ Sl) f , l = 1, . . . , Nc. (5.11)
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Stacking these vectors and matrices over each coil yields the following system matrix

for multi-coil SENSE MRI:

s =
(
INc ⊗ P̃

)
︸ ︷︷ ︸

P

(
INc ⊗ T̃

)
︸ ︷︷ ︸

T

(
INcNt ⊗ F̃

)
︸ ︷︷ ︸

F

INt ⊗


S1

...

SNc




︸ ︷︷ ︸
S

f . (5.12)

By renaming the Kronecker products for simplicity, the signal model simplifies to:

s = PTFSf . (5.13)

Note that for the conventional rectangular basis function, T = INt .

5.2.3 B-Spline Considerations

Polynomial functions are useful for approximation because they are differentiable,

integrable, and can be easily evaluated. However, polynomial interpolation is very

sensitive to the choice of interpolation points. To avoid using high degree polynomials

or very large number of interpolation points, it is useful to consider splines, piecewise

polynomial functions that are smooth at the connection points, known as knots.

In particular, we choose to look at cardinal splines, whose knots are Z. For cardinal

splines, all the splines, {Bi,k(x)}∞i=−∞ are shifted versions of the original kth order
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spline, Qk(x), which is defined over [0, k] [93]:

Bi,k(x) = Qk

(
x− ih
h

)
, i = −∞, . . . ,∞ (5.14)

This shift-invariance allows us to use convolution to efficiently compute spline inter-

polation. Furthermore, splines exhibit a property useful for basis functions, partition

of unity, i.e.
∑

iBi(x) = 1 ∀x. However, the time series we wish to approximate is

of finite duration, unlike the knot sequence. To accomodate for this, we modify the

first and last spline functions in our temporal basis to have infinite duration and to

preserve partition of unity.

B0,k =


Qk

(
x
h

)
+Qk

(
x+h
h

)
, 1 ≤ x ≤ k

1, x < 1

(5.15)

BNt−1,k =


Qk

(
x−(Nt−i)h

h

)
+Qk

(
x−Nth
h

)
, Nt − 1− k ≤ x ≤ Nt − 1

1, x ≥ Nt − 1

(5.16)

5.3 Proposed Methods

Our measurement model assumes i.i.d. complex Gaussian noise:

y = s + ε, ε ∼ N (0, σI) (5.17)

To perform image reconstruction using this system model, we propose the following
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optimization problem:

f̂ = argmin
f

Ψ(f), Ψ(f) =
1

2
||y −PTFSf ||22 + λsRs(f) + λtRt(f) (5.18)

Rs(·) is an edge-preserving spatial regularizer, and Rt(·) is a temporal regular-

izer.

5.3.1 Temporal Regularization with Non-Circulant Boundary Conditions

Revisiting Equation (5.18), we consider choosing quadratically penalized, temporal

finite differences Rt(f) = ||Ctf ||22 to encourage a smoothly varying contrast agent

concentration in the estimated object [94]. In Chapter 3, spatial circulant boundary

conditions were not problematic because the support of the object did not extend to

the boundaries of the image. However, circulant boundary conditions for temporal

regularization would cause unwanted temporal correlations between the first and

final temporal basis frames. To continue to take advantage of the circulant Hessian

structure resulting from circulant boundary conditions, we use a temporal truncation

matrix, Bt, as in [78], to construct regularization term Rt(f) = ||BtCtf ||22. Bt is

a identity matrix with the first row omitted. With this design, the regularization

term does not penalize differences between the first and last frame. For anisotropic

TV in the spatial dimension we define, Cs ∈ R4NrNt×NrNt to have the following

structure:

Cs , [Csouth; Ceast; Cnortheast; Csoutheast]. (5.19)
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We also define a diagonal regularization parameter matrix, Λ, whose diagonal con-

sists only of λs and
√
λt, and index sets S1 and S2. These sets correspond to the

indeces of the spatial differences and the time differences, respectively. The cost

function is now:

Ψ(f) =
1

2
||y −PTFSf ||22 + λsψ (BsCsf) + λt||BtCtf ||22 (5.20)

In this case, the truncation matrix Bs selects only the spatial non-boundary differ-

ences and Bt selects only the temporal non-boundary differences:

Bs , diag{Bsouth,Beast,Bnortheast,Bsoutheast}. (5.21)

5.3.1.1 Variable Splitting

Minimizing Equation (5.20) is equivalent to the following constrained optimization

problem:

f̂ = argmin
f,u0,u1,u2,u3

Ψu(u0a, u0b, u1a, u1b, u2, u3, f) (5.22)

where Ψu =
1

2
||y −PTu3||22 + λsψ (u1a) + λt||u1b||22

s.t. u0a = Csu2; u0b = Ctu2; u1a = Bsu0a;

u1b = Btu0b; u2 = f ; u3 = FSf.

Applying the Augmented Lagrangian (AL) framework to this problem and complet-
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ing the square yields the following AL cost function:

L(f, u0a, u0b, u1a, u1b, u2, u3;µ0, µ1, µ2, µ3) =
1

2
||y −PTu3||22 + λsψ (u1a) + λt||u1b||22

+
µ0

2
||u0a −Csu2 − η0a||22 +

µ0

2
||u0b −Ctu2 − η0b||22 +

µ1

2
||u1a −Bsu0a − η1a||22

+
µ1

2
||u1b −Btu0a − η1b||22 +

µ2

2
||u2 − f − η2||22 +

µ3

2
||u3 − FSf − η3||22 (5.23)

We update the original and auxiliary variables f, u0, . . . , u3 one-by-one in an alter-

nating minimization scheme:

u
(n+1)
0a =H0a

−1
(
µ0(Csu

(n)
2 + η

(n)
0a ) + µ1B

′
s(u

(n)
1a − η

(n)
1a )
)

u
(n+1)
0b =H0b

−1
(
µ0(Ctu

(n)
2 + η

(n)
0b ) + µ1B

′
t(u

(n)
1b − η

(n)
1b )
)

(5.24)

u
(n+1)
1a =shrink

(
Bsu

(n+1)
0a + η

(n)
1a ,

λs
µ1

)
(5.25)

u
(n+1)
1b =

(
Btu

(n+1)
0b + η

(n)
1b

)
/

(
2
λt
µ1

+ 1

)
(5.26)

u
(n+1)
2 =H2

−1(µ0

(
C′s(u

(n+1)
0a − η(n)

0a ) + C′t(u
(n+1)
0b − η(n)

0b )
)

+ µ2(f + η
(n)
2 )) (5.27)

u
(n+1)
3 =H3

−1
(
T′P′y + µ3(FSf (n) + η

(n)
3 )
)

(5.28)

f (n+1) =Hf
−1
(
µ2(u

(n+1)
2 − η(n)

2 ) + µ3S
′F′(u

(n+1)
3 − η(n)

3 )
)

(5.29)

where the shrinkage operator depends on the potential function, φ(·). For the `1
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norm, it is soft-thresholding as follows:

shrink(x, t) = sign(xi)(|xi| − t)+ (5.30)

The Hessian matrices are defined as:

H0a , µ0I + µ1B
′
sBs (5.31)

H0b , µ0I + µ1B
′
tBt (5.32)

H2 , µ2I + µ0 (C′sCs + C′tCt) (5.33)

H3 , T′P′PT + µ3I (5.34)

Hf , µ3S
′F′FS + µ2I. (5.35)

We update the dual variables η0, . . . , η3 according to Alternating Direction Minimiza-

tion as follows:

η
(n+1)
0a = η

(n)
0a − (u

(n+1)
0a −Csu

(n+1)
2 ) (5.36)

η
(n+1)
0b = η

(n)
0b − (u

(n+1)
0b −Ctu

(n+1)
2 ) (5.37)

η
(n+1)
1a = η

(n)
1a − (u

(n+1)
1a −Bsu

(n+1)
0a ) (5.38)

η
(n+1)
1b = η

(n)
1 − (u

(n+1)
1b −Btu

(n+1)
0b ) (5.39)

η
(n+1)
2 = η

(n)
2 − (u

(n+1)
2 − f (n+1)) (5.40)

η
(n+1)
3 = η

(n)
3 − (u

(n+1)
3 − FSf (n+1)) (5.41)
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5.3.1.2 Hessian Structures

H0a and H0b consist of masking and scaling and has an easily invertible diagonal

structure. Hf is also diagonal, because the fully-sampled Fourier transform is uni-

tary, and S′S is also diagonal. Because of the choice of circulant end conditions

for finite-differencing matrix C, H2 is circulant, making the u2 easy to compute via

diagonalization with the DFT matrix. Therefore, all of the variable updates except

u3 are straightforward and easy to compute.

For quadratic B-splines, H3 is block-diagonal with pentadiagonal blocks. This up-

date can be solved with an efficient solver similar to, but more complex than the

tridiagonal solver in Chapter 4. We can also exploit the Nr independent blocks of

H3 to parallelize the variable update. For now, we compute the u3 update with an

inner iterative method, CG. Future work involves finding an efficient, parallelizable

way to solve the u3 update.

5.3.2 Spline Temporal Basis with ADMM

Here we present an alternate optimization method for minimizing Equation (5.20)

that has guaranteed convergence properties. We do so by demonstrating equivalence

with the Alternating Direction Method of Multipliers [75].

We manipulate the previous variable splitting to fit the conditions of the Alternating

Direction Method of Multipliers (ADMM) by examining and factoring the constraint

matrix, inspired by [38], and previously discussed in Section 4.3.3. The constraint
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matrix for the previous splitting is constructed by consolidating the splitting con-

straints in matrix form as follows:



I −

Bs

Bt


I −

Cs

Ct


I −I

I −FS


︸ ︷︷ ︸

A



u1a

u1b

u0a

u0b


u2

u3

f


︸ ︷︷ ︸

u

= 0. (5.42)

We define the constant Np as shorthand for Np = NxNyNt, the number of elements

in f . For a convenient block upper triangular structure, we rearrange the first and

second constraints, resulting in the following constraint matrix, A. We also stack all

the original and auxiliary variables into a vector, u.

To satisfy the conditions for ADMM with inexact updates, we desire to have a

constraint matrix with full column rank. We can factor A and adapt our cost

function, Ψu from (5.22) to accomodate the manipulation. We choose to factor A

into square A1, which has separated the u2 = f requirement, and A2 (same size as
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A) which reinforces that constraint as follows:



I

I

I I

I


︸ ︷︷ ︸

A2



I −

Bs

Bt


I −

Cs

Ct


I

I −FS

−I


︸ ︷︷ ︸

A1



u1a

u1b

u0a

u0b


u2

u3

f



= 0. (5.43)

Since A1 is block upper triangular with I along the diagonal, it has full rank, and

using A1 in lieu of A as the constraint matrix will satisfy ADMM conditions. To

enforce equivalence with Eqn (5.22), we augment the original cost function over u,

Ψu(u), with Ψv(v):

min Ψu(u) + Ψv(v) s.t.
[
A1 − I

]u
v

 = 0 (5.44)

with the following two convex functions in the cost function:

Ψu(u) ,
1

2
||y −PTu3||2 + λsψ (u1a) + λt||u1b||22 (5.45)

Ψv(v) ,


0, A2v = 0

+∞, A2v 6= 0.

(5.46)
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For notational ease, we divide the additional variable v into its constituent parts:

v0, v1 ∈ C5Np , v2 ∈ CNp , v3 ∈ CNpNc , and v4 ∈ CNp . Calculations with v become

simple because Equation (5.46) requires that only two v variables are non-trivial and

have the relationship: v2 = −v4. The others must equal zero, v0, v2, v3 = 0, and

are not included in the following variable updates. These simplifications reduce the

ADMM requirement into a simple additional variable update: u2 = v2 and v2 = f

instead of a direct u2 = f .

To enforce the constraints in Equation (5.44), we turn again to the Augmented

Lagrangian, which looks very similar to the non-ADMM variable splitting. The

differences are highlighted in red below:

L(u, v;µ0, . . . , µ4) = Ψu(u) + Ψv(v) +
µ

2
||A1u− v − η||2µ

2

=
1

2
||y −PTu3||22 + λsψ (u1a) + λt||u1b||22 +

µ0

2
||u0a −Csu2 − η0a||22

+
µ0

2
||u0b −Ctu2 − η0b||22 +

µ1

2
||u1a −Bsu0a − η1a||22 +

µ1

2
||u1b −Btu0a − η1b||22

+
µ2

2
||u2 − v2 − η2||22 +

µ3

2
||u3 − FSf − η3||22 +

µ4

2
|| − f + v2 − η4||22.

(5.47)

Here we use µ as shorthand to indicate a diagonal matrix with values µ0, . . . , µ4 and

η to be the stack of all the scaled Lagrange multipliers, η0a, . . . , η4. The resulting

alternating minimization variable updates are listed below, with the differences again
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highlighted in red:

u
(n+1)
0a = H0a

−1
(
µ0(Csu

(n)
2 + η

(n)
0a ) + µ1B

′
s(u

(n)
1a − η

(n)
1a )
)

(5.48)

u
(n+1)
0b = H0b

−1
(
µ0(Ctu

(n)
2 + η

(n)
0b ) + µ1B

′
t(u

(n)
1b − η

(n)
1b )
)

(5.49)

u
(n+1)
1a = shrink

(
Bsu

(n+1)
0a + η

(n)
1a ,

λs
µ1

)
(5.50)

u
(n+1)
1b =

Btu
(n+1)
0b + η

(n)
1b

2 λt
µ1

+ 1
(5.51)

u
(n+1)
2 = H2

−1µ0

(
C′s(u

(n+1)
0a − η(n)

0a ) + C′t(u
(n+1)
0b − η(n)

0b )
)

+ H2
−1µ2(v

(n)
2 + η

(n)
2 )

(5.52)

u
(n+1)
3 = H3

−1
(
T′P′y + µ3(FSf (n) + η

(n)
3 )
)

(5.53)

f (n+1) = Hf
−1
(
µ4(v

(n)
2 − η

(n)
4 ) + µ3S

′F′(u
(n+1)
3 − η(n)

3 )
)

(5.54)

v
(n+1)
2 = Hv

−1
(
µ4(f (n+1) + η

(n)
4 ) + µ2(u

(n+1)
2 − η(n)

2 )
)
. (5.55)

The Hessian matrices are defined as before, except Hf = µ3S
′F′FS + µ4I and

Hv = µ2I + µ4I. The updates for the scaled Lagrange multipliers are similar to

the AL variable splitting, except that η(n+1)
2 = η

(n)
2 − u

(n+1)
2 − v(n+1)

2 , and there is an

additional component to update: η(n+1)
4 = η

(n)
4 − (v

(n+1)
2 − f (n+1)).

5.3.3 Spline Temporal Basis with fully expanded ADMM

The proposed ADMM method in subsection 5.3.2 relies on the assumption that one

pass of alternating minimization for u and then one pass for v are sufficiently close

to their true joint optimal values before performing the Lagrange multiplier updates.
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To avoid this assumption (or having to perform multiple passes of variable updates

within each ADMM iteration), we seek an alternate ADMM splitting which fully

decouples the variable updates of u from that of v. To do so, we factor the original

constraint matrix A more aggresively, placing each block matrix onto its own block

line:



I I

I I

I I

I I

I I


︸ ︷︷ ︸

A2



I

−

Bs

Bt


I

−

Cs

Ct


I

−I

I

−FS


︸ ︷︷ ︸

A1



u1a

u1b

u0a

u0b


u2

u3

f


︸ ︷︷ ︸

u

= 0.

(5.56)

As in Equation (5.44), we choose to minimize Ψu(u) + Ψv(v), which enforces that

A2v = 0. This relationship simplifes to four constraints: v0 = −v1, v2 = −v3, v4 =

−v5, v6 = −v7. We simplify the resulting Augmented Lagrangian function by enforc-
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ing those equivalences as follows:

L(u, v;µ0, . . . , µ7) =
1

2
||y −PTu3||22 + λsψ (u1a) + λt||u1b||22

+
µ0

2
||u1a − v0a − η0a||22 +

µ0

2
||u1b − v0b − η0b||22

+
µ1

2
|| −Bsu1a + v0a − η1a||22 +

µ1

2
|| −Btu1b + v0b − η1b||22

+
µ2

2
||u0a − v2a − η2a||22 +

µ2

2
|| − u0b − v2b − η2b||22

+
µ3

2
|| −Csu0a + v2a − η3a||22 +

µ3

2
|| −Ctu0b + v2b − η3b||22

+
µ4

2
||u2 − v4 − η4||22 +

µ5

2
|| − f + v4 − η5||22

+
µ6

2
u3 − v6 − η6||22 +

µ7

2
|| − FSf + v6 − η7||22. (5.57)

Though the Augmented Lagrangian has gained more terms and we need to compute

variable updates for four non-trivial v terms, the individual variable updates for the

u terms are fully separated from each other, as are the v updates. This eliminates

any ambiguity about the use of alternating minimization to execute ADMM. More
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importantly, all of the following u updates can be computed in parallel:

u
(n+1)
0a = (µ1B

′
sBs + µ2I)

−1(
µ1B

′
s

(
v

(n)
0a − η

(n)
1a

)
+ µ2

(
v

(n)
2a + η

(n)
2a

))
(5.58)

u
(n+1)
0b = (µ1B

′
tBt + µ2I)

−1(
µ1B

′
t

(
v

(n)
0b − η

(n)
1b

)
+ µ2

(
v

(n)
2b + η

(n)
2b

))
(5.59)

u
(n+1)
1a =shrink

(
v

(n)
0a + η

(n)
0a ,

λs
µ0

)
(5.60)

u
(n+1)
1b =

v
(n)
0b + η

(n)
0b

2 λt
µ0

+ 1
(5.61)

u
(n+1)
2 = (µ4I + µ3(C′sCs + C′tCt))

−1

(µ3

(
C′s(v

(n)
2a − η

(n)
3a ) + C′t(v

(n)
2b − η

(n)
3b )
)

+ µ4(v
(n)
4 + η

(n)
4 ) (5.62)

u
(n+1)
3 = (T′P′PT + µ3I)

−1
(
PT′y + µ6(v

(n)
6 + η

(n)
6 )
)

(5.63)

f (n+1) = (µ7S
′F′FS + µ5I)

−1(
µ7S

′F′(v
(n)
6 − η

(n)
7 ) + µ5(v

(n)
4 − η

(n)
5 )
)
. (5.64)
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The v updates are also parallelizable with respect to each other:

v
(n+1)
0a =

µ0(u
(n+1)
1a − η(n)

0a ) + µ1(Bsu
(n+1)
0a + η

(n)
1a )

µ0 + µ1

(5.65)

v
(n+1)
0b =

µ0(u
(n+1)
1b − η(n)

0b ) + µ1(Btu
(n+1)
0b + η

(n)
1b )

µ0 + µ1

(5.66)

v
(n+1)
2a =

µ2(u
(n+1)
0a − η(n)

2a ) + µ3(Csu
(n+1)
2 + η

(n)
3a )

µ2 + µ3

(5.67)

v
(n+1)
2b =

µ2(u
(n+1)
0b − η(n)

2b ) + µ3(Ctu
(n+1)
2 + η

(n)
3b )

µ2 + µ3

(5.68)

v
(n+1)
4 =

µ4(u
(n+1)
2 − η(n)

4 ) + µ5(f (n+1) + η
(n)
5 )

µ4 + µ5

(5.69)

v
(n+1)
6 =

µ6(u
(n+1)
3 − η(n)

6 ) + µ7(FSf (n+1) + η
(n)
7 )

µ6 + µ7

. (5.70)

The redundant v1, v3, v5, and v7 variables are omitted entirely.

Expanding η = η − (A1u − v), we have the following scaled Lagrange multiplier
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updates:

η
(n+1)
0a = η

(n)
0a − (u

(n+1)
1a − v − 0a(n+1)) (5.71)

η
(n+1)
0b = η

(n)
0b − (u

(n+1)
1b − v − 0b(n+1)) (5.72)

η
(n+1)
1a = η

(n)
1a − (−Bsu

(n+1)
0a + v

(n+1)
0a ) (5.73)

η
(n+1)
1b = η

(n)
1b − (−Btu

(n+1)
0b + v

(n+1)
0b ) (5.74)

η
(n+1)
2a = η

(n)
2a − (u

(n+1)
0a − v(n+1)

2a ) (5.75)

η
(n+1)
2b = η

(n)
2b − (u

(n+1)
0b − v(n+1)

2b ) (5.76)

η
(n+1)
3a = η

(n)
3a − (−Csu

(n+1)
2 + v

(n+1)
2a ) (5.77)

η
(n+1)
3b = η

(n)
3b − (−Ctu

(n+1)
2 + v

(n+1)
2b ) (5.78)

η
(n+1)
4 = η

(n)
4 − (u

(n+1)
2 − v(n+1)

4 ) (5.79)

η
(n+1)
5 = η

(n)
5 − (−f (n+1) + v

(n+1)
4 ) (5.80)

η
(n+1)
6 = η

(n)
6 − (u

(n+1)
3 − v(n+1)

6 ) (5.81)

η
(n+1)
7 = η

(n)
7 − (−FS(n+1) + v

(n+1)
6 ). (5.82)

5.4 Methods

We implemented the method in Section 5.3.1 in Matlab using the Image Reconstruc-

tion Toolbox [71] and conducted experiments on an Ubuntu machine with a 4-core

3.3 GHz Intel CPU.

We conducted simulations on a Brainweb T1 image downsampled to dimensions Ny =

336 and Nx = 336 with an additional circular tumor placed manually in a uniform
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region of the brain, using moderate enhancement values for Ktrans and kep, 0.6 and

2.0 min−1, respectively. We chose TR = 4.6 msec and a flip angle of 10◦.

We simulated the use of 8 sensitivity coils. We constructed the measurement data

by generating physiological data for the total number of subframes, applying the

sensitivity maps, applying the Fourier transform, and then adding complex, white

Gaussian noise with an SNR of 20.

We chosen quadratic B-splines with spacing Q = 3 and Q = 7 for the temporal basis

functions, resulting in 9- and 21-tap spline filters, and we designed the boundary

conditions such that the first and last frame occured at spline peaks. We chose the

spatial and temporal regularization parameters, λs and λt, based on an exhaustive

search over the parameter space to minimize squared error with the known true

image coefficients.

5.4.1 Sampling Scheme

Because we approximated the object as stationary for M successive readouts, we

group those readouts together into a "subframe", similar to the conventional notion

of a frame in dynamic imaging. We wish to distinguish subframes, which have higher

undersampling and higher temporal resolution, from the temporal basis frames, which

coincide with temporal basis coefficients and number fewer by a factor of Q: Nt =

Nf/Q.

This subsection describes the design choices for the sampling scheme at both the

subframe level and the temporal basis frame level. For a wide rectangle temporal
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basis, it is natural to consider the temporal basis frame sampling pattern to be the

union of the sampling frames of the associated subframes. With this in mind, we

modified the Poisson-disk sampling [70] pattern to enforce constraints within each

subframe and across neighboring subframes at the temporal basis frame level.

The rectangular central region of k-space is fully sampled in each temporal basis

frame because the majority of the information and energy in k-space lies at or near

DC. We assigned the center k-space region to to each subframe randomly for an

approximate sampling rate in the central subframe of 1
Q
.

Outside this region, the sampling scheme is a variable density Poisson disk sampling

pattern, modified to enforce minimum distance constraints in each subframe as well

as across its temporal basis subframe group. One desirable result was that no k-space

location in this outer region is sampled more than once in each set of Q frames. The

overall effect is a variable density undersampling pattern, with guaranteed sampling

of central k-space every Q frames and specialized poisson disk sampling pattern at

higher frequencies. This sampling scheme is pictured in Figure 5.4.
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(a) (b)

Figure 5.4: Variable density Poisson-disk sampling pattern in ky-kz plane for Q = 3
consecutive subframes, or equivalently 1 temporal basis frame. (a) the aggregate
sampling pattern for the temporal basis frame (b) colors indicate the three subframe
sampling patterns that constitute the overall temporal basis frame sampling pattern.

5.4.2 Simulated Contrast Agent Dynamics

We simulated the effect of contrast agent on the T1-weighted images by using population-

based enhancement curves for the aorta concentration, CAorta
p (t), which in turn mod-

els the concentration in the blood plasma, Cp(t), which determines the ultimate time

series of interest, the tissue concentration, Ct(t).

These quantities are related through a transport function, h(t) and a two-compartment

model [95]. We designed the concentration in the Aorta, CAorta
p (t) based on a popu-
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lation average described by:

CAorta
p (t) = 7.5527e

−(t−0.171)2)
0.00605 + 1.003e

−(t−0.364)2

0.035912

+ 1.064
e−0.083t

1 + e−37.772(t−0.482)
. (5.83)

The concentration of contrast agent in the blood plasma near the tissue can be

described as a convolution of a transport function, h(t), and CAorta
p (t):

Cp(t) = CAorta
p (t) ∗ h(t). (5.84)

Factors such as the bolus arrival time are included in h(t). Lastly, the two-compartment

model between the blood plasma and tissue describes the forward flow and back-

wash of contrast agent through the following convolution, as described in Section

2.4.2:

Ct(t) = KtransCp(t) ∗ (e−keptu(t)). (5.85)

u(t) is the unit step function. The concentration of contrast agent in the tissue

shortens the T1 constant of the tissue according to:

1

T1(t)
=

1

T10

+ r1Ct(t) (5.86)

where r1 is the relaxivity parameter, T10 is the inherent spin-lattice constant of the

tissue, and T1(t) is the new, dynamically changing spin-lattice constant.
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Lastly, the ratio between the spin-lattice constant and TR as well as the flip angle,

θ, and echo time and T ∗2 value determine the MR signal:

m0 = ρ0 sin(θ)

(
1− E1

1− E1cos(θ)

)
e
−TE
T∗2 ; E1 , e

− Tr
T1(t) (5.87)

5.4.3 Choice of Spline Parameters

For a scan duration, tscan, of 4 minutes and TR of 4.6 msec, we have the undersampling

factor, u, ratio of subframes to temporal basis frames, Q, and the number of temporal

basis frames, Nt related as follows:

Nt =
tscan

∆t

=
tscan

Q∆s

=
tscan · u

QNxNyTR
. (5.88)

We chose the subframe to temporal basis ratio, Q, and the number of splines, Nt, to

be Q = 3 and Nt = 32. We chose this spline basis for its ability to represent the true

tumor voxel time series with good fidelity. With fixed values for Q and Nt, we shifted

the spline basis with respect to the bolus arrival to allow for optimal representation

of the tumor time series, resulting in a NRMSE of 0.06%.

For an image size of 156 × 212, this results in a subframe undersampling factor of

60, or alternatively a temporal basis frame undersampling factor of 20.
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5.4.4 Choice of Convergence Parameters

We chose the AL convergence parameters, {µi}3
i=0 to upper bound the condition

numbers of H0, H2, H3 and Hf (Equations (5.31) - (5.35)). We chose to set an

upper bound of 10 for each of these condition numbers based on [67]. The condition

number of H2 is known exactly, since we have predetermined the number of neighbors

for Cs and Ct, and the maximum eigenvalue for B′Λ′ΛB is simply the large of the two

regularization parameters squared. The diagonal S′F′FS has a maximum eigenvalue

that is NR times the maximum sum of squares value of the estimated sensitivity

maps.

Because T′P′PT ≺ T′T, we bound the maximum eigenvalue of T′P′PT with that

of T′T. After permutation, T′T is a block diagonal matrix, consisting of identical

Nt×Nt blocks which are approximately Toeplitz, except for the boundary conditions.

From [96], we bound the eigenvalues of T′T by the maximum value of the Fourier

series of the Toeplitz sequence.

5.5 Results

5.5.1 Simulation 1: Moderate Enhancement

Moderate enhancement for a lesion is characterized by rapid rise in contrast agent

concentration and a steady, slow washout, with typical values of Ktrans ≈ 0.6 min−1

and kep ≈ 2.0 min−1. We compared the estimated voxel values, contrast agent
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time series, and error in kep and Ktrans for the following methods, outlined in Table

5.1.

optimization method
N/A (non-
iterative)

variable split-
ting and AL

corner round-
ing and CG

te
m
po

ra
lb

as
is Nf subframe

rects
datasharing skinny rects

AL
Nt temporal
basis frame
rects

wide rects AL

Nt quadratic
splines

spline AL spline CG

Table 5.1: Proposed spline AL method and related methods for comparison. Methods
are classified by choice of temporal basis and optimization method.

Beyond the optimization method and temporal basis choice for each method, we

describe the methods in more detail below.

datasharing : temporal nearest neighbor assignment, followed by inverse FFT,

used to initialize all iterative methods

skinny rects AL : each of the Nf = QNt subframes interact only via temporal

regularization, frame rate of 1.99 seconds, solved with AL method in Section

5.3.1 (T = I)

wide rects AL : each of the rectangular temporal basis frames interact only via

temporal regularization, frame rate of 5.96 seconds for Q = 3 and undersam-

pling of 60, solved with AL method in Section 5.3.1 (T = I)

spline AL : each of the spline temporal basis coefficients interact through inter-
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polation of subframe values in the datafit term as well as through temporal

regularization, solved with AL method in Section 5.3.1

spline CG : spline temporal basis coefficients interact through datafit term as well

as through temporal regularization, solved with conjugate gradient with a Fair

potential spatial regularization

Figure 5.5 shows the mean time series in the dynamically changing tumor region.

We estimated the tissue concentrations, Ct(t), Fig. 5.6, from the estimated time

series via the method of moments approach in Section 2.4.2.1. We used the variable

projection approach in Section 2.4.2.3 to estimate the Ktrans and kep parameters,

listed in Table 5.2.
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Figure 5.5: Estimated time-series for undersampling factor u = 60 of moderate
contrast enhancement. The ground truth is marked in black and labeled "physio".
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Figure 5.6: Estimated contrast agent concentrations Ct(t) for undersampling fac-
tor of 60 of moderate enhancement. Time window is shortened from full 4 minute
experiment to 1 minute to emphasize bolus arrival.

physio data- spline wide skinny
(ground truth) sharing rect rect

kep 2.00 1.88 1.95 1.89 1.96
% error kep - 6.0 2.5 5.5 2.5
Ktrans 0.600 0.45 0.53 0.51 0.51
% error Ktrans - 25 11.2 15.6 15.6
compute time [sec] - 25 278 1185 1812

Table 5.2: Estimated pharmacokinetic parameters for undersampling of 60 and mod-
erate enhancement and compute time until kep andKtrans remained within 1% of final
value.

Intuitively, the wide rectangular basis is unable to accurately model the sharp rise of

the contrast agent concentration resulting in a poor estimate of both pharmacokinetic

parameters. The spline AL method is able to reach a better estimate of Ktrans
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than either the wide rectangle AL method and the skinny rectangle AL method

and performs comparably with skinny rectangle AL on kep estimation. However,

the compute time for spline AL was significantly less than either wide rectangle or

skinny rectangle AL. Compute time was defined as seconds until the iterative method

remained within 1% of its final value for both kep and Ktrans.

5.5.2 Simulation 2: Rapid Enhancement

Rapid enhancement of contrast agent concentration is typified by values of Ktrans ≈

3.0 min−1 and kep ≈ 6.0 min−1. We used the tissue concentrations, Ct(t), Fig. 5.8

to estimate the Ktrans and kep parameters, listed in Table 5.3.
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Figure 5.7: Estimated time-series for undersampling factor of 60 for rapid enhance-
ment.
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Figure 5.8: Estimated contrast agent concentrations Ct(t) for undersampling factor of
60 for rapid enhancement. Time window is shortened from full 4 minute experiment
to 1 minute to emphasize bolus arrival.

physio data- spline wide skinny
(ground truth) sharing rect rect

kep 6.00 4.96 6.01 5.28 6.02
% error kep - 17.3 0.2 12.0 0.3
Ktrans 2.00 1.32 2.03 1.80 2.00
% error Ktrans - 34.0 1.5 10.0 0.0
compute time [sec] - 26.8 330.0 219.3 505.1

Table 5.3: Estimation of pharmacokinetic parameters for undersampling rate of 60
and rapid enhancement.

For the rapid enhancement, the deficiencies of the wide rectangle basis are more
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noticeable and the datasharing method also fails to capture the full rise of the bolus

arrival. The improvement that the spline basis offers for pharmacokinetic parameter

estimation is most evident in this case, as shown in Table 5.3.

5.5.3 Experiment: Free-breathing Pediatric Data

We also applied the proposed spline model to free-breathing abdominal DCE MRI

data from a 6.5 year old male patient with an abdominal mass. The data was acquired

on GE 3T MR750 scanner with a 3D modified SPGR sequence with Butterfly motion

navigation [49] and a VD Rad sampling pattern [31], with TR of 3.7 ms, flip angle 15◦,

voxel size of 1.1×1.1×0.9 mm. The 2D slice size was 156×100 with 18 frames of 7.6

seconds each, resulting in an undersampling factor of 7.6. We estimated sensitivity

maps with [1] and we applied soft-gating [6] to the free-breathing data to reduce the

effect of motion.

Figure 5.9: VDRad sampling pattern broken in subframes of 2.5 second durations
(Q = 3). First three of 54 subframes are shown. The union of these three sampling
patterns describes the sampling pattern for one temporal basis frame. The overall
reduction factor is ≈ 22.8.
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5.5.3.1 Soft Gating for Free-Breathing Data

The soft respiratory gating applies weights to k-space data corresponding to the

respiratory cycle phase at which that datapoint was acquired. The respiratory cycle

for a given readout line, d, is measured from Butterfly navigator information and the

corresponding soft-gating weight is calculated as follows:

w =


e−α(d−τ), d > τ

1, otherwise

The threshold and exponential factor parameters were chosen to match the rule of

thumb developed in the original soft-gating study. Let dmax = the maximum S/I

motion. We set τ = 0.1dmax and α = 3
dmax

.

These weights were then used in the datafit term of the cost function by collecting

the weights for each readout line in a real, positively valued, diagonal matrix, W

and including W as follows:

Ψ(f) =
1

2
||W (y −PTFSf) ||22 + λsψ (BsCsf) + λt||BtCtf ||22 (5.89)

(5.90)

This can be viewed as a "soft" alternative to traditional respiratory gating, in which
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data outside of the desired respiratory phase is discarded or not acquired. In this

soft-gating formulation, the data acquired during other respiratory phases are still

used in the reconstruction but required adherence to the forward model is reduced,

effectively letting the regularization hold greater sway. Intuitively, this is a way to

let data outside of the chosen respiratory phase contribute to the reconstruction, but

only partially. This does not attempt to register the data or estimate the relative

shift from one respiratory phase to another.

The weighting function is depicted side-by-side with a portion of the navigator signal

to show the effect of soft-gating in Figure
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1.2 normalized navigator data
corresponding weight
soft-gating threshold

Figure 5.10: Segment of Butterfly navigator signal with normalized navigator data
(blue), corresponding weight (red), and threshold τ (green). Soft-gating weighting
function gives full weight to samples acquired in the "highest" respiratory state and
exponentially decreasing weight otherwise.
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5.5.3.2 Results

We solved Equation (5.89) using CG for one slice of the 3D dataset. Figure 5.11 shows

the resulting reconstruction when no soft-gating is applied (W = I) and Figure 5.12

shows the effect of the soft-gating weights in the cost function. Note that the soft-

gating slightly attenuates the image values and subdues the early enhancement of

the aorta in frame 5.
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Figure 5.11: Selected temporal basis frames from a spline-based reconstruction of a
2D axial slice. Temporal basis frames shown are t = 1, 5, 7, 10, 13, 18 from an Nt = 18
reconstruction, corresponding to times 7.6, 38.0, 53.1, 75.0, 98.7, 136.7 seconds in a
136.7 second experiment.
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Figure 5.12: Selected temporal basis frames from a spline-based reconstruction of a
2D axial slice, using soft-gating to reduce motion artifacts. Temporal basis frames
shown correspond to those in Figure 5.11.
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Figure 5.13: (a) Voxel enhancement estimation from different temporal basis models.
(b) Voxel chosen belonged to a small blood vessel in the abdomen, marked in red.

As expected from simulation, datasharing is unable to capture the steep rise of the

bolus arrival due to indiscriminate sharing across temporal frames. The spline basis
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model estimate exhibits a smoother quality. Further experiments with AIF measure-

ments will be needed to assess pharmacokinetic parameter estimation error.

5.5.4 Speed Performance of AL

The current implementation of Spline AL suffers from a poor implemenation of the

u3 update (Equation (5.34)), discussed in Section 5.3.1.2. Figure 5.14 compares

the performance of CG to AL for moderate enhancement, measured as error in

pharmacokinetic parameters for the rapid enhancement simulation. Note that for

comparison, the `1 norm has been changed to a corner-rounded Fair potential.
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Figure 5.14: Error in kep and Ktrans as a function of iteration for the proposed AL
method and CG.

The most problematic variable update step involves the u3 update, which has a

pentadiagonal Hessian. For ease of implementation, we solve the u3 minimization

problem with an inner conjugate gradient step, which takes approximately 94 % of

the total computation time for a given outer iteration.
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Another avenue of exploration involves investigating hybrid VS methods which re-

tain the benefit of isolating the `1 spatial regularization term, while batching the

complexities of other variable updates into an inner iterative step. This also has the

potential advantage of easily incorporating a non-Cartesian trajectory, for which F′F

is not diagonal.

5.6 Conclusion

This chapter presented a system matrix for an object with a wider, smooth temporal

basis, in particular B-splines. For this model, we presented a viable optimization

method using variable splitting and the Augmented Lagrangian formulation. Each

of the inner variable updates is exact and easy to perform.

Enforcement of an appropriate temporal spline basis improves pharmacokinetic pa-

rameter estimation compared to datasharing, and the spline-basis model reaches

better estimates more quickly than a dynamic model for short time frames relying

only on temporal regularization (skinny rectangles) and reaches better estimates than

the dynamic model for longer time frames relying only on temporal regularization

(wide rectangles).

5.7 Future Work

Future investigations could include methods for estimating the correct spline basis

offset, best spline width and spline type.
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The AL methods currently demonstrate slower convergence than the corner-rounded

CG solution. Implementation and testing of hybrid VS and CG approaches may

yield further insight. Alternatively, parallelism of variable updates may speed up the

proposed AL method.

By dividing data into frames of different durations, the existing cardinal spline basis

algorithm could be used to emulate irregular spline spacing. This could yield benefits

in estimating the sharp bolus arrival phase in the contrast time series.

Another large area for exploration is motion compensation to accomodate breath-

ing and other patient movement so that the initial assumption of smooth temporal

changes is applicable. The soft-gating approach is simple and computationally easy

but perhaps is less effective than parameterization of multiple respiratory states.

These respiratory parameterization methods are explored in Chapter 7.
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Chapter 6

Motion Compensation for Extra-Dimensional

Abdominal MRI

6.1 Introduction

This chapter proposes a novel motion compensated image reconstruction (MCIR)

method for free-breathing, abdominal DCE-MRI. We perform motion-compensation

by modeling the reconstructed dynamic image with an extra respiratory dimension

and by using motion model-informed regularization across this dimension.

Dynamic contrast-enhanced (DCE) CT and MRI provide useful information in the

assessment and optimization of radiation therapy (RT). In addition to providing

anatomical information, such as the location of tumors, DCE imaging provides con-

trast information over time, which characterizes the perfusion and pharmacokinetic

behavior of lesions and healthy tissue. The pharmacokinetic information can be used

to design an initial radiation therapy session or to assess the effect of a previous round

of radiation therapy. Unlike chapter 5, this chapter focuses on liver DCE imaging,
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which faces several challenges compared to other body sites.

Radiation-induced liver disease (RILD) is a limiting factor in radiation therapy for

cancer, but individual patients exhibit a broad range of radiation sensitivity that is

not accommodated by many existing RILD prediction models [97] [98]. Individual-

ized radiation therapy can recommend higher doses to radiation resistant patients

and lower doses for patients exhibiting higher sensitivity [99]. This variability ele-

vates the need for precise and accurate DCE imaging in the liver; however, current

methods have yet to demonstrate the reproducibility necessary for use in a clinical

setting.

Respiratory motion is one of the chief technical challenges for liver DCE MRI. Unlike

other organs such as the prostate or breast, the liver is highly affected by respiratory

motion, due to its proximity to the diaphragm. This presents a challenge for liver

DCE-MRI, because liver contrast changes occur over the course of several minutes,

which is significantly longer than most patients can breathhold. Ignoring the effect

of motion, which can typically range 20 mm in the z direction [61], results in large

motion artifacts which reduce the diagnostic value of DCE-MRI.

One common approach to remove motion artifacts is to perform respiratory gating:

the exclusion of data acquired outside of a desired respiratory state. Once can

combine gating with breath-holding so that the majority of data is acquired during

the desired respiratory state. However, this method presents a major drawback in

that important pharmacokinetic changes may occur during the undesired respiratory

phase, adversely affecting quantitative pharmacokinetic parameter estimation. An
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increasingly popular alternative is to collect and use data at all respiratory states

and allow the patient to breath freely and comfortably [100] [5].

Free-breathing approaches have several additional benefits over respiratory gating.

By using data from multiple respiratory states, free-breathing methods are more

information efficient, collecting more usable data with each MRI readout. Free-

breathing data also allows for the modeling of patient-specific respiratory motion,

which is of great interest in the radiation therapy community [101] [102].

DCE-MRI is a desirable alternative to DCE-CT due to its superior soft tissue contrast

and non-ionizing radiation. However, DCE-MRI is still underutilized in RT planning

due to its slower speed. To characterize fast contrast changes, free-breathing DCE-

MRI must solve a highly undersampled image reconstruction problem in the presence

of motion.

6.1.1 Previous Motion Compensation for Free-Breathing MRI

To move beyond breath-hold, respiratory-gated MRI, respiratory motion must be

quantified and/or reduced. Rather than use all data acquired during free-breathing,

some methods use data from other respiratory states to a limited degree. Like

respiratory-gating methods, the goal of “soft-gating” is to reconstruct a dynamic

volume at a single respiratory state, rather than multiple respiratory states. Data

collected outside of the desired respiratory state is weighted in the iterative recon-

struction method based on its closeness to the desired respiratory state [103].

Other methods seek to estimate the respiratory motion jointly with the dynamic

181



image volume. To reduce the degrees of freedom in the motion estimation problem,

most methods use simplified motion models with several parameters. Rigid motion,

including translation and rotation, has been modeled and estimated by [104]. For

motion of other organs, [105] used a one-parameter pulsation motion model. Other

joint image-motion estimation methods include [50] [51].

Other methods perform non-rigid motion estimation as a pre-processing step and ap-

ply the estimated motion in the datafit term of their iterative reconstruction method

[106].

Feng et al. introduce an additional respiratory dimension to the dynamic volume

to decouple the effects of contrast over time and respiratory motion in [107], which

directly inspired this work.

6.1.2 Extra-Dimensional Dynamic MRI

We denote an unknown 5D respiratory-contrast object as f5D(~r, t, φ), where t cor-

responds to the scan time over the experiment, indexed from 1, . . . , Nt. Nt is the

number of frames, chosen to provide a sampling rate adequate for later pharmacoki-

netic parameter estimation. More specifically, each of the Nt frames encompasses

many acquired lines of k-space, and the frame duration is much longer than repeti-

tion time, TR. Voxel index ~r = 1, . . . , Nr, and respiratory state index φ = 1, . . . , Nresp.

Cost functions for the 5D MRI problem have the form:

J(f5D) =
1

2
‖y − F5DS5Df5D‖2 +R(f5D). (6.1)

182



The data vector y ∈ CNsamp×Nc holds the noisy, under-sampled, free-breathing, multi-

coil k-space measurements from each of Nc coils, f5D is size Nr × Nt × Nresp, and

R(·) represents regularization across some combination of spatial, respiratory, and

temporal dimensions. Two challenges are defining an appropriate regularizer R(·)

and computing the minimizer of the cost function J(·) to estimate f5D.

Fourier encoding matrix F5D includes subsampling for each respiratory phase. In

this 5D case, the subsampling is far more severe than in a conventional dynamic

image reconstruction due to the addition of the fifth respiratory dimension. More

specifically,

F5D =INcNt ⊗


F̃1

. . .

F̃Nresp

 , (6.2)

for a total size of NsampNc×NrNrespNcNt. Likewise, S5D is also larger than S4D by a

factor of Nt: S5D = INrespNt⊗ S̃, because the sensitivity maps S4D apply to all motion

phases. We assume the sensitivity maps were estimated over a large enough support

to accommodate respiratory motion; We used the regularized method in [18].

Since this is such an undersampled problem, regularization is essential to improve

the conditioning of the problem. Previous works addressing 5D image reconstruction

have used finite-difference regularization across spatial, temporal, and respiratory

dimensions independently [107] [108], as follows:
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Rs(f5D) = λs

Nt∑
t=1

Nresp∑
φ=1

Nr∑
~r

∑
~r′∈Nr

ψ (f5D(~r, t, φ)− f5D(~r − ~r′, t, φ)) (6.3)

Rt(f5D) = λt

Nt∑
t=2

Nresp∑
φ=1

Nr∑
~r

ψ (f5D(~r, t, φ)− f5D(~r, t− 1, φ)) (6.4)

Rr(f5D) = λr

Nt∑
t=1

Nresp∑
φ=1

Nr∑
~r

ψ (f5D(~r, t, φ)− f5D(~r, t, φ− 1)) (6.5)

This work proposes an alternative regularizer for the respiratory dimension designed

to increase sparsity and reduce motion artifacts. Rather than penalize differences

across respiratory states, the motion model-informed regularizer penalizes the motion

compensated differences between respiratory states of f5D.

6.2 Motion Model Informed Regularization

6.2.1 Motion Modeling from Pre-Contrast Data

To develop a motion model, we first estimate a respiratory object, fr(~r, φ), that

describes the anatomical volume at each respiratory phase φ. For this recontruction

we simply pool together pre-contrast data from each respiratory state and perform

density-compensated gridding.

The set of spatial transformations that register the Nresp respiratory phases to the

reference respiratory phase constitute the motion model. We use this motion model
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to regularize post-contrast data in the 5D MRI problem. Let Wφ0,φ1 describe the

transformation of spatial coordinates from one respiratory phase, φ1, to another, φ0,

as follows:

fr(Wφ0,φ1(~r), φ1) ≈ fr(~r, φ0). (6.6)

More specifically, we calculated the transformations by pair-wise registration of

neighboring respiratory phases of f̂r. In anticipation of motion models that may

be one-to-one but not onto, thereby ignoring some voxel values, we also include the

reverse direction warp in our regularization term:

fr(Wφ1,φ0(~r), φ0) ≈ fr(~r, φ1). (6.7)

Including both directions can also improve motion model-informed regularization in

cases when fr(~r, φi) is difficult to approximate from fr(Wφi,φi−1
(~r), φi−1) but is better

approximated by its other neighboring respiratory state fr(Wφi,φi+1
(~r), φi+1).

Once precomputed, we can apply these transformations efficiently to the larger 5D

MRI problem.

This motion model can describe non-rigid motion and is more general than [105].

This motion model is designed for respiratory motion, which is largely along the S/I
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direction, as opposed to the models proposed in [109]. Unlike other patient-specific

respiratory motion models, this approach does not require additional data such as

optical surface imaging [110]. However this work is limited in only representing S/I

motion.

6.2.2 Motion Model-Informed Regularization for Dynamic Imaging

We investigated applying these warpings to the estimation of 5D object, f5D(~r, t, φi),

via motion model-informed regularization as follows:

Rmm(f5D) = λmm

Nt∑
t=1

Nr∑
~r=~0

Nresp∑
φ=1

ψ (f5D(~r, t, φ)− f5D (Wφ,φ−1(~r), t, φ− 1))

+ ψ (f5D(~r, t, φ)− f5D (Wφ,φ+1(~r), t, φ+ 1)) . (6.8)

Combining Rmm(f5D) with conventional spatial and temporal regularization in (6.3)
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and (6.4), we have:

J(f5D) =
1

2
‖y − F5DS5DP (f5D)‖2

+ λs

Nt∑
t=1

Nresp∑
φ=1

Nr∑
~r

∑
~r′∈Nr

ψs (f5D(~r, t, φ)− f5D(~r − ~r′, t, φ))

+ λt

Nt∑
t=2

Nresp∑
φ=1

Nr∑
~r

ψt (f5D(~r, t, φ)− f5D(~r, t− 1, φ))

+ λmm

Nt∑
t=1

Nr∑
~r=~0

Nresp∑
φ=1

ψm (f5D(~r, t, φ)− f5D (Wφ,φ−1(~r), t, φ− 1)) (6.9)

ˆf5D = argmin
f5D

J(f5D) (6.10)

Compared to previous 5D MRI work, (6.10) is better conditioned. A priori knowledge

of the motion model relates each of the respiratory phases to each other. In the

extreme case of perfect motion compensation, the reconstruction problem reduces to

estimation of a 4D dynamic volume, for a Nresp-fold reduction of unknowns.

The incorporation of motion compensation in the regularization rather than the

datafit term is the chief novel contribution of this work. Many previous motion com-

pensation methods use their motion models to correct the data or estimated image in

the datafit term, which may present significant drawbacks for inaccurately modeled

motion. By indirectly encouraging conformity to the motion model via regulariza-

tion, the formulation in (6.10) may be more robust to poor motion models.

Another benefit of motion compensating only in the regularization term is that this

approach may be more amenable to reliable pharmacokinetic parameter estimation
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than other methods for accommodating non-rigid motion. Pharmacokinetic param-

eter estimation depends on the amount of signal measured at specific voxels, and

irregularity of deformable fields causes concerns [111].

6.2.3 Discretized Warping

To compute motion model-informed regularization, we define a new linear operator

W̃ : CNr×Nt×Nresp 7→ CNr×Nt×Nresp , that incorporates the interpolation and coordinate

transform from each respiratory phase to a reference respiratory phase. The cost

function in (6.10) becomes:

J(f5D) =
1

2
‖y − F5DS5Df5D‖2 + ψ

L

Cs

Ct


︸ ︷︷ ︸

C̃

f5D

+ λmψm

(
CrW̃f5D

)
(6.11)

W̃f5D computes differences between respiratory states after motion compensation.

For this work, we chose the `1 norm for potential functions ψ and ψm.

6.2.4 Registration Across Respiratory States

In section 6.2.3 we define the warping W̃ in terms of a precomputed registration

between neighboring respiratory states. In this section we describe the simple, patch-

based method for non-rigid registration used in the following simulation and in vivo
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experiments.

Myriad registration methods exist for medical imaging that account for multiple

imaging modalities/contrasts or biomechanical models. In this work, we model res-

piratory motion only between neighboring respiratory states in the same dynamic

T1-weighted MRI sequence.

Because the majority of respiratory motion occurs along the S/I axis, we represent

respiratory motion as shifts along one dimension, z. For each voxel in a given res-

piratory state of fr, we examine the surrounding patch and compare it to candidate

patches in another respiratory state. Let Px,y,z denote the extraction operator for

patches centered at x, y, z. Then we choose ζ, the displacement in z from respiratory

state φ to φ− 1, via:

dφ,φ−1(x, y, z) = argmin
ζ

w(ζ)Ψ (Px,y,zfr(x, y, z, φ), Px,y,z+ζfr(x, y, z, φ− 1)) (6.12)

Ψ is a general comparison metric and w is a weighting to encourage smaller displace-

ments. We used cross-correlation in z for Ψ. We also use the minimum value achieved

by d as a metric for confidence in the patch match. We can use this confidence value

in a weighting matrix for the regularization term.

We use these measured displacements to construct linear warping operator W̃. One

limitation of this patch-based regularization method is that the resulting warping

is one-to-one but not onto. To avoid leaving any elements of f5D unregularized, we
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also construct and penalize the `1 norm of W̃r from reverse measured displacement

dφ−1,φ.

Before using this warping in iterative reconstruction, we demonstrate that CrW̃fr

is sparser than Crfr.

This method is simple to implement and apply, but it can result in unrealistic motion

models. In particular, regions of sharp upward movement neighboring regions of

sharp downward movement may represent sliding organs, but represent implausible

motion in other anatomical areas. Again, a benefit of the regularization approach

over modifying the datafit term is possible improved robustness to such motion model

errors, particularly if confidence weighting were incorporated into the regularization

term.

6.3 Simulations

To demonstrate the benefits of motion model-informed regularization, we first apply

it to simulated free-breathing DCE-MRI data. We simulate data of the abdomen

by using an adapted XCAT phantom. Originally developed for X-Ray CT, XCAT

can model respiratory motion and contrast dynamics independently.[112] [113]. We

reconstructed one coronal slice of a 3D volume to demonstrate the benefit of modeling

simple S/I motion in the regularizer.
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6.3.0.1 PINCAT anatomical phantom

To simulate MRI data, we changed organ and tissue attenuation values to mimic T1-

contrast MR images following PINCAT [114]. We added smoothly varying phase,

shown in Figure 6.3 to the magnitude-only PINCAT images. We also cropped the

image to size 100× 256 pixels to reduce computation.

Figure 6.1 shows the magnitude of the PINCAT image at the inhale respiratory state

across four selected frames. The only change across the frames is the contrast value

of the liver, seen in the bottom left corner of the image. The dynamic sequence spans

91 seconds total across 20 frames, for a temporal resolution of 4.5 seconds. Figure 6.2

shows the PINCAT image across four respiratory states at a given time in contrast

dynamics. In-plane movement of the liver and kidneys is noticeable, particularly

between the first two respiratory states. Through-plane motion is also visible among

other organs and blood vessels in the liver.
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Figure 6.1: Selected frames of PINCAT at inhale state.

We simulated k-space data by applying simulated sensitivity maps and applying 40
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Figure 6.2: Four respiratory states of PINCAT at first temporal frame.
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Figure 6.3: Smoothly-varying phase applied to each temporal frame and respiratory
state of PINCAT.

dB SNR complex white Gaussian noise. The eight simulated sensitivity coils are

arranged in two rings around the abdomen of the patient, similar to the in vivo

experiment setup, and their sensitivity profiles are shown in Figure 6.4.

6.3.1 Variable Density Cartesian Sampling

We used a 1D variable density Cartesian sampling pattern, in which the fully-sampled

readouts run in the S/I direction (akin to full kz sampling in GRASP stack-of-stars),

and 10% of k-space is sampled at each frame. The center eight readouts are sampled

in each frame to ensure good image quality. Each of these undersampled slices should
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Figure 6.4: Simulated sensitivity maps for PINCAT experiment. The even indexed
coils are located out of plane and show little in-plane variation.

be considered one coronal slice of a full 3D acquisition, in which 2D undersampling

is applied within the kx−ky plane with fully sampled readouts along z. We sampled

and reconstructed one coronal slice for simplicity.

An example of a typical sampling pattern for one frame is shown in Figure 6.5. We

assigned each of these frames to one of four respiratory states based on the Butterfly

navigator for an in vivo abdominal DCE-MRI experiment [6]. The binning scheme

for the samples is shown in Figure 6.6.
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Figure 6.5: (a) 1D variable density sampling pattern for one frame (with central 8
readouts always collected); (b) sampling total for each readout, cumulative over all
frames, showing a variable density structure.
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Figure 6.6: 1D variable density sampling pattern for one frame.

6.3.2 Motion Modeling from Patch-Based Regularization

Before performing the iterative motion model-informed reconstruction, we estimated

respiratory motion from a oracle respiratory object using the patch-based regular-

ization descirbed in Section 6.2.4. The estimated S/I motion between neighboring

respiratory states is shown in Figure 6.7.
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Figure 6.7: Motion model mapping each respiratory state to the following neighbor.
Negative values indicate pixels from the next respiratory state are moved downward,
and positive values indicate motion upwards.

We first examined the utility of this rudimentary motion model by applying it to

one frame of the true 5D object. Figure 6.8 shows each warping applied to each
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respiratory state of the frame, f5D (Wφ,φ+1(~r), t, φ+ 1).

The differences between this motion-compensated frame and the original frame,

f5D(~r, t, φ) − f5D (Wφ,φ+1(~r), t, φ+ 1) is also shown in Figure 6.8. These differences

are much sparser than the direct differences across respiratory states.
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Figure 6.8: (a) differences across respiratory states of PINCAT object; (b) differences
across respiratory states of PINCAT object after applying motion compensation, i.e.,
argument of ψ(·) in (6.8).

6.3.3 Reconstruction Results

To assess the benefit of motion model-informed regularization, we chose two error

metrics: normalized root mean squared error (NRMSE) compared to the true 5D

PINCAT phantom, and average NRMSE over the liver region compared to the true

PINCAT phantom. We solved (6.10) using the motion model-informed regularization

in (6.11) (xMMI) and compared it to the direct finite differences across respiratory

states used in XD-GRASP [107] (xXDG). We solved 6.11 using a conjugate gradient

optimization algorithm for 250 iterations. To do so, we applied corner rounding to

the `1 norm in (6.11) using the Huber function with δ = 1, compared to a maximum

image value of 290. Each method was initialized with a dynamic image, constructed

from a zero-filled IFFT) duplicated over four respiratory states.
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We enforced the same regularization parameter across the three spatial dimensions,

leaving three regularization parameters: λs, λt, and λr for each reconstruction prob-

lem. We tuned these parameters by selecting the combination from a grid search

that yielded the lowest NRMSE for each reconstruction problem. As expected, XD-

GRASP achieved lower error with stronger temporal regularization and weaker res-

piratory regularization than the proposed motion model-informed method.

Figure 6.9 shows the reconstructed 5D images at frame Nt = 1. Their respective

difference images compared to the true PINCAT phantom are in Figure 6.10. Due

to the sampling pattern shown in Figure 6.6, k-space data is available for the second

respiratory state Nresp = 2 for Nt = 1, which shows few motion artifacts. Similarly,

the first respiratory state shows low error because the following frame Nt = 2 was

sampled during the first respiratory state. The proximity to data in Figure 6.9

correlates to high image quality for a temporal-respiratory coordinate. The other

respiratory states rely more heavily on temporal and respiratory regularization to fill

in the missing data and result in higher error. Figure 6.10 shows that the motion

model-informed regularization improves error in respiratory states 3 and 4, most

noticeably near the kidneys and left side of the patient. NRMSE over the entire 5D

object for xMMI is 0.076, a 31% decrease over an NRMSE of 0.11 for xXDG.

We can also verify that the reconstructed f5D objects feature an increase in sparsity

with the proposed regularizer, compared to simple finite-differences, as shown for the

phantom in Figure 6.8. Figure 6.11 shows the differences across respiratory states

with and without warping for xMMI and xXDG.
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Figure 6.9: Selection of frame Nt = 1 for (a) xMMI with motion model-informed
regularization (b) xXDG constructed via XD-GRASP. The four modeled respiratory
states Nresp = 1, . . . , 4 are shown in lexicographic order, starting from the top left.
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Figure 6.10: Error between f5D reconstructions atNt = 1 and true PINCAT phantom
for (a)xMMI (b) xXDG. The four modeled respiratory states Nresp = 1, . . . , 4 are shown
in lexicographic order, starting from the top left.
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Figure 6.11: Differences across respiratory dimension for f5D reconstructions at Nt =
1 for (a) xMMI with warping, (b) xXDG with warping, (c) xMMI, without warping, (d)
xXDG without warping. The inclusion of warping results in sparser difference images
for both reconstructions.

Figure 6.11 also demonstrates limitations of the simple patch-based regularization

method described in Section 6.2.4. The motion model only captures in-plane motion

for this coronal slice, but the anatomical PINCAT phantom includes motion and

deformation through the coronal plane. This is visible at multiple locations in the

slice, including the bright lobes at the bottom center of the image, the portions of

blood vessels in the liver, and the left kidney. The patch-based registration method

is most effective at capturing motion of the kidneys and ribs.

To assess the usefulness of motion model-informed registration for later pharmacoki-

netic parameter estimation, we also compared the average MR contrast in the liver

over time for xMMI and xXDG. Furthermore, we also estimated the average MR con-

trast in blood vessels in the liver over time. Due to the very small size of the blood

vessels, this quantity will be more susceptible to respiratory motion artifacts. To

measure these quantities, we estimated from the PINCAT phantom a voxel mask
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Figure 6.12: Masks used at each respiratory state to measure average ROI MR
contrast.

corresponding to the liver tissue and the blood vessels in the liver, shown in Figure

6.12.

Figure 6.13 shows the effect of motion model-informed regularization on MR contrast

time series for specific anatomical areas. xMMI demonstrates a small improvement

over xXDG for the average liver contrast. This result is consistent with the finding

that most of the error reduction in xMMI compared to xXDG was in other anatomical

areas, as shown in Figure 6.10. The motion-sensitive blood vessel contrast values

show a more marked improvement for the proposed method. Because the blood vessel

contrast values are consistently higher than the background liver contrast values at

every frame in the PINCAT phantom, respiratory motion artifacts manifest as low

contrast values within the blood vessels, a result of blurred liver and blood vessel

values. xMMI mitigates some of the lowered blood vessel contrast values found in

xXDG. This is consistent with the frame shown in Figure 6.9, in which blood vessels

are more defined in respiratory states 3 and 4 for xMMI than for xXDG.

These simulations demonstrate that motion model-informed regularization can im-

prove image quality and reduce motion artifacts for 5D MRI reconstruction. To
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Figure 6.13

assess the use of motion model-informed regularization in a less controlled setting,

we turn to in vivo patient data.

6.4 Patient Data Experiments

We also applied motion model-informed regularization to in vivo data. Under an

IRB protocol, we acquired patient data on a 3T Siemens Skyra MRI. For dataset 1,

the total scan time was 299 seconds. After a short period of free-breathing golden

angle acquisition, the patient was injected with a gadolinium contrast agent for 30

seconds. In total, 2000 golden angle radial spokes across 46 Cartesian axial slices

were acquired on 16 channels, with 384 samples and a TR of 2.72 ms per readout.

Of the 16 channels, 4 were embedded in the patient table, and 12 were placed across

the chest of the patient.
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The k-space data corresponds to a volume size of 192 × 192 × 64 voxels of size

2.6 × 2.6 × 3.5 mm. Note that the acquired k-space data describes only partial

Fourier data along z.

Compared to the simulation, the patient experiments are affected by a number of

experimental factors that make motion modeling and image reconstruction more

challenging. These challenges fall into three categories: estimating accurate k-space

sampling locations, estimating sensitivity maps, and estimating the respiratory nav-

igator.

Figure 6.4 summarizes the pre-processing required for patient data reconstruction.
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6.4.1 Preprocessing

6.4.1.1 Gradient Delay

These patient experiments used a golden angle radial sampling scheme as in [107],

which has several desirable properties. The stack-of-stars sampling scheme provides

information at regular intervals, around 8 center-of-k-space measurements per sec-
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ond. The Cartesian sampling in z allows for decoupled slice-by-slice processing in

the absence of S/I motion compensation. Golden angle radial sampling also demon-

strates robustness to motion artifacts and pseudo-random angular sampling. How-

ever, radial acquisitions commonly suffer from gradient delays, causing a discrepancy

between the desired and actual sampling location in k-space.

For a radial spoke at angle φ, the ideal k-space sampling locations (using complex

plane coordinates) are:

Sφ(k) = ∆kke
iπφ, k = −Nro

2
, . . . ,

Nro

2
− 1, (6.13)

where Nro is the number of samples in each readout, and ∆k is the spacing between

each sample.

We choose to focus on estimating the discrepancy along the readout direction, rather

than on inaccuracies in the spoke angle. This choice avoids the additional hassle of

additional calibration scans, such as [115], allowing us to estimate gradient delays

from the data itself. The additional offset parameter gφ affects the true k-space

sampling locations as follows:

Sφ(k) = ∆k(k + gφ)eiπφ, k = −Nro

2
, . . . ,

Nro

2
− 1, (6.14)
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We adapted the method presented in [116] for regular radial sampling to the non-

repeating golden angle radial trajectory. This method considers two readouts in

opposite directions to be simultaneous samples of k-space, and estimates a phase

shift of the Fourier Transform of each readout. This phase shift translates into a

spatial shift in k-space.

Because the golden angle is irrational, the trajectory never repeats the same angle φ

nor its opposite, φ+π. Instead, we compare approximately opposite spokes by com-

paring each spoke with its closest opposite. This approach has several drawbacks. If

we choose to limit the spokes used for gradient delay calibration to the pre-contrast

period, then we can avoid comparing two “opposite” spokes that exist in different

phases of contrast. However, limiting the calibration to pre-contrast spokes means

selecting from a smaller pool of candidate “opposite” spokes, and a greater discrep-

ancy in the angle of the each pair of spokes. We use this method over all spokes for

each channel and for each slice in z. However, our patient data shows that there is

also a significant discrepancy in k-space not described by estimated gk.

Figure 6.14 shows sorted, selected k-space for four selected patient datasets. We

examine the square-root of the sum-of-squares across channels for raw k-space data

for the center slice. We reduce the number of spokes shown for interpretability,

selecting approximately one in four spokes across the entire scan, including before and

after contrast injection. The figure shows k-space data across the readout dimension

and across sorted spoke angle.

Bright bars indicate spokes acquired when center-slice contrast was particularly high,
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Figure 6.14: Gradient delay analysis of in vivo k-space data for four patient datasets,
datasets 1-4. Dataset 1 is on the top left, and the results of the other datasets
are not presented in this chapter. Only 25% of spokes are displayed for ease of
interpretability.
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coinciding with contrast agent bolus arrival. Variations in brightness across sorted

spokes demonstrate the mixing of pre-contrast and post-contrast data. More impor-

tantly, the center of the bright region gives valuable information about the relation-

ship between the ideal and actual location of each readout. For a simple gradient

delay, in which gφ is constant for all spoke angles φ, we expect to see a single bright

line, located gφ from sample 192. For gradient delay modeled as in (6.14), we would

expect to see a bright line that deviates as a function of the spoke angle. Instead,

we observe dual lines that vary in intensity as a function of spoke angle. The origin

of this pattern remains an open question for future work.

6.4.1.2 Navigator Estimation and Respiratory Binning

To separate k-space data based on respiratory state, we estimated the respiratory

state from the k-space data itself. This method of self-navigation contrasts with

methods that require external devices (such as respiratory belts and bellows [117])

and methods that acquire additional k-space data for measuring respiratory state

[49].

To implement self-navigation, we used the center-of-k-space as a proxy for respiratory

state. This signal correlates to respiratory state because the total amount of mag-

netization detected by a coil changes as organs move in and out of the field-of-view.

Since each coil measures a spatially-weighted amount of total magnetization, smart

choice of channel center-of-k-space signals can provide a robust navigator.

In the absence of external respiratory data, it is not possible to test self-navigation
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accuracy for patient data. Because of the scan parameter commonalities with [107],

we used the same navigator estimation method. The process performs coil clustering

on each coil center-of-k-space signal to detect which coil center-of-k-space signals

correlate to respiratory motion. Then we perform PCA on the selected center-of-

k-space signals and hand select the PCA element that best represents respiratory

motion. Finally, we perform envelope removal to eliminate amplitude changes due

to contrast injection.

We quantize respiratory navigator values into the number of respiratory states mod-

eled in f5D. Assuming that the navigator estimation process preserves the rela-

tionship between center-of-k-space data and anatomical respiratory position, we di-

vide the navigator signal using amplitude thresholds. The two extreme respiratory

states, inhalation and exhalation, are not affected by hysteresis. However, we use

the Hilbert transform to differentiate between the direction of transitional respira-

tory states (those that exist between inhale and exhale). The results of this binning

method are overlaid on the estimated navigator in Figure 6.15.

For comparison, we also implemented navigator estimation methods based on [118]

[119]. Those results are not shown in this work due to their subjective inferior

performance on our patient datasets.

6.4.1.3 Non-Iterative Initialization

After estimating the angle-dependent gradient delay, we use a variant of [34] to

create respiratory-binned datasharing volumes. This non-iterative reconstruction
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method uses the outer segments of spokes from neighboring frames to satisfy Nyquist

sampling requirements. Each resulting frame consists of low frequency k-space data

with high temporal resolution and high frequency k-space data with low temporal

resolution. Further details are in Section 2.2.6.

We also use this initial image to define a support mask for the image. As motivated in

Chapter 3, defining an anatomical mask reduces the number of unknowns, improving

the conditioning of (6.11). This masking also yields a practical benefit of reducing

memory requirements for representing f5D.

6.4.1.4 Sensitivity Map Estimation

We estimated 3D sensitivity maps from datasharing volumes using [18] for each axial

slice and performed low-pass filtering along z. In future work, the 3D sensitivity maps

could be estimated directly using a 3D implementation of [18].

To allieviate memory costs associated with the data, we performed coil compression

to reduce 16 physical channels to 8 virtual channels [120]. We estimated sensitivity

maps from virtual coil images compared to a simulated bodycoil image constructed

from full 16-channel data.

The middle three planes for the first four virtual coils are shown in Figure 6.16.

208



6.4.2 Motion Modeling from Patch-Based Registration

We create a 4D respiratorily-binned volume fr(~r, φ) for dataset 1 by binning each

datapoint based on the estimated navigator. Each respiratorily-binned volume was

reconstructed using density-compensated gridding for each set of coil data. Due to

the high spatial resolution, we simply combine the coil encoded images using the

square root of the sum of squares. Sagittal and coronal slices of the respiratory

volume are shown in Figure 6.17. The region with the most visible changes across

respiratory states is the diaphragm, indicated with a red arrow.

Applying the patch-based registration method in Section 6.2.4 to this respiratory

volume yields three-dimensional motion maps linking each respiratory state to each

of its two neighbors. As shown in Figure 6.18, these motion models seem inadequate

in describing the motion between respiratory states. This may be due to model

mismatch arising from estimating PINCAT motion (that occurs in three dimensions)

with a motion model restricted to one dimension. The patch-based registration

method is also prone to finding false positives in areas with low signal. Unlike the

simulation, there are no large regions with similar displacement values, representing

upward or downward respiratory motion.

6.4.3 Results

Using CG with corner rounding for 20 iterations, we computed the 5D MRI recon-

structions for xMMI and xXDG across 24 temporal frames, for a temporal resolution
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of 10.4 seconds/frame. Figure 6.19 shows sagittal slices at a selected temporal frame

with high amounts of contrast agent. The corresponding coronal orientation is shown

in Figure 6.20.

Compared to the respiratory object shown in Figure 6.17, these 5D reconstructions

show poorer spatial resolution. This is likely due to the 24-fold sparsity increase.

We also compared the estimated images with the Siemens DICOM dynamic images.

Siemens creates these images using radial datasharing for 96 temporal frames, with

each frame consisting of 21 spokes of data in the center of k-space and 89 spokes of

data in the outermost regions. As a result, these frames have an ostensible tempo-

ral resolution of 2.6 seconds, but include information spanning across 11.1 seconds.

These DICOM images are also processed for geometric distortion correction.

Respiratory motion near the diaphragm is distinguishable in both xXDG and xMMI,

especially when compared to the Siemens DICOM image. To better resolve the

differences between the two 5D MRI reconstructions, Figure 6.21 shows a profile

that crosses the diaphragm, a region we expect to be highly affected by respiratory

motion. The profile is shown overlaid onto sagittal and coronal slices of xMMI.

To see the effects of motion model-informed on the diaphragm profile, 6.22 shows

plots of the average diaphragm profile across all temporal frames for respiratory state

3, which does not demonstrate significant differences between xXDG and xMMI, and

respiratory state 4, which shows a narrower low-contrast gap between the heart and

liver.

210



0 20 40 60 80 100

2

4

6

8

10

12

14
M

R
 c

o
n

tr
a

s
t 

v
a

lu
e

10
-6

interpolated diaphragm profile

for resp state 3

x
MMI

x
XDG

(a)
0 20 40 60 80 100

2

4

6

8

10

12

14

M
R

 c
o

n
tr

a
s
t 

v
a

lu
e

10
-6

interpolated diaphragm profile

for resp state 4

x
MMI

x
XDG

(b)

Figure 6.22: Comparison of diaphragm profiles for xXDG and xMMI at respiratory
states 3 and 4, averaged across all temporal frames. The fourth respiratory state
demonstrated the largest differences between xXDG and xMMI.
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Figure 6.23: Axial slice comparisons of 5D xMMI, xXDG, and Siemens DICOM.

A comparison of xXDG, xMMI and the Siemens DICOM image in the axial orientation,

shown in Figure 6.23 reveals that both iterative reconstruction methods seem to

emphasize information from the body coil over the information from the spine matrix

coils embedded in the patient table. Both 5D MRI reconstructions show the dome of

the liver moving through the plane across motion states, a distinction not available

in the Siemens DICOM image.
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6.5 Discussion

The results of the PINCAT experiments can be extrapolated to a 3D simulation and

more sophisticated motion models that allow for multi-dimensional displacement.

We expect simulations on digital phantoms with only in-plane motion to show better

performance due to improved accuracy of the motion model.

Compared to the PINCAT simulations, in vivo patient experiments yielded am-

biguous results. Several challenges exist in applying this method to patient data,

including model mismatch in k-space sampling and respiratory binning. Due to im-

age quality concerns for dataset 1, we examined the following components of our

experiments for sources of error: estimated gradient delay, estimating 3D sensitivity

maps from 2D axial sensitivity maps, spatial masking, self-navigation estimation,

respiratory binning approaches, coil whitening, and coil compression with and with-

out alignment across z. Further work is required to identify problematic components

and produce diagnostic quality 5D MRI images.

This chapter presents in vivo data for only one dataset, because patient datasets

displayed a large variation in respiratory models, estimated gradient delay, and ul-

timately quality of image reconstruction results. Many pre-processing steps require

hand-tuning to produce favorable results, which is an obstacle to large-scale testing

of motion model-informed regularization for multiple patient datasets.

The proposed motion model-informed regularization is agnostic to the registration

method used to construct the motion model. We expect that more comprehensive
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motion models that account for through-plane motion, realistic anatomical motion,

and sub-pixel registration would yield further benefits. Because we model the motion

as a pre-processing step, the registration only needs to be performed once, as opposed

to joint motion estimation methods that require repeated motion modeling during

the iterative optimization.

This chapter uses a standard optimization method, conjugate gradient (CG), to solve

(6.11), but other optimization methods may significantly reduce computation time.

The binary property of warping matrix W̃ may be exploitable for faster convergence.

Various variable splitting strategies for this problem are proposed in Section 7.2,

however, we did not implement these due to computational constraints.

6.5.1 Computational Considerations

The choice to represent the unknown object in five dimensions as f5D(~r, t, φ) has many

benefits for modeling but comes with many implementation drawbacks. The large

object size and system matrices require more system memory and long computation

times. Depending on the amount of memory available, this may preclude memory-

intensive iterative algorithms, such as variable splitting.

Cost function (6.10) includes many opportunities for parallelized computation. The

system matrices F5D,S5D can be represented as kronecker products of smaller oper-
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ators as follows:

F5D = INzNc ⊗ Ft,φ (6.15)

Ft,φ : CNx×Ny 7→ CNro×Nspokes(t,φ) (6.16)

S5D = INtNresp ⊗ S (6.17)

S : CNx×Ny×Nz 7→ CNx×Ny×Nz×Nc (6.18)

To exploit these repeated operations, we parallelize the F5D,S5D operations over

NzNc and NtNresp, respectively. Unfortunately, the different dimensions of paral-

lelization are not amenable to a jointly parallelized operator. We use Matlab’s built-

in parfor routine because each parallelized job requires much more compute time

than the overhead in starting and managing a parallel pool. Future implementa-

tions could benefit from a lower-level parallelization of F5D and S5D. A drawback

of parfor is that data is copied by value to each worker, effectively doubling the

memory footprint of the k-space data, sensitivity maps, and 5D object.

A typical patient dataset consisting of 2800 spokes, 380 readouts per spoke, 20 chan-

nels, and 58 slices in complex single-precision occupies 18.4 GB of memory. For

Nt = 80 and Nresp = 2, f5D requires 5.1 GB. For only five temporal frames and two

respiratory states, we need 326 MB.
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6.6 Conclusion

Preliminary work on motion model-informed regularization for simulated 5D MRI re-

construction demonstrates that even rudimentary motion modeling yields noticeable

differences in image quality. Patient data experiments demonstrate some differences

in reconstructed images, but further work is needed to clarify the image quality of 5D

MRI reconstructions with and without motion model-informed regularization. Chap-

ter 7 describes future work based on motion model-informed regularization.
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Figure 6.15: (a) respiratory navigator signal for the entire scan, binned into 4 respi-
ratory states; (b) 60 second excerpt of (a); (c) Hilbert transform of navigator signal,
used for differentiating the transition from inhale to exhale from the reverse.
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Figure 6.16: First four of eight virtual coils used for image reconstruction.
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Figure 6.17: Respiratory volume fr(~r, φ), with 4 respiratory phases arranged lexico-
graphically.
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Figure 6.18: Motion model relating respiratory state 3 to respiratory state 2. This
volume of displacements was calculated from patch-based registration as described
in Section 6.2.4.
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Figure 6.19: (a, b) Sagittal slices for four respiratory states at temporal frame 7 of
24, corresponding to 73 seconds into the scan; (c) corresponding Siemens DICOM
slice.
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Figure 6.20: (a, b) Coronal slices for four respiratory states at temporal frame 7 of
24, corresponding to 73 seconds into the scan; (c) corresponding Siemens DICOM
slice.
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Figure 6.21: Selected profile crossing diaphragm, displayed on frame 13 of xMMI.
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Chapter 7

Conclusions and Future Work

7.1 Summary

This thesis presents a variety of MR image reconstruction models and algorithms.

Chapters 4 - 6 present methods that focus on or allow for reconstructing accurate dy-

namics, a key goal in DCE-MRI. Models presented in Chapters 3 - 6 share a common

theme: model-based image reconstruction methods should reflect known anatomical

constraints and behavior. AL-P2-mask in Chapter 3 incorporates known anatomi-

cal support, AL-tridiag in Chapter 4 does not enforce spurious periodic boundary

conditions across space or time, spline temporal bases in Chapter 5 model smooth

contrast changes in low motion DCE-MRI, and motion model-informed regulariza-

tion in Chapter 6 accounts for modeled motion in 5D MRI. Altogether, in this body

of work, we seek to realize ultimate goal of improving free-breathing DCE-MRI.

In addition to presenting improved models for MR image reconstruction, this thesis

also presents efficient algorithms for minimizing the resulting cost functions, with
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the goal of reducing the computational burden of iterative reconstruction. The algo-

rithms in this thesis rely on variable splitting and alternating minimization to decou-

ple the optimization problem into sub-problems with exploitable Hessian structures.

Chapters 4 and 5 also present parallelizable algorithms that satisfy equivalence with

ADMM and thus are guaranteed to convergence to a minimizer.

The proposed variable splitting method AL-P2-mask demonstrates faster conver-

gence compared to AL-P2 and similar variable splitting methods for in vivo data.

AL-tridiag and its convergent and parallelizable variants demonstrate comparable

convergence speed and improved image quality to AL-P2 for simulated and in vivo

MR data and lower boundary errors for inpainting applications. Spline temporal ba-

sis modeling for DCE-MRI lowered error for pharmacokinetic parameter estimation

for simulated DCE-MRI with a low compute time, compared to conventional rectan-

gular temporal bases. Lastly, we show motion model-informed regularization results

in some reduction of motion artifacts for PINCAT simulations, even with rudimen-

tary motion modeling. We believe that improved motion models can amplify the

benefits of motion model-informed regularization for 5D MRI.
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7.2 Improved motion model-informed 5D MRI Reconstruc-

tion

7.2.1 Variable Splitting Methods for Motion-Informed Regularization

Here we outline a variable splitting method for efficient optimization of (6.10) incor-

porating Rmm as well as spatial and temporal finite differences:

J(f5D) =
1

2
‖y − F5DS5Df5D‖2 + λsRs(f5D) + λtRt(f5D) + λmRmm(f5D) (7.1)

J(f5D) =
1

2
‖y − F5DS5DP (f5D)‖2

+ λs

Nt∑
t=1

Nresp∑
φ=1

Nr∑
~r

∑
~r′∈Nr

ψs (f5D(~r, t, φ)− f5D(~r − ~r′, t, φ))

+ λt

Nt∑
t=2

Nresp∑
φ=1

Nr∑
~r

ψt (f5D(~r, t, φ)− f5D(~r, t− 1, φ))

+ λmm

Nt∑
t=1

Nr∑
~r=~0

Nresp∑
φ=1

ψm (f5D(~r, t, φ)− f5D (Wφ,φ−1(~r), t, φ− 1)) (7.2)
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J(f5D) =
1

2
‖y − F5DS5Df5D‖2 + ψ

L

Cs

Ct


︸ ︷︷ ︸

C̃

f5D

+ λmψm

(
CrW̃f5D

)
(7.3)

L = diag{λs ⊗ INrNtNresp|N∇|, λt ⊗ INr(Nt−1)Nresp} (7.4)

ψ(x) = ψs (x(1 : NrNtNresp|Nr|))

+ ψt (x(NrNtNresp|Nr|+ 1 : NrNtNresp|Nr|+Nr(Nt − 1)Nresp)) (7.5)

Here we introduce a new linear operator W̃ : CNr×Nt×Nresp 7→ CNr×Nt×Nresp , that in-

corporates the interpolation and coordinate transform from each respiratory phase to

a reference respiratory phase. Essentially, W̃f5D is the pharmacokinetic-respiratory

object with all respiratory phases converted to φ = 1 via the precomputed motion

model. L is a diagonal matrix for conveniently applying the two distinct regular-

ization parameters, λs and λt, and ψ(x) is a notationally convenient combination of

potential functions ψs and ψt, which operate on different portions of the input.

One variable splitting scheme for this problem is outlined as follows:

J(f5D, u, v, w) =
1

2
‖y − F5DS5Dw‖2 + ψ (u) + λmψm (v) (7.6)

s.t. u = LC̃f5D; v = CrW̃ (f5D) ; w = f5D. (7.7)

With the above choice of u and v, we have isolated the arguments of the regularization
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terms, facilitating simple updates. The third split for w isolates the S′5DF′5DF5DS5D

Hessian from W̃ C′rCrW̃.

The Augmented Lagrangian function is

L(f5D, u, v, w) =
1

2
‖y − F5DS5Dw‖2 + ψ (u) + λmψ (v) +

µu
2

∥∥∥u− LC̃f5D − ηu
∥∥∥2

+
µv
2

∥∥∥v −CrW̃f5D − ηv
∥∥∥2

+
µw
2
‖w − f5D − ηw‖2 . (7.8)

Applying alternating minimization, we arrive at the following variable updates:

f
(n+1)
5D = H−1

x

(
µuC̃

′L′ (u− ηu) + µvW̃
′C′r (v − ηv) + µw (w − ηw)

)
(7.9)

Hx = µuC̃
′L2C̃ + µvW̃

′C′rCrW̃ (7.10)

u(n+1) = shrink
(
µu,LC̃f

(n)
5D + η(n)

u

)
(7.11)

v(n+1) = shrink

(
µv
λm

,CrW̃f
(n)
5D + η(n)

v

)
(7.12)

w(n+1) = H−1
w

(
S′5DF′5Dy + µw(f

(n)
5D + η(n)

w )
)

(7.13)

Hw = S′5DF′5DF5DS5D + µwINrNtNresp (7.14)

The updates for f5D and w could be computed with PCG, specifically with circulant

preconditioners. The behavior of W̃ could be approximated as a permutation matrix,

whose orthogonality would reduce Hx to a circulant Hessian. In reality, W̃ is a
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sparse binary matrix, in the case of integer-pixel registration, or a sparse matrix

with normalized, compact rows for non-integer pixel registration.

7.2.2 Variations to 5D MRI Problem

The following variations of the 5D MRI cost function, detailed in Sections 7.2.2.1 -

7.2.2.4, may improve image quality and warrant investigation.

7.2.2.1 Soft-gated datafit

Using a soft-gating function in the datafit allows measurement data to contribute

to more than one respiratory phase, similar to the spline temporal interpolation in

Chapter 5. For a single respiratory phase (i.e., gated reconstruction), the following

cost function has been shown to improve image quality [6]:

Jsoft(f5D) =

Nresp∑
φ=1

1

2
‖Wφ(y − F5DS5Df5D)‖2 +R(f5D). (7.15)

Wφ(t) =


1, g(t) = φ

e−α(|g(t)−φ|−τ), |g(t)− φ| ≤ τ

0, |g(t)− φ| > τ

(7.16)

Data within a threshold, τ , of a given respiratory phase contributes to the datafit

term with an influence factor of α. A smaller α allows neighboring respiratory phases

to have greater influence, and as α→∞, we approach the hard-gating, i.e., binning,
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described in (6.10). This soft-gating idea could be combined with finer temporal

resolution for manifold-style regularization [121].

7.2.2.2 Bolus-Sensitive Temporal Regularization

Another adaptation of temporal regularization that may better accomodate sharp

changes in contrast is bolus-sensitive regularization:

Rbolus(f5D) =

Nresp∑
φ=1

Nr∑
~r

Nt∑
t=2

βtψt (f5D(~r, t, φ)− f5D(~r, t− 1, φ)) . (7.17)

βt is a weight that penalizes temporal varations during slowly-varying pre-contrast

and washout frames more heavily than those near aortic and hepatic bolus arrival,

when contrast changes are most dramatic. One can design βt from the raw navigator

signal, which describes the total magnetization present in the volume. Sharp changes

in total magnetization mark the two bolus arrivals.

7.2.2.3 Translation Motion in System Model

The forward model could be expanded to include a simple estimate of the S/I respi-

ratory motion. This simple addition to the system model might describe a significant

portion of respiratory movement and reduce model mismatch, yielding a more accu-

rate estimate for f5D. The new datafit term would be
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1

2
‖y −DF5DS5Df5D‖2 . (7.18)

D is a diagonal matrix that accounts for z-translation in the Fourier domain by

mapping all respiratory phases to a reference phase. By restricting datafit motion

modelling to rigid, translational motion, D is diagonal and invertible. The transla-

tional shift of the respiratory phases could be estimated from coil-specific navigator

data to better describe local motion.

7.2.2.4 Spatially Varying Temporal Regularization

An adaptation of spatial regularization that may better accomodate sharp contrast

changes in certain regions is spatially varying temporal regularization:

R(f5D) =
Nt∑
t=2

Nresp∑
φ=1

Nr∑
~r

λ(~r)|f5D(~r, t, φ)− f5D(~r, t− 1, φ)|. (7.19)

= ‖LCtf5D‖1 , L , diag{λ(~r)} ⊗ INt (7.20)

From the initial datasharing estimates, one could design a set of spatially-varying

weights for temporal regularization. Voxels with little temporal variation in the

initial datasharing estimate (e.g., voxels of air, bone) would have higher weights

than voxels with high temporal variation.
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7.2.3 Memory-Efficient Reconstruction Algorithms

The variable splitting approaches for 5D MRI in Section 7.2.1 may not be practical

depending on hardware limitations, due to large memory requirements in using aux-

iliary variables related to the already large 5D MRI object. One possible solution is

to use distributed optimization as described in [122] to limit local memory demand.

Another approach to alleviate high memory requirements would be to use online

image reconstruction methods, such as [123].

7.3 Regularized Indirect Pharmacokinetic Parameter Estima-

tion
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Figure 7.1: Pharmacokinetic parameter pipeline with improved pharmacokinetic pa-
rameter estimation from 5D dynamic images.

The ultimate goal of this research direction is to improve upon conventional pharma-

cokinetic parameter estimation from reconstructed dynamic images, the final stage

in the pipeline outlined in Figure 7.1. One could use the estimated values of 5D

MRI, ˆf5D, to estimate regularized pharmacokinetic maps.
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Consider indirect estimation of a pharmacokinetic map, one for each respiratory

phase. Equivalently, one could consider Nresp separate reconstruction problems us-

ing gated data. By considering one respiratory phase (e.g., inspiration) at a time,

one could examine the usefulness of pharmacokinetic parameter regularization un-

encumbered by the effects of respiratory motion.

Let the unknown pharmacokinetic maps for respiratory phase φ be xPK,φ(~r, κ) where

κ = 1, . . . , 5 for liver pharmacokinetic parameters [k1a, k1p, k2, τa, τp], and φ is the res-

piratory phase index. This model allows for regularization across pharmacokinetic

parameters, as well as regularization within a given pharmacokinetic parameter in-

dex.

Since this approach estimates pharmacokinetic parameter values from dynamic im-

ages f̂5D, one could use those input dynamic images to manually segment the liver,

and perform this reconstruction over the liver mask for Nmask voxels. Let the non-

linear relationship between the pharmacokinetic parameters and the resulting time

series for each voxel be represented by the operator P : RNrNPK 7→ CNrNt .

xPK,φ(~r, κ)
∈RNrNPK

liver PK CL(~r, t)
∈RNrNt

MR
physics

S(~r, t)
∈RNrNt

Ca(t), Cp(t)

Figure 7.2: Block diagram of operator P . Note that aortal and portal vein inputs
Ca(t) and Cp(t) are pre-computed.

For the liver PK step in Figure 7.2, one could apply the dual-input, single-compartment
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model for each voxel, as in Equation (2.56), restated here:

CL(~r, t) =

∫ t

0

[k1a(~r)Ca(~r, t
′ − τa) + k1p(~r)Cp(~r, t

′ − τp)] e−k2(~r,t−t′)dt′.

The MR physics block of Figure 7.2 computes the dynamic image S(t) through

the SPGR signal equation, previously discussed in Equations (2.37) and (2.38), and

restated here:

1

T1(~r, t)
=

1

T10(~r)
+ r1Ct(t)(~r)

m0(~r) = ρ0(~r) sin (θ(~r))

(
1− E1(~r)

1− E1(~r) cos (θ(~r))

)
e
− TE
T∗2 (~r) ; E1(~r) = e

− TR
T1(~r,t) .

Values TR and θ are known. The remaining unknown product of proton density, ρ0(~r),

and the exponential term, e
− TE
T∗2 (~r) , can be treated as an additional pharmacokinetic

parameter, to be estimated along with k1a, k1p, k2, τa, and τp, extending NPK to six:

κ6(~r) = ρ0(~r)e
− TE
T∗2 (~r) .

Then the cost function minimize is

J(xPK,φ) =
1

2

∥∥∥f̂5D(·, ·, φ)− P (xPK,φ;Ca(t), Cp(t))
∥∥∥2

+R(xPK,φ). (7.21)

The next section discusses possible regularizers.
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7.3.1 Pharmacokinetic Parameter Regularization

The general regularization term R(xPK,φ) in (7.21) can include penalties and con-

straints such as:

• independent spatial regularization for each pharmacokinetic parameter

Rs(xPK,φ) = λs

Npk∑
κ=1

Nmask∑
~r

∑
~r′∈Nr

ψ (xPK,φ(~r, κ)− xPK,φ(~r − ~r′, κ)) (7.22)

• Total Variation across pharmacokinetic parameters

RPKTV(xPK,φ) = λPKTV

Nmask∑
~r

√√√√Npk∑
κ=1

(∑
~r′∈Nr xPK,φ(~r, κ)− xPK,φ(~r − ~r′, κ)

p(κ)

)2

(7.23)

where p(κ) is some normalization for a given pharmacokinetic parameter. We

expect pharmacokinetic parameter spatial boundaries to coincide, such as along

tumor boundaries, and at organ/tissue interfaces [124].

• nonnegativity of all pharmacokinetic parameters

Rneg(xPK,φ) =

Npk∑
κ=1

Nmask∑
~r

h(xPK,φ(~r, κ)) (7.24)

h(x) =


∞, x < 0

0, x ≥ 0

(7.25)
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• indirect enforcement of pharmacokinetic informed inequality constraints (i.e.,

membership in refined convex set)

Rτ (xPK,φ) =

Nmask∑
~r

h(xPK,φ(~r, 5)− xPK,φ(~r, 4)) effectively, τp > τa (7.26)

Rk(xPK,φ) =

Nmask∑
~r

h(xPK,φ(~r, 2)− xPK,φ(~r, 1)) effectively, k1p > k1a (7.27)

The portal vein input always occurs after the aortic input, and studies have

shown that k1p is usually 70 percent of k1p + k1a [46].

Equation (7.23) describes a novel use of vectorial TV to encourage joint sparsity for

pharmacokinetic parameter estimation. Vectorial TV has been used for color image

denoising [125] and image deblurring [126]. Though joint sparsity constraints and

regularization have been used for DCE image reconstruction [127], it has yet to be

applied to pharmacokinetic parameter estimation.

One could also explore constraining the pharmacokinetic parameter values to lie

within intervals determined from literature (i.e., applying box constraints):

R(xPK,φ) =

Npk∑
κ=1

Nmask∑
~r

hκ(xPK,φ) (7.28)

hκ(x) =


∞, x 6∈ [aκ, bκ]

0, x ∈ [aκ, bκ]

. (7.29)
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7.3.2 Minimization Algorithms and Implementation Details

7.3.2.1 Initialization for Iterative Methods

One could compute the initial estimate of xPK,φ from ˆf5D via conventional variable

projection for each voxel and each respiratory state, without regularization as fol-

lows:

xPK,φ
(0) = argmin

1

2

∥∥∥f̂5D(·, ·, φ)− P (xPK,φ;Ca(t), Cp(t))
∥∥∥2

. (7.30)

This can be computed as shown in Section 2.4.3.

7.3.2.2 Opportunities for Parallelization

When spatial regularization is included (e.g., (7.22)), one could use variable splitting

as follows to create a spatially separable sub-problem:
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J(xPK,φ) =
1

2

∥∥∥f̂5D(·, ·, φ)− P (xPK,φ)
∥∥∥2

+ λs

Npk∑
κ=1

Nmask∑
~r

∑
~r′∈Nr

ψ (xPK,φ(~r, κ)− xPK,φ(~r − ~r′, κ))

(7.31)

=
1

2

∥∥∥f̂5D(·, ·, φ)− P (xPK,φ)
∥∥∥2

+ λsψ(CsxPK,φ) (7.32)

J(xPK,φ, u) =
1

2

∥∥∥f̂5D(·, ·, φ)− P (xPK,φ)
∥∥∥2

+ λsψ(Csu) (7.33)

s.t. u = xPK,φ. (7.34)

This problem has the following Augmented Lagrangian:

L(xPK,φ, u;µ) =
1

2

∥∥∥f̂5D(·, ·, φ)− P (xPK,φ)
∥∥∥2

+ λsψ(Csu) +
µ

2
‖u− xPK,φ − η‖2 .

(7.35)

Alternating minimization yields a spatially separable update for xPK,φ. Defining

κφ(~r) , xPK,φ(~r, ·), the update is:
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κ̂φ
(n+1) = argmin

κφ∈RNPK

1

2

∥∥∥f̂5D(~r, ·, φ)− P
(
κ

(n)
φ

)∥∥∥2

+
µ

2

∥∥∥u(~r, ·)(n) − κ(n)
φ − η(~r, ·)(n)

∥∥∥2

= argmin
κφ

1

2

∥∥∥∥∥∥∥
 f5D(~r, ·, φ)

u(~r, ·)(n) − η(~r, ·)(n)

− P̃ (κ(n)
φ

)∥∥∥∥∥∥∥
2

for ~r = 1, . . . , Nr

(7.36)

with P̃ (x) =

P (x)

x

 . (7.37)

This inner problem can be rewritten as a nonlinear least-squares problem, making it

a candidate for variable projection methods. Since this inner update is now spatially

separable, one could perform the minimization over each voxel in parallel.

The update for auxiliary variable u is a simple denoising problem:

argmin
u

µ

2
‖u− xPK,φ − η‖2 + λψ(Csu), (7.38)

which in turn, one could solve iteratively for a differentiable ψ as follows:
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u(m+1) =

(
I +

λ

µ
C′sD(u(m))Cs

)−1

(xPK,φ + η). (7.39)

D(u) , diag{ωψ([Csu]k)} (7.40)

ωψ(t) ,
ψ̇(t)

t
(7.41)

Using wavelets instead of finite differences in the regularizer would enable a synthesis

formulation and a non-iterative u-update. For non-differentiable ψ, efficient GPU

algorithms [128] and variable splitting approaches [78] can be used.

7.3.2.3 ADMM with a Nonlinear Constraint

Alternatively, Equation (7.21) can be restated as minimization of a convex function

with a nonlinear constraint, as follows:

J(xPK,φ, u) =
1

2

∥∥∥f̂5D(·, ·, φ)− u
∥∥∥2

+R(xPK,φ) s.t. u = P (xPK,φ;Ca(t), Cp(t))

(7.42)

Then ADMM can be applied by using Taylor linearizations of P (·) in each of the

updates for xPK,φ and u, as described in [129]. In this approach, the u-update would

also be amenable to voxel-wise parallelization.
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7.4 Indirect Pharmacokinetic-Respiratory map Estimation

Here we introduce a related but philosophically distinct estimation problem. Rather

than estimating Nresp distinct respiratory maps separately (i.e., {xPK,φ}φ=1,...,Nresp),

one could jointly estimate all of the respiratory phases of the pharmacokinetic maps.

This approach allows us to exploit redundant information across respiratory phases

and assess the benefit of applying respiratory regularizers for estimation of phar-

macokinetic maps. The new pharmacokinetic-respiratory map is related to xPK,φ as

follows:

xPK(~r, κ, φ) ,


xPK,1(~r, κ)

...

xPK,Nresp(~r, κ)

 , (7.43)

which one could estimate with the following cost function:

J(xPK) =
1

2

∥∥∥ ˆf5D − P (xPK)
∥∥∥2

+R(xPK). (7.44)

The operator Pr : RNrNPKNresp 7→ CNrNtNresp now performs liver pharmacokinetic

modeling and MR physics independently for each of the respiratory phases, φ =

1, . . . , Nresp. This is effectively applying P (·) to each respiratory phase: Pr =

INresp ⊗ P . This formulation allows for all of the regularizers described in Section
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7.3, as well as motion model-informed respiratory regularization described in Sec-

tion 6.2.2. We expect that exploiting redundancy across the respiratory dimension

could improve the accuracy of the pharmacokinetic parameter estimates, and that

this method could outperform both gated indirect pharmacokinetic parameter es-

timation of Section 7.3 as well as conventional indirect pharmacokinetic parameter

estimation methods.

One could compare the three methods in simulation, using a digital respiratory liver

pharmacokinetic phantom constructed from XCAT as well as from in vivo free-

breathing patient data. Simulation experiments could be assessed based on phar-

macokinetic parameter error, as well as computational speed to reach certain levels

of error. Patient data results could be assessed qualitatively based on pharmacoki-

netic map quality and presence of motion artifacts.

7.5 Pharmacokinetic-Respiratory Map Estimation

Exploration of motion model-informed regularization in the 5D MRI problem in

Chapter 6 and pharmacokinetic parameter regularization methods in Section 7.3

pave the way for a novel object model, a pharmacokinetic -respiratory map (PKRM)

model. This proposed method builds upon the previous proposed algorithms in

Sections 6.2.2 and 7.3 to directly estimate pharmacokinetic parameters from k-space

data.

Let the unknown object be xPKR(~r, κ, φ) where κ describes a set of pharmacokinetic

parameters for each Nr voxel in each of φ = 1, . . . , Nresp respiratory states. Like
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xPK, this model allows for regularization across respiratory phases as well as across

pharmacokinetic parameters.

Compared to previous direct pharmacokinetic estimation methods [58] [59], this work

is differentiated by parameterization of respiration. By expanding the unknown

object along the respiratory dimension, we seek to detangle the data belonging to

different respiratory states while allowing for some regularizing influence between

respiratory states. This method is also distinct from the method proposed above in

Section 7.4 by focusing on direct estimation from raw k-space data.

This concept is analogous to 5D MRI methods, such as XD-GRASP [56], with

the time dimension replaced by a pharmacokinetic dimension. This could permit

solving for fewer unknowns in a potentially better conditioned problem, because

Npk � Nf , as well as leveraging the benefits of direct pharmacokinetic parameter

estimation.

The direct estimation paradigm replaces the conventional two-stage problem, al-

lowing one to encourage desirable pharmacokinetic parameter characteristics in the

fitting of the data to dynamic images. Overall, the method may also be more efficient

and parsimonious than the conventional two-stage method. One could investigate

whether the direct estimation permits better liver pharmacokinetic quantification.

Previous studies have shown qualitative benefits of direct pharmacokinetic parame-

ter estimation for in vivo brain and prostate DCE studies [58] [59].

Let P (·) represent the extrapolation of pharmacokinetic parameters into time series,

acting on each respiratory state. The cost function one could use to estimate the
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pharmacokinetic-respiratory map is:

x̂PKR = argmin
xPKR

1

2
‖y − FSP (xPKR)‖2 +R(xPKR). (7.45)

In this case, F = INcNt⊗


F1

. . .

FNresp

 and S = INrespNt⊗ S̃. These are the same

system matrices as F5D and F5D in Chapter 6 but are renamed here for simplicity.

Regularization terms in R(xPKR) can include extensions of the previously discussed

regularization terms:

• spatial regularization for each respiratory phase and pharmacokinetic parame-

ter

Rs(xPKR) = λs

Npk∑
κ=1

Nresp∑
φ=1

Nr∑
~r

∑
~r′∈Nr

ψs

(
xPKR(~r, κ, φ)− xPKR(~r − ~r′, κ, φ)

)

• regularization across pharmacokinetic parameter boundaries

RPKTV(xPKR) = λPKTV

Nresp∑
φ=1

Nmask∑
~r

√√√√Npk∑
κ=1

(∑
~r′∈Nr xPKR(~r, κ, φ)− xPKR(~r − ~r′, κ, φ)

p(κ)

)2

• motion model-informed respiratory regularization

Rmm(xPKR) = λmm

Nr∑
~r=~0

Npk∑
κ=1

Nresp∑
φ=1

ψm (xPKR(~r, κ, φ)− xPKR (Wφ,φ−1(~r), κ, φ− 1))
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7.5.1 Minimization Algorithms

One could apply many of the algorithms listed in Section 7.3.2 to the PKRM esti-

mation problem. Here we discuss implementation details specifically relevant for the

direct PKRM estimation problem.

7.5.1.1 Initialization of the PKRM Problem

Like the indirect estimation problem in Section 7.3, the initial estimate for the

pharmacokinetic-respiratory map requires the estimation of pharmacokinetic param-

eters from gated datasharing images. The compute time could be reduced by leverag-

ing the precomputed motion model to combine the respiratory dynamic images into

a single roughly denoised, motion-compensated dynamic image. The computation

time could be further reduced by doing the variable projection for each of the Nr

voxels in parallel. Figure 7.3 illustrates the pipeline for this process.
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Figure 7.3: Initialization process for PKRM estimation.

241



7.5.1.2 Variable Splitting Approaches

To design spatially separable inner problems and leverage parallelization, additional

variable splits are necessary for solving (7.45). Now we combine variable splitting

methods from Sections 7.2.1 and 7.3.2 for a tractable approach for the direct PKRM

problem. In this section we describe a cost function with fewer regularization terms

to illustrate useful variable splitting schemes. The final PKRM estimation problem

is likely to include additional regularization terms and variable splits. To facilitate

variable splitting, we express the motion model-informed regularization as finite-

differences across a motion-compensated pharmacokinetic map:

J(xPKR) =
1

2
‖y − FSP (xPKR)‖2 + λsRspat(xPKR) + λmRmm(xPKR) (7.46)

J(xPKR) =
1

2
‖y − FSP (xPKR)‖2 (7.47)

+ λs

Npk∑
κ=1

Nresp∑
φ=1

Nr∑
~r

∑
~r′∈Nr

∥∥∥xPKR(~r, κ, φ)− xPKR(~r − ~r′, κ, φ)
∥∥∥

1

+ λm

Nr∑
~r=~0

Npk∑
κ=1

Nresp∑
φ=1

ψ (xPKR(~r, κ, φ)− xPKR (Wφ,φ−1(~r), κ, φ− 1))

J(xPKR) =
1

2
‖y − FSP (xPKR)‖2 + λs ‖CsxPKR‖1 + λmψ

(
CrW̃xPKR

)
(7.48)

As in Section 6.2.2, W̃xPKR ∈ RNr×NPK×Nresp is the pharmacokinetic-respiratory

map with all respiratory phases converted to φ = 1 via the precomputed motion

model.

The following variable splitting scheme incorporates the useful variable splits of Sec-
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tion 7.2.1 along with an additional split to isolate the nonlinear portion of the system

model:

J(xPKR, u, v, w, z) =
1

2
‖y − FSw‖2 + λs ‖u‖1 + λmψ (v) (7.49)

s.t. u = CsxPKR; v = CrW̃ (xPKR) ; w = P (z); z = xPKR

(7.50)

This leads to the following Augmented Lagrangian function:

L(xPKR, u, v, w, z) =
1

2
‖y − FSw‖2 + λs ‖u‖1 + λmψ (v) (7.51)

+
µu
2
‖u−CsxPKR − ηu‖2 +

µv
2

∥∥∥v −CrW̃(xPKR)− ηv
∥∥∥2

+
µw
2
‖w − P (z)− ηw‖2 +

µz
2
‖z − xPKR − ηz‖2 ,
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and the following alternating variable updates:

x
(n+1)
PKR =H−1

x

(
µuC

′
s(u

(n) − η(n)
u ) + µvC

′
rW̃

′(v(n) − η(n)
v ) + µz(z

(n) − η(n)
z )
)

(7.52)

Hx = µuC
′
sCs + µvW̃

−1C′rCrW̃ + µzINrNPKNresp (7.53)

u(n+1) =soft

(
µu
λs
,Csx

(n+1)
PKR + η(n)

u

)
(7.54)

v(n+1) =shrink

(
µv
λm

,CrW̃(x
(n+1)
PKR ) + η(n)

v

)
(7.55)

w(n+1) =H−1
w

(
S′F′y + µw(P (z(n)) + η(n)

w )
)

(7.56)

Hw = S′F′FS + µwINrNtNresp (7.57)

z(n+1) = argmin
z

µw
2

∥∥∥∥∥∥∥
 w(n+1) − η(n)

w√
µz
µw

(
x

(n+1)
PKR + η

(n)
z

)
−

 P (z(n))√
µz
µw
z(n)


∥∥∥∥∥∥∥

2

(7.58)

One could solve the updates for xPKR and w with PCG, and the update for z with

variable projection pixel-by-pixel. Dual variables ηu, ηv, ηw, and ηz are updated in

the usual fashion with the constraints’ errors.

7.5.2 Segmented Direct Pharmacokinetic Parameter Estimation

One major challenge with direct pharmacokinetic parameter estimation for the liver

is that the FOV for abdominal imaging includes many other organs and tissues that

do not subscribe to the liver pharmacokinetic model. To work around this, one

could partition the voxels into multiple classes and applying appropriate datafit and

regularization terms to each class. This mask could be manually selected from initial
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data-sharing estimates or automatically estimated from the raw k-space data.

Consider the more generalized reconstruction problem below, in which the embed-

ding operator Mi handles the voxels belonging to each segmented region, Si, i =

1, . . . , Nclass. Segmented voxels, Si, partition all of the spatial coordinates ~r =

1, . . . , Nr. We introduce a generalization of xPKR, a set of coefficients for each class,

ci(~r, a, φ). These coefficients are only defined over voxels segmented into the ith class,

~r ∈ Si, but across all respiratory phases, φ = 1, . . . , Nresp. The second dimension, a

represents the number of coefficients used to represent the dynamics: coefficients of

a low rank basis or the number of nonlinear pharmacokinetic parameters in a liver

voxel. The size of this dimension varies depending on the class.

Then the segmented PKRM cost function is:

{ĉi}i=1,...,Nclass
= argmin

1

2

∥∥∥∥∥y − FS

Nclass∑
i=1

Mici

∥∥∥∥∥
2

+

Nclass∑
i=1

Ri(ci) (7.59)

with one arbitrary class assigned to the liver pharmacokinetic model,

c1 = P (xPKR(~r, ·, ·)), for ~r ∈ S1. (7.60)

Once could first implement this segmented PKRM problem segmenting only between

liver and non-liver voxels. The liver voxels would be modeled using the dual-input,

single-compartment model, and non-liver voxel dynamics would be estimated with a

temporally low-rank object.
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class index anatomy datafit stipulations regularizing terms
1 liver c1 = P (xPKR(~r, ·, ·)) Rspat, RPKTV, Rmm

2 non-liver - λLR ‖c2‖∗

Table 7.1: Description of two-class segmentation framework for PKRM estimation.

The low-rank prior has been previously applied globally and locally to DCE image

reconstruction problems, with good image quality results [6]. Low-rank approxima-

tion also improves the conditioning of the estimation problem, resulting in denoising

effects as well as computational speed gains. Here, one might seek to balance the

benefits of low-rank approximation with caution in underfitting the non-liver re-

gions.

The danger in underfitting the non-liver regions, by parameterizing them with too

few temporal dimensions, lies with the spatial mixing of the Fourier encoding oper-

ator. Datafit residuals in one class of pixels become included in the model for other

classes of other pixels. The accomodation of liver pharmacokinetic model residuals by

non-liver voxels is not problematic since those voxels are not used for diagnosis or ra-

diation therapy assessment. We also assume that the dual-input, single compartment

liver model is a sufficiently detailed model. However, the converse situation, in which

liver voxels are corrupted by non-liver underfitting should be carefully avoided.

7.5.2.1 Low-Rank Considerations

In the above segmented PKRM estimation problem, we penalized rank using the

nuclear norm. Usually, the nuclear norm is applied to the Casorati matrix of a

dynamic image. Here, one could choose between several options:
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Sum of Nuclear Norm of Each Respiratory Phase

‖c2‖∗ =

Nresp∑
φ=1

‖c2(·, ·, φ)‖∗ (7.61)

Nuclear Norm of Reshaped Object

‖c2‖∗ =

∥∥∥∥[c2(·, ·, 1) · · · c2(·, ·, Nresp)

]∥∥∥∥
∗

(7.62)

Additionally, one could describe a penalty of the nuclear norm rather than an explicit

low-rank model. A valid alternative would stipulate the following structure of c2 for

a predetermined rank ρ:

c2(·, ·, φ) = U(·, ·, φ)︸ ︷︷ ︸
RNr×ρ

V (·, ·, φ)T︸ ︷︷ ︸
Rρ×Nt

for φ = 1, . . . , Nresp. (7.63)

One benefit of this explicitly spatially-temporally separable model is that enforcing

dimensionality reduction yields a smaller unknown component c2 and possibly a

simpler minimization problem.

7.5.2.2 Minimization Algorithms

This section describes a general minimization strategy for the two-class segmented

PKRO problem outlined in Section 7.5.2, in which one could seek to estimate two sets
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of coefficients, c1(for liver) and c2 (for non-liver). One could re-express the problem

as:

( ˆxPKR, ĉ2) = argmin
xPKR,c2

1

2
‖y − FS (M1P (xPKR) + M2c2)‖2

2 + λsψs(CsxPKR)

+ λmmψm(CrW̃xPKR) + λLR ‖c2‖∗ (7.64)

Applying alternating minimization to the two unknowns yields:

x
(n+1)
PKR = argmin

xPKR

1

2

∥∥∥∥∥∥∥∥
(
y − FSM2c

(n)
2

)
︸ ︷︷ ︸

ỹ1

−FSM1P (x
(n)
PKR)

∥∥∥∥∥∥∥∥
2

2

+ λsψs(Csx
(n)
PKR)

+ λmmψm(CrW̃x
(n)
PKR) (7.65)

c
(n+1)
2 = argmin

c2

1

2

∥∥∥∥∥∥∥∥
(
y − FSM1P (x

(n+1)
PKR

)
︸ ︷︷ ︸

ỹ2

−FSM2c
(n)
2

∥∥∥∥∥∥∥∥
2

2

+ λLR

∥∥∥c(n)
2

∥∥∥
∗

(7.66)

Equation (7.65) could be solved with variable splitting techniques described in Sec-

tion 7.5.1.2.

Equation (7.66) could be tackled with an inner iterative method involving variable

splitting and singular value thresholding (SVT) [130]. Consider the following equiv-

alent problem:
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ĉ2, û = argmin
c2,u

1

2
‖ỹ2 − FSM2c2‖2

2 + λLR ‖u‖∗ s.t. u = c2 (7.67)

Then the corresponding Augmented Lagrangian function is:

L (c2, u;µ) =
1

2
‖ỹ2 − FSM2c2‖2

2 + λLR ‖u‖∗ +
µ

2
‖u− c2 − η‖2

2 . (7.68)

Alternating minimization yields the following inner updates:

c
(m+1)
2 =H−1

c2

(
M′

2S
′F′ỹ2 + µ

(
u(m+1) − η(m+1)

))
(7.69)

Hc2 = M′
2S
′F′FSM2 + µI (7.70)

u(m+1) =DλLR

(
c

(m+1)
2 + η(m)

)
(7.71)

η(m+1) =η(m) −
(
u(m+1) − c(m+1)

2

)
(7.72)

The SVT operatorDτ operates on a matrix X with SVD: X = UΣV′ as follows:

Dτ (X) , UDτ (Σ)V∗, Dτ (Σ) = diag (max(σi − τ, 0)) . (7.73)

In other words, we perform soft-thresholding of the singular values of X, σ1, . . . , σρ.

As discussed in Section 7.5.2.1, there are multiple ways one could define the low-rank

nature of c2, which would affect the exact implementation of (7.71). The inner c2

update in (7.69) could be solved with PCG.
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7.5.2.3 Multi-class Segmentation

If the two-class segmentation framework is insufficient for modeling abdominal dy-

namics, one could extend the number of classes. The embedding mask for class 1,

M1 enforces that the pixels in the liver ROI will be mapped to pharmacokinetic

parameters within the liver. Other classes can map contrast-enhanced organs to the

appropriate specific case of liver pharmacokinetics, and yet another class can repre-

sent zero-signal air. The air class is akin to masking of the 5D object, implemented

in Section 6.2.2.

The segmentation system could be expanded to better model different classes of

tissues, enumerated in Table 7.2.

class characteristics anatomy datafit stipulations regularizing terms
1 liver PK liver c1 = P (xPKR(~r, ·, ·)) Rspat, RPKTV, Rmm

2 non-DCE air,
bone

- λLR ‖c2‖∗, Rspat, Rt, Rmm

3 liver inputs aorta,
portal
vein

c1 = P (xPKR(~r, ·, ·)) k1a = 1, k1p = 0, k2 = 0

4 miscellaneous heart,
bowels,
kidneys

- λLR ‖c2‖∗

Table 7.2: Description of multi-class segmentation framework for PKRM estimation.

7.5.2.4 Automatic Segmentation Via Subspace Clustering

One could perform automatic segmentation on the datashared, motion-combined,

dynamic image, one of the intermediate steps of the initialization process, described
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in Figure 7.3. To classify the voxels of a single respiratory phase, one could apply

existing subspace clustering methods, such as Sparse Subspace Clustering (SSC) [131]

on the the dynamic image.

Preliminary results suggest one could also encourage spatial contiguity in the class

memberships by including the spatial coordinates along with the temporal data for

each voxel as an input to the subspace clustering methods.

In summary, 5D MRI presents many opportunities for improved modeling and ac-

celerated reconstruction algorithms. Combining 5D MRI with pharmacokinetic pa-

rameter estimation, a direct formulation connecting k-space measurements to phar-

macokinetic parameter maps also presents a rich area for future study.
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