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CHAPTER I

Introduction

Magnetic resonance imaging (MRI) is a revolutionary technique that helps clinical

diagnosis by non-invasively and non-radioactively imaging human tissue. Briefly, MRI

works by imaging signals from hydrogen in the body. The body is placed in a strong

magnetic field, also known as (aka) B0 field, and then a weak high frequency radio

frequency (RF) signal, aka B1 field, is transmitted to selectively excite the parts of

the object to be imaged. Along with linear gradient fields afterwards, signals from

the excited parts are encoded to produce MR images that reflect the anatomy.

This thesis first focuses on improving MR image quality and speed by developing

fast and robust system calibration methods and image reconstruction methods, in-

cluding B1 field mapping [3] and MRI phase reconstruction. The remainder focuses

on developing pulse sequences and image reconstruction methods to efficiently and

robustly produce special image contrast, including fat suppression and magnetization

transfer contrast [4].

1.1 RF Pulse Design in General

1.1.1 MRI Basics and RF Excitation

In MRI scanner, angular momentum possessed by the hydrogen nucleus (1H), aka

spins, generate a net effect called magnetization that can vary spatially (r) and tem-
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porally (t) and is denoted as M⃗(r, t). M⃗(r, t) is aligned with main field direction

(the z direction or the longitudinal direction by convention) in the equilibrium, but

detectable MRI signals are only from the transverse components of the magnetization

which is perpendicular to z. Thus, to generate MRI signal, the magnetization needs

to be “tipped” towards the transverse plane (x-y plane) by B1 field (RF field) that is

within the transverse plane, and this process is called excitation. Excitation typically

needs inputs of RF field, which is called RF pulse, along with linear gradient fields

to achieve a spatially varying transverse magnetization pattern. The linear gradient

fields (gradients) consist of 3 channels that are along x, y and z directions respec-

tively, and linearly vary the main field to generate spatial variations of magnetization

behaviors.

The relation between the magnetization behaviors and the applied fields is gov-

erned by the Bloch equation [5]:

d

dt
M⃗(r, t) = M⃗(r, t)× γB⃗(r, t) (1.1.1)

where the spatial location r , (x, y, z), M⃗(r, t) = [Mx(x, y, z, t), My(x, y, z, t),

Mz(x, y, z, t)], γ = 267, 51 M rad/s/T is called gyromagnetic ratio, B⃗(r, t) = (Re{B1(t)},

Im{B1(t)}, B0 + xGx(t) + yGy(t) + zGz(t)), B1(t) is the RF field, Gx(t), Gy(t) and

Gz(t) denote the gradient strengths in x, y and z direction respectively, and we have

ignored relaxation effects. For each particular r and t, the effects of the applied

field to the magnetization is that M⃗(r, t) precesses about B⃗(r, t) at the frequency

γ|B⃗(r, t)|, which is called Larmor frequency. In typical MRI scans, B0 ≫ |B1(t)| and

B1(t) rotates about z at the Larmor frequency of the main field, i.e. γB0. The main

field strength of MRI scanners could range from hundreds of millitesla (mT) to tens

of Tesla (T). Popular clinical scanners and research scanners are 1.5 T or 3 T, and 7

T scanners are also widely used in research studies. Thus, the Larmor frequency of
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the main field strength can be quite high, e.g., about 128 MHz at 3 T. In contrast,

the strength of B1 field is on the order of tens of µT .

Ideally, a system would have homogeneous B0 field and B1 field, but it is rarely

the case in practice. Although state-of-art MRI scanners can have very homogeneous

B0 field to several parts per million over a typical field of view, magnetic susceptibility

differences among different parts of human body cause B0 inhomogeneity inevitably

[6]. This effect increases with the main field strength, so B0 inhomogeneity is more

problematic at higher field strengths. Since the resonant frequency of hydrogen is

proportional to B0, spins at field strengths off the nominal main field strength precess

at different frequency than the on-resonance frequency, which is also known as off-

resonance effect. At 3T, for example, the off-resonance frequencies of a region of

human body can range from tens of Hz up to hundreds of Hz depending on the parts

of the body. This is quite small compared to the center frequency, e.g., about 128

MHz at 3 T, but it is still large enough to cause problems in both excitation and

image reconstruction if ignored. In addition, B1 is also not uniform in practice, which

is caused by dielectric resonance, RF attenuation by tissue conductivity and other

RF-body interactions [7, 8]. Those effects are more severe at higher field strengths.

B1 inhomogeneity at 3T can range from 30− 50% [9]. B1 inhomogeneity is less of a

concern at field strengths less than 3T.

1.1.2 RF Pulse Design

As seen in the last section, both RF field and gradients can be temporally varying

and programmed by RF pulse designers to achieve a certain target pattern of the

magnetization at the end of the RF pulse and gradients. So RF pulse design is a

process that takes the target pattern of the magnetization, M⃗(r, T ), as input and

determines the unknown gradients, Gx(t), Gy(t), Gz(t) (0 < t 6 T ), and RF pulse,

B1(t), based on a certain input-output relationship, such as (1.1.1), and the initial
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state of the magnetization, M⃗(r, 0).

In practice, there are several constraints and limitations in the design. First, the

pulse length, T , is usually limited to the needs for practical imaging time, tissue relax-

ation time, desired image contrast or RF power constraints. Second, the amplitude

and the slew rate of the gradient waveforms are also limited due to hardware limi-

tations and human body tolerance, e.g., peripheral nerve stimulation; for example,

the maximal gradient amplitude and slew rate of our scanner are 40 mT/m and 180

T/m/s respectively. Furthermore, the maximal amplitude and power of RF pulse is

limited mainly due to safety requirement for human body scanning.

Unfortunately, it is generally quite hard to obtain accurate RF pulses and gradi-

ents by solving (1.1.1) for an arbitrary target pattern from an arbitrary initial state,

because either it can be too computationally intensive to solve the problem or there

may be no analytical solution to (1.1.1). However, under some circumstances or with

some approximations, the RF design problems can be practical. In most RF designs,

the gradients, which almost are never linear, are predetermined according to the spe-

cific tasks, which largely simplifies the RF design problem. One of the most widely

used categories of RF design is the small-tip-angle (STA) RF pulse design, where

the magnetization is tipped down from the equilibrium to the transverse plane by a

“small” angle (< 300). With STA approximation, the RF pulse has a Fourier-like

relation with the transverse components of the resulting magnetization [10], and it

can be linearized in general with some other approximations [11]. For larger flip

angle target patterns, several methods have been proposed, including the ones with

constraints on gradient waveforms [12, 13], the one using numerical simulators [14],

the one based on control theory [15], and the ones with approximations on the Bloch

equations [16,17]. Furthermore, for the design where the target pattern is only a one

dimensional (1D) function, a filter design based method has been proposed to design

the RF pulses with very little approximations [18], which is called Shinnar-Le Roux
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(SLR) pulse design. This method can also be used to design for the cases where the

initial magnetization is not in the equilibrium, such as the inversion pulses that flip

the transverse spins (magnetization) by 1800. In addition, there are some methods

proposed to jointly determine both the RF pulses and the gradient waveforms [19–22],

where the gradient waveforms are constrained to certain types.

1.2 Small-tip angle (STA) RF Pulse Design

1.2.1 Multi-Dimensional STA Pulse Design

The STA approximation is an approximation to the Bloch equation (1.1.1) where

Mz(r, t) ≈ Mz(r, 0) = M0 and M0 is the magnetization at the equilibrium state.

Assuming no B1 field inhomogeneity, the pattern of the resulting transverse magne-

tization at time T (the end of the RF pulse) in terms of RF pulses and gradients is

approximately:

Mxy(r, T ) = iγM0

T∫
0

B1(t)e
i2π[k(t)·r+(t−T )f0(r)]dt (1.2.1)

where i denotes the imaginary unit, Mxy(r, T ) , Mx(r, T ) + iMy(r, T ), f0(r) is the

spatially varying off-resonance frequency map orB0 map, and k(t) , [kx(t), ky(t), kz(t)]

denotes the so-called excitation k-space trajectory. The excitation k-space is defined

as:

kx(t) ,
γ

2π

T∫
t

Gx(τ)dτ (1.2.2)

where x can also be y or z for the other two directions. With gradient waveforms

or excitation k-space predetermined, the resulting transverse magnetization pattern

Mxy(r, T ) has a Fourier relation with the RF pulse B1(t) if the off-resonance effects

(f0(r)) are ignored. Then such RF design can be carried out very efficiently with the
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help of fast Fourier transform (FFT) if the excitation k-space is uniformly sampled.

An example is the 1D slice-select pulse which is routinely used in 2D or 3D MRI

scans [4]. The slice-select pulse is typically a sinc function of time that is the Fourier

transform of the target magnetization pattern, i.e., a 1D rectangle function; the

gradient waveforms use only the gradient in the slice-select direction (assuming non-

oblique directions) and the waveform is a trapezoidal lobe followed by a trapezoidal

refocusing lobe, which corresponds to coverage of the corresponding excitation k-

space.

When excitation k-space is not uniformly sampled, RF pulse is computed by FFT

with k-space velocity and density compensations [10] or by iterative methods [23] with

nonuniform FFT (NUFFT) [24] . When f0(r) can not be ignored, methods have been

proposed to solve this problem based on approximations in time domain or frequency

domain [11,25–27].

In general, the relation between the RF pulse and the excited magnetization in

the STA regime is considered as Fourier-like relation, so we typically analyze the

problem with tools of Fourier analysis. For example, the gradient waveforms (exci-

tation k-space) are typically predetermined such that the RF pulse properly samples

the Fourier domain of the target pattern, e.g., the excitation k-space samples need

to be dense enough to avoid aliasing in the excited magnetization pattern and the

excitation k-space coverage needs to be large enough to produce the desired variation

in the excited pattern.

1.2.2 Considering the Spectral Domain

In the previous sections, we mainly discuss the spatially selective pulse design

that aims at exciting a certain pattern in the spatial domain. Since human tissue

that can be excited by MRI scanners is not limited to the on-resonance hydrogen

in water, the spectral response of the RF pulse is considered in many applications,
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such as fat suppresion [28], magnetization transfer imaging [4] and chemical exchange

saturation transfer [29]. With the STA approximation, the spectral response of the

RF excitation comes naturally:

Mxy(r, f, T ) = iγM0

T∫
t=0

B1(t)e
i2π[k(t)·r+kf (t)f ]dt (1.2.3)

where f denotes the relative frequency relative to the center frequency, and its cor-

responding excitation k-space is defined as:

kf (t) , t− T (1.2.4)

Equation (1.2.3) is the signal model for spectral-spatial (SPSP) pulse design in the

STA regime, and pulse designers can design RF pulses and gradients for specific target

pattern in both the spatial and spectral domain. The predetermined excitation k-

space is usually a repeated version of the excitation k-space used for spatial pulses,

so that the kf (time) domain can be covered. By using different numbers of gradient

channels, 2D, 3D and 4D SPSP pulse designs have been investigated for different

applications, such as water-only slice-select excitation [30], fat saturation [31], and

susceptibility artifacts correction [32].

Beyond SPSP pulse design, one can also turn off the gradients so that the spatial

specification is dropped, and (1.2.3) becomes the model for spectrally selective pulse

design. In this case, the RF pulse in the time domain corresponds to the spectral

response in the spectral domain, and applications include fat saturation [28], magne-

tization transfer imaging [4] and chemical exchange saturation transfer [29].
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1.2.3 Iterative STA Pulse Design

In practical RF pulse design, designers need to discretize the signal models to

calculate the discrete samples of the RF pulse and gradients for the scanner that

uses digital-to-analog converters to convert discrete input to analog signals to the

amplifiers and coils. Typically, the RF pulse B1(t) is uniformly discretized into a

train of weighted rectangular impulses, and we fit discrete samples of the space to

the signal model. Since similar principles can be applied to the SPSP model (1.2.3),

I only discuss the spatial pulse signal model (1.2.1) in this section, and its discrete

version is:

m ≈ Ab (1.2.5)

where m = [Mxy(r1, T ), . . . ,Mxy(rNp , T )]
T , r1, . . . , rNp are the uniform spatial do-

main sample locations, b = [B1(t1), . . . , B1(tNt)]
T , t1, . . . , tNt are the time points

of the RF pulse samples, matrix A is in dimension Np × Nt with each element

aij = iγM0∆te
i2π[k(tj)·ri+(tj−T )f0(ri)], and ∆t is the sampling interval of the RF pulse.

With this discrete forward model, the pulse design becomes an inverse problem.

To solve this problem efficiently using FFT, a Jacobian determinant, which is related

to excitation k-space trajectory speed and density [10], has to be calculated when

the excitation k-space is not uniformly sampled, which is the traditional non-iterative

pulse design [10]. When off-resonance effects are not ignored, the non-iterative method

further needs to apply the conjugate phase method [27] which assumes B0 map varies

smoothly and slowly over space.

Yip et al. proposed an iterative method for STA pulse design [23], which greatly

improves the performance of STA pulse design. Instead of directly calculating the

RF pulse, this method tackles the inverse problem with the forward model by itera-

tively solving an optimization problem. Specifically, they proposed a quadratic cost

function that consists of an excitation error term and a regularization term, and the
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optimization problem is:

b̂ = argmin
b

∥d− Ab∥2W + β∥b∥22 (1.2.6)

where d denotes the target excitation pattern, ∥ · ∥W denotes the weighted l2 norm

that masks out the “don’t care” region of the target pattern, and β∥b∥22 denotes the

regularization term that penalizes the RF power and β is a scalar parameter.

By minimizing the cost function with an appropriate value of β, one can achieve

the desired balance between the excitation error and the RF power deposition, which is

hard to accomplish in the non-iterative method. This convex and quadratic optimiza-

tion problem can be solved efficiently with many existing optimization algorithms,

such as the conjugate gradient (CG) algorithm [23]. There is no need to calculate the

Jacobian determinant or use the conjugate phase method. Instead, NUFFT [24] along

with time or frequency-segmentation methods [11, 26] can be applied to the forward

model and solve the inverse problem efficiently and more robustly. In addition, the

iterative method is able to define an region of interest (ROI) in the target pattern

to disregard “don’t care” regions and produce more degrees of freedom in the design

compared to the non-iterative methods. Furthermore, the iterative method is partic-

ularly useful for the cases when only the magnitude of the target pattern is of interest,

such as saturation pulses [33] and reduced-field-of-view (rFOV) excitation [34]. Then

the magnitude least squares method [35] can be applied to relax the phase of the

target pattern, which can greatly improve the pulse design performance.

1.3 MRI Parallel Excitation

1.3.1 Introduction

We assume uniform B1 field in the previous sections, but it is usually not the

case in practice, especially in high field (> 3T ) scanners. Many pulse design methods
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have been proposed for B1 inhomogeneity correction, e.g., [36–38]. However, existing

B1 inhomogeneity correction methods with single-channel excitation usually require

long pulse length and/or high RF power deposition, because the spatial variations are

corrected with the help of the compensating spatial variations produced by linear gra-

dients which can be inefficient for some tasks. This problem can be largely mitigated

with parallel excitation system which uses multiple surface coils to transmit B1 field

independently. The B1 field of each transmit coil is non-uniform and stronger near

the corresponding coil. The coils are usually placed in circularly symmetric positions

in the transverse plane and have uniform B1 magnitude along the longitudinal direc-

tion. Figure 1.3.1 shows an example of an eight-channel parallel excitation system

where the B1 magnitude and phase maps are both displayed. The spatial variations

produced by the multiple independent parallel excitation coils can improve efficiency

of the RF pulses and therefore reduce the required pulse length, such as in the applica-

tions of B1 inhomogeneity correction [39,40]. In addition, parallel excitation has also

been used for applications that are impractical with single-channel excitation, such

as susceptibility artifacts corrections [22,32,41] and reduced FOV excitation [34,42].

B1 magnitude

B1 phase

Figure 1.3.1: Example of the B1 magnitude (top) and phase (bottom) maps of an
eight-channel parallel excitation system.
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If Sn(r) denotes the B1 field map, aka B1 map or transmit sensitivity map, of the

nth parallel excitation coil, then the composite B1 field map produced by all the coils

is simply the superposition of the B1 map produced by each individual coil:

SPEX(r, t) =
N∑
n=1

Sn(r)bn(t) (1.3.1)

where SPEX(r, t) denotes the composite B1 field that can change over time, N is the

number of coils, and bn(t) denotes the RF pulse of the nth channel.

1.3.2 Parallel Excitation Pulse Design

Based on the signal model (1.2.1) and the equation (1.3.1), the signal model for

the parallel excitation pulse design with STA approximation is:

Mxy(r, T ) = iγM0

N∑
n=1

Sn(r)

T∫
0

bn(t)e
i2π[k(t)·r+(t−T )f0(r)]dt (1.3.2)

This signal model can be discretized similarly as in (1.2.5). Non-iterative methods

[43, 44] have been proposed to design parallel excitation pulses. In general, iterative

methods [34] are still preferred, due to the similar reasons mentioned in Section 1.2.3.

Similar to the methods for single-channel excitation, the iterative parallel excitation

design also conducts an optimization problem that balances the excitation errors and

RF power:

[b̂1, . . . , b̂N ] = argmin
[b1,...,bN ]

∥d−
N∑
n=1

SnAbn∥2W + β
N∑
n=1

∥bn∥22 (1.3.3)

where b̂n denotes the discrete version of the RF pulses of the nth channel, and Sn is

a diagonal matrix whose diagonal entries are samples of Sn(r).

There are also many methods proposed to design Large-tip angle (LTA) parallel
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excitation pulses [13–17], where no simple analytical model exists for the design. I

briefly review the additive angle method [14] which is discussed in Chapter IV. It is an

iterative method that designs LTA parallel excitation pulses with a series of iterative

STA parallel excitation designs [34] interleaved by Bloch equation simulations. It

usually converges with a small number of Bloch equation simulations. Specifically,

the design initially applies a STA design for the LTA target pattern, θdes(r), to obtain

the initial pulses, b
(1)
1 , . . . , b

(1)
N , and Bloch simulator generates the excited complex

pattern, θ(r)(1)ei∠Mxy(r); then new pulses, b
(2)
1 , . . . , b

(2)
N , are designed with STAmethod

for the target pattern, θ(1),new(r)ei∠Mxy(r) where θ(1),new , θdes(r) − θ(1)(r), and the

new pulses are added to the initial pulses; the summed pulses replace the initial pulses

in the next iteration, and the target pattern for the STA design in that iteration is

still the difference between the excited pattern and the final target pattern. Iterations

continue until a certain convergence criterion is met.

1.3.3 Practical Considerations

Despite of the improved performance over single-channel excitation, parallel exci-

tation still has some potential issues in practice which are actively being investigated

in MRI research. First of all, the computation intensity is definitely higher than the

single channel pulse design, as it has bigger system matrices and more pulses to com-

pute. This can potentially be mitigated by parallel computing, as the typical STA

parallel excitation is highly parallelizable.

Second, parallel excitation design requires measuring the B1 maps of all the coils,

which traditionally can be time consuming or inaccurate [45]. Moreover, B1 field of

the same hardware tends to be object-dependent especially at high field strengths,

so online B1 mapping for every subject may be required. Several methods have been

proposed to acquire B1 fast and accurately [1,46,47]. This topic is discussed in details

in Section 1.4 and Chapter III.
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Another issue with parallel excitation is the excitation k-space design which is

typically predetermined based on Fourier analysis in single-channel excitation. Un-

like the single-channel excitation, the relation between the parallel excitation pulses

and the target pattern is no longer Fourier-like, so optimization of the excitation

k-space of parallel excitation pulses is more desirable than the single-channel ex-

citation. Gradient waveform design is generally hard due to its nonlinearities and

hardware constraints, but there are several methods proposed to optimize particular

types of trajectories [19–22].

In addition, compared to single-channel excitation, the specific absorption rate

(SAR) may be more problematic in parallel excitation. SAR indicates the RF energy

deposition to human body, so it is a crucial safety index. SAR increases with the

main field strength, so it is more problematic at high fields, e.g., 3T and 7T. Two

types of SAR are usually considered for MRI scans, global SAR and local SAR. The

former indicates the integrated SAR over the whole body, and the latter indicates the

SAR of each local region of the body. Global SAR is generally easier to compute than

local SAR, as it requires fewer parameters to calibrate [48], but local SAR is the more

direct index for RF heating in the body. So far, there is still no well-accepted method

for measuring local SAR. The difficulty is mainly that SAR is related to electric field

instead of magnetic field in the scanner and electric field can not be measured directly

with MRI in general. For parallel excitation in particular, it brings both opportunities

and challenges for the SAR problem. Flexibility produced by parallel excitation for

the design of excitation patterns may induce unpredictable electric field distribution

and thus may cause local SAR problems; on the other hand, parallel excitation also

brings flexibility to better manipulate local SAR distributions and may be optimized

to have even lower local SAR than the single-channel excitation. So SAR management

in parallel excitation system is an interesting and challenging research area.
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1.4 B1 Mapping

1.4.1 Introduction

As mentioned in Section 1.3.3, B1 mapping is required for parallel excitation pulse

design. It is also useful for many applications using single-channel excitation system

where B1 inhomogeneity can not be ignored, such as B1 inhomogeneity correction [36]

and quantitative MRI [49]. SinceB1 map is object dependent and needs to be acquired

for every subject in real time, B1 mapping methods need to be fast. However, it is

generally not easy to measure B1 maps efficiently, because B1 field is often highly

coupled with some tissue parameters, e.g., T1, in MRI signal models (see Section

1.5.1).

Existing B1 mapping methods can be classified into magnitude-based methods and

phase-based methods which obtain B1 maps based on the magnitude and phase of

MRI signal respectively [1]. Most B1 methods are magnitude based, such as double-

angle method [45], stimulated echo method [50], signal null method [51], actual flip

angle imaging [46] and DREAM [47]. However, those methods may suffer from various

problems, such as T1-dependence, long acquisition time, limited dynamic/effective

ranges, or high SAR. There are also several phase-based B1 methods, such as [52]

which requires long acquisition time and [53] which may require high SAR.

Note that “B1 mapping” typically means measuring B1 magnitude maps, which

is what we usually care about in single-channel excitation imaging. In parallel exci-

tation, however, the B1 phase of each coil relative to one of the coils, aka relative B1

phase map, is required. Relative B1 phase maps are typically measured by succes-

sively exciting the same object with each coil and receiving the signal by one common

coil or one common set of coils.
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1.4.2 Bloch-Siegert B1 Mapping

Sacolick et al. proposed Bloch-Siegert (BS)B1 mapping which applies off-resonance

RF pulses in between the excitation pulses and the readout gradients [1]. This phase-

based method measures B1 magnitude using off-resonance RF pulses to induce B1-

related phase shifts which is called Bloch-siegert (BS) shift [54]. This method is

popular because it is fast and relatively accurate in a wide dynamic range and it is

insensitive to T1, chemical shift, B0 field inhomogeneity and magnetization transfer

effect [1]. Its speed and wide dynamic range are especially beneficial for parallel ex-

citation systems where B1 mapping is generally more time-consuming and has wider

ranges of B1 magnitude than single channel systems.

Figure 1.4.1: Illustration of Bloch-Siegert Shift (modified from the Fig.1 in [1]). The
B1 rotating frame rotates at frequency ω0 + ωRF , and the spins rotates
at ωRF . ωBS is the Bloch-Siegert shift.

In the BS B1 mapping sequence, when an off-resonance B1 field is applied, we

can observe the behaviors of spins in the B1 rotating frame where the off-resonance

B1 field is static and the on-resonance spins precess about z axis at the off-resonance

frequency of the B1 field, i.e., ωRF , which is shown in Figure (1.4.1). Hence, effectively

the precession of spins in this frame is caused by a virtual field B⃗RF such that ω⃗RF =

γB⃗RF , and then the on-resonance spins precess at an effective angle speed ω⃗eff =
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γB⃗RF + γB⃗1. One important condition is ωRF ≫ γB1, so that when back to the

conventional rotating frame, the on-resonance spins precess about the z axis at the

frequency ωBS, i.e., the so-called BS shift:

ωBS = ωeff − ωRF =
√
ω2
RF + (γB1)2 − ωRF ≈ (γB1)

2

2ωRF
(1.4.1)

So the BS shift is approximately proportional to B2
1 if ωRF is known. To image the BS

shift, we image the accumulated phase induced by an off-resonance RF pulse, which

is called BS pulse. The BS shift induced phase ϕBS(r) could be described as:

ϕBS(r) =

T∫
0

(γB1(r, t)))
2

2ωRF (t)− ω0(r)
dt = KBS(r)B

2
1,p(r) (1.4.2)

where B1(r, t) denotes the spatially and temporally varying B1 field, ωRF (t) could

be fixed or temporally varying as long as ωRF (t) ≫ γB1(r, t), ω0(r) is the B0

map, B1,p(r) is the peak values of B1(r, t) over time, B1(r, t) = B1,p(r)B1,n(t), and

KBS(r) ,
T∫
0

(γB2
1,n(t)

2ωRF (t)−ω0(r)
dt. B1,p(r) is the desired B1 map, and KBS(r) is determined

by the BS pulse and B0 map.

As shown previously, BS shift requires spins to have transverse components, so

BS pulse is played after an excitation pulse and before the readout. Typically, ωRF (t)

and B2
1,n(t) are chosen such that the BS pulse has negligible direct excitation while

KBS(r) is large enough to produce detectable phase shifts ϕBS(r). An example in [1]

was: ωRF (t) = 4 kHz, B2
1,n(t) is a 8 ms long Fermi pulse [4].

B1 map calculation from the reconstructed image is complicated by the B0 map

in (1.4.2). In addition, the image phase contains not only the BS phase but also

the background phase induced by off-resonance effect and the object itself. It is

suggested in [1] that one acquires two scans with BS pulses at ±ωRF (t) frequencies

respectively. Assuming ωRF (t) ≫ ω0(r), B
2
1,p(r) is approximately proportional to the
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phase difference between the images acquired with those two scans:

ϕBS,+ωRF
(r)− ϕBS,−ωRF

(r) ≈
T∫

0

(γB1(r, t)))
2

ωRF (t)
dt = 2KBSB

2
1,p(r) (1.4.3)

where KBS ,
T∫
0

(γB2
1,n(t)

2ωRF (t)
dt which is a user-designed constant, and the derivation is

based on a 2nd-order Taylor expansion [1].

BS B1 mapping has been a well-accepted method that is being built into some

commercial products. However, a disadvantage of this phase-based method is that the

B1 field estimation in low magnitude regions may suffer from low signal-to-noise ratio

(SNR), due to insufficient excitation or low spin density. This is more problematic in

B1 mapping of parallel excitation systems which have more localized B1 sensitivities.

This thesis proposes methods to mitigate this problem for parallel excitation B1

mapping, which is shown in Chapter III.

1.5 MRI Signal Model and Image Reconstruction

1.5.1 MRI Signal Model

In this section, we introduce physics and signal models of the spin behaviors after

the RF excitation in MRI. After the spins are tipped down, the spins precess about

the z axis at the Lamor frequency of the main field, but they do not stay in this

state forever. The longitudinal component of the spins, Mz(r, t), recovers and the

transverse component, Mxy(r, t), decays while precessing, and the spins eventually

return to the equilibrium,M0. These are called longitudinal relaxation and transverse

relaxation respectively, which are modeled by exponential functions of time over the

spin-lattice time constant, aka T1, and time over the spin-spin time constant, aka T2,

respectively:

Mz(t) =M0 − [M0 −Mz(0)]e
−t/T1 (1.5.1)

17



Mxy(t) =Mxy(0)e
−t/T2 (1.5.2)

T1 is typically on the order of seconds or hundreds of millisecond, and T2 is typically

much shorter and is on the order of tens of millisecond. Before the spins return to

equilibrium, the spins are manipulated by the temporally varying linear gradients

to generate the desired signal during the readout. The gradients generate linear B0

field variations over space to encode the signals from different spatial locations. The

manipulation of the gradients often generates one particularly large signal, called

echo, which corresponds to the moment when all of the spins are in-phase or close

to in-phase, and the duration between this time point and the excitation is called

echo time, aka TE. Most standard pulse sequences do not acquire all the data for a

multi-dimensional image with one readout, so the pulse sequence typically is repeated

several times with the same excitation and different gradient waveforms for a complete

imaging, where the period of each sequence is called repetition time, aka TR. During

the readout, the receive coils acquire high frequency signals that are demodulated to

be baseband signals afterwards. By some reasonable approximations, the ideal MRI

signal can be modeled as:

s(t) =

∫
m(r)e−i2π(k(t)·r+tf0(r))dr (1.5.3)

where s(t) is the temporally varying signal, m(r) is the image which is complex-

valued and related to spin density, T1, T2, possible off-resonance effects, receive coil

sensitivities and sequence parameters like TE and TR, and k(t) , [kx(t), ky(t), kz(t)]

denotes the k-space as opposed to the excitation k-space defined in (1.2.2), and k-space

is defined as:

kx(t) ,
γ

2π

t∫
0

Gx(τ)dτ (1.5.4)
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where x can also be y or z for the other two directions. Similar to the STA excita-

tion, the image m(r) is the inverse Fourier transform of the signal if gradients are

predetermined and off-resonance effects can be ignored. As m(r) depends on imaging

parameters, it can be manipulated to have the desired contrast between tissues by

designing the pulse sequences. Typical image contrasts include spin-density-weighted

contrast, T1-weighted contrast and T2-weighted contrast.

1.5.2 Image Reconstruction

Due to the Fourier-like relation between MRI signals and the desired image, gradi-

ent waveforms or k-space trajectories during the data acquisition are typically deter-

mined based on Fourier analysis. Specifically, k-space is covered symmetrically and

the coverage is large enough to produce the desired image resolution; the sampling

intervals in the k-space typically satisfy the Nyquist theorem to avoid aliasing in the

image domain. Traditionally, the k-space is sampled uniformly and FFT is applied

to reconstruct the image efficiently, which is called Cartesian sampling. Although

this sampling method is robust and most accepted in clinical practice, many non-

Cartesian methods have been proposed and they sample the k-space non-uniformly

and are more efficient than Cartesian sampling, such as spiral trajectory [55] and

radial trajectory [56]. A disadvantage of non-Cartesian methods is the more compli-

cated image reconstruction, as FFT is not applicable for non-uniform k-space data.

The non-iterative reconstruction methods for non-Cartesian data require k-space den-

sity compensation [57]. For both sampling methods, the reconstruction results are

susceptible to noise. Another complication to MRI reconstruction is B0 inhomogene-

ity which can not be ignored in k-space trajectories that take too long in each shot,

such single shot spiral imaging [58] and single shot echo-planar imaging (EPI) [59].

As shown in (1.5.3), even for Cartesian sampling, FFT can not be simply used when

B0 inhomogeneity is not ignored. Non-iterative reconstruction with conjugate phase
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methods [25] [26] have been proposed to mitigate the field inhomogeneity problems,

but these methods highly rely on the assumption that B0 map is smooth and slowly

varying over space.

The advent of model-based iterative reconstruction greatly improves the perfor-

mance of MRI reconstruction. In MRI reconstruction, noise can be modeled as addi-

tive independent and identically distributed (i.i.d.) complex Gaussian noise. Suppose

the ideal signal model (1.5.3) is discretized and then the noisy MRI signal model is

described as:

s = Am+ ϵ (1.5.5)

where s is discretized signal, A denotes the system matrix, m is the discretized image,

ϵ is the i.i.d. complex Gaussian noise, the real or imaginary part of every element of

ϵ is distributed as N (0, σ2), and σ2 is the variance. Based on this noise model, the

maximum likelihood estimation (MLE) of the image is described as a least squares

form:

m̂ = argmin
m

∥s− Am∥2 (1.5.6)

This model-based iterative reconstruction converts the traditional non-iterative in-

verse problem into an iterative method that uses forward model. In other words, the

system matrix A contains the forward system model that can handle non-Cartesian

sampling and/or field inhomogeneity terms more accurately and more easily. For the

non-Cartesian sampling, one can NUFFT [24] and there is no need to compensate for

k-space trajectory density; for the field inhomogeneity, more accurate method that

does not highly rely on smoothness of B0 map [11] can replace the conjugate phase

methods.

However, this iterative method may still be susceptible to noise, especially for

more ill-conditioned problems like parallel imaging [60]. This is problem can be

largely mitigated by introducing regularization terms, which is hard or impossible
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to be realized in non-iterative methods. Regularization in the reconstruction can

greatly improve the conditioning of the problem and thus produces results that are

more immune to noise. Essentially, regularization exploits some prior assumptions of

the image, such as piece-wise smoothness of medical images and sparsity of medical

images in certain domains [61]. The regularized iterative MRI reconstruction can be

described as:

m̂ = argmin
m

∥s− Am∥2 + βR(m) (1.5.7)

where R(m) denotes the regularization term and β is scalar regularization parameter

that balances between the prior knowledge and data consistency. Popular regulariza-

tion terms include edge-preserving roughness penalty [62] and total variation regular-

izer [63]. The minimization in (1.5.7) for MRI reconstruction can be solved iteratively

by the many existing optimization algorithms, such as CG algorithm [23], nonlinear

CG [61], iterative soft-thresholding [64], iteratively reweighted least squares [65], inte-

rior point methods [66] and alternating direction method of multipliers (ADMM) [67];

the choice depends on the specific properties of the regularization terms, such differ-

entiability and convexity.

1.5.3 Compressed Sensing in MRI

Compressed sensing (CS) MRI [61] has become a hot topic in recent MRI re-

construction research, because it can potentially recover accurate images from many

fewer k-space samples than required by the Nyquist theorem, and therefore greatly

accelerates the MRI data acquisition. It works well in MRI based on the following

two assumptions: (a) MR images are sparse in some linear sparse transform domain,

e.g., finite difference transform domain, wavelet transform domain or image domain

itself; (b) randomly sampled k-space domains and the sparse transform domains are

incoherent [61]. Therefore, CS MRI needs to acquire randomly sampled k-space data,

which is a type of non-Cartesian sampling. It typically requires an iterative recon-
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struction method that enforces sparsity of the images in the sparse transform domain

while fitting to the raw data:

m̂ = argmin
m

∥Um∥0, s.t. s = Am (1.5.8)

where U is the sparse transform matrix that transform the image into a sparse trans-

form domain, and ∥ · ∥ denotes the l0 norm. Since l0 is nonconvex, non-quadratic

and non-differentiable, it is very hard to solve this optimization problem. It has been

shown that l1 norm works quite well for CS MRI in practice and could be an alter-

native to l0 norm. Furthermore, the data consistency constraint should be relaxed

to be under a certain noise level σ. Then the optimization problem for CS MRI is

modified to be:

m̂ = argmin
m

∥Um∥1, s.t. ∥s− Am∥2 < σ (1.5.9)

This constrained optimization problem can be transformed into its Lagrangian form

which is an unconstrained problem:

m̂ = argmin
m

∥s− Am∥2 + β∥Um∥1 (1.5.10)

This problem becomes the regularized iterative MRI reconstruction problem (1.5.7)

with a special regularization term. With the l1 based regularization term, this problem

can solved easily with iterative soft thresholding [68] or nonlinear CG [61].

Note that the prior knowledge of sparsity is based on the magnitude of medical

images, but MR images usually have non-trivial phase variations caused by B0 in-

homogeneity and/or intentional encoding on phase [69, 70]. These phase variations

may reduce sparsity of the MR images, and [61] suggests doing phase compensation

to mitigate this problem. Specifically, it requires a low-resolution phase estimation
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from fully sampled low-resolution k-space data, and the estimated phase information

is incorporated into the CS reconstruction:

m̂ = argmin
m

∥Um∥1, s.t. ∥s− APm∥2 < σ (1.5.11)

where P is a diagonal matrix whose diagonal entries are exponentials of the estimated

phases. Then the unknown m is closer to being real valued and thus is sparser.

1.6 Fat Suppression

1.6.1 Introduction

Fat is usually not of interest in clinical diagnosis and it inherently has a slightly

different on-resonance frequency than water tissue. Thus, it can cause undesired

artifacts due to off-resonance effects, such as chemical shift artifacts in Cartesian

MRI [6] or blurring artifacts in spiral MRI [71]. In addition, in some applications, e.g.,

T1 weighted imaging, fat tissue appears brighter than most tissue, which produces

undesired image contrast. Moreover, fat tissue can affect the visualization of its

adjacent tissue, such as MR angiography [72] and cartilage imaging [73]. Therefore,

fat suppression has been routinely used in many clinical MRI scans.

Fat suppression methods are based on the special properties of fat tissue. First,

fat typically has much shorter T1 values, e.g., about 150 ∼ 300 ms, than normal

water tissues which have T1 values on the order of seconds. So fat can potentially be

differentiated from water tissues by its unique T1. Second, in the spectral domain,

although fat has multiple peaks [74], its main spectral peak that takes most of the

energy is at about 3.5 parts per million (ppm) lower than the water peak, which

corresponds to about 224 Hz at 1.5T or 448 Hz at 3T. The bandwidths of the water

and fat spectra are on the order of tens of Hz, so fat can be separate from water in

the spectral domain.
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1.6.2 Pulse Design Methods

Over the last several decades, various pulse design methods have been proposed

to do fat suppression. One popular method is fat sat(uration) [28], which is based

on the spectral property of fat. This method uses a spectrally selective pulse to first

saturate fat spins without exciting water, and then dephases the saturated fat spins

using a large trapezoidal gradient waveform, aka gradient crusher, so that there is

no longitudinal fat magnetization for the following imaging pulse sequences. Fat sat

is compatible with most imaging sequences. However, this method is sensitive to B0

inhomogeneity, because the locations of the fat and water spectra in the frequency

domain shift with the local B0 fields, and a spectrally selective pulse may not be able

to accommodate large B0 inhomogeneity. Even for the case when B0 inhomogeneity

is not too severe, long pulse lengths may be required to handle the widened spectra

of fat and water due to B0 inhomogeneity, e.g., typical fat sat pulse is 10 ms long at

1.5 T and 5 ms at 3T. In addition, fat sat is also susceptible to B1 inhomogeneity,

because ideal fat sat needs to excite all fat spins by 900 tip angle which is impossible

in the presence of B1 inhomogeneity.

Another preparatory pulse for fat suppression is Short T1 Inversion Recovery pulse

(STIR) [75] [76], which is based on the unique T1 of fat. Although this method is

immune to B0 field inhomogeneity, it has many drawbacks, such as long scan time,

reduced SNR of water signal, and altered T1 contrasts.

Instead of preparatory pulses, spectral-spatial (SPSP) pulse was proposed to se-

lectively excite water tissue [30]. This pulse specifies excitation profiles in both spatial

and spectral domain, but it is still subject to B0 inhomogeneity and may have some

other drawbacks, e.g., poor slice profile or long pulse length.
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1.6.3 Fat-water Separation

There are still several applications where direct visualization of fat is desirable,

such as diagnosis of fatty tumors, quantification of visceral adipose tissue and diag-

nosis of hepatic steatosis [74]. Fat-water separation techniques which produce both

water-only and fat-only images are very useful for those applications.

Many fat-water separation methods are post image processing methods based on

special image sequences. One class of methods are based on the multiple acquisitions

with different echo times such that the behaviors of fat and water spins can be dif-

ferentiated due to the different resonant frequencies, and they are called Dixon-based

methods [4, 77, 78]. These methods decompose water and fat by linear combinations

of the images acquired with the multiple acquisitions. The initial two-point Dixon

method [77] is susceptible to B0 inhomogeneity, but this problem is mitigated by

methods proposed later [78]. Reeder et al. proposed an iterative method called

IDEAL (Iterative Decomposition of water and fat with Echo Asymmetry and Least

squares estimation) [79], which optimizes the echo times of the multiple acquisitions

in terms of noise performance. This method has been shown to be quite robust and

can be extended to decompose the multiple peaks of fat.

Another class of fat-water separation methods is based on steady-state free pre-

cession (SSFP) sequences [6]. These sequences feature high SNR efficiency and have

special signal models in terms of off-resonance frequencies of the spins. These signal

models can be manipulated and used for separation of fat and water [80–82]. As this

thesis presents a fat-water separation method motivated by the large-angle multiple-

acquisition (LAMA) balanced SSFP (bSSFP) method [81] in Chapter VI, we briefly

overview LAMA bSSFP in this section. For large-tip-angle (∼ 500 or greater) bSSFP

sequences with 0 or 1800 phase difference between every two successive RF pulses

(called 0 phase-cycled sequence and 1800 phase-cycled sequence respectively), their

signal models in terms of off-resonance frequency are approximately sine function
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and cosine function respectively:

S0(f + f0) = sin[πTR(f + f0)]

S180(f + f0) = cos[πTR(∆f + f0)]

(1.6.1)

where S0 and S180 are the signal of the 0 phase-cycled sequence and the 1800 phase-

cycled sequence respectively, and TR needs to be adjusted such that fat is put at the

signal null when water is at the signal peak. Based on these signal equations and

B0 map, f0(r), acquired separately, the water-only image, W (r), and the fat-only

image, F (r), can be calculated by linearly combining the two bSSFP images, S0(r)

and S180(r):

F (r) = S0(r) cos[πTRf0(r)]− S180(r) sin[πTRf0(r)]

W (r) = S0(r) sin[πTRf0(r)] + S180(r) cos[πTRf0(r)]

(1.6.2)

1.7 Fast Imaging in the Steady-State

Typical MRI sequences have TR values on the order of T1 values or even longer,

i.e., hundreds of milliseconds. As imaging time is one of the limitations of MRI,

many fast MRI methods have been proposed to reduce MRI scan time. One type of

fast MRI techniques use very short TR and is called fast imaging in the steady-state,

aka steady-state imaging. The TR values of the steady-state imaging sequences are

usually on the order of T2 values or even shorter, namely, from several milliseconds

to tens of milliseconds. These sequences can be classified into steady-state coherent

(SSC) sequences and steady-state incoherent (SSI) sequences, based on whether or

not the transverse magnetization goes naturally to steady-state between successive

RF pulses [6].
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1.7.1 Steady-State Incoherent Sequences

The SSI sequences are based on the elimination of any residual transverse magne-

tization before the next RF pulse [6]. One classic SSI sequence is spoiled gradient-echo

sequence (SPGR), aka FLASH or T1-FFE. This sequence is a gradient-echo sequence

with short TR as well as gradient crushers and RF spoiling to eliminate any transverse

magnetization at the end of each repetition. This sequence is typically used for T1-

weighted imaging. Figure 1.7.1 illustrates one repetition of a SPGR sequence where

the gradient-echo readout has balanced gradients and there is a large gradient crusher

to dephase the intra-voxel spins at the end of each repetition. For sequences with TR

longer than T2, gradient crushers are usually sufficient to eliminate all the remnant

transverse magnetization before the next RF excitation, but it is not the case when

TR < T2. Although with gradient crushers, the signals of the dephased spins in each

voxel cancel with each other completely, the transverse components of the spins are

still coherent and do not disappear by T2 decay, so they may be refocused in later

repetitions. Thus, additional operations are still needed to completely eliminate the

transverse magnetization at the end of each repetition.

Gx

Gy

Gz
C

P1

Figure 1.7.1: An illustration of SPGR sequence: a gradient-echo sequence with bal-
anced gradients as well as gradient crushers and RF spoiling.

One well-accepted method is RF spoiling which spoils nearly all the transverse
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magnetization by varying the bulk phase of the RF pulse over repetitions [83]. RF

spoiling makes the dephased spins incoherent and then eliminates the signals from

them, and thus none of the transverse component of the spins are in steady states.

However, the net signal of each voxel still needs to reach a steady state to produce

consistent data in each repetition. According to [83], to maintain the steady state of

all voxels at the end of each repetition, the net areas of the gradients should be the

same, hence the phase-encoding gradients have to be balanced. Suppose the change of

the bulk phase of the nth RF pulse is denoted as ψrf(n), so the phase of any refocused

magnetizationprior to the nth RF pulse is:

Pn =
∑
k

[ψrf(n− k) + ψg(r)]−
∑
j

[ψrf(n− j) + ψg(r)] (1.7.1)

where ψg(r) denotes the phase change of spins by gradients in the nth repetition and

it is a function of spatial locations but not of n as the net gradient areas are fixed in

each repetition, and the phase terms in
∑

j[·] with negative sign in front denotes the

repetitions where these spins experience the odd number of “pancake-like” flipping

by the RF pulse. To be refocused, these spins need to experience zero phase from the

gradients, so we have:

0 =
∑
k

ψg(r)−
∑
j

ψg(r) = ψg(r)(K − J) (1.7.2)

where K and J denote the numbers of the terms in
∑

k[·] and
∑

k[·] respectively, and

K = J . To have the spins to reach steady state, Pn needs to be independent of n, so

we have:

Pn =
∑

[ψrf(n− k)− ψrf(n− j)] (1.7.3)
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Since k and j are arbitrary, the following equation must be satisfied:

ψrf(n− k)− ψrf(n− j) = independent of n (1.7.4)

Thus, ψrf(n) should be a linear function of n:

ψrf(n) = an+ b (1.7.5)

where a and b are constants. As Pn is the phase change in the nth RF pulse, the

bulk phase of the RF pulses should be an quadratic function of n. So far, we only

obtain the conditions for the sequence with RF spoiling to reach steady state, and

more conditions are needed to guarantee that the refocused spins at the end of each

repetition is close to zero. In [83], empirical simulations show that the desired spoiling

can be achieved by setting a to be certain values and the results are not sensitive to

tissue types but the flip angle needs to be within a certain range. a = 1170 is one of

the well accepted values for SPGR sequences.

Since there is no transverse magnetization residual prior to the new RF pulse, SSI

sequences typically have good compatibility with magnetization preparation, such as

fat saturation and magnetization transfer [4].

1.7.2 Steady-State Coherent Sequences

For the SSC sequences, both the transverse and longitudinal magnetization com-

ponents at the end of each repetition contribute to the signal in the next cycle and no

spoiling technique is used [6]. Typical SSC sequences include steady-state free preces-

sion with free induction decay (SSFP-FID), aka GRASS, FISP or FFE, SSFP-Echo,

aka PSIF, SSFP or T2-FFE, and balanced SSFP (bSSFP), aka TrueFISP, FIESTA or

b-FFE [6]. Due to the contribution of the unspoiled transverse magnetization, SSC

sequences typically have some T2 contrast in addition to T1 contrast. In addition,
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as spins are coherent over different repetitions, SSC sequences are less interruptible

and thus are less compatible with magnetization preparations that are played in each

repetition.
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Figure 1.7.2: An illustration of bSSFP sequence. (a) One repetition of the sequence
where there are no gradient crushers and RF spoiling, and all the gra-
dients are balanced; (b) The path of the magnetization in steady state
during bSSFP scans where α denotes the flip angle and ∆MT1,T2 repre-
sents the T1 and T2 relaxations (from Fig. 2 in [2])

In this section, I only briefly review the bSSFP sequence mentioned in later chap-

ters. Figure 1.7.2 illustrates one repetition of bSSFP sequence where all the gradients

are balanced with zero net areas and there are no gradient crushers and RF spoiling.

The path of the magnetization in steady state during bSSFP scans is also shown in

Figure 1.7.2 where α denotes the flip angle and ∆MT1,T2 represents the T1 and T2

relaxations. As the magnetization in bSSFP are used very efficiently, bSSFP has the

highest SNR efficiency of all known sequences [84]. The contrast of bSSFP is T2/T1

weighted which usually produces good fluid-tissue contrast. One drawback of bSSFP

is that it is sensitive to B0 inhomogeneity. When the off-resonance frequency f0 is
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such that TRf0 is about odd multiples of 1
2
, the signal intensity drops off to near zero,

and thus the spatially smooth B0 map usually produces smoothly distributed dark

bands in the image, which are called banding artifacts.

1.7.3 Small-Tip Fast Recovery Imaging
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Figure 1.7.3: An illustration of STFR sequence (figures are from J-F Nielsen from
The University of Michigan). (a) One repetition of the sequence: all
the gradients are balanced, there is one tip-down excitation pulse at the
beginning and one tip-up pulse after the readout, β is the tip angle,
and there is a gradient crusher at the end and RF spoiling is required;
(b) The path of the magnetization in steady state during STFR scans
where the subscripts of M correspond to the time points numbered in
(a), the spin is tipped down and then tipped back up to the z axis after
a free precession time during the readout, and the final gradient crusher
and RF spoiling eliminate all the residual magnetization at the end of
the repetition.

Nielsen et al. [2] have proposed an SSI sequence called small-tip fast recovery

sequence (STFR). It produces bSSFP-like T2/T1 contrast images which have higher

SNR than SPGR images, but they are free of banding artifacts. Figure 1.7.3 illustrates

one repetition of the sequence where all the gradients are balanced, there is one

tip-down excitation pulse at the beginning and one tip-up pulse after the readout,

β is the tip angle, and there is a gradient crusher at the end. In addition, RF
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spoiling is required for this version of STFR. Figure 1.7.3 also shows the path of

the magnetization in steady state during STFR scans. In each repetition, the spin

is first tipped down and is then tipped back up to the z axis after a free precession

time, denoted as Tfree, during the readout. Due to B0 inhomogeneity, the transverse

magnetization precesses during the free precession time at the off-resonance frequency

f0, so the tip-up pulse is a tailored multi-dimensional spatial pulse that is designed

to match the phase map of the spins at the end of the free precession time, i.e.,

2πf0Tfree, so that those spins are tipped back up to the z axis. However, such tip-up

pulses typically do not work perfectly due to T1 and T2 relaxations and imperfect

pulse design, so a gradient crusher and RF spoiling are required to eliminate any

residual transverse magnetization.

With most transverse magnetization recycled by the tip-up pulse, STFR also uses

magnetization efficiently and produces high SNR images. As the longitudinal mag-

netization in the steady state at the beginning of each repetition is related to T1 and

T2 relaxations of the previous repetition, STFR images have T2/T1-like contrasts [2].

Thank to the tailored tip-up pulse, STFR images are free of banding artifacts. In

addition, this SSI sequence also has good compatibility with magnetization prepara-

tions.

Furthermore, an SSC version of STFR imaging has also been proposed recently

[85], which is called G-STFR. It simply removes the RF spoiling of the original STFR

sequence so that it becomes a SSC sequence. G-STFR has the same contrast as STFR

if there are no errors in the phase map of the excited pattern of the tip-up pulse, which

is rarely the case in practice. G-STFR is shown to be less sensitive to such errors

than STFR, so it works more robustly in practice [85]. Another interesting feature of

G-STFR is that its signal is a triangle-like function of off-resonance frequency when

tip-up pulse is set to be the time-reversal version of the tip-down pulse [85]. Chapter

VI proposes a fat-water separation method based on this feature.
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1.8 Miscellaneous

1.8.1 Cramer-Rao Lower Bound

The Cramer-Rao Lower Bound (CLRB) is a lower bound on the covariance of any

unbiased estimator under certain regularity conditions. Suppose θ̂(X) is an unbiased

estimator of θ ∈ Rp, the measurementsX ∼ f(x;θ), the distribution function f(x;θ)

is differentiable in θ, and the following regularity condition holds:

E[
∂

∂θ
log f(X;θ)] = 0 (1.8.1)

where E[·] denotes the expectation function. Then the lower bound of the unbiased

estimator covariance of θ̂(X) is:

cov[θ̂(X)] > F (θ)−1 (1.8.2)

where F (θ) is also known as Fisher information and is defined as:

F (θ) = E{[ ∂
∂θ

log f(X;θ)][
∂

∂θ
log f(X;θ)]T} (1.8.3)

1.8.2 Magnetization Transfer Contrast Imaging

Magnetization Transfer Contrast (MTC) Imaging is a special image contrast mech-

anism that is based on the magnetization transfer (MT) effect [4]. MT effect causes

MRI signal attenuation due to the interaction between the two pools of hydrogen in

human body, namely, free hydrogen protons, e.g., those of fluid, and restricted hydro-

gen protons , e.g. those of macro-molecules [86]. Specifically, as the restricted protons

have much broader spectra, ∼ 100 kHz, they have extremely short T2, ∼ 10µs, and

can not produce any detectable MRI signal; but these protons can be saturated by

RF pulses and then exchange magnetization with the free protons, which is the so-

33



called MT effect. Then the longitudinal magnetization of these free protons decreases

and thus the MRI signals are decreased. As the magnitude of MT effect is tissue-

type dependent, pulse sequences with MT prep(aration) may produce special image

contrasts.

To generate MT effect, MT pulses, which are typically off-resonance pulses, are

needed to saturate the restricted protons. To avoid direct excitation to the free

protons, MT pulses are typically far off-resonant, e.g., several kHz off-resonance fre-

quency. MT prep can be conducted either only once before a fast steady-state imaging

sequence [72], i.e., turbo MT prep, or in each repetition of the imaging sequence [87]

like the fat sat sequence, i.e., pulsed MT prep. MTC imaging has many clinical

applications, such as brain imaging for diagnosis of multiple sclerosis [88], cartilage

imaging [87], cardiac imaging [72], intracranial angiography [89] and breast imag-

ing [90].

1.9 Contributions

This thesis develops methods for fast MRI reconstruction and parallel excitation

B1 mapping, as well as methods of RF pulse design and steady-state imaging sequence

design for applications such as fat suppression:

(a) 1We propose a framework of iterative image reconstruction with separate mag-

nitude and phase regularization where compressed sensing is used for the magnitude

and special phase regularizers that are free of phase wrapping are designed for different

applications. The proposed method greatly improves the phase image reconstruction

while accelerates the data acquisition with compressed sensing.

(b) 2A modified Bloch-Siegert B1 mapping is proposed to efficiently acquire both

magnitude and phase of the B1 maps of parallel excitation systems. A regularized

1See Chapter II and [68,91]
2See Chapter III and [92,93]
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method is then proposed to jointly estimate the B1 magnitude and phase to improve

the results in low SNR regions. Furthermore, we propose to optimize the coil combi-

nations in this parallel excitation B1 mapping sequence based on Cramer-Rao Lower

Bound analysis, to improve the quality of the raw data for B1 estimation.

(c) 3We propose an efficient 4D spectral-spatial fat sat pulse that uniformly sup-

presses fat without exciting water in the presence of B0 and B1 inhomogeneity with

single channel or parallel excitation system. At 3T, we show that the proposed pulse

can work much more robustly than the standard spectrally selective fat sat pulse with

much shorter pulse length.

(d) 4We apply the proposed fat sat pulse to steady-state incoherent sequences,

namely, SPGR and STFR, using a modified RF spoiling scheme. We tested these

proposed sequences on applications like cartilage imaging and MR angiography and

demonstrated their ability to simultaneously produce fat suppression and MT prepa-

ration. We show that the proposed sequences have less limitation on the minimal TR

and potentially lower the overall SAR.

(e) 5Motivated by [81], we propose to use the G-STFR sequence to separate water

and fat and remove banding artifacts simultaneously.

3See Chapter IV and [33,94]
4See Chapter V and [95,96]
5See Chapter VI and [97]
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CHAPTER II

Separate Magnitude and Phase Regularization via

Compressed Sensing 1

2.1 Introduction

In most MRI applications, only the voxel magnitudes are of interest. However, in

applications like field map estimation [98] and phase contrast imaging [69,70], phase

maps also contain important information and need to be accurately estimated. There-

fore, we want to reconstruct images with both accurate magnitude and phase compo-

nents from raw k-space data. Regularized iterative algorithms can reconstruct com-

plex images with certain regularization terms for complex unknowns (the unknown

image) based on certain priors, e.g., piece-wise smoothness (Total Variation [63]).

Such priors, however, are usually based on properties of the magnitude component

of medical images, and may be less suitable when variation of the phase component

over space is not negligible. Meanwhile, such reconstructions may not exploit prior

knowledge of the phase image which is often different from that of the magnitude

image, causing the Signal to Noise Ratio (SNR) of phase image in low magnitude

areas to be extremely low. To solve this problem, Fessler et al. proposed an iterative

reconstruction method [99] in which the phase and the magnitude images are reg-

1This chapter is based on [91] [68]

36



ularized for their own features separately, preserving both smoothness of the phase

image and resolution of the magnitude image. However, this method cannot handle

big jumps in wrapped phase maps, due to non-convexity of the cost function for the

phase. Moreover, we have found that when k-space data are undersampled, Com-

pressed Sensing (CS) methods [61] are more effective than the simpler smoothness or

edge-preserving regularizers for the magnitude component considered in [99].

Undersampling k-space data is one of the main ways to accelerate MRI acquisi-

tions, e.g., in parallel imaging and in CS. CS has shown good performance in reducing

k-space samples by exploiting sparsity of medical images in certain transform domains,

e.g., finite differences and wavelet transforms. However, typically the assumption of

sparsity is based on the properties of the magnitude component, and CS may not

work well when rapid spatial phase variations exist. To mitigate this problem, CS re-

construction methods often use phase estimation [61] to make phase corrected images

so that the phase variations are reduced, making images sparser; such estimation is

done by acquiring low frequency regions of k-space. A similar idea was introduced

in the partial Fourier partially parallel imaging technique [100] which is based on

conjugate symmetry in k-space for real images [101]. In that method, the phase cor-

rected image is supposed to be almost real, so its imaginary components energy is

constrained to be very low. The performance of both methods relies on a phase map

estimation that may require additional acquisition and may not be accurate enough.

Meanwhile, such estimation is based on the fact that phase map is spatially smooth,

which might not be true in certain applications, e.g., in PRF-shift thermometry [69]

and in phase-contrast velocity mapping [70]. In fact, it is contradictory that in the

cases when phase correction is most necessary, i.e., rapid spatial phase variation, it is

most difficult to estimate phase accurately from low frequency k-space data. Thus,

phase correction may not greatly benefit magnitude reconstruction when phase varia-

tion is severe. Furthermore, since only low frequency k-space measurements are used,

37



neither of those methods can reconstruct details in phase images, such as hot spots

in thermometry and high velocity arteries in velocity mapping.

Therefore, it is tempting to extend the idea of using separate regularization of the

magnitude and phase components by using CS, to improve the reconstruction of both

magnitude and phase images while accelerating data acquisitions by undersampling

k-space data. This combination theoretically takes advantages of these two techniques

by exploiting sparsity of magnitude component and smoothness (or some other fea-

tures) of phase component. Thus, Zibetti et al. proposed new regularization terms to

approximate CS regularizer (l1 norm) for magnitude and first-order roughness penalty

for phase in [9], which showed better results than before. This method, however, has

several limitations: first, it is only applicable for first-order differences operator in CS

regularization, which is usually not the optimal one; second, the phase regularization

term is still weighted by its corresponding magnitude, which may cause low SNR in

low magnitude areas, in other words, phase is still not regularized independently from

magnitude; last, the penalty function for phase is concave when neighboring phase

difference is large, e.g., [π/2, 3π/2], which requires a good initialization for phase.

We propose a reconstruction method that combines CS with separate regulariza-

tions for magnitude and phase for more general MRI reconstruction applications. In

the framework of the separate regularization in [99], we apply CS regularization for

the magnitude image but use a new phase regularizer that is applicable for wrapped

phase maps, and we randomly undersample k-space data. Since this framework is

general enough to design different regularizers for specific types of phase maps, we

developed another type of phase regularizer for applications that have distinct areas

on top of smooth background in the phase map, e.g., hot spots in temperature maps

and arteries in velocity maps.

In this work, we start with the basic MRI signal model. Then the reconstruction

cost functions are discussed in detail by comparing conventional CS method with our
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proposed method and introducing new phase regularizers with their properties. Next,

we discuss the respective optimization algorithms for magnitude and phase. Finally,

the proposed method was tested by comparing with conventional phase-corrected CS

in both simulation studies and in-vivo data reconstructions; in the simulation studies,

we simulated an abdomen thermometry data with hot spots in the phase map; in the

in-vivo data reconstruction, we acquired velocity mapping data of the femoral artery

by a phase-contrast bSSFP sequence on 3T GE scanner.

2.2 Theory

2.2.1 Signal Model

In this work, we only discuss single coil reconstruction, but the algorithms easily

generalize to parallel imaging using sensitivity encoding (SENSE) [60]. The baseband

signal equation of MRI is the following:

s(t) =

∫
m(r⃗)e−ix(r⃗)e−i2πk⃗(t)·r⃗dr⃗ (2.2.1)

where r⃗ is the coordinate in spatial domain, m(r⃗) is the object “magnitude”, x(r⃗) is

the phase map, and k⃗(t) is the k-space trajectory. We allow m(r⃗) to take negative

values to avoid any π jumps aborbed into the phase x(r⃗). We assume a short data

acquisition time so that the off-resonance induced phase is contained in x(r⃗). In MRI

scanning, complex Gaussian modeled random noise ϵ(t) is involved in the detected

signal, which is

y(t) = s(t) + ϵ(t) (2.2.2)

where y(t) is the detected signal. For computation, we discretize the signal equation

as follows:

y = A(meix) + ϵ (2.2.3)
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where y = [y1, y2, . . . , yNd
]T ∈ CNd , are the measured data; A ∈ CNd∗Np is the

system matrix of MRI, e.g., the discrete Fourier transform (DFT) matrix, m =

[m1,m2, . . . ,mNp ]
T ∈ RNp is the magnitude image, x = [x1, x2, . . . , xNp ]

T ∈ RNp

is the phase image, and ϵ = [ϵ1, ϵ2, . . . , ϵNd
] ∈ CNd is the complex noise. (We write

meix as as shorthand for element-wise multiplication of these two vectors.) In this

work, our goal is to reconstruct m and x simultaneously from undersampled k-space

data y.

2.2.2 Cost Functions

In conventional CS [61], applying a regularized approach for (2.2.3) yields the cost

function:

Ψ0(f) = ∥y − Af∥2 + βR(f) (2.2.4)

where f = meix, y denotes randomly undersampled data in k-space, ∥ · ∥ denotes

l2 norm, β is the scalar regularization parameter, and R(·) is the CS regularizer;

usually, R(·) is the l1 or l0 norm of finite differences or a wavelet transform. The esti-

mated magnitude and phase, i.e., m̂ and x̂ are then computed from the reconstructed

complex image f̂ , where f̂ = argminf Ψ0(f).

To reduce phase variation of f , phase-correction is often applied to better sparsify

the image f in the sparse transform domain [61]:

Ψ1(f 1) = ∥y − AeiPf 1∥2 + βR(f 1) (2.2.5)

where P is the estimated phase map from low frequency k-space, eiP denotes a

diagonal matrix whose diagonal entries are exponentials of P in the same order. The

unknown f 1 should then be closer than f in (2.2.4) to the magnitude image m which
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is sparser. The final reconstructed image for conventional CS is:

f̂ = eiP f̂ 1, m̂ = |f̂ |, x̂ = ∠f̂ (2.2.6)

where f̂ 1 = argminf1
Ψ1(f 1).

In this work, this method is used for comparison, and we choose R(·) to be l1

norm of wavelet transform; then the cost function becomes:

Ψ1(f 1) = ∥y − AeiPf 1∥2 + β∥U ′f 1∥1 (2.2.7)

where U is the wavelet transform matrix and ∥ · ∥1 denotes l1 norm.

In contrast, we propose a cost function with separate regularizations for magnitude

and phase components as follows:

Ψ0(x,m) = ∥y − Ameix∥2 + β1Rx(x) + β2Rm(m) (2.2.8)

where Rx(x) and Rm(m) denote the regularizers for x and m, β1 and β2 denote

the scalar regularization parameters. For the magnitude component m, we exploit

the sparsity of the magnitude in wavelet domain by regularizing the l1 norm of the

wavelet coefficients of m. For the phase component x, we select the regularizer

according to features of the phase map. For a smooth phase map, we use a typical

first-order finite differences regularizer (called “regularizer 1” hereafter) to enforce

spatial smoothness [99]. The cost function then becomes:

Ψ1(x,m) = ∥y − Ameix∥2 + β1∥Cx∥2 + β2∥U ′m∥1 (regularizer 1) (2.2.9)

where C is finite differencing matrix that penalizes roughness. Note that the argu-

ments of the cost function are real valued.
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Because the phase x appears in an exponential in the data fit term, the cost

function is non-convex; indeed, it is 2π periodic. When this term is combined with

regularizer 1, it can be difficult for a descent algorithm to find a desirable local min-

imum, particularly if the range of the true phase map values exceeds a 2π interval.

We observed empirically that descent algorithms frequently converged to undesirable

local minimizers in this situation. To address this problem, we investigated a dif-

ferent phase regularizer that is also periodic, by regularizing the exponential of the

phase instead of the phase itself. This regularizer (called “regularizer 2” hereafter) is

described as:

R2(x) = ∥Ceix∥2 (regularizer 2) (2.2.10)

Note that the unit of x has to be radians here. This regularizer accommodates phase

wrapping, because the wrapped phase values will be equivalent to the unwrapped

ones when exponentiated [102]. However, this choice introduces some non-linearity

to the regularization term, which requires examination. To explore it, we consider an

arbitrary pair of neighboring pixels (x1, x2) that are penalized in regularizer 2:

|[Ceix]k|2 = |eix1 − eix2 |2 = 2(1− cos(x1 − x2)) = 2(1− cos(t)) (2.2.11)

where k corresponds to x1 and x2 in regularizer 2, and t is the finite difference x1−x2.

In contrast, regularizer 1 has this corresponding formula:

|[Cx]k|2 = (x1 − x2)
2 = t2 (2.2.12)

Fig. 2.2.1 compares 2(1 − cos(t)) with t2, (t − 2π)2 and (t + 2π)2, showing that

regularizer 2 approximates regularizer 1 in every period and therefore allows phase

wrapping without changing the roughness penalty. As can be seen, the new regularizer

is a very good approximation to the old one in intervals between 2nπ ± 1.5 with n =
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Figure 2.2.1: Comparison between the two regularizers (regularizer 1: t2; regularizer
2: 2(1− cos(t)).)

all integers, which are sufficiently wide intervals for most MRI phase maps. Therefore,

in principle, this regularizer will not only handle the phase wrap but also preserve

smoothness of the phase map. Note that Rx(x) is concave for large phase differences

(∈ (2nπ + π/2, 2nπ + 3π/2)), which is the same problem in [102]. Fortunately, such

problem can be avoided in most cases by choosing a sufficiently good initial phase

map for the reconstruction (discussed later in the paper). Therefore, if no extremely

sharp edges exist in the true phase map, the value of t in our reconstruction will often

be within the convex domain of the regularization term, i.e., (2nπ− π/2, 2nπ+ π/2).

To sum up, the proposed cost function for typical cases with smooth phase maps is:

Ψ2(x,m) = ∥y − Ameix∥2 + β1∥Ceix∥2 + β2∥U ′m∥1 (regularizer 2) (2.2.13)
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Some applications have more complicated phase maps, so only enforcing phase

smoothness may be suboptimal. Fortunately, the proposed cost function is general

enough to introduce other regularizers that are designed for specific applications.

For example, in PRF-shift temperature mapping, phase maps may have hot spots

in thermal ablation therapy [69]; in phase contrast velocity mapping, phase maps

may have velocity information of arteries which are in systole. In both cases, the

phase map will have relatively small distinct areas on top of a smooth background.

To estimate such phase maps more accurately, we propose to apply edge-preserving

phase regularizers to preserve hot spots or contracting arteries while still smoothing

the background.

Although we ultimately want to extend regularizer 2 in this application so that

wrapped phase maps could be properly regularized, we start with a conventional

edge-preserving regularizer for non-wrapping phase maps, because it can be used in

the initialization step which will be discussed later. This edge-preserving regularizer

for non-wrapping phase (called “regularizer 3” hereafter) is:

R3(x) =
K∑
k=1

ψ([Cx]k) (regularizer 3) (2.2.14)

where ψ(·) denotes an edge-preserving potential function, k is the row index, and K

is the number of rows of C. For edge preservation, ψ(·) should be non-quadratic and

satisfy: ωψ(t) = ψ̇(t)/t is non-increasing and limt→∞ ψ̇(t) ∈ (0,∞) [62]. There are

many typical edge-preserving potential functions, e.g., hyperbola, Cauchy, Geman &

McClure, etc. [62]. Since they are all non-quadratic, it complicates the optimization

(shown in Appendix A). Obviously, this regularizer cannot handle wrapped phase,

because it will treat phase wraps as edges instead of enforcing smoothness.

Thus, we designed a new regularizer, trying to regularize wrapped phase maps

while preserving edges. Incorporated with the edge-preserving potential function in
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the regularizer, the new cost function becomes:

Ψ4(x,m) = ∥y − Ameix∥2 + β1

K∑
k=1

ψ(|[Ceix]k|) + β2∥U ′m∥1 (regularizer 4)

(2.2.15)

(This phase regularizer is called “regularizer 4” hereafter). Similar to regularizer

3, there are many choices for potential functions. To illustrate this regularizer, we

consider the hyperbola function, which is

ψ(s) = δ2(

√
1 + |s

δ
| − 1) (2.2.16)

where δ is the parameter to tune how much edge-preserving we need. Note that the

unit of x has to be radians, but δ is unitless for regularizer 4. Similar to (2.2.11), the

corresponding formula for regularizer 4 is:

ψ(|[Ceix]k|) = ψ(|eix1 − eix2 |) = ψ(
√
2(1− cos(t))) (2.2.17)

where t = x1 − x2. Fig. 2.2.2 compares [R(x)]k of regularizer 1 and regularizer

4. As can be seen in this plot, regularizer 4 does have edge-preserving properties

compared to regularizer 1; here δ = 0.005, which was chosen for velocity mapping

reconstruction in the next section Similar to regularizer 2, the exponential terms in

regularizer 4 makes the cost function non-convex, but we have mitigated this problem

by certain strategies that will be discussed in the next section.

Table 2.1: summary of the four regularizers
Regularizer 1 R1(x) = ∥Cx∥2
Regularizer 2 R2(x) = ∥Ceix∥2
Regularizer 3 R3(x) =

∑K
k=1 ψ([Cx]k)

Regularizer 4 R4(x) =
∑K

k=1 ψ(|[Ceix]k|)
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Figure 2.2.2: comparison of regularizer 1: t2, regularizer 2: 2(1 − cos(t)), and regu-
larizer 4: ψ(

√
(2− 2 cos(t)))).

2.2.3 Optimization Algorithms

Our goal is to estimate x and m from data y by minimizing the cost function:

(x̂, m̂) = argmin
x,m∈RNp

Ψl(x,m) (2.2.18)

where l = 1, 2, 3 or 4, and Np is the number of pixels in each image. We jointly

estimate the phase and magnitude by alternately updating each of them in each

iteration:

x(n+1) = argmin
x∈RNp

Ψl(x,m
(n)) (2.2.19)

m(n+1) = argmin
m∈RNp

Ψl(x
(n+1),m) (2.2.20)

There are many optimization algorithms for CS, and we choose to use the iterative
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soft thresholding (IST) algorithm [62] to update m in (2.2.20). Specifically, we firstly

design a separable quadratic surrogate function for the data fit term according to the

optimization transfer principle [62], and then use the IST algorithm to minimize the

surrogate function. The update formula was derived for real unknowns:

m(n+1) = U ∗ soft{U ′ ∗m(n) +
1

č
Re{U ′A′

x(y − Axm
(n))}, β2

2č
} (2.2.21)

where soft{t;α} = (t−α ∗ t
|t|)∗1{|t| > α}, Re{t} is the real part the complex number

t, Ax , A ∗ diag{ex
(n+1)
j }, and č , ρ(A′A), which is the spectral radius of A′A and

e.g., č = Np when we use Cartesian sampling.

It is more challenging to update x, because the cost function for x is nonlinear

and non-convex. One way to approach this problem is to use optimization transfer

as in [62]. We have investigated this approach for the cost function with regularizer 1

by using De Pierros trick [103] to design a quadratic surrogate function. However, it

turned out to converge very slowly. Although this algorithm may work well for images

that are sparse in the image domain, e.g., angiography images, we prefer to minimize

the cost function in a more generally practical way. Therefore, we apply precondi-

tioned conjugate gradient with backtracking line search (PCG-BLS) algorithm [62]

to mitigate such problem. The updating formula is derived as follows (see Appendix

A for details):

x(n+1) = x(n) + α̂nd
(n) (2.2.22)

where d(n) is the search direction derived by PCG algorithm [62], α̂n is the step size

α at the nth iteration which is chosen by Newton-Raphson algorithm with backtrack-

ing strategy to guarantee monotonicity [62]. The formula of the Newton-Raphson

algorithm for updating the step size is:

α(k+1) = α(k) − ḟn(α
(k))

f̈n(α(k))
(2.2.23)
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where fn(α) = Ψl(x
(n) + αd(n),m(n)). These step size optimization formulas for the

four regularizers are shown in Appendix Arespectively. Since this algorithm alone

does not guarantee monotonicity, we need to use the backtracking strategy [62] to

ensure monotonic decrease of Ψl.

As one would expect, this nonlinear optimization algorithm has higher computa-

tional complexity than conventional CS optimization. For conventional CS by IST,

the operations that dominate in each iteration are 2 A-operations, i.e., Fast Fourier

transforms, and 2 U-operations, i.e., wavelet transforms. For the proposed method,

updating m takes slightly shorter time than conventional CS, because although there

are also 2 A-operations and 2 U-operations in each iteration, parts of them are real

number operations instead of complex number operations in conventional CS opti-

mization. However, the nonlinear optimization for x in the proposed method is much

slower: in each iteration, there are 3Ns A-operations +2Ns C-operations, i.e., tak-

ing finite difference transform, for computing the gradients, 3Ns ∗ Na A-operations

+3Ns ∗ Na C-operations for the Newton-Raphson updating, and Ns ∗ Na ∗ Nb A-

operations +Ns ∗ Na ∗ Nb C-operations for the backtracking part, where Ns is the

number of sub-iterations in each iteration, Na is the number of iterations for the line

search and Nb−1 is the number of backtracking steps. Empirically, we choose Ns = 2,

and on average Na is 2.5 and Nb is about 1.1 on average; therefore, in each iteration,

there are about 27 A-operations and 25 C-operations. A-operation is O(N log2N),

U-operation and C-operation are both O(N), where N represents Nd,Np or K. Since

we use first order finite difference and 3-level wavelet transform, C-operation is much

faster than U-operation. Thus, the proposed method is roughly 10 times slower than

conventional CS. However, we still achieve an acceptable computation time by the

implementation shown in the appendix; for example, it takes about 55 s to run the

proposed method with 120 iterations for the 2D data in the in-vivo experiments of

Section 2.3.3 on a computer with Intel (R) Core (TM)2 Quad CPU Q9400 @ 2.66GHz,
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4GB RAM and Matlab 7.8. For 3D data, a more efficient implementation in C++

may be necessary, but we believe that the computation time can be made acceptable.

As mentioned before, monotonically decreasing a non-convex cost function cannot

guarantee finding a global minimizer for x for an arbitrary initial guess; therefore a

good initial estimate for the phase image is important. In this study, since the cost

function of conventional CS is convex, we set the initial guess for x and m by using

the phase and magnitude of the result of conventional CS reconstruction method

for complex voxels by IST (the cost function is like (2.2.4)). During this setup, we

set the unknowns to be f = meix, and the initial guess of f is the inverse DFT

of zero-padded k-space data; then we use a similar algorithm to (2.2.21) with some

modifications:

f (n+1) = U ∗ soft{U ′ ∗ f (n) +
1

č
A(y − Af (n))),

β2
č
} (2.2.24)

Then we set x(0) = ∠f (n) and m(0) = |f (n)| for n = 1 or 2 usually. Such initializa-

tion for phase and magnitude turns out to be very good for most cases except for

regularizer 4 which has a narrower convex domain. To solve this problem, we take

one more step to form the initial guess, which is to use regularizer 2 or 3 for a few

iterations, because both of them have wider convex domains than regularizer 4. Then

we believe we get the phase map closer to the desired phase map, which can help lead

reconstructions using regularizer 4 to a desirable local minimum.

Like all the other regularized reconstruction methods, the regularization parame-

ters should be carefully selected. For the parameter of the roughness penalty term,

i.e., β1, the value can be selected according to the desired spatial resolution of the

phase image [98]. However, it is still an open problem for selecting parameters of the

l1 norm term. In this study, we choose the parameter β2 empirically.
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2.3 EXPERIMENTS

2.3.1 Experiment Setup

In our experiments, we compared the performance of the proposed methods with

conventional phase-corrected CS that uses the IST algorithm (2.2.24) for optimiza-

tion. All the data were sampled in the 2D Cartesian grid of k-space. The center of the

k-space was fully sampled according to Nyquist sampling theorem, which preserves

low frequency information and also allows for phase correction in conventional CS.

The rest of k-space was randomly undersampled (as shown in Fig. 2.3.1). Three

different image masks are used in the experiments: for reconstruction, we used a

“loose” mask that was obtained from the inverse DFT of the raw undersampled data;

in the results comparison, we use the true mask that is taken from the true image

for a fair evaluation; for evaluation of the regions of interest (ROI), we use the ROI

mask that is taken manually from the true phase image and only covers the ROIs.

Regularization parameters were empirically chosen to be “the best” for each method,

in terms of Normalized Root Mean Square Error (NRMSE) or Root Mean Square

Error (RMSE) which were used for magnitude images and phase images respectively.

NRMSE and RMSE are defined as below:

NRMSE =
∥mr −mt∥

∥mt∥
(2.3.1)

RMSE =
∥xr − xt∥√

Np

(2.3.2)

where mr and mt denote the reconstructed and true magnitude images respectively,

xr and xt denote the reconstructed and true phase images respectively, and Np is

the number of pixels in each image. Moreover, we ran the algorithm until the cost

function appeared to reach a minimum. In both methods, the sparse transform matrix
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(U) was set to be a 3-level Haar wavelet transform matrix which is unitary.

Figure 2.3.1: The sampling pattern in k-space

2.3.2 Experiments with simulated data

We simulated a thermometry scan using an abdomen T2 weighted magnitude

image (upper left most in Fig. 2.3.2). We used the corresponding field map, scaled

into the interval (−2π, 2π), as the background of the true phase map. The true

complex image was cropped to be a 320∗208 matrix (40 cm ∗26 cm FOV). To reduce

the discretization effects that might happen in the synthesized data, we simulated

the data from a higher resolution “true image”. Since there is not an analytical

expression or a higher resolution version of this simulated object, we synthesized the

higher resolution “true image” by linearly interpolating the original true image to

be 960 ∗ 624. In addition, we added four “Gaussian hot spots”, the peak values of

which are from 3.5 to 4 radians, onto the interpolated background phase map to

simulate thermal ablation (lower left most in Fig. 2.3.2). We chose this wide range of

phase values to test performance of the proposed algorithm for wrapped phase maps.

This “true complex image” is used as an approximation of the continuous phantom.

Then we synthesized the fully sampled single-coil k-space data by taking DFT of

the “true complex image”, and took the k-space data in a 320 ∗ 208 matrix with
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sampling intervals corresponding to 40 cm ∗26 cm FOV. Then we added Gaussian

distributed complex noise to mimic MRI scanner noise, and the noise level was fixed

through all these simulation experiments such that the Signal-to-Noise-Ratio (SNR)

was approximately 24 dB. The SNR is defined in k-space, which is

SNR = 20 log(
∥yt∥

∥yt − y∥
) (2.3.3)

where yt denotes the noise-free k-space data, y denotes the noisy k-space data, and

both are fully sampled in k-space. Afterwards, the final simulated data were formed

by randomly sampling the Cartesian grid, with the center (3%) of the k-space fully

sampled, as shown in Fig. 2.3.2. In the experiments, the proposed method and con-

ventional CS approach were tested at different sampling rates ranging from 20% to

60%. Since some referenceless PRF-shift temperature mapping methods [104, 105]

have been proposed in literature, it is realistic to just reconstruct a certain frame

without considering the reference frame in this simulation study. The reconstruction

results are compared by visual inspection as well as NRMSE and RMSE of the recon-

structed images with respect to the “low resolution true image”. This “low resolution

true image” is obtained from the 320 ∗ 208 fully sampled noiseless k-space data by

an inverse DFT. For conventional CS, we estimated the slow-varying reference phase

map by taking the inverse DFT of the fully sampled k-space center. The proposed

method used the regularizer 4 for the phase map, where we chose hyperbola func-

tion as the edge-preserving potential function, i.e., ψ(t) = δ2(
√

1 + |t/δ|2 − 1) with

δ = 0.0005 (radians) chosen empirically. The regularization parameters chosen for

the simulation studies are shown in Table 2.2.

Fig. 2.3.3 compares NRMSE of magnitude maps with the true mask (called “entire

magnitude” hereafter) and RMSE of phase maps with the true mask (called “entire

phase” hereafter) at different sampling rates of conventional CS and the proposed
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method. We also compared the RMSE of the phase with the ROI masks, as shown

in Fig. 2.3.3 (left), to evaluate the performance of the two methods for the regions

around the hot spots, which are more important than other regions. The proposed

method reduced NRMSE of the entire magnitude images by 10% ∼ 20%, while re-

duced the RMSE of the entire phase images by about 60% ∼ 70%; for the phase in

the hot spots, the proposed method achieved about 50% ∼ 60% lower RMSE. Fig.

2.3.2 illustrates the results at 40% sampling rate; the regions outside the object have

been masked out. Compared to conventional CS, the proposed method produces a

much cleaner background phase map while preserving the hot spots information, es-

pecially for the hot spots in the low intensity regions where the important hot spots

information is corrupted by noise in the results by conventional CS. However, the

reduced NRMSE in the magnitude images is not very visible, which will be discussed

in the next section.

To demonstrate the importance of using regularizer 4, we replaced the regularizer

4 by regularizer 1-3 in the proposed method and reconstructed the data with 40%

sampling rate. The regularization parameters are shown in Table 2.3, and δ is set to

0.0005 radians for regularizer 3. Fig. 2.3.4 shows the phase maps and phase error

maps of the reconstructed results. Regularizer 1 and regularizer 3 cannot handle the

phase wrapped regions and tend to enhance the phase wrapping boundaries due to the

smoothing within different convex domains; therefore, it is reasonable that regularizer

3 makes less “jumps” over the phase wrapping boundaries than regularizer 1 does.

As expected, regularizer 2 tends to over-smooth the hot spots, especially the one

pointed by the arrow; however, as shown in Fig. 2.2.1, regularizer 2 still has some

edge-preserving effect, so the result by regularizer 2 was not far from the true phase;

but it still not as good as the result by regularizer 4 (shown in Fig. 2.3.2). Table 2.3

also shows the RMSEs of ROI in the phase maps by regularizer 1-4. For initializing

the proposed method, we believe that the results obtained by regularizer 2 or 3 tend
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to be in the convex domain that contains desired local minimum of the ultimate cost

function with regularizer 4.

Figure 2.3.2: Top row: true magnitude, magnitude by CS, magnitude by the proposed
method, phase error map by CS; bottom row: true phase, phase by CS,
phase by the proposed method, phase error map by the proposed. (0.4
sampling rate, background is masked out, and the units of the phase
are radians.)

Table 2.2: regularization parameters in the simulations
0.2 0.3 0.4 0.5 0.6

β 1248 3744 2912 2912 4576
β1/10

6 10 8 5 7 7
β2 832 1248 1248 2080 2080
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Table 2.3: regularization parameters in the simulations
Reg. 1 Reg. 2 Reg. 3 Reg. 4

β1/10
4 1 1 800 500

β2 2912 2912 2912 1248
RMSE of ROI (radians) 0.930 0.087 0.282 0.081
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Figure 2.3.3: The regions masked for evaluating hot spots (left), NRMSE of the mag-
nitude image (middle), RMSE of the entire phase image and RMSE of
the phase masked for ROI, i.e., the hot spots, (right).

2.3.3 Experiments with In-vivo Data

We acquired in-vivo velocity mapping data around a human femoral artery using

a phase-contrast bSSFP sequence in 3T GE scanner (Signa Excite HD) with an 8-

channel cardiac surface coil array. These multi-coil Cartesian sampled data contain

10 temporal frames as well as the reference frame (no velocity encoding). In each

frame, the Cartesian grid is 160 ∗ 160 which covers a FOV of 16 cm*16 cm. For

demonstrating the 2D reconstruction algorithm for single coil, we used the reference

frame and the 6th frame (capturing the peak velocity of the aorta) in coil 2 where

the aorta signal is strong. Since the original data are fully sampled, we randomly

undersampled them in the manner as in Fig. 2.3.1 to mimic the compressed sensing

sampling; in particular, the sampling rate was chosen to be 1/3 of fully sampling,

including 4% of fully sampled center.
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Figure 2.3.4: The reconstructed phase or phase error map by regularizer 1-3, the units
are in radians

Due to the reference frame, the reconstruction procedure was slightly different

from the simulation experiment. Instead of reconstructing from one set of 2D data,

we first reconstructed the reference frame by each method, and then we reconstructed

the velocity encoded image with background phase removed by incorporating the

reconstructed reference frame into the system matrix, which is a similar strategy to

phase correction in CS as shown in (2.2.7). The cost functions of the two methods

for the second step are shown below:

Ψ1(f 1) = ∥y − A(eiP . ∗ eiRp . ∗ f 1)∥2 + βR(f 1) (2.3.4)
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Ψ1(x1,m) = ∥y − A(eiRp . ∗m. ∗ ex1∥2 + β1Rx(x1) + β2Rm(m) (2.3.5)

where (2.3.4) and (2.3.5) are for CS and the proposed method respectively, Rp is

the reference phase which contains no velocity information, f 1 should contain only

velocity information in its phase, and x1 should contain only velocity information.

In (2.3.4), the CS method also has low frequency phase correction. In the proposed

method, we used regularizer 2 to reconstruct the reference image, a smooth phase

map, as it has no velocity encoding; we used the regularizer 4 to reconstruct the

velocity map. Furthermore, we also investigated the performance of the proposed

method with regularizer 1-3. The potential function for regularizer 4 (regularizer 3)

was the hyperbola function with δ = 0.005 (radians). The regularization parameters

for all the experiments are shown in Table 2.4.

Table 2.4: regularization parameters in the in-vivo experiments
CS Reg. 4 Reg. 1 Reg. 2 Reg. 3

β1/10
3 60 5 5 50

β or β2 800 800 800 800 800

The results are shown in Fig. 2.3.5. In this experiment, since there is no “true”

image for comparison, the reconstruction results from the fully sampled data by

inverse DFT are shown in the first row of Fig. 2.3.5 for comparison; the second and the

third row are the results by CS and the proposed method respectively. In the figure,

the first, second and third column are the magnitude images, the reference phase maps

and the velocity maps respectively. Similar to the simulation experiment, both of the

methods (CS and the proposed) can reconstruct a comparably good magnitude image

from undersampled data. In the second column of Fig. 2.3.5, the reference phase map

produced by the proposed method is much smoother than that by conventional CS.

In the last column, the proposed method gives us a velocity map that clearly shows a
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Figure 2.3.5: From the 1st row to the 3rd row: results by inverse DFT, conventional
CS and the propose method; from the 1st column to the 3rd column:
the magnitude, the reference phase and the velocity map. (The units of
2nd and 3rd columns are radians and cm/s respectively)

bifurcated aorta on top of a reasonably smooth background, which is much less noisy

than the noisy velocity map produced by conventional CS.

In the right upper corner of the velocity map by the proposed method (Fig. 2.3.5),

there is an area that is not smooth; this is due to the inconsistency between the

reference frame and the velocity encoded frame, which appears to be caused by the

unreliable reference phase in that low intensity area.

Fig. 2.3.6 shows the phase maps reconstructed by the proposed method with

regularizer 1, 2 and 3. Similar to the results in the simulation studies, while regularizer
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Figure 2.3.6: “R” denotes “regularizer”; left: phase map by the proposed method
with R1; middle: phase map by the proposed method with R2; right:
phase map by the proposed method with R3

2 smooths the background (except for the phase wraps), it also tends to over-smooth

the arteries, which is undesirable. Since this particular problem has no phase wraps

if initialized properly, the result by regularizer 1 just has some over-smoothed arteries

and the one by regularizer 3 is as good as the one by regularizer 4 (shown in Fig. 2.3.5);

both of them do not have phase wrapping problem. Then for this case, regularizer 3

provides better initialization than regularizer 2.

2.4 DISCUSSION

We have proposed two cost functions (2.2.13,2.2.15) and iterative algorithms

(2.2.21-2.2.23) for reconstruction of magnitude and phase from undersampled k-space

data. The key property of the proposed method is that one can adapt the regularizer

for the magnitude and phase images individually.

The cost function is non-convex, so we cannot guarantee that the algorithm will

converge to a global minimum. To mitigate this drawback, we introduced some

suitable strategies for initialization. According to the simulation studies and real data

experiments, it suffices to initialize by inverse DFT of zero-padded k-space and a few

CS iterations for complex images when we apply regularizer 1, 2 or 3 appropriately.

Since the cost function with regularizer 4 has a narrower convex domain, such two-
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step initialization does not always work; so a third step is added to the initialization

as mentioned in the theory section. The logic behind these sequential initialization

strategies is: optimizing the cost function with a wider convex domain is likely to

“push” the initial guess towards the relatively narrower convex domain of the cost

function that is optimized in the following step, when these two cost functions have

similar optimization solutions. For initialization of the cost function with regularizer

4, the first step by inverse DFT sets the initial guess in the convex domain of the non-

concave conventional CS cost function, then optimizing CS cost function pushes the

initial guess to the convex domain (around a desired local minimum) of the proposed

cost function with regularizer 2 or 3, and finally optimization in the third step make

the initial guess reach the convex domain (around a desired local minimum) of the

proposed cost function with regularizer 4. In a word, the initial guess is gradually

“pushed” towards the convex domain of the final cost function by such sequential

initialization steps. However, these strategies cannot theoretically guarantee finding

a desirable minimum and are only successful empirically. Refining the initialization

for this type of non-convex cost function is still an open problem for future research.

When using regularizer 4, we choose among various edge-preserving potential func-

tions. We have investigated all the potential functions listed in [62] that have a

bounded ω̇ψ and most of them work well; finally we chose the hyperbola function

because it has the widest convex domain and can match the quadratic function (t2)

very well when neighboring pixels have similar phase values. The parameter δ de-

termines the transition between smoothing and edge-preserving, hence it should be

selected according to the features of the specific true phase map. In our experiments,

we empirically discovered that the peaks of the hot spots or arteries tend to be over-

smoothed if δ is selected according to tedge, i.e., the amount of jumps that happen in

the “edge” regions. Alternatively, we chose δ to be much smaller than tedge, in which

case the regularizer 2 or 4 is approximately a Total Variation (TV) regularizer [63], as
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the hyperbola potential function becomes approximately taking l1 norm. Since TV

still functions as edge-preserving regularization, it is still reasonable to use small δ

for the proposed method. As long as δ is sufficiently small, we do not want it to be

too small, because that will slower the convergence of the algorithm. Since the edges

in the in-vivo data are sharper than the ones in the simulation data, δ in the in-vivo

data was chosen to be larger than the one for the simulation data, but both of them

are sufficiently smaller than tedge. In a word, we empirically chose δ such that it is

sufficiently small and also preserves an acceptable convergence rate.

The fully sampled k-space center is necessary for both conventional CS and the

proposed method. For conventional CS, this part of the data is used to perform a

rough phase-correction. In the proposed method, this low frequency part of the k-

space contains most information of the phase map which has a smooth background.

Empirically, 2 ∼ 5% of the k-space center is sufficient to preserve the low frequency

information of phase maps.

As can be seen in the simulation results, magnitude maps produced by the pro-

posed method merely have a 10 ∼ 20% lower NRMSE than the CS method in the

simulation study and preserve a few more details if one carefully inspects, but this

is not a significant improvement. Similar results were also observed in the in-vivo

data experiments. In fact, this relatively small improvement is expected, because

conventional phase-corrected CS has already removed most of the phase component

of the true image before the CS reconstruction procedure. Therefore, the magnitude

image in the proposed method is not significantly sparser than the phase corrected

complex images in wavelet domain, which means the proposed method does not have

much potential to significantly improve the magnitude image quality.

In the in-vivo experiment, although the phase map of conventional CS reconstruc-

tion looks closer to the fully sampled reconstruction, it does not indicate that it is

closer to the true image; because the phase of the fully sampled reconstruction in
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the low intensity regions is dominated by noise. According to the physics, the true

phase map should be smooth except for the distinct regions, e.g., arteries, so we be-

lieve that the smoothed background of the phase maps reconstructed by the proposed

method are closer to the true phase map. Similarly, the reference frame of the ve-

locity mapping reconstructed by the proposed method with regularizer 2 should be

more accurate than the noisy map estimated by conventional CS, which is one of the

reasons why the velocity map reconstructed by the proposed method is better.

Our method can potentially be used for field map estimation. In [98], the method

is based on the reconstructed image, but it is ultimately better to estimate phase

changes based on the raw k-space data, because the image itself may suffer from

some undesirable artifacts. Our method not only estimates the phase based on the

k-space data, but also could accelerate the acquisition by undersampling, which is

useful for 3D and/or high resolution field map estimation.

In this work, we only discussed the reconstruction problem for data from single

coil acquisitions. However, all the proposed cost functions can also be easily gener-

alized for parallel imaging, e.g. SENSE [60], to achieve an even lower sampling rate

in k-space. Though we only studied 2D data, any higher dimensional data are ap-

plicable in the proposed method. The random sampling we used in the experiments

simulates the random phase encode sampling in 3D data acquisition. Furthermore,

this method is also applicable for non-Cartesian sampling by using non-uniform fast

Fourier transform [24] as the system matrix.

The proposed method provides a more flexible and more controllable algorithm

for phase map reconstruction than conventional phase corrected CS approach. The

proposed method is flexible enough to allow customizing regularizers for phase compo-

nent according to its own features, and regularizer 1-4 are concrete examples suitable

for some applications; other sophisticated regularizers can be developed for other

types of phase maps in this reconstruction framework. In addition, even though in
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some cases the results of phase corrected CS are acceptable, it is not as flexible for

tuning the smoothness or resolution of the phase map as the proposed method. If

one wants to increase the resolution of a non-smooth phase map when using phase

corrected CS, another scan with different sampling rate may be required; in contrast,

within a certain range, the proposed method can handle this by simply adjusting

regularization parameters in reconstruction for the same data.

2.5 CONCLUSIONS

By using the CS regularization terms for magnitude, the proposed method allows

for undersampling in data acquisitions. In the framework of separate regularization

reconstruction, the proposed method achieves a substantial improvement, e.g., 50%−

70%, in phase reconstruction and a minor improvement, e.g., 10%− 20% in NRMSE,

in magnitude reconstruction, compared to the phase corrected CS reconstruction.

RMSE of ROI in phase maps were compared in the simulation studies to show that

the proposed method can improve both ROI and background phase. Regularizer 1-4

were investigated for the simulated data and the in-vivo data, demonstrating that with

initialization by using regularizer 2 or 3, the proposed method with regularizer 4 is

able to handle phase wrapping and also reconstructs good phase maps and magnitude

maps for applications like PRF-shift temperature mapping and phase contrast velocity

mapping. The proposed method has more computational complexity, e.g., about ten

times, than conventional CS, but we believe the computation speed can be made

acceptable.
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CHAPTER III

Regularized Estimation of Magnitude and Phase

of Multi-Coil B1 Field via Bloch-Siegert B1

Mapping and Coil Combination Optimizations1

3.1 Introduction

For MRI with parallel excitation (PEX), it is critical to rapidly and accurately

estimate the magnitude and relative phase of the multi-channel B1 field, also known

as B+
1 mapping. Numerous methods have been proposed to map B1 magnitude, such

as double-angle method [45], actual flip angle imaging (AFI) [46] and Bloch-Siegert

(BS) B1 mapping [1]. PEX pulse design also needs the relative phase maps, i.e., the

phase of one coil relative to that of all the other coils, which is typically mapped by

successively exciting the same object with each coil and receiving the signal by one

common coil or one common set of coils.

The approach described in this work is based on the BS B1 mapping method,

which applies off-resonance RF pulse in between the excitation pulse and the readout

gradients [1]. This off-resonance pulse is called Bloch-Siegert (BS) pulse and it induces

phase shifts that are proportional to |B1|2. This method is popular because it is fast

and relatively accurate in a wide dynamic range and it is insensitive to T1, chemical

1This chapter is based on [92,93]
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shift, B0 field inhomogeneity and magnetization transfer effects [1]. Its speed and

wide dynamic range are especially beneficial for PEX systems where B1 mapping is

generally more time-consuming and has wider ranges of B1 magnitude than single

channel systems. However, a disadvantage of this phase-based method is that the B1

field estimation in low magnitude regions may suffer from low signal-to-noise ratio

(SNR), due to insufficient excitation or low spin density. In particular, the problem

of insufficient excitation is severe in PEX B1 mapping because of the localized B1

sensitivities of each coil. Furthermore, conventional estimation of B1 phase needs

another set of scans, which is time-consuming and information redundant.

BS B1 mapping for PEX has been improved in [106] by using combinations of

multiple coils for imaging excitation. However, regions of low spin density and/or

insufficient excitation may still be problematic, and estimation of B1 phase still needs

another set of scans. Simply smoothing the noisy images with low-pass filters may

propagate errors in the corrupted regions to neighboring regions. Therefore, we pro-

pose a modified BS B1 mapping procedure that estimates both the magnitude and

phase maps, saving one third of the scans; then a regularized estimation method is

proposed to jointly estimate the magnitude and relative phase of multi-coil B1 maps

from this BS B1 mapping data. By utilizing the prior knowledge that B1 maps are

smooth, the regularization terms can help improve quality of the B1 map estimation

in low magnitude regions.

Many B1 mapping methods, e.g., [106] [107] [108], use linear combinations of

PEX channels to narrow the dynamic range of effective B1 field for better SNR,

where typically all-but-one strategies are applied. However, these strategies are likely

to be suboptimal in practice: the power levels of different channels in the object

could be uneven due to non-isocenter positioning, which may cause nonuniform B1

magnitude in the composite fields; the relative phase between channels could be

far from what is assumed in those strategies, which may produce dark holes in the
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composite fields. Malik et al. proposed a method to optimize coil combinations for

PEX B1 mapping [109], but it only optimized over a single complex parameter of the

combination matrix over a limited range in an empirical way. That work evaluated

the results according to two criteria: the dynamic range of the composite B1 maps

and the condition number of the combination matrix, which sometimes are hard to

balance and also may not indicate the estimation quality. In this work, we propose to

optimize linear coil combinations in [93] based on Cramer-Rao Lower Bound (CRLB)

analysis [92]. The proposed method is general enough to optimize the combinations

over all the elements of the combination matrix, which provides the most flexibility

for optimization. Evaluation of the combinations is directly based on the variance

of the complex B1 field estimation instead of indirect factors like dynamic ranges

and condition numbers. The algorithm minimizes the estimation variance of the

pixel that has the maximal estimation variance, reducing the occurrence of focal

noise amplification. Simulated Annealing (SA) method [110] is used for this highly

nonlinear optimization problem.

This work is organized by starting with the signal model of images acquired by

the proposed BS B1 mapping sequence and then introducing the regularized estima-

tion. Next, the detailed CRLB analysis is shown for this estimation method, and

then we discuss optimizing the coil combination matrix. Finally, the proposed regu-

larized estimation method and the proposed coil combination method are tested by

simulations and phantom experiments on a 3T GE scanner equipped with an custom

eight-channel parallel transmit and receive array [111] [112].
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3.2 Regularized BS B1 Estimation

3.2.1 Linear Combinations of Coils in B1 Mapping

Instead of mapping one coil at a time, we estimate the multi-channel B1 field

by acquiring standard BS B1 mapping data with multiple coils turned on at each

time [106]. The composite complex B1 field, C̃n(r), is the linear combination of the

complex B1 maps, Cm(r), of the individual coils:

C̃n(r) =
N∑
m=1

αn,mCm(r) (3.2.1)

where n = 1, 2, . . . , N , N is the number of channels available, r denotes the spatial

locations, and αn,m is the user-defined complex scalar weighting for themth individual

coil in the nth scan. A convenient choice for αn,m is the so-called all-but-one or leave-

one-coil-out strategy, where α(n, n) = 0

or− 1 and αn,m = 1 when m ̸= n [107] [113]. Both the composite complex B1 maps

and the individual complex B1 maps can be expressed in terms of their magnitudes

and phases:

C̃n(r) = B̃n(r)e
iϕ̃n(r), Cm(r) = Bm(r)e

iϕm(r) (3.2.2)

3.2.2 The Signal Model

The standard BS B1 mapping works by applying the BS pulse after the regular

excitation pulse [1]. This method typically needs 2 scans for each coil to measure B1

magnitude, thus 2N scans are needed for an N-channel PEX system. To estimate

both B1 magnitude and relative phase by the standard BS B1 mapping without

additional scans for phase, we propose to use the same coil combinations for the BS

pulse and the corresponding excitation pulse. The signal models for the noiseless

BS data (reconstructed images) of the N pairs of scans, i.e., S̄+
n (r) and S̄−

n (r), are
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described as follows:
S̄+
n (r) = sin(µB̃n(r))e

iϕ̃n(r)m+
n (r)e

iϕb(r)eiK
+
BS(r)B̃

2
n(r)

S̄−
n (r) = sin(µB̃n(r))e

iϕ̃n(r)m−
n (r)e

iϕb(r)eiK
−
BS(r)B̃

2
n(r)

(3.2.3)

where n = 1, 2, . . . , N ; the superscripts ± denote the scan that has the BS pulse

with ±ωRF off-resonance frequency, µ is the ratio between the actual flip angle and

B̃n(r), m
±
n (r) is the magnitude related to spin density, T1, T2, TR, TE, flip angle,

receive sensitivity, magnetization transfer (MT) effect, etc., ϕb(r) is the corresponding

background phase, and K±
BS(r) is the BS pulse constant that incorporates the B0 field

map [1]:

K±
BS(r) =

1

2

T∫
0

(γBnormalized(t))
2

±ωRF (t)− ω0(r)
dt (3.2.4)

where Bnormalized(t) is the normalized shape of the BS pulse. Due to the asymmetric

MT effect [114], m+
n (r) is slightly different from m−

n (r). Moreover, we model additive

independent and identically distributed (i.i.d.) complex Gaussian noise, i.e., ϵ±n (r),

to the signal, and simplify (3.2.3) by changing variables:


S+
n (r) =M+

n (r)e
i[K+

BS(r)B̃
2
n(r)+ϕ̃

′
n(r)] + ϵ+n (r)

S−
n (r) =M−

n (r)e
i[K−

BS(r)B̃
2
n(r)+ϕ̃

′
n(r)] + ϵ−n (r)

(3.2.5)

where S±
n (r) are the noisy signals from the nth pair of scans,M±

n (r) , sin(µB̃n(r))m
±
n (r),

and ϕ̃′
n(r) , ϕ̃n(r) + ϕb(r). The simplest way to estimate B1 magnitude and phase

from this set of data is to first obtain B̃n(r) using the standard BS B1 mapping re-

construction [1], and then, assuming B̃n(r) is known, the relative B1 phase, ϕ̃′
n(r),

can be derived by maximum likelihood estimator of (3.2.5) or simply taking:

ϕ̃′
n(r) = ∠[S+

n (r)/e
iK+

BS(r)B̃
2
n(r)] (3.2.6)
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whereM±
n (r) is not needed. We propose to set the coil combination of each excitation

pulse the same as its corresponding BS pulse, so that B̃n(r) and ϕ̃
′
n(r) correspond to

the same composite B1 map, hence the individual B1 magnitude and phase, i.e., Bn(r)

and ϕ′
n(r), can be derived by (3.2.9) below. This is how the modified BS sequence

can avoid the additional scans for B1 phase. Moreover, for regularized estimation,

M±
n (r) is a set of nuisance parameters that we must jointly estimate, but they are

fortunately linear terms that can be easily estimated.

3.2.3 Regularized Estimation of B1 Magnitude and Phase

Regularization enforces prior knowledge to improve estimation. It is reasonable to

assume that the magnitude of the composite B1 maps, B̃n(r), are spatially smooth.

Although the absolute phase ϕ̃n(r) is not necessarily smooth, the relative phase maps,

e.g., ϕ̃n(r)− ϕ̃1(r), should be smooth. To prevent problems with phase wrapping in

ϕ̃n(r)− ϕ̃1(r), we propose to use the regularizer proposed in [68] that regularizes the

roughness of ei[ϕ̃n(r)−ϕ̃1(r)]. The final regularized maximum-likelihood cost function for

the estimation is shown in (3.2.7), where all the spatially varying maps are discretized

into column vectors (shown in bold fonts):

Ψ(B̃, ϕ̃,M) =
N∑
n=1

∑
ς=+,−

∥Sς
n −M ς

n. ∗ ei(K
ς
BS .∗B̃

2
n+ϕ̃

′
n)∥2

+ β1

N∑
n=1

∥CB̃n∥2 + β2

N∑
n=2

∥Cei(ϕ̃
′
n−ϕ̃

′
1)∥2

(3.2.7)

where β1 and β2 are scalar regularization parameters, M is the concatenation of the

image magnitudes M±
n of all channels, B̃ and ϕ̃ denote the concatenation of all the

composite B1 magnitudes B̃n and all the composite B1 phases ϕ̃
′
n respectively, ”. ∗ ”

represents element-by-element multiplication between vectors, B̃
2

n denotes the vector

that contains the squares of the corresponding elements of B̃n, and C is a finite

differencing matrix used to penalize roughness.

69



We iteratively minimize the cost function (3.2.7) by cyclically updating B̃, ϕ̃ and

M :

( ˆ̃B, ˆ̃ϕ,M̂ ) = argmin
B̃,ϕ̃∈R(NNp)×1,M∈R(2NNp)×1

Ψ(B̃, ϕ̃,M ) (3.2.8)

where ˆ̃B, ˆ̃ϕ and M̂ denote the estimates of B̃, ϕ̃,M respectively, and Np is the

number of pixels of each channel. We update M by simply taking the real least

square solution of (3.2.7) in each iteration. The cost function is non-quadratic in

B̃ and ϕ̃, so we use conjugate gradients with line search algorithms (CG-LS) [115]

to update B̃ and ϕ̃, where backtracking line search (BLS) [116] and monotonic line

search (MLS) [115] are used for B̃ and ϕ̃ respectively to guarantee monotonicity (see

Appendix for details). The standard approach [1] produces a good initial guess for

B̃, and then we compute the initial guess of ϕ̃ using (3.2.6). Once B̃ and ϕ̃ are

estimated, magnitude and relative phase maps of the original coils, B and ϕ, can be

derived easily using the following relation:


B1(r)e

iϕ′1(r)

...

BN(r)e
iϕ′N (r)

 = A−1


B̃1(r)e

iϕ̃′1(r)

...

B̃N(r)e
iϕ̃′N (r)

 (3.2.9)

where ϕ′
n(r) , ϕn(r) + ϕb(r), which does not change the relative phase maps, and A

is the coil combination matrix:

A ,


α1,1 . . . α1,N

...
. . .

...

αN,1 . . . αN,N

 (3.2.10)
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3.3 Coil Combination Optimization

3.3.1 Approximate Signal Model

As mentioned before, the coil combination matrix A in (3.2.10) is conventionally

chosen by an all-but-one strategy, but this approach is unlikely to be optimal in

practice. Therefore, we propose a method to optimize over the matrix A to improve

the estimates of the magnitude and phase of B1 field in PEX. We use the CRLB to

derive a lower bound on the variance of the complex B1 field estimates in terms of

the coil combination matrix A and then find the A that minimizes the worst-case

noise-to-signal ratio (NSR).

To simplify the noise analysis, we make some approximations for (3.2.5): asym-

metric MT effect is ignored so that M+
n (r) ≈M−

n (r) ,Mn(r), and the off-resonance

effects in K±
BS(r) are ignored so that K+

BS(r) ≈ −K−
BS(r) , K which is a scalar

constant. If we assume the real and imaginary parts of the i.i.d. Gaussian noise are

uncorrelated and distributed as N (0, σ2) where σ2 is the variance, then the approxi-

mate distributions of the signals for each pixel are expressed as follows:



S+
r ∼ N (M cos(KB2 + ϕ), σ2)

S+
i ∼ N (M sin(KB2 + ϕ), σ2)

S−
r ∼ N (M cos(−KB2 + ϕ), σ2)

S−
i ∼ N (M sin(−KB2 + ϕ), σ2)

(3.3.1)

where the subscripts n, indices r, primes and tildes in (3.2.5) are omitted for simplic-

ity, subscripts r/i denote the real/imaginary parts.
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3.3.2 Cramer-Rao Lower Bound Analysis

The CRLB is a lower bound on the covariance of any unbiased estimator under

certain regularity conditions. The CRLB can be achieved by unbiased maximum

likelihood estimators (MLE). This work tries to improve the quality of the raw data

before applying regularized estimation, so the effective estimators are equivalent to

the estimators in (3.2.8) with β1 = β2 = 0 which yields the MLE.

Equation (3.3.1) can be vectorized as follows:

y = µ(θ) + ϵ where ϵ ∼ N (0, σ2I) (3.3.2)

where y = [S+
r , S

+
i , S

−
r , S

−
i ]
T , µ = [M cos(KB2+ϕ),M sin(KB2+ϕ),M cos(−KB2+

ϕ),M sin(−KB2 + ϕ)]T , θ = [B, ϕ]T . We show in the Appendix that this problem

satisfies the regularity condition for the CRLB theorem. Then, with Taylor expansion

and assuming the scans have independent noise, we derived the lower bound of the

variances of the complex B1 estimates of the N channels in location r:

var(Ĉn,r(A)) , var(B̂n,r(A)e
iϕ̂′n,r(A)) > Vn,r(A)

with Vn,r(A)

, {A−1diag{ σ2

2M2
n,r(A)

[B̃2
n,r(A) +

1

4K2B̃2
n,r(A)

]}A−H}n,n (3.3.3)

where n = 1, . . . , N , diag{z} denotes the diagonal matrix with vector z its diagonal

entries, and we have put back the subscripts n, indices r, primes and tildes in (3.2.5)

except that we move the indices r to the subscripts and make A be the argument,

as A is the main unknown of this optimization problem. The detailed derivation is

shown in the Appendix.
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3.3.3 Optimize Linear Combinations of Array Elements

We propose to optimize the SNR of the B1 estimates by minimizing the lower

bound of NSR, defined as the ratio between
√
Vn,r(A) and Bn(r). Since (3.3.3)

is only for one single pixel, a scalar that evaluates the noise performance of the

whole 2D or 3D B1 field of the N coils has to be chosen for optimizing over the coil

combinations. To better suppress the focal noise amplifications which are common

in PEX B1 mapping, we apply a min-max optimization strategy in this work, where

the maximal Vn,r(A) of all spatial locations and channels is minimized to optimize

the worst noise performance of the whole estimation. A practical issue is that PEX

systems have amplitude limits, which bounds the maximummagnitude of the elements

of A, so A must be constrained according to the hardware limits. Therefore, the final

expression of this optimization problem is shown as follows:

Â = argmin
A∈CN×N

{max
n,r

√
Vn,r(A)

Bn,r(A)
} (3.3.4)

subject to

max
m,n

|αm,n| 6 λ

where λ is the amplitude limit of the PEX system. This method optimizes the noise

performance over all the elements of A, which is much more flexible than the method

in [109].

The cost function in (3.3.4) is highly nonlinear and nonconvex in terms of A, so it

would be very hard to find the global minimum. In practice, however, it should suffice

to keep the noise level below a certain reasonable value rather than to exhaustively

search for the global minimizer. Since A is relatively a small matrix, we found that

the Simulated Annealing (SA) method [110] in Matlab’s Optimization Toolbox can

efficiently find a reasonably good local minimum.

The CRLB expression (3.3.3) depends not only on the coil combination matrix
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A that we will optimize using (11), but also on other parameter maps that are not

known, namely Mn,r(A) and B̃n,r(A). The composite maps B̃n,r(A) can be described

as:

B̃n,r(A) =

∣∣∣∣∣
N∑
m=1

αn,mBm(r)e
iϕm(r)

∣∣∣∣∣ (3.3.5)

The mapsMn,r(A) depend on other parameters that are unknown, such as T1, T2 and

spin density, and can be modeled mathematically according to the specific imaging

sequence. In this work, we only focus on the spoiled gradient echo (SPGR) based BS

sequence, where Mn,r(A) can expressed as follows:

Mn,r(A) = B−
1 (r)e

− TE
T2(r)

ρ(r)(1− e
− TR

T1(r) ) sin(µB̃n,r(A))

1− e
− TR

T1(r) cos(µB̃n,r(A))
(3.3.6)

where B−
1 (r) is the receive coil sensitivity map, ρ(r) is the spin density map, T1(r)

and T2(r) are the T1 and T2 maps respectively. Instead of attempting to determine

these maps, which would be impractical, we use uniform maps with nominal T1, T2,

and ρ values for optimizing A. For B−
1 (r), we either use uniform values when signal

is received by a single coil in a non-high field scanner (63T), or acquire an off-line

phantom data for a coarse estimation of B−
1 (r). For the transmit B1 magnitude,

Bm(r), we use a set of B1 maps estimated by a phantom off-line. For the transmit B1

phase, ϕm(r), we either use off-line phantom estimates or fast on-line low resolution

in-vivo B1 phase maps.

For our experiments, we focus on an eight-channel PEX head array that has 8-

fold rotational symmetry, so although the proposed method can optimize over all the

elements of A, it is natural to restrict the 8× 8 matrix A to be circulant, which saves

computation time by reducing the number of unknowns to 8. This approach also

seems to be more robust to local minima compared to optimizing all elements of A.
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3.4 Experiments

3.4.1 Phantom Experiment: Regularized B1 Estimation

We carried out a phantom experiment to demonstrate the proposed regularized

BS B1 map estimation on a 3T GE scanner (GE Healthcare, Milwaukee, WI, USA)

equipped with an 8-channel custom parallel transmit/receive system. We used a

spherical phantom filled with distilled water. Due to a failure in one RF amplifier,

since fixed, only seven of the transmit channels were used, the eighth has zero input

throughout the experiment. All the data were acquired with a SPGR sequence having

a 2D spin-warp readout. We applied a 20 ms Fermi BS pulse with ±4 kHz off-

resonance frequencies. Other imaging parameters were: TE = 23 ms, TR = 200 ms,

FOV = 24× 24 cm, 64× 64 reconstruction matrix size, and axial slice imaging. Note

that the raw data were all 8-channel parallel imaging data, and they were combined

together using the receive side B1 shimming according to the receive sensitivity maps

acquired off-line.

We first acquired B0 map (ranges from -80 to 8 Hz) using two 2D SPGR scans

with an echo time difference. A total of 14 proposed BS B1 mapping scans were done

for this 7-channel B1 estimation, where we applied the all-but-one coil combination

with α1,1 = 0, α1,2 = . . . = α1,N = 1. The reconstructed raw images were then

put into the standard non-regularized BS estimator and the proposed regularized BS

estimator. For the proposed method, we manually selected the regularization param-

eters to be β1 = 40 and β2 = 0.1; the number of outer iterations was set to 40 with

3 sub-iterations for B̃ and ϕ̃ in each outer iteration; the whole reconstruction took

less than a minute on a computer with Intel Core2 Quad CPU Q9400 @ 2.66 GHz, 4

GB RAM and Matlab 7.8. Fig. 3.4.1 shows the estimated B1 magnitude and phase

maps, where the proposed regularized estimation improves the quality of both the

magnitude and phase maps. If we use the standard method with 1/3 more scans, the
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B1 estimation results will be the same except for the SNR of the B1 phase. If high

SNR imaging is used for the B1 phase mapping, the results may have better SNR than

the results shown in Fig. 3.4.1, but this requires 1/3 more scans. Furthermore, there

are still several rough spots in the magnitude maps that were corrupted by the low

signal intensity regions so much that they were not fully smoothed by the regularized

algorithm. This is the main motivation for us to propose the coil combination opti-

mization which improves the raw data before any reconstruction, and it is discussed

and shown to be effective in avoiding such problems in the following sections.

3.4.2 Simulation Study: Coil Combination Optimization

A finite-difference time-domain (FDTD) simulation generated 2D magnetic fields

of an eight-channel parallel excitation array for brain imaging at 3T, which is used as

the trueB1 maps in the simulations (shown in Fig. 3.4.2). We used a set of brain tissue

parameter maps, e.g., T1 map, T2 map and spin densities, from “BrainWeb database”

[117] [118] [119] [120] [121] as the true values for generating images produced by the

BS sequence. The image magnitude was generated based on the signal equation of

SPGR sequence (3.3.5) with image parameters: TR = 200 ms, TE = 10 ms. The

BS induced phase was simulated based on ±4 kHz off-resonance Fermi BS pulses

(KBS = 76.9 rad/G2) and a realistic B0 field map acquired from a brain on a 3T GE

scanner (ranging from -86 Hz to 25 Hz). Furthermore, the B−
1 map was acquired

from a real single-channel body receive coil of the 3T GE scanner. By adding i.i.d.

complex Gaussian noise to the noiseless images generated based on (3.2.3), (3.3.5)

and (3.3.6), we simulated the raw data in image domain acquired by SPGR-based BS

B1 mapping sequence. The matrix size of these 2D images is 64× 64. Note that the

coil combination matrix A has to be optimized before simulating the raw data. In the
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Figure 3.4.1: The estimated B1 magnitude and phase maps by the non-regularized
method and the regularized method.

data simulation, the standard deviation of the Gaussian noise stayed the same and

the SNR of raw image data ranged from 23 dB to 26 dB depending on the specific

coil combinations; the SNR is defined in image domain as:

SNR = 20 log10(
∥St∥

∥St − S∥
) (3.4.1)

where St and S denote the noise-free and noisy images respectively.

We used approximated parameters for the optimization step. T2 and spin density
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Figure 3.4.2: B1 maps of the brain, used as the ground truth.

were uniform maps with nominal values, as the absolute values of them are not

relevant to the optimization of (3.3.4); T1 maps were set to be the maximal value

(2.6 s) of brain tissue. Since the true receive coil sensitivity map, which was acquired

from a single-channel at 3T, is relatively uniform, we used a uniform B−
1 map for the

optimization. Furthermore, we did another FDTD simulation for a uniform phantom

with the same configurations and positions of the coils as the simulation for the brain;

the relative permittivity was 42.3 and conductivity was .489 S/m, which represent

the average values of brain tissue; the space occupied by the phantom needed to

cover the brain used in the previous simulation, so that the phantom B1 maps can be

cropped to the brain size for the optimization (shown in Fig. 3.4.3). For the B1 phase

specifically, other than using the phantom B1 phase which will be called “method 1”,

we also simulated an on-line low resolution (32× 32 matrix) fast scan of brain using

one transmit coil at a time to obtain the relative B1 phase, which will be called

“method 2”. Moreover, for demonstration purposes, we simulated the case when the

coil combinations are optimized based on the true B1 maps as well as true B1−, T1,
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Figure 3.4.3: B1 maps of the phantom (masked by the brain shape), used for opti-
mization.

T2 and spin density maps, which will be called “oracle method”. For comparison,

the results of the all-but-one combination with α1,1 = 0, α1,2 = . . . = α1,N = 1 were

also simulated. Table 3.1 summarizes the methods used in this simulation study.

Circulant structure was assumed for the matrix A, and the optimization algorithm

was initialized with the all-but-one combination. The threshold λ in (3.3.4) was set

such that the RF power does not exceed a fixed peak nominal power. Furthermore,

a fast online low resolution prescan of the subject has to be done anyway to obtain

a mask for the optimization. Note that a more accurate mask was applied to all the

images and the statistics (Table 3.2) in the result.

Table 3.1: Summary of the Methods in the Simulation
B1 mag. estimates B1 phase estimates B1−, T1, T2, spin density

method 1 Phantom (off-line) Phantom (off-line) Uniform maps
method 2 Phantom (off-line) Low-res in-vivo (online) Uniform maps

oracle method True B1 magnitude True B1 phase True maps
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Figure 3.4.4: The first row of the resulting combination matrices by different methods,
where the magnitude is normalized to the peak nominal power of the
system.

Fig. 3.4.4 shows the resulting coil combination coefficients by different methods.

As we assumed circulant structure, only the first rows of each A, which are vectors

of 8 complex numbers, are shown in the complex plane. Compared to the all-but-one

method, all the other optimized results are scattered more uniformly within the com-

plex plane and also “random-like”. We also calculated the condition numbers of all

the combination matrices and obtained the corresponding composite B1 maps, which

are shown in Fig. 3.4.5. As can be seen, the oracle method and method 2 produced

more uniform composite B1 maps and have much smaller condition numbers, com-

pared to method 1 and the all-but-one method. The composite maps of method 1

are as uniform as those of the all-but-one method, but its condition number is largely

reduced. In addition, the all-but-one method produced higher overall B1 magnitude

than the optimized combinations.

Furthermore, if the true tissue parameters and the true B1 maps along with the
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resulting matrix A are plugged into (3.3.3-3.3.6), we can get the lower bounds maps

of NSR, i.e.,

√
Vn,r(A)

Bn(r)
, and the results of different methods are shown in Fig. 3.4.6.

Method 2 and oracle method greatly reduced the focal noisy spots and produced rel-

atively uniform NSR maps. However, method 1 did not work as well as method 2 due

to the large model mismatch in B1 phase, but it still lowered the noise amplification

and redistributed the focal noisy spots, compared to the all-but-one method.

All−but−one, cond = 7

0

0.2

Method 1, cond = 2.6

0

0.2

Method 2, cond = 1.5

0

0.2

Oracle, cond = 1.5

0

0.2

Figure 3.4.5: Magnitude of the composite B1 maps (masked), B̃n(r), by different
methods, in Gauss. The condition numbers (cond) of each combination
matrix are shown on the titles.
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Figure 3.4.6: The lower bounds of NSR maps (masked) by different methods, unitless.

Finally, we simulated the B1 map reconstruction with the four different coil combi-

nations, where we used the non-regularized method to reconstruct the B1 magnitude

and phase. Fig. 3.4.7 shows the resulting B1 magnitude and phase maps. As can

be predicted from Fig. 3.4.5 and Fig. 3.4.6, method 2 and the oracle method pro-
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Figure 3.4.7: The simulation results of all the methods; left: B1 magnitude estimates,
right: B1 phase estimates.

duced less noisy B1 maps than method 1 and the all-but-one method. Despite the

model mismatch mainly in B1 magnitude, receive sensitivities and distributions of

spin density, T1 and T2, method 2 still worked similarly well as the oracle method.

In contrast, although method 1 still largely improved the B1 estimation compared to

the all-but-one method, the results of method 1 are not at the same level as those of

method 2 and the oracle method. Table 3.2 shows the normalized root mean squared

error (NRMSE) of the B1 magnitude and the root mean squared error (RMSE) of
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the B1 phase, which are defined as:

NRMSE , ∥Br −Bt∥
∥Bt∥

(3.4.2)

RMSE , ∥ϕr − ϕt∥√
Np

(3.4.3)

where Br and Bt denote the reconstructed and the true B1 magnitude respectively,

ϕr and ϕt denote the reconstructed and the true B1 phase respectively.

Based on this empirical comparison, we believe that the coil combination opti-

mization can improve the SNR of the multi-coil B1 magnitude and phase estimation.

Moreover, we found that the proposed method is robust to inaccurate magnitude

related parameters, e.g., B1 magnitude, receive sensitivities and distributions of spin

density, T1 and T2. However, unlike the B1 magnitude estimated by phantom, B1

phase estimates from phantom were far from the true B1 phase in brain, causing the

inferior performance of method 1. With such big B1 phase mismatch, the improve-

ment of method 1 over the all-but-one method is mainly from the optimization of

the matrix condition number. Since a set of low resolution B1 phase maps only takes

very minimal time in practice, we conclude that method 2 is the more robust and

practical method for the coil combination optimization.

Table 3.2: Statistics of the results
all-but-one method 1 method 2 oracle

NRMSE of Bm(r) 36.9% 8.09% 5.62% 4.82%
RMSE of ϕm(r), radians 0.804 0.360 0.274 0.232

3.4.3 Phantom Experiment: Coil Combination Optimization

We also carried out a phantom experiment to demonstrate the proposed coil com-

bination optimization method on the 3T GE scanner with the 8-channel parallel
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transmit/receive system, where we still only used the seven working transmit chan-

nels. All the data were acquired with the same SPGR-based BS B1 mapping sequence

as used in the previous phantom experiment, and the imaging parameters were also

kept the same.

Based on the simulation study discussed earlier, we only compared the all-but-

one method and method 2 which is the more robust optimized method. To mimic

the on-line in-vivo B1 mapping, we used two phantoms which have different shape

and different materials, i.e., a big cylindrical phantom filled with silicon oil and a

spherical phantom filled with distilled water. We treated the big cylindrical phantom

as the calibration phantom for estimating the B1 magnitude maps for the optimization

algorithm. In addition, the B1− map was also acquired off-line with this phantom.

Since we only did 2D axial B1 maps, this phantom was carefully positioned to get

centered axial images. The smaller spherical phantom was treated as the actual

object for which we needed to do the online B1 mapping, and it was positioned in the

scanner such that its axial cross-section is fully covered by that of the bigger silicon

oil phantom. As proposed in method 2, fast low resolution pre-scans were done to

estimate the B1 phase maps and the B0 field map. To better separate the off-line and

online procedure, the online experiment with the spherical water phantom was done

several days later than the off-line calibration with the cylindrical silicon oil phantom,

where the coil was marked to the same positions in the scanner every time. Along

with the off-line acquired B1+ and B1− magnitude maps and the online acquired

B1+ phase and B0 maps, uniform spin density, T2 and T1 maps were inputted to the

optimization algorithm for the optimized coil combination. To introduce some more

model mismatch, the uniform T1 map was intentionally set to 1s which is off from the

true value, i.e., around 3s. Similar to the simulation, circulant structure was assumed

for the matrix A, and the optimization algorithm was initialized with the all-but-one

combination.
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We then acquired two sets of complex B1 maps using the same SPGR-based

BS sequence where the optimized coil combination coefficients and the all-but-one

coefficients (α1,1 = 0, α1,2 = . . . = α1,N = 1) were applied respectively. The non-

regularized method was used to reconstruct the B1 magnitude and phase.
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Figure 3.4.8: The first row of the optimized coil combination matrix and that of the
all-but-one matrix, where magnitude is normalized to the peak nominal
power of the system; the condition numbers of each matrix are shown
in the legend.

Fig. 3.4.8 shows the first row of the optimized coil combination matrix A along

with that the all-but-one coefficients, and the condition numbers are shown in the

legend. Furthermore, the resulting B1 magnitude and phase maps by these two coil

combinations are shown in Fig. 3.4.9. Similar to the simulation study, the optimized

coil combination greatly improved the SNR of both the B1 magnitude and phase

estimation, compared to the all-but-one combination. However, there are some bias
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Figure 3.4.9: The resulting B1 magnitude and phase maps by the two different coil
combinations. The B1 estimates based on the optimized coil combi-
nation matrix (bottom two sets of images) have better SNR than the
conventional all-but-one approach (top two sets of images).

differences between these two results, especially in the phase maps. This in theory

should not happen in a linear parallel excitation system. After some investigation on

the system, we suspect that these unexpected effects were caused by uncompensated

non-linearity in our custom PEX hardware. This is being corrected, but was irrelevant

to the proposed optimization method.
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3.5 Discussion and Conclusion

We have proposed methods to improve the BS B1 mapping for parallel excitation

pulse design in the following three aspects: a) Acquisition speed: the modified

BS B1 mapping sequence is proposed to get both magnitude and relative phase in-

formation, which saves a third of scans that are otherwise required for B1 phase;

b) Estimation quality: the regularized method is proposed to jointly estimate the

magnitude and phase of multi-coil B1 maps from BS B1 mapping data, which im-

proves estimation quality by using the prior knowledge of B1 magnitude and phase;

c) Raw data quality: the coil combination optimization that is based on CRLB

analysis is proposed to directly optimize the SNR of the non-regularized complex B1

estimation over the whole combination matrix. Combining these three techniques,

one can obtain improved complex B1 estimates of PEX systems with shorter scan

time.

The cost function in the regularized B1 estimation is nonconvex, but our exper-

iments have shown that the initialization by applying the standard BS B1 mapping

and solving (3.2.3) is good enough to obtain a good local minimum with our gradient-

based optimization algorithm. The phase regularizer proposed in [68] works well in

smoothing B1 phase in the presence of phase wrap. The CG-LS algorithm efficiently

optimizes the highly nonlinear cost function, but a future work can be to design MLS

updates for B1 magnitude like the one for phase to further improve the algorithm

efficiency. Other than coil combination optimization, another way to improve the

regularized B1 estimation is to design a direct regularized estimation for the decom-

posed B1 magnitude and phase, i.e., Bn(r) and ϕn(r), instead of the composite B1

maps. This could be challenging, because this method will involve an even more

nonlinear and nonconvex cost function and it will be very challenging to design MLS

updates for both B1 magnitude and phase.

Our simulation study shows that the optimization results are relatively insensitive
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to accuracy of T1, T2, spin densities, receive sensitivities and B1 magnitude for 3T

brain imaging. Among these magnitude related parameters, the simulation results

were more sensitive to different T1 values (results not shown). We empirically found

that using uniform maps with the maximal T1 is generally more robust than using

other T1 values for this SPGR-based BS sequence which is a T1-weighted imaging.

Even so, the second phantom experiment still worked reasonably well with T1 value

mismatch. As B1 phase of the phantom is likely to be far from the in-vivo B1 phase,

we prefer method 2 which requires only minimal additional scan time.

The highly nonlinear and nonconvex coil combination optimization produces random-

like combination coefficients, and is highly dependent on the initialization and the

pseudo-random seeds used in the SA algorithm, so they are probably not global min-

imums. However, as we only need to find some combination coefficients that can

largely improve the raw data, rather than the very best choice, the proposed coil

combination optimization method is still useful in practice.

Although the optimized coil combination works in practice, this CRLB analysis

is only an approximation because the MLE of B1 magnitude and phase are biased

estimators in general. Furthermore, more estimation bias may be introduced if we

include regularization to this method. Thus, future work could be to design a coil

combination optimization based on the biased CRLB analysis [122] which is theoret-

ically valid for the proposed regularized estimation.

Although good estimates of B1 maps may still be achieved with the all-but-one

combinations using the regularized estimation, the proposed coil combinations pro-

duce raw data with much better SNR, improving robustness of the regularized es-

timation method. Sometimes, the optimized coil combination yields adequate B1

estimates without requiring regularization, which may be preferable for practical use.

The proposed coil combination optimization does not constrain specific absorp-

tion rate (SAR), which could be of a concern in BS B1 mapping sequences. Applying
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complex weights to PEX channels may cause unpredictable local SAR increase with-

out the knowledge of local electromagnetic properties of the tissue [123], so a future

work can be to consider SAR limit in the coil combination optimization, especially

for high field PEX B1 mapping. Following this, a possible further extension will be

to apply the coil combination optimization to in-vivo experiments for human brain

as well as other parts of human body.

The experiments for the coil combination optimization were only based on the

2D SPGR sequence, but the similar principle can be easily applied for any other

typical 2D or 3D BS B1 mapping compatible sequences. In addition, improving

coil combination is generally important to other multi-coil B1 mapping methods,

including both phase-based and magnitude-based methods. Although the proposed

method was developed for BS B1 mapping sequence, the framework of the CRLB

based coil combination optimization can be applied to other popular mult-coil B1

mapping methods, e.g., AFI [46].
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CHAPTER IV

Four-Dimensional Spectral-Spatial Fat Saturation

Pulse Design1

4.1 Introduction

Fat suppression has been widely used in MRI to suppress undesired adipose tissue

signals or prevent chemical shift artifacts. One popular method is fat sat(uration) [28],

which uses a spectrally selective pulse to saturate and dephase fat spins preceding the

actual imaging pulse sequence. Fat sat is compatible with most imaging sequences,

but it is sensitive to B0 and B1 inhomogeneity. Another popular preparatory pulse for

fat suppression is Short T1 Inversion Recovery pulse (STIR) [75] [76], which is based

on the unique T1 of fat. Although this method is immune to B0 field inhomogeneity,

it has many drawbacks, such as long scan time, reduced signal-to-noise ratio (SNR)

of water signal, and altered T1 contrasts. Instead of preparatory pulses, spectral-

spatial (SPSP) pulse was proposed to selectively excite water tissue [30]. This pulse

specifies excitation profiles in both spatial and spectral domain, but it is subject to

B0 inhomogeneity and may have drawbacks like poor slice profile or long pulse length.

This work focuses on improving the fat sat method by minimizing the adverse

effects of B0 and B1 inhomogeneity with short pulses. Our approach to solving this

1This chapter is based on [94] [33]
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problem is to incorporate maps of the 3D B0 and B1 fields into the pulse design

to excite a 4D SPSP pattern. Morrell et al. [31] proposed a similar idea using 3D

SPSP pulse to excite 3D patterns (2 spatial and 1 spectral dimensions) based on 2D

field maps, to mitigate B0 inhomogeneity problems for 2D water-only imaging or fat

saturation, but this method has limited use for 3D imaging or interleaved multi-slice

imaging where 3D field maps are typically needed; moreover, the pulse length of

this design was too long for steady-state imaging sequences, and it does not handle

B1 inhomogeneity. With the advent of parallel excitation, Heilman et al. proposed

efficient pulses to uniformly saturate fat via multi-channel transmitters by tuning the

center frequency of each coil to match the variation of B0 maps [124], but it is difficult

for this approach to address complex B0 patterns and to insure uniform tip angles.

Recently, a parallel excitation pulse design for broadband slab selection with B1

inhomogeneity correction [125] demonstrates the feasibility of addressing some simple

spectral profiles by tailored SPSP pulses in 3D k-space (kx-ky-kz). In addition, Malik

et al. proposed a water selective imaging method using parallel excitation to achieve

more complex spectral profiles with SPSP pulses that are based on weighted binomial

pulse trains in kz-kf of k-space [126]. However, absence of traversing within kx-ky

may lead to incomplete B0/B1 compensation in the transverse plane and thus makes

the results highly dependent on the B0 shimming and configurations of transmit coils.

In this work, we propose to tackle this problem by designing a 4D SPSP fat sat

pulse that is tailored for B0 and B1 inhomogeneity of the 3D space. The proposed

method avoids the need of a sharp transition band in the spectral domain by exploit-

ing the spatial variations of center frequencies, so it can achieve better performance

with even shorter pulse length than the standard fat sat pulse. Both single-channel

excitation and parallel excitation versions have been developed. We compute this

saturation pulse numerically using an iterative algorithm composed of a small-tip

angle approximation design and an automatic rescaling step. The proposed method
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is compared with the conventional fat sat pulse in phantom experiments and in-vivo

experiments on 3T scanners for both the single channel excitation and the parallel

excitation versions.

4.2 Theory

We propose a 4D SPSP (1D spectral and 3D spatial) fat sat pulse design with

the option of incorporating parallel excitation. The pulse is tailored to match B0

and B1 variations of the specified 3D space. It has been shown in [34] that small-

tip-angle (STA) approximation can be effective for 900 designs except for a scaling

factor. So we propose a two-step design: using STA approximation to determine the

pulse waveform “shape” and then automatically computing the pulse “amplitude”.

Beyond the robustness to B0 and B1 inhomogeneity, the proposed method can

also significantly improve the pulse efficiency. With certain conditions satisfied, this

seemingly harder pulse design actually needs similar or even shorter pulse length

than the conventional spectral pulse. The conventional fat sat pulse needs to have a

relatively rapid transition between the water and fat spectra to accommodate the B0

inhomogeneity of the whole 3D volume; in contrast, the 4D SPSP fat sat pulse only

needs to handle much narrower spectra of each local voxel, which can be achieved with

smoother transition bands in the frequency domain. In other words, the proposed

method makes the task in frequency domain easier than the conventional method,

and therefore allowing a shorter pulse length.

Fig. 4.2.1 illustrates the difference between the 4D fat sat pulse and the con-

ventional spectral pulse in the frequency domain, where three representative voxels

that have different local off-resonance frequencies are shown as examples. The 4D fat

sat pulse fits the spectra of the each voxel much better than the spectral pulse that

can not accommodate the B0 variations over the volume. Moreover, the 4D fat sat

pulse has a much smoother transition in the spectral domain than the spectral pulse,
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reducing the pulse length.
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Figure 4.2.1: Illustration of the frequency responses of the SLR fat sat pulse (top) and
the 4D fat sat pulse (bottom) in the presence ofB0 inhomogeneity, where
3 voxels at different off-resonance frequencies are selected as examples.
The 4D fat sat pulse suppresses fat without exciting water much more
effectively with less sharp transition bands.

4.2.1 Step 1: Determine the RF Waveform “Shape”

With the STA approximation, the 4D excitation pattern model is described as

follows:

m(x, y, z, f) = iγm0

∑
r

Sr(x, y, z)

T∫
0

br(t)e
i2π[(x,y,z,f)·k(t)]dt (4.2.1)

where (x, y, z) is the spatial coordinate, f is frequency, m(x, y, z, f) is the 4D ex-

citation pattern, γ is the gyromagnetic ratio, m0 is the equilibrium magnetization

magnitude, Sr(x, y, z) is the B1 map of each coil, br(t) is the RF pulse of the rth
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coil, r = 1, 2, . . . , R, R is the number of transmit coils, T denotes the pulse length,

and k(t) = [kx(t), ky(t), kz(t), kf (t)] denotes the 4D excitation k-space trajectory. In

particular, the excitation k-space trajectories are defined to be backward integrals as

follows:

kx(t) = − γ

2π

T∫
t

Gx(τ)dτ, kf (t) = t− T (4.2.2)

where x can also be y or z. The system equation [4.2.1] can be discretized as follows:

m = Asb (4.2.3)

where m (Ns×1) is the vector that contains Ns samples of the 4D excitation pattern,

As = [S1A S2A ... SRA], b = [bT1 bT2 ... b
T
R]
T , A (Ns × Nt) is system matrix that

transform the RF pulse of each coil into the 4D pattern without considering the

sensitivity map, i.e. aij = iγm0e
i2π(xi,yi,zi,fi)·k(tj), Sr (Ns × Ns) is a block diagonal

matrix which contains the corresponding sensitivity maps of each coil repeated for

each spectral sample, br (Nt×1) is the vector of samples of the RF pulse transmitted

by each coil.

To do fat sat, the 4D target excitation pattern uniformly has 900 tip angles for

the fat spectra and 0 for the water spectra in each voxel. To compensate for B0

inhomogeneity, the positions of the fat and water bands of each voxel in the target

pattern need to shift according to the 3D B0 map. B1 maps are input into [4.2.1] to

compensate for B1 inhomogeneity. In this 4D target pattern, most of the spectrum

is a “don’t care” region and can be masked out in the cost function to gain more

degrees of freedom in the design; furthermore, the region outside the object can also

be excluded from the target pattern. The pattern is illustrated in Fig. 4.2.2 with a

2D SPSP example.
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Figure 4.2.2: Illustration of the 4D SPSP target pattern with a 2D SPSP (1D spatial
+ 1D spectral) example. The pink band represents water band and
the blue band represents fat band, and their positions in the frequency
directions vary according to local off-resonance frequencies. All the
regions in white are “don’t care” regions that can be masked out in the
design.

With the system equation [4.2.3] and the target pattern, we design the pulses

by iteratively optimizing a cost function that contains a target pattern fitting term

and a regularization term for RF power penalization [34]. Furthermore, since the

transverse phase of fat spins is not important, we apply magnitude least square (MLS)

optimization [35] to increase some degrees of freedom for the pulse design, where the

final cost function can be described as:

Φ(b) = ∥P − |Asb|∥2W + β∥b∥22 (4.2.4)

where P (Ns× 1) is the real-valued 4D target pattern, ∥ · ∥W denotes the weighted l2

norm that masks out the “don’t care” region of the target pattern, and β∥b∥22 denotes

the regularization term that penalizes the RF power and β is a scalar parameter. We

use the approach proposed in [127] to solve this nonlinear optimization problem,

which is to introduce another unknown vector ϕ (Ns × 1) to the cost function and
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alternately minimizes the new cost function [4.2.5] over b and ϕ:

Φ(b,ϕ) = ∥P . ∗ ejϕ −Asb∥2W + β∥b∥22 (4.2.5)

where ejϕ (Ns × 1) denotes the vector with elements ejϕi , i = 1, 2, ..., Ns, and “.∗”

denotes the element-by-element multiplication of two vectors. In particular, the step

of updating b is implemented by using conjugate gradient algorithm [34] and nonuni-

form fast Fourier transform [24]; ϕ is updated in each iteration by taking the phase

of the latest value of Asb, i.e., ϕ
(n) = ∠{Asb

(n)}.

As the cost function [4.2.5] is non-convex over ϕ, it needs to be initialized carefully

to reach a good local minimum. There have been several different methods for the

phase pattern initialization, such as zero phase and random phase [127], but none

of them worked well in our implementation. Thus, we proposed a different initial

phase pattern for this special problem, i.e., ϕ(x, y, z, f) = −2πf T
2
, and it worked

much better than those conventional initialization methods in our designs. Because

the original target pattern with ϕ = 0 is real and slowly varying over space, then

the high energy parts of its k-space representation should be concentrated around the

origin of the k-space; however, since the coverage of kf is only over the non-positive

part, i.e. from −T to 0, it can only cover half of the high energy parts of this target

pattern in k-space. Hence setting ϕ(x, y, z, f) to be −2πf T
2
solves this problem by

shifting the target k-space by T/2 towards the negative part of kf , which makes it

possible to capture the most high energy parts of the target pattern in k-space. The

initial phase pattern works very well in practice, but it is not the only choice and may

not be the best. While keeping ϕ(x, y, z, f) a linear function of frequency, there are

still many degrees of freedom to customize ϕ(x, y, z, f) to vary over spatial locations

for each frequency. Therefore, there may exist better initial patterns of ϕ(x, y, z, f)

than the proposed solution. This is still under investigation, and randomly varying
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ϕ(x, y, z, f) over (x, y, z) while keeping it linear over f is a good point to start with.

The gradient waveforms need to be set to traverse the 4D excitation k-space

(kx − ky − kz − kf ), which is achieved by repeating a 3D k-space trajectory (kx −

ky − kz) multiple times. We investigate two different types of 3D excitation k-space

trajectories for traversing kx − ky − kz: the “spoke” trajectory (also known as “fast-

kz” trajectory) [37] and the “Spiral Nonselective (SPINS)” trajectory [128]. The

spoke trajectory is efficient when kz needs to be sampled more densely than kx − ky,

such as 2D B1 inhomogeneity compensation with slice selection [37]. Thus, this

trajectory seems sub-optimal for our problem that has nearly isotropic variations

in the 3D volume. In contrast, the SPINS trajectory, which is targeted for non-

selective excitation, seems to be a better option in terms of efficiency. Moreover, as

the SPINS trajectory traverses k-space center more densely and more slowly, specific

absorption rate (SAR) and/or peak RF power could be smaller than those of the

spoke trajectory. However, we still think it is unknown which one is better for this

problem, because: a) When using parallel excitation which usually only produces

in-plane variations, the spoke trajectory may gain more efficiency than the SPINS

trajectory, as kz may need sampling more densely than kx − ky; b) compared to

SPINS trajectory, the spoke trajectory has fewer parameters and those parameters

are more intuitive and more adjustable; c) Several methods have been proposed to

optimize the spoke trajectory [20–22,129] while optimization of the SPINS trajectory

remains much more challenging. We experimentally compared these two trajectories

in terms of various practical specifications. Fig. 4.2.3 shows examples of these two

trajectories respectively, where kx − ky − kz coverage is restricted such that kf is

sampled adequately densely.
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Figure 4.2.3: Examples of the spoke trajectory (left) and SPINS trajectory (right)
that are used in this work.

4.2.2 Step 2: Determine the “Amplitude”

STA design only determines the pulse waveform “shape”, and the designed pulses

still need to be properly rescaled to uniformly saturate the fat spins. To make the

design practical for in-vivo scans, we need an efficient and accurate way to deter-

mine the pulse “amplitude”. Although existing large-tip parallel excitation design

methods [14] [15] [16] are able to automate the design process, they would be very

computationally intensive for this problem. Thus, assuming the pulses designed in

step 1 only need to be properly rescaled, we designed a simple iterative process to

determine the pulse “amplitude”:

(1) A few, e.g., 50, pixels in the fat band that are best fit to the desired

excitation pattern for the STA design in step 1 are selected.

(2) Apply the pulse b(0) designed by STA to the Bloch equation simulation

and only compute for the points selected, and it then produces an average

of tip angle θ(0) < 900. (n = 0)

(3) while (|θ(n) − 900| > ϵ) {

(a) The pulse is updated to be b(n+1) = [1+sin(900−θ(n))
sin(900)

]b(n);

(b) Repeat (2) for b(n+1) and get an average tip angle θ(n+1);

(c) n = n+ 1;

}
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When the pulses achieve uniform patterns for fat, this strategy is equivalent to the

additive-angle method [14]. Since there is only one scalar to determine in this step,

only a few pixels are sufficient; then the computation for Bloch equation simulation is

very fast. Moreover, since 900 is relatively “small” in the large-tip excitation regime,

this algorithm usually appears to converge in a few iterations. In practice, this step

takes less than a second in Matlab (The Mathworks, Natick MA).

4.3 METHODS

The proposed method is compared with the conventional spectrally selective fat

sat pulse in a series of 3T experiments. In the phantom experiments, the spoke tra-

jectory and the SPINS trajectory were both evaluated for single channel and parallel

excitation versions. The proposed method was also applied to human knee imag-

ing. All of the experiments were performed on two GE 3T scanners (GE Healthcare,

Milwaukee, WI, USA), using GE single channel transmit/receive head coils or an

eight-channel custom parallel transmit/receive system [111] [112].

Figure 4.3.1: The flowchart of the 4D fat sat pulse design and imaging procedure. The
steps in the blue box were only used in parallel excitation experiments.
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4.3.1 Pulse Design

The proposed method is compared with the conventional spectrally selective fat

sat pulse which is designed by the Shinnar-Le Roux (SLR) algorithm [18]. The SLR

fat sat pulse is 5 ms long and has a 400 Hz minimal phase passband for fat (center

frequency is -440 Hz), which is typically used for 3T fat sat. For each pulse sequence,

the amplitude of the pulse was properly adjusted to saturate the on-resonance fat

spins.

The procedure of the proposed 4D fat sat pulse design is summarized in the

flowchart in Fig. 4.3.1. The steps in the blue box, which are for B1 mapping and RF

shimming, were only used in the parallel excitation experiments, as we found that B1

inhomogeneity was acceptable in our 3T single-channel excitation experiments. For

applications that are more susceptible to B1 inhomogeneity, e.g., abdominal imaging

in the presence of ascites [74], it may be necessary to incorporate B1 maps in the de-

sign for single-channel excitation experiments. In the parallel excitation experiments,

the required eight-channel complex B1 maps (B1 magnitude and relative phase maps)

were acquired by using a modified Bloch-Siegert (BS) B1 mapping method [1,92,93]

which produces both B1 magnitude and phase maps with optimized SNR. Moreover,

RF shimming [130] was applied to achieve uniform excitation in the parallel excita-

tion system, where the magnitude and phase of each coil of the transmit array were

adjusted according to the complex B1 maps. With the uniform excitation, we can

obtain the B0 maps from the phase difference of two Gradient echo images that have

different echo times, and the echo time difference needs to be set such that the water

and fat spins are in-phase, e.g., ∆TE = 2.272 ms on 3T scanners. The B0 and B1

maps are then put into the proposed 2-step 4D fat sat pulse design routine to get the

desired fat sat pulses. Finally, the uniform excitation pulse and the designed 4D fat

sat pulse are loaded onto the scanner to acquire the fat suppressed images.

Although this high dimensional design is computationally intensive, we still achieved
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a practical design time by using the following strategies. First, we coarsely sample

the 4D spectral-spatial domain, based on the following assumptions: (a) The tar-

get pattern varies smoothly with the B0 and B1 maps over the 3D spatial domain;

(b) The spectra of fat and water in each voxel are relatively narrow and far apart.

Second, most parts (usually 80% - 90%) of the 4D SPSP domain are “don’t care”

regions that can be masked out. Furthermore, as discussed in Section 4.2, the rela-

tively small kx − ky − kz coverage and short kf coverage, which respectively satisfies

the sampling rate along kf and shortens pulse length, also help to reduce the size

of the system matrix. The voxel size of the target pattern and the corresponding

B0 and B1 maps was around 1 cm3, and the sampling rate in the frequency domain

was about 20 Hz/point. The bandwidths of water and fat were set to be 40 Hz and

80 Hz respectively. The spoke trajectory samples 5 kx − ky points as shown in Fig.

4.2.3, where the locations of kx − ky samples were empirically chosen to be uniform

around the origin. The SPINS trajectory was designed according to the parameters

suggested in [128]. The maximal gradient slew rate of both trajectories were driven

towards the system limits, which is 180 Tm−1s−1. The sampling interval along kf ,

i.e., the time for traversing kx− ky− kz, was below 1 ms, keeping any possible aliases

in frequency domain at least 1 kHz away from each other.

All of our pulse designs were implemented in Matlab 7.8 on a workstation equipped

with Intel Core2 Quad CPU Q9400 @ 2.66 GHz and 4 GB RAM, which takes about

1-2 mins for the single-channel excitation pulse and about 3-5 mins for the parallel

excitation pulse. The computation time would be acceptable in practice with a more

efficient implementation and a faster computer.

4.3.2 Phantom Experiments with Single Channel Excitation

We then carried out two phantom experiments to test the single-channel excitation

version of the 4D fat sat pulse. The first phantom experiment (called “experiment 1”
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hereafter) compares the proposed method with the SLR fat sat pulse, and the second

experiment (called “experiment 2” hereafter) studies the proposed method with dif-

ferent trajectories and pulse lengths. A cylindrical phantom filled with distilled water

(CuSO4 doped) and mineral oil was used for all those experiments.

In experiment 1, we designed a 4.8 ms 4D fat sat pulse for a 14 cm ×14 cm

×6 cm axial slab of the phantom based on its multi-slice B0 maps (Fig. 4.4.1).

The spoke trajectory was applied with sampling period along kf of 0.6 ms and 9

kf samples. No RF power penalization was applied. It is compared with the 5 ms

SLR fat sat pulse. We implemented the standard fat saturation scheme where the fat

sat pulse is followed by a multi-slice 2D interleaved spiral-out readout. To measure

the residual Mz, we play each sequence twice (turn fat sat on or off) with the same

parameters: TE = 6 ms, TR = 15 s, FOV = 14 cm, slice thickness = 4 mm, 15

slices, 4 interleaves, reconstruction size is 64× 64. A long TR is used so that we could

approximately calculate the absolute value of the normalized residual Mz by taking

the ratio: |Mz| ≈ |the fat saturated image|/|the non-fat-sat image|.

In experiment 2, we applied the 4D fat sat pulse with the spoke and SPINS

trajectories as well as the SLR fat sat pulse on the same phantom. A 3D spoiled

gradient-echo sequence (SPGR) with FOV 14 cm ×14 cm ×7 cm was applied to

acquire the B0 map (Fig. 4.4.3). We then designed 4 different 4D fat sat pulses,

which are 4.8 ms or 2.5 ms 4D fat sat pulses with a spoke or SPINS trajectory.

The two 4.8 ms pulses both sample kf 9 times, while the two 2.5 ms pulses sample

kf 5 times. Among these four pulses, only the 2.5 ms spoke pulse used RF power

penalization. The pulses were tested with 3D SPGR sequences that have a 7 cm slab-

select excitation and spin-warp readout, and the imaging parameters were: TR = 213

ms, FOV = 14 cm ×14 cm ×7 cm, data size = 64 × 64 × 15. For each pulse, a pair

of 3D images were acquired with fat sat on or off.
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4.3.3 Phantom Experiments with Parallel Excitation

The parallel excitation version of 4D fat sat pulses was tested on the same phan-

tom, which is called “experiment 3” hereafter. Due to partial amplifier failure, we

only used 4 of the 8 parallel excitation coils for transmission while all 8 parallel receive

channels were used. 2D B1 maps of the parallel transmit channels were acquired and

shown in Fig. 4.4.4. They were then stacked up to form the 3D B1 maps, assuming

uniform B1 field along z. We then designed the complex weights for uniform excita-

tion using RF shimming. Then we acquired the 3D B0 map (Fig. 4.4.4) using a 3D

SPGR squence with FOV 14 cm ×14 cm ×10.5 cm, where a 5.9 cm thick axial slab

was used for the pulse design.

We designed 4.8 ms or 2.7 ms 4D fat sat pulses with a spoke or SPINS trajectory,

each of which employed the “heuristically optimized” k-space trajectory: the 4.8 ms

spoke trajectory samples kf every 0.6 ms for 9 times; the 4.8 ms SPINS trajectory

samples kf about every 1 ms for 5 times; the 2.7 ms SPINS trajectory samples kf

every 0.54 ms for 5 times. We did not test spoke pulses shorter than 4.8 ms, which

is discussed in Discussion section. All the designs required RF power penalization to

satisfy the power limit of the amplifiers. The SLR fat sat pulse with the weights for

uniform excitation was also applied for comparison.

All the pulses were tested with 3D SPGR sequences that have a non-selective

excitation and spin-warp readout, and the imaging parameters were: TR = 80 ms,

FOV = 14 cm ×14 cm ×10.5 cm, data size = 64 × 64 × 48. For each pulse, a pair

of 3D images were acquired with fat sat on or off. Note that the raw data were

8-channel parallel imaging data, and they were combined using the receive side B1

shimming according to the receive sensitivity maps acquired off-line. The results

shown in Result section are all combined images.
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4.3.4 In-Vivo Experiments with Single Channel Excitation

The 4D fat sat pulse with single-channel excitation was demonstrated in a knee

imaging experiment (called “experiment 4” hereafter). A healthy volunteer partici-

pated with approval by the Institutional Review Board of the University of Michigan,

after providing informed consent. To insure safety, a relatively long repetition time

was used and global SAR was monitored during the experiments. Since head coil

may underestimate the global SAR for knee imaging, we kept the monitored global

SAR values on the scanner below 5% of the relevant limit. We used the 2.5 ms 4D fat

sat pulse with SPINS trajectory which worked best in the single-channel excitation

phantom experiments and compared it with the 5 ms SLR fat sat pulse. The 3D

B0 map of a 28 cm ×28 cm ×6.5 cm (64 × 64 × 13) axial slab of human knees was

acquired with a 3D SPGR sequence, and Fig. 4.4.5 shows two representative slices.

No penalization was put on peak RF power. Both of the fat sat pulses were tested

with 3D SPGR sequences that have a slab-select excitation and spin-warp readout,

and the imaging parameters were: TR = 91 ms, minimal TE, nominal flip angle was

200, FOV = 28 cm ×14 cm ×6.5 cm, data size = 256× 128× 13.

Table 4.1: The List of Experiments
objects equipment trajectories

Experiment 1 phantom single-channel excitation spoke
Experiment 2 phantom single-channel excitation spoke, SPINS
Experiment 3 phantom parallel excitation spoke, SPINS
Experiment 4 knees single-channel excitation SPINS
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Figure 4.4.1: The B0 maps and the results of experiment 1. (a) Top: the B0 maps
(in Hz); Middle and bottom: the ratio images by the SLR fat sat pulse
(middle) or the 4D fat sat pulse (bottom), where the ratio images are
the ratio between the images with fat sat and the ones without fat sat;
Note that oil is on the top and water is the bottom in each image, and
every third of the axial slices is shown. (b) The histograms (200 bins)
of the water (black) and fat (blue) Mz according to the ratio images of
all the slices, where the SLR fat sat pulse (top) is compared with the
4D fat sat pulse (bottom).

4.4 RESULTS

4.4.1 Phantom Experiments with Single Channel Excitation

The results (every third slice) of experiment 1 are shown in Fig. 4.4.1 where 4D fat

sat pulse is compared with SLR fat sat pulse. Oil is on top of water in the images, and

we show the ratio images mentioned in the Methods section which is approximately

the absolute value of the normalized residual Mz after the fat sat pulse. By manually

selecting the water and fat parts in the images, we put together the histograms of the

residual Mz of water and fat parts by the two pulses in Fig. 4.4.1(b). Compared to

the SLR fat sat pulse, the 4D fat sat pulse worked nearly the same or a little better

for water but much better for fat. Note that some of the Mz of water is greater

than 1, which is physically impossible, and the reasons could be artifacts of the spiral
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imaging and random data noise.
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Figure 4.4.2: Examples of the designed 4D fat sat pulses: 4.8 ms 4D fat sat pulse with
SPINS trajectory (left); 4.8 ms 4D fat sat pulse with spoke trajectory
(right).

In experiment 2, we tested and compared the proposed method with four different

k-space trajectories, and Fig. 4.4.2 shows examples of the designed pulses with a

spoke or SPINS trajectory. Compared to the spoke trajectory which traverses much

faster along kz, the SPINS trajectory traverses excitation k-space more uniformly

and has a smoother and slower transition around the kx− ky − kz center. Hence, the

RF power of the SPINS pulse varies less over time and has smaller peak RF power

and average power deposition for a given flip angle and pulse length, compared to

the spoke pulse. The total RF energy of each pulse, which has been suggested as a
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Figure 4.4.3: The B0 maps and the results of experiment 2, where every third of
the axial slices is shown. (a) The B0 maps (in Hz); (b)-(f) The ratio
images by different pulses: (b) 5 ms SLR fat sat pulse, (c) 4.8 ms 4D fat
sat pulse with SPINS trajectory or (d) spoke trajectory, (e) 2.5 ms 4D
fat sat pulse with SPINS trajectory or (f) spoke trajectory. The ratio
images are still the ratio between the images with fat sat and the ones
without fat sat, and oil is still on top of water.

surrogate for measuring relative global SAR [131], was calculated using the following

formula:

E =

∫
|b(t)|2dt (4.4.1)

The results of the four 4D fat sat pulses and the SLR fat sat pulse are summarized in

Table 4.2. We also recorded the global SAR of the sequences used in the experiment

from the scanner console under a relatively extreme condition, i.e., TR of the 3D

SPGR sequence was set to be the minimum (13 ms), the results of which are also
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shown in Table 4.2. Subtracting SAR of the sequence with no fat sat from the other

SAR values in Table 4.2 yields the SAR values induced only by the fat sat pulses, and

the values turn out to be roughly proportional to the calculated RF energy values.

As expected, the 4D fat sat pulses has much more power than the SLR fat sat pulse,

the shorter 4D fat sat pulses induced more SAR than the longer ones, and the SPINS

pulses have lower power than the spoke pulses. Although the density of the RF pulses

was almost set to be the highest possible, the global SAR is still far below the relevant

limit.

Table 4.2: RF energy and measured global SAR in experiment 2
RF energy (G2µs) global SAR (W/kg)

5 ms SLR pulse 1.1 0.2
4.8 ms SPINS 9.0 0.4
4.8 ms spokes 11.3 0.4
2.5 ms SPINS 30.5 0.9
2.5 ms spokes 49.3 1.4
no fat sat 0.2

As in experiment 1, the ratio images (every third slice) produced by the five

different sequences are shown in Fig. 4.4.3, where fat is still on top of water. To

highlight the differences in the fat parts, we show the ratio images in color. The

mean and the standard deviation of manually selected fat and water parts in each

set of ratio images are shown in Table 4.3. All the pulses kept the water signal very

well, but the 4D fat sat pulses worked much better than the SLR fat sat pulse in

the fat part in the presence of B0 inhomogeneity (Fig. 4.4.3). Both of the 4.8 ms

4D fat sat pulses worked very well, and the SPINS pulse is a little better in fat as

shown in Fig. 4.4.3 and Table 4.3. In contrast, the 2.5 ms SPINS pulse worked much

better than the 2.5 ms spoke pulse. Compared to the 4.8 ms SPINS pulse, the 2.5

ms SPINS pulse worked similarly in terms of overall performance; specifically, it has

better mean values in both fat and water but bigger variation in the fat part than the

4.8 ms SPINS pulse (Table 4.3). Since SAR may not be an issue here, we think the
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2.5 ms SPINS pulse is the best choice for single-channel excitation studies in terms

of pulse length and overall performance.

Table 4.3: Statistics of experiment 2
mean (fat) std (fat) mean (water) std (water)

5 ms SLR 0.220 0.16 0.974 0.010
4.8 ms SPINS 0.0532 0.024 0.974 0.0077
4.8 ms spokes 0.0598 0.037 0.975 0.0079
2.5 ms SPINS 0.0483 0.040 1.00 0.0084
2.5 ms spokes 0.0784 0.051 0.982 0.018

4.4.2 Phantom Experiments with Parallel Excitation

Similar to the previous phantom experiments, we calculated the ratio images pro-

duced by the four different parallel excitation pulses mentioned in Methods section.

Every sixth of the 26 axial images and their corresponding field maps are displayed

in Fig. 4.4.4. By manually selecting the fat and water parts, the histograms of water

and fat parts in the ratio images are shown in Fig. 4.4.4(d). As can be seen, the spoke

trajectories still suppressed fat much more robustly than the SLR fat sat pulses in

the presence of both B0 and B1 inhomogeneity, and all of them worked similarly for

water. Due to lower SNR of the parallel excitation system, there are more ratio values

in the water part that are greater than 1, compared to the single-channel excitation

experiments. Comparing the three 4D fat sat pulses, the 4.8 ms spoke pulse worked

the best; the overall performance of the two SPINS trajectories is similar, but the

2.7 ms SPINS pulse worked less robustly in the first few axial slices, one of which is

shown in the first column of Fig. 4.4.4(c).

4.4.3 In-Vivo Experiments with Single Channel Excitation

The results of experiment 4 are shown in Fig. 4.4.5, where we display two repre-

sentative axial slices. Compared to the images without fat sat, both fat suppressed

images suppressed the fat inside the marrow, and the 4D fat sat pulse worked slightly
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Figure 4.4.4: The B0/B1 maps and the results of experiment 3. (a) The B0 maps (in
Hz), where every sixth of the axial slices is shown. (b) The 4-channel
B1 magnitude (top) and relative phase (bottom) of a 2D slice. (c) The
ratio images corresponding to (a) by different pulses; 1st row: 5 ms SLR
fat sat pulse; 2nd row: 4.8 ms 4D fat sat pulse with spoke trajectory;
3rd row: 4.8 ms 4D fat sat pulse with SPINS trajectory; 4th row: 2.7
ms 4D fat sat pulse with SPINS trajectory; The ratio images are still
the ratio between the images with fat sat and the ones without fat sat,
and oil is still on top of water. (d) The histograms of the water (black,
200 bins) and fat (blue, 500 bins) Mz according to the ratio images of
all the slices.

better. For the fat outside the bones and muscles where B0 field is more inhomoge-

neous, the 2.5 ms 4D fat sat pulse worked much better than the 5 ms SLR fat sat

pulse.
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4.5 DISCUSSION

The proposed 4D SPSP fat sat pulse has been demonstrated in various 3T scanner

experiments, showing that it can more robustly suppress fat signals with a similar

or shorter pulse length in the presence of B0 and B1 inhomogeneity compared to the

conventional SLR fat sat pulse.

By using the spatial information, the proposed method formulates the fat sat

problem as a 4D spectral-spatial problem, which seems more complicated but in fact

is quite sensible, as the conventional spectral pulse is generally inefficient for fat sat

problems: a) in fact, the SLR fat sat pulse oversamples kf (time) domain which,

for example, only needs sampling about every 1 ms at 3T, so it has a lot of idle

time between the necessary samples, which is efficiently used to handle the spatial

variations in the 4D fat sat pulse. b) The spectral domain problem is easier when the

spatial domain is exploited, as much smaller spatial variations of center frequencies

need to be accommodated in the 4D fat sat design, which can largely reduce the pulse

length; this is also true when the B0 /B1 fields are relatively uniform, where not much

kx − ky − kz needs to be traversed, and the 4D fat sat pulse will become similar to

a SLR fat sat pulse with a very smooth transition band, which can be much shorter

than the standard SLR fat sat pulse. On the other hand, when B0/B1 fields have

large spatial variations, the design requires large kx−ky−kz coverage which is limited

by the kf sampling rate. So as long as the kx − ky − kz coverage can still address

the spatial variations, the pulse length will still be as short; otherwise, pulse length

will need to be longer, so that a sharper spectral transition band can be obtained

to handle the local spatial variations that are not fully compensated by the limited

kx − ky − kz coverages.

We assume certain chemical shifts of fat, e.g., 440 Hz at 3T, which could be

inaccurate. In fact, such inaccuracy does not affect the result much within a certain

range, because the error of chemical shift will be absorbed into the B0 map acquired
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with the ∆TE corresponding to the same inaccurate chemical shift, which only makes

the design a little harder due to the discontinuous transitions between water and fat

in the B0 map. In the experimental results, however, there were still some residual fat

signals that are higher than simulated. It could be caused by some imperfect system

conditions, e.g., non-ideal gradient waveforms, inaccurate B0/B1 maps, field drift, and

inaccurate RF power calibration. In addition, multiple peaks of fat spectrum [74] are

not considered in this method, and therefore some minor fat components can not be

suppressed.

We have empirically compared the 4D fat sat pulse with different trajectories in

experiment 2 and 3. The SPINS pulses worked better than the spoke pulses in experi-

ment 2 in terms of performance and SAR. However, no clear conclusion can be drawn

in experiment 3, because although the spoke pulses gain more efficiency from parallel

excitation, they need greater performance penalty in order to satisfy the peak RF

power limit. All of the 4D fat sat pulses in experiment 3 were designed with peak RF

power penalization. As the SPINS pulse naturally has smaller peak RF power than

the spoke pulse, there was less of a performance compromise with the SPINS pulse

relative to the spoke pulse. We did not test other spoke trajectories that are shorter

than 4.8 ms in experiment 3, because the shorter ones, which need even more RF

power, had much poorer performance than the 2.7 ms SPINS trajectory in simula-

tions that penalized RF power. Although the 4.8 ms spoke pulse worked only slightly

better than the SPINS trajectories in experiment 3, the spoke trajectories had more

advantage in simulations without penalizing peak RF power, including the spoke tra-

jectories shorter than 3 ms. So, as we discussed in Theory section, the spoke pulse

with the parallel excitation could work better than the SPINS pulse, but the practical

limitations on peak RF power reduce the advantage of the spoke pulse. Moreover,

SAR in the parallel excitation experiments, which can not be evaluated by equation

[4.4.1] or global SAR, needs more investigation, and this may limit the performance of
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the spoke pulses further. So, the choice of trajectory in the parallel excitation version

depends on specific situations. Furthermore, in addition to these empirical exper-

iments where the trajectory parameters were heuristically chosen, more systematic

and rigorous studies can be carried out to compare these two trajectories, e.g., pulse

design with joint trajectory optimization. Future studies may also include a study

of other types of 3D trajectories that are more suitable for this application. One

popular 3D trajectory is the stack-of-spiral trajectory [36], but this trajectory can be

very inefficient for a non-spatial-selective pulse design like this work. It is efficient

for the patterns where in-plane variations dominate, which is generally not the case

in the fat sat problem. As the efficiency for traversing kx− ky − kz is very important

in our method, stack-of-spiral trajectory will generally be suboptimal compared to

the two trajectories used in this work. Another candidate could be the kT -points

trajectory which is an efficient non-selective trajectory for 3D field inhomogeneity

compensation [132]. This trajectory can be automatically optimized easily and also

is able to lower peak RF power and SAR, which are favorable for this 4D fat sat pulse

problem.

As shown in the results, the single-channel excitation design worked well enough

with B1 inhomogeneity ignored on 3T scanners. In contrast, the parallel excitation

pulses worked more poorly than the corresponding single-channel excitation pulses,

in terms of performance and the required pulse length. Part of the reason is that the

custom hardware may have had some imperfections, such as nonlinearity of the RF

amplifiers and some eddy current problems, which are being corrected. We only used

half of the eight channel system, which may provide little control in some regions be-

tween coils. Furthermore, the B1 maps measured in the experiments may have errors

that can be propagated to the pulse design. The B1 measurements in low magnitude

regions may be unreliable, which is a common problem with BS B1 mapping. Al-

though we have verified off-line that the B1 fields of the same phantom along the axial
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direction were reasonably uniform by looking at the saggital view B1 maps, the 3D

B1 maps used in the experiments that were replicas of 2D B1 maps might still have

some variations along axial direction. This can also cause pulse design errors. Since

the single-channel excitation experiments did not compensate for B1 inhomogeneity,

the parallel excitation 4D fat sat pulse may still be advantages in the applications

where B1 inhomogeneity is more problematic, e.g., fat sat in abdominal imaging at

3T [74].

The 4D fat sat pulse improves fat sat performance at the cost of a more complex

experimental procedure. The 4D fat sat pulse requires B0 mapping and possibly B1

mapping. These increase the total study time, and the effectiveness of the fat sat

pulse is more likely to be affected by subject motions. Thus, it is important to use

fast methods for acquiring and processing the B0 and B1 scans [133] [1].

Investigation of the proposed method at different main field strengths could be

an interesting future work. At lower field where the pulse length of the conventional

fat sat is more problematic, the 4D fat sat pulse could be even more advantageous,

because sparser sampling along kf at lower field allows the 4D fat sat pulse to better

compensate for spatial variations which is smaller than at 3T, so that the task in the

spectral domain can be simplified even more; in other words, the 4D fat sat pulse

length may be shortened further at lower field. In addition, SAR is less of a concern

at lower field strength. On the other hand, it will be more challenging to design

4D fat sat pulses at fields higher than 3T where B0 and B1 inhomogeneity is more

severe. In such designs, the required shorter sampling interval along kf leaves smaller

room for the pulse to compensate for the even larger spatial variations, and parallel

excitation will probably be required. Since the pulse length of the conventional fat sat

is less of an issue at high field, the proposed method will mainly help to compensate

for the field inhomogeneities rather than to shorten the pulse length. We have done

some simulation studies on 7T 4D fat sat pulse design which showed some promising
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results, but SAR may be more problematic.

4.6 Conclusions

We proposed an efficient 4D SPSP fat sat pulse that uniformly suppresses fat

without exciting water in the presence of B0 and B1 inhomogeneity with single channel

or parallel excitation system. In the 3T experiments, the proposed method showed

superior performance in terms of fat suppression and pulse length compared to the

SLR fat sat pulse. In particular, the proposed pulse was only half of the standard fat

sat pulse in the single-channel excitation experiments. We also found that the SPINS

trajectory is generally preferred to spoke trajectory in single-channel excitation, but

the choice of trajectory in parallel excitation depends on specific situations. This

approach must be very useful in a variety of applications at different field strengths.
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Figure 4.4.5: The B0 maps and results of the knee imaging, where two representative
axial slices are shown. (a) The B0 maps (in Hz). (b) The images without
fat sat. (c) The images with 5 ms SLR fat sat pulse. (d) The images
with 2.5 ms 4D fat sat pulse.
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CHAPTER V

Simultaneous Fat Saturation and Magnetization

Transfer Contrast Imaging with Steady-State

Incoherent Sequences1

5.1 Introduction

Fat suppression has been commonly used in many MRI applications to suppress

undesired adipose tissue signals or prevent chemical shift artifacts. Fat sat(uration) is

one of the most popular fat suppression techniques, which uses a spectrally selective

pulse to selectively saturate and dephase fat spins preceding the actual imaging pulse

sequence [28]. Fat sat typically works well and is compatible with most imaging

sequences, but it is sensitive to B0 and B1 inhomogeneity. Moreover, the fat sat

pulse is long in low field scanners, which limits the minimum TR for some fast MRI

sequences. These problems have been mitigated in [33], where a 4D tailored spectral-

spatial (SPSP) fat sat pulse is demonstrated to be robust to B0/B1 inhomogeneity

and shorter than the standard fat sat pulse by half on 3T scanners.

Another technique that can modify magnetization of tissue in MRI is called “mag-

netization transfer contrast (MTC) imaging”. This technique utilizes the tissue-

dependent magnetization transfer (MT) effect which features signal attenuation caused

1This chapter is based on [95,96]
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by the interaction between free hydrogen protons, e.g., those of fluid, and restricted

hydrogen protons , e.g. those of macro-molecules [86]. Specifically, the restricted

protons, which have much broader spectra, can be saturated by off-resonance pulses

and then exchange magnetization with the free protons. Using this tissue-dependent

feature, MTC sequences can produce MTC images with useful diagnostic informa-

tion. MTC imaging can be conducted either only once before a steady-state imaging

sequence [72] (turbo MT prep) or in each repetition [87] like the fat sat sequence;

in this work, we will focus on the latter, which will be shown to have higher MT

sensitivity and thus less specific absorption rate (SAR) penalty when TR is short.

It has been shown that combining fat sat and MTC are beneficial in many clinical

applications, such as cartilage imaging [87] [73], cardiac imaging [72], intracranial

angiography [89], breast imaging [90] and lung imaging [134]. In the angiography ap-

plications, spoiled gradient-echo sequence (SPGR) has been widely used to produce

T1-weighted or flow-enhanced images with very short imaging time, e.g., time-of-flight

(TOF) angiography [72]. SPGR belongs to the class of “steady-state incoherent (SSI)

sequences” which eliminate any residual transverse magnetization prior to each RF

pulse [6]. SSI sequences are usually compatible with fat sat and MT pulses applied

in each repetition. In applications that need more T2 weighting, e.g., MTC cartilage

imaging, balanced steady-state free precession sequence (bSSFP) is one of the pre-

ferred sequences, as this fast imaging sequence can produce T2/T1 contrast images that

have higher signal-to-noise ratio (SNR) than SPGR images. However, a drawback of

bSSFP is the banding artifacts caused by B0 field inhomogeneity; and it belongs to

“steady-state coherent (SSC) sequences” [6] which have limited compatibility with

fat sat and MT pulses in each repetition. Nielsen et al. [2] have proposed an SSI

sequence called “small-tip fast recovery sequence (STFR)”. It produces bSSFP-like

T2/T1 contrast images which have higher SNR than SPGR images, but they are free

of banding artifacts.
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Although SSI sequences like SPGR or STFR are compatible with fat sat and MT

pulses in each repetition, some limitations may hamper their practical use. Combining

both fat sat and MT pulse into one sequence may largely increase minimal TR which

may make it impractical in applications like breath-hold imaging, especially in low

field scanners. In higher field scanners, SAR penalty may be of a concern when fat

sat and MT pulses are both incorporated into the sequence.

In this work, we propose to combine the multi-dimensional tailored SPSP fat

sat (MD fat sat) pulse proposed in Chapter IV to SSI sequences including SPGR

and STFR. We found that the short-TR SSI sequences with this efficient MD fat sat

pulse can suppress fat and produce MT effect simultaneously. With only the MD

fat sat pulse (with gradient crusher), which is even much shorter than the standard

spectrally selective fat sat pulse, the proposed sequences have less limitation on the

minimal TR and potentially lower the overall SAR. In addition, the MD fat sat pulse

is also robust to B0/B1 inhomogeneity, which mitigates the general problem in fat

sat imaging. Furthermore, we found that the conventional RF spoiling scheme that is

typically used for SPGR and STFR does not work when RF pulses with crushers like

fat sat is applied, so we introduce a modified RF spoiling scheme is for the proposed

sequences.

In this work, we demonstrate the proposed methods on 3T scanners. In addition

to several simulation studies and phantom experiments, we applied the proposed se-

quences on human brain imaging, cartilage imaging and TOF-based MR angiography

in brain.
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Figure 5.2.1: The illustrative diagram of the 2D version of the proposed pulse se-
quences. a: FSMT-SPGR; b: FSMT-STFR.

5.2 Theory

5.2.1 Steady-state Incoherent Sequences with Fat Sat

Fig. 5.2.1 illustrates the 2D version of the proposed fat sat and MTC SPGR

(FSMT-SPGR) and fat sat and MTC STFR (FSMT-STFR). In FSMT-SPGR, the

fat sat and MT part (S1) with the MD fat sat (P0) is added prior to the regular

excitation pulse (P1) of SPGR (S2) in each repetition, and both S1 and S2 have a

gradient crusher, i.e., C1 & C2. This 2D version of FSMT-SPGR uses a 3D SPSP fat
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sat pulse [96] [95] which is tailored to the B0/B1 field using the same method proposed

in Chapter IV, and the only difference is that repeated 2D spiral-out trajectories are

used to cover the 3D SPSP k-space. The 3D version of the FSMT-SPGR uses the

same 4D fat sat pulse used in Chapter IV. Compared to SPGR, the main difference

of the 2D STFR is the 2D tailored tip-up pulse (P2) at the end of each repetition

which is tailored to tip up the excited spins back to the longitudinal axis according

to local off-resonance frequencies [2]. By adding to the tip-up pulse to recycle spins,

STFR can produce high SNR T2/T1 contrast images. Another difference of STFR

from SPGR is that its net gradient areas between the tip-down excitation and the

tip-up pulse have to be zero, so that the spin behaviors are more controllable by the

tip-up pulse.

Both the regular SPGR and STFR without fat sat need gradient crushers to spoil

the residual transverse magnetization before the next imaging cycle, and RF spoiling

is also required when TR < T2 [83] [2]. RF spoiling removes the residual transverse

signal by quadratically varying the global RF phase, which produces incoherent intra-

voxel spin behaviors. In SPGR without fat sat, the global phase of P1 varies as the

following quadratic function:

ΦP1(n) =
a

2
n2 + bn+ c (5.2.1)

where a, b, c are constants, and n is the number of repetitions. The quadratically

changing phase guarantees that the signal of all the voxels reach a homogeneous

steady-state, and the residual signal at the end of each repetition can be kept to

almost zero by choosing a particular value of a, e.g., 1170. For the STFR without

fat sat, as the net gradient areas in between P1 and P2 are zero, the whole part that

contains P1 and P2 can be treated as a single pulse from the RF spoiling’s point of

view. Thus, STFR works with the same RF spoiling as SPGR when P2 keeps the
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same global RF phase as P1 [2].

However, the SSI sequences with additional crushers in each repetition, e.g., fat

sat sequences, may not work robustly with the conventional RF spoiling scheme, i.e.,

P0 keeps the same global phase as P1 (and P2). For SPGR with fat sat, this RF

spoiling scheme only guarantees the signals to reach steady state with perfect fat

sat where water/fat only experiences one RF pulse, i.e., P1/P0, in each repetition,

which rarely happens in practice. When using the conventional fat sat, even if the

B0 inhomogeneity is not severe enough to have water excited by the fat sat pulse,

fat signals can never be perfectly eliminated in the presence of B0/B1 inhomogeneity;

then fat spins can be excited both by P0 and P1, and the additional crusher C1 will

alter the signal’s progression to steady state. Similarly, STFR with fat sat is only

guaranteed to reach steady state with perfect fat sat and T1 relaxation of fat between

P0 and P2 ignored. Although the MD fat sat pulse can largely reduce imperfect fat sat

in the presence of B0/B1 inhomogeneity, it is still not guaranteed to work perfectly

in all the cases. Furthermore, in the case that P2 and the MD fat sat pulse are not

designed for the whole object, the uncontrolled out-of-slice/slab parts of the object

can also produce non-steady-state signals [96]. Therefore, to improve the robustness

of the SSI sequences with fat sat, we propose to modify the conventional RF spoiling

scheme to guarantee steady state reaching with imperfect fat sat. The new RF spoiling

scheme is to apply the quadratic RF phase variation to each “sub-unit that contains

a crusher” instead of each repetition. The functions of the global phase of each pulse

in SPGR with fat sat then becomes:

ΦP0(n) =
a

2
(2n− 1)2 + b(2n− 1) + c

ΦP1(n) =
a

2
(2n)2 + b(2n) + c

(5.2.2)

If the two crushers C1 and C2 have the same area, this modified RF spoiling will

guarantee the sequence to reach steady state. Keeping the global phase of P2 the
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same as P1, STFR with fat sat works similarly with the modified RF spoiling scheme.

5.2.2 Simultaneous Fat Sat and MTC Imaging

0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

MTR

E
ff
e
c
ti
v
e
 M

T
R

MT−prep SPGR

0 0.2 0.4
0

0.2

0.4

0.6

0.8

1

MTR

E
ff

e
c
ti
v
e

 M
T

R

MT−prep STFR

Figure 5.2.2: The plot of the effective MTR in terms of MTR for MTC SSI sequences;
0.5 s 6 T1 6 2 s, 50 ms 6 T2 6 200 ms. It shows that both sequences
are sensitive to small magnetization attenuation caused by MT effect.

It is mentioned in the introduction that MT pulse applied in each repetition of SSI

sequences produces higher MT effects than the turbo type MT prep which is applied

once before a train of repetitions. Suppose MT ratio (MTR) is defined as the ratio

between the reduced magnetization caused by MT and the original magnetization,

and then the steady-state longitudinal magnetization of MTC SPGR prior to each P1

with respect to MTR is:

Mz(r) =M0
(1− r)E1s(1− E1d) + (1− E1s)

1− (1− r)E1sE1d cosα
(5.2.3)

where r is MTR, M0 is equilibrium magnetization, E1s , e
−Ts

T1 , E1 , e
−Td

T1 , Ts is

the duration of each gradient crusher, Td is the duration of each repetition excluding
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the MT part, α is the flip angle, relaxation during the MT pulse is ignored. The

corresponding function of MTC STFR with respect to MTR is:

Mz(r) =M0
[(1− r)E2

1s(1− E1f ) cosα + (1 + (1− r)E1s)(1− E1s)]

1− (1− r)E2
1s(E2f sin

2 α− E1f cos2 α)
(5.2.4)

where E1f , e
−

Tf
T1 , E2f , e

−
Tf
T2 , Tf is the duration between the peak of P1 and the

beginning of P2, and relaxation during tip-up and MT pulse is ignored.

To show that such MTC SSI sequences are more sensitive to MT effect than the

turbo MT-prep sequences, we plot sets of curves of 1 −Mz(r)/Mz(0) for ranges of

T1 and T2 values in Fig. 5.2.2, where 1 −Mz(r)/Mz(0) is the “effective MTR” of

SSI sequences and it corresponds to the MTR measured from images. The sequence

parameters were set as follows: Td = 10ms, Ts = 1ms and Tf = 8ms. Note that MTR

is equal to the effective MTR of the turbo MT prep sequences, so the plots show that

with reasonable T1 and T2 values, MTC SSI sequences with MT pulses applied in

each repetition are much more sensitive to MT effect than the corresponding turbo

MT prep sequences. Such MT sensitivity increases with shorter TR or longer T1 and

does not change much with different T2 values.

With this property, we propose to use SSI sequences with MD fat sat to generate

MT effect and suppress fat simultaneously. In fact, despite that such sequences are

MT sensitive, SSI sequences with the conventional spectrally selective fat sat pulse

can not produce enough MT effect for clinical use, as the conventional fat sat pulses

are low energy pulses compared to typical MT pulses and MT effects is proportional to

RF energy. However, the proposed MD fat sat produces much higher RF energy than

the conventional fat sat pulse, because this short efficient tailored SPSP pulse needs to

handle both spectral and spatial variations by traversing the excitation k-space very

rapidly, which leads to higher RF amplitude and thus higher RF energy. In addition,

the MD fat sat is about 3.5 ppm off the center frequency which is much lower than
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the off-resonance frequency of the conventional MT pulses. This can further increase

the MT effects induced by the MD fat sat as MT effects decrease with off-resonance

frequency. Thus, we think that the proposed MD fat sat can potentially produce

non-trivial MT effects while suppressing fat signal.

5.3 Methods

5.3.1 Simulation and Phantom Experiment I: RF Spoiling Schemes

We first compare the conventional RF spoiling scheme and the adapted RF spoiling

scheme by Bloch equation simulations. We simulated the signal evolutions of the

integrated magnetization of a 0.5 cm voxel with 5000 isochromats for fat or water

with fat-sat SPGR or fat-sat STFR. We chose some typical values for the fat spin

and the water spin: T1,fat/T2,fat = 200 ms/70 ms, T1,water/T2,water = 1 s/100 ms; the

sequence parameters were: TR = 10 ms, the tip angle of P1 (and P2) was 200 for

both water and fat, the tip angle of P0 was 800 for fat and 200 for water to simulate

imperfect fat sat, and the parameter a in (5.2.1) and (5.2.2) was 1170. We simulated

evolutions of the transverse magnetization of fat and water right after P1 for the first

200 and 500 repetitions (2 s and 5 s) respectively, which are long enough to test

steady state reaching.

In addition, we also applied fat-sat SPGR in a phantom scan on a 3T GE scanner

(GE Healthcare, Milwaukee, WI, USA). The phantom was a cylindrical phantom filled

with distilled water and vegetable oil. The fat sat part used a conventional spectrally

selective fat sat pulse designed by the Shinnar-Le Roux (SLR) algorithm [18]. The

SLR fat sat pulse is 5 ms long and has a 400 Hz minimal phase passband for fat (center

frequency is -435 Hz), which is typically a standard setting for 3T fat sat. With this

fat sat pulse, a 3D SPGR with spin-warp readout was applied using the conventional

and the adapted RF spoiling schemes respectively, and the imaging parameters were:
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TR = 13 ms, FOV = 14 cm ×14 cm ×14 cm, data size = 64× 64× 14, a = 1170. A

set of images without fat sat was also acquired for reference.

5.3.2 Phantom Experiment II: Fat Sat Pulses

The 4D SPSP fat sat pulse which is used for 3D or multi-slice imaging has been

demonstrated in Chapter IV. In our experiments with fat-sat SSI sequences, we also

carried out 2D scans which only need 3D version of the MD fat sat pulse. We carried

out some phantom experiments on the 3T GE scanner to test 2D SSI sequences with

3D SPSP fat sat. The phantom was the same cylindrical water/oil phantom used in

the previous experiment. Similar to Chapter IV, we designed each 3D fat sat pulse

only based on a 2D B0 field map, assuming that B1 inhomogeneity is acceptable in

our single channel excitation experiments. These 3D fat sat pulses were compared

with the 5 ms SLR fat sat pulse used in the previous experiment. The goal of this

study is to demonstrate that SSI sequences with 3D fat sat pulse are more robust to

B0 inhomogeneity than the ones with the SLR fat sat pulse.

We carried out two experiments to test fat-sat SPGR and fat-sat STFR respec-

tively. In each experiment, the fat sat sequence was applied to different slices of the

phantom to acquire multiple 2D axial slice images, where each 3D fat sat pulse was

designed to the corresponding 2D B0 map; for STFR sequence, the 2D tailored tip-up

pulse (P2) was also designed individually for each slice. We acquired B0 maps from

two gradient echo images with different echo times, and the echo time difference needs

to have water and fat spins in-phase, e.g., ∆TE = 2.272 ms at 3T, to eliminate the

phase difference caused by chemical shift. All the 3D fat sat pulses, which were only

2.1 ms long, use 5 repetitions of 2D spiral-out excitation k-space trajectories, and the

adapted RF spoiling scheme was applied to the fat sat sequences. All the data were

acquired with 2D spin-warp k-space trajectories, and the imaging parameters of fat-

sat SPGR were: FOV = 14 cm ×14 cm, slice thickness = 6 mm, data size = 64× 64,
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a = 1170, and TR = 11.6 ms and 14.5 ms for the sequence with the 2.1 ms 3D fat sat

pulse and the 5 ms SLR fat sat pulse respectively. The imaging parameters of the

fat-sat STFR experiments were the same except that TR were 4.9 ms longer than the

corresponding SPGR sequences respectively. For each fat suppressed image, we also

acquired its corresponding non-fat-suppressed image with the fat sat pulse turned off

in the sequence.

5.3.3 Phantom Experiment III: Simultaneous Fat Sat and MTC Imaging

To test MT effects, we made a special cylindrical MT phantom that is filled with

mixture of Prolipid 161 (Ashland Specialty Ingredients) and NiCl2 solution. The

material has similar T1, T2 and MT values to white matter at 3T. In addition, we

made a spherical phantom that is filled with mineral oil and distilled water doped with

MnCl2, and the MnCl2 solution was carefully tuned to match the T1 and T2 values

of the MT phantom material at 3T. To test the effect of simultaneous fat sat and

MTC, we put both phantoms in one field of view and applied the proposed FSMT-

SPGR and FSMT-STFR respectively on the 3T scanner. Similar to the previous

phantom experiment, we first acquired a 2D B0 map, and then designed 3D SPSP

fat sat pulse and the tailored tip-up pulse based on the field map. FOV of the field

map used in the design was 18 cm ×18 cm, and the pulse length was increased

to 2.7 ms with 7 repetitions of spiral-out trajectories to accommodate the B0 field

that has big variations between the two phantoms (Fig. 5.4.4). With the designed

pulses, the FSMT-SPGR and FSMT-STFR with 2D spin-warp readout were applied

respectively to the same part of the object with the FSMT part on or off, and the

imaging parameters were: FOV = 18 cm ×18 cm, slice thickness = 6 mm, data size

= 64× 64, a = 1170, and TR = 16 ms for both SPGR and STFR.
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5.3.4 In-Vivo Experiments I: Simultaneous Fat Sat and MTC Imaging in

Brain

Furthermore, we tested the proposed FSMT-SPGR and FSMT-STFR sequences

in two in-vivo experiments respectively on the 3T GE scanner, where we scanned

axial brain slices of healthy subjects. Similar to the phantom experiments, 2D B0

maps were first acquired for the 3D SPSP fat sat pulse design and the tailored tip-up

pulse of the STFR sequence. For both the SPGR and STFR experiments, the 3D

fat sat pulse was 2.3 ms long with 7 repetitions of 2D spiral-out trajectories. In each

experiment, the SSI sequence with 2D spin-warp readout was applied to acquire 2D

brain images when the designed FSMT part was on or off respectively. The imaging

parameters for the SPGR experiment were: FOV= 24 cm ×24 cm, slice thickness

= 6 mm, data size = 256 × 256, a = 1170, and TR = 15.3 ms. The SPGR sequence

imaged an axial slice around the level of eyes, while the STFR experiment imaged a

more superior axial brain slice. The imaging parameters of the STFR sequence were

the same as the SPGR sequence except that TR was 19.1 ms.

5.3.5 In-Vivo Experiments II: Cartilage Imaging

We then investigated the proposed sequence in the application of cartilage imaging

where contrast between synovial fluid and cartilage is desired. Fat suppression is

generally beneficial to this application because it can eliminate the surrounding fat

that would obscure the tissue of interest [135] [136]. MTC is useful for T2 weighted

[137] or T2/T1 weighted cartilage imaging [135], where synovial fluid appears brighter

than cartilage, so MT can enhance the fluid-cartilage contrast by attenuating cartilage

signals.

Therefore, we applied the proposed FSMT-STFR which produces T2/T1-like con-

trast [2] to cartilage imaging in human knees. 2D STFR with 3D fat sat is designed

for an axial slice based on a 2D B0 map acquired with SPGR sequences, and the
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image data were acquired with 2D spin-warp readout. The 3D fat sat pulse was 2.1

ms long using 7 repetitions of spiral-out trajectories. One additional image was taken

with the 3D fat sat pulse off as the reference. Other imaging parameters are: slice

thickness = 6 mm, TR is 18.5 ms, flip angle = 160, a = 1170, 1.09 mm×1.09 mm

resolution, FOV = 28 cm ×14 cm.

5.3.6 In-Vivo Experiments III: MR Angiography in Brain

Furthermore, we applied the proposed FSMT-SPGR to MR angiography (MRA)

in human cerebral arteries where fat suppression and MT can help suppressing sur-

rounding fat and other background tissue respectively. We acquired 3D time-of-flight

(TOF) images at a 4 cm thick axial slab around the circle of Willis with a 3D SPGR

sequence. In addition, 4D fat sat pulse was designed based on the 3D B0 map of an

extended 3D axial slab that covered the imaging slab and its adjacent inferior axial

slab (4 cm thick). By designing for this extended volume, direct excitation of the

arterial blood in the upstream region by the 4D fat sat pulse can be largely reduced,

because 4D fat sat pulse has unpredictable effects to out-of-ROI regions. The 4D fat

sat pulse was 2.5 ms long using a repeated 3D spiral trajectory [128]. The image data

were acquired with 3D spin-warp readout, and two sets of images were taken with

the FSMT part on or off respectively. The imaging parameters are: TE = 3.28 ms,

TR = 11.4 ms, flip angle = 200, a = 1170, 0.94 mm×0.94 mm×2 mm resolution, FOV

= 24 cm ×24 cm ×4 cm.

5.4 Results

5.4.1 Simulation and Phantom Experiment I: RF Spoiling Schemes

Fig. 5.4.1 shows the signal evolutions of fat or water when fat-sat SPGR or fat-

sat STFR is applied with the conventional RF spoiling scheme or the adapted RF
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Figure 5.4.1: Signal evolutions of fat spin (upper row) and water spin (lower row) us-
ing fat-sat SPGR (left column) and fat-sat STFR (right column) with
different RF spoiling schemes. Every longitudinal axis denotes the ratio
between the transverse magnetization right after P1 and the magnetiza-
tion at equilibrium, Mxy/M0; every horizontal axis denotes the number
of repetitions. The signal can reach steady state with the adapted RF
spoiling scheme (dashed lines), but can not with the conventional RF
spoiling scheme (solid lines).

spoiling scheme. In all the four plots, the sequence with the conventional RF spoiling

scheme can not reach steady state (blue solid lines), but the one with the adapted RF

spoiling scheme reaches steady state after 100 repetitions at most (red dashed lines).

With the signal oscillating over repetitions, the data of the conventional RF spoiling

scheme are inconsistent in the k-space, which causes ghosting artifacts. This is shown

in Fig. 5.4.2 where the image acquired with the conventional RF spoiling scheme

has ghosting artifacts along the phase-encoding direction of the spin-warp trajectory,

while the one with the adapted RF spoiling scheme shows a fat-suppressed image free

of ghosting artifacts.

5.4.2 Phantom Experiment II: Fat Sat Pulses

Fig. 5.4.3 shows the resulting images produced by fat-sat SPGR and fat-sat STFR

as well as the corresponding B0 maps. Specifically, the original images without fat sat
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Figure 5.4.2: An axial slice of the 3D SPGR images of the cylindrical phantom (oil
on top of water) where all three images are at the same color scale:
upper-left: SPGR with fat sat off; upper-right: SPGR with fat sat on,
conventional RF spoiling; lower-left: SPGR with fat sat on, adapted
RF spoiling. The image with the conventional RF spoiling has ghost-
ing artifacts due to data inconsistency, and the one with the adapted
spoiling scheme is free of these artifacts.

are in the first column, the B0 maps are in the second column, and the ratio images

by the 3D fat sat and the SLR fat sat are shown in the third and fourth columns

respectively. The ratio image is calculated by taking the ratio between the image

with fat sat and the corresponding image without fat sat, so it should range from 0

to 1 in theory. The first two rows show the results by SPGR sequences and the STFR

results are shown in the last two rows.

As seen in the B0 maps, we picked two slices of the phantom that have relatively

extreme off-resonance frequencies to demonstrate the principle. The original images

by SPGR are uniform in both oil (top) and water (bottom) parts, but STFR images

are not as uniform in oil parts, because the tailored tip-up pulses were only designed

for water and have off-resonance effects on fat, which makes fat suppression more

important in STFR imaging. As seen in the last column in Fig. 5.4.3, SLR fat sat

did not suppress fat signal completely in regions with large off-resonance frequencies.

In addition, comparing the two STFR results in the last column, SLR fat sat worked
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Figure 5.4.3: The results of the phantom experiments for testing fat-sat SPGR and
fat-sat STFR where we picked two representative slices for each se-
quence. From left to right, 1st column: the original images with no fat
sat (oil on top of water), 2nd column: B0 maps, 3rd column: the ratio
images with the 3D fat sat pulse, 4th column: the ratio images with
the SLR fat sat pulse. The top 2 rows: SPGR results; the bottom 2
rows: STFR results. The ratio image is calculated by taking the ratio
between the image with fat sat and the corresponding image without
fat sat.

generally well for water parts, except for the edges where off-resonance frequencies

are negative (last row), which is because the frequency response of the SLR pulse is

asymmetric around the center frequency of water. However, although the B0 maps

of the SPGR experiments are similar to those of the STFR experiments respectively,

SPGR with SLR fat sat worked well for water in both slices, which shows that the

fat-sat SPGR sequence with these particular parameters and object materials is less

sensitive to water selection from fat sat pulse than the fat-sat STFR used in this

experiment. In contrast, the SSI sequences with 3D fat sat worked quite robustly for

both water and fat in the presence of B0 inhomogeneities. In addition, the 3D fat sat
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pulse is 58% shorter than the SLR fat sat pulse.

5.4.3 Phantom Experiment III: Simultaneous Fat Sat and MTC Imaging

original image

ratio image (SPGR)

0

1.1
ratio image (STFR)

0

1.1

B0 map

−170

235

oil

water

MT phantom

Figure 5.4.4: The B0 map and the resulting images of Phantom experiment III.
Upper-left: B0 map; upper-right: the original SPGR image with FSMT
part off where oil, water and the MT phantom are labeled; lower-left:
the ratio image of SPGR taken between the one with FSMT contrast
and the one without; lower-right: the ratio image of STFR. These two
sequences show similar performance on suppressing fat and producing
MTC.

Fig. 5.4.4 shows the B0 map and the corresponding ratio images produced by

FSMT-SPGR (lower left) and FSMT-STFR (lower right), and the ratio images are

taken between the images with FSMT contrast and the corresponding images with-

out FSMT contrast. Both sequences simultaneously suppress fat and attenuate the

MT phantom while the water signal is still kept at the similar level. By manually

segmenting each image into the three parts, we calculated the average ratios of these

three materials, which are summarized in Table 5.1. In general, FSMT-SPGR and

FSMT-STFR worked similarly in terms of fat suppression, MT effect and water selec-

tion, and FSMT-SPGR suppresses fat a little more effectively and attenuates water

and MT phantom slightly less than FSMT-STFR. It is true that there may be some
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direct excitation of the fat sat pulse to the MT phantom that can contribute to the

attenuation in the MT phantom regions, and this effect is hard to be separate from

MT effect. However, according to the simulations of the pulses (not shown), direct

excitation in the MT phantom regions was very similar to direction excitation in the

water regions. Since we do not observe much direction excitation in the water regions,

we believe the attenuation in the MT phantom regions is mainly caused by MT effect

of the fat sat pulse.

Table 5.1: Average Signal Ratios of the Different Materials
oil water MT phantom

FSMT-SPGR 0.076 0.970 0.621
FSMT-STFR 0.086 0.924 0.610

5.4.4 In-Vivo Experiments I: Simultaneous Fat Sat and MTC Imaging in

Brain

The brain imaging results are shown in Fig. 5.4.5, where the SPGR images are

at the top and the STFR images are at the bottom. Both sequences effectively

suppress the fat tissue around skulls and optical nerves (top row). In addition, white

matter is largely attenuated by both sequences due to MT effect. With the particular

settings in this experiment, FSMT-STFR shows larger MT effects than FSMT-SPGR;

specifically, white matter signal attenuation in the SPGR image is 30% - 50% while

FSMT-STFR reduced white matter signal by 50% - 70%.

5.4.5 In-Vivo Experiments II: Cartilage Imaging

Fig. 5.4.6 shows the cartilage imaging results comparing the image with no FSMT

contrast (middle) to the one with FSMT contrast by the 3D fat sat pulse (bottom),

and the corresponding B0 map is shown at the top. Fat suppression removed the fat

tissue surrounding the cartilage and joint fluid areas and also helped removing the
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Figure 5.4.5: The images acquired in the in-vivo experiments on human brain. Upper
row: the SPGR experiment result; lower row: the STFR experiment
result. Left column: the images without FSMT contrast; right column:
the images with FSMT contrast. Images in the same row are in the
same gray scale.

posterior fat that has artifacts due to the tailored tip-up pulse of STFR. In particular,

the 3D fat sat worked very well in the regions with large B0 inhomogeneity, such as

the posterior fat regions. In addition, MT effects suppressed cartilage and muscle

signals, and thus highlighted the synovial fluid signals which are pointed out by the

red arrows.

5.4.6 In-Vivo Experiments III: MR Angiography in Brain

Fig. 5.4.7 shows the results of the MRA experiment where the maximum intensity

projections (MIP) of the image with no FSMT contrast (left) and the one with FSMT

contrast (right) are shown. In the presence of B0 inhomogeneity, the 4D fat sat largely

suppressed the fat tissue around skull in the MIP with FSMT contrast, except that
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Figure 5.4.6: The resulting images of the cartilage imaging and the corresponding B0

map (top). The image with no fat sat and MTC is at the middle, and
the image with fat sat and MTC is at the bottom. These two images are
in the same gray scale. The red arrows point to synovial fluid which is
highlighted better in the image with simultaneous fat suppression and
MTC.

part of fat around the left optical nerve is not suppressed well due to large off-

resonance effect (about 300 Hz). Furthermore, MT effects produced by the 4D fat sat

pulse largely reduced the background signals, and the arteries are better delineated

in the MIP compared to the one without FSMT contrast, which is pointed out by

the red arrows. Note that those two images are respectively normalized to their own

maximal intensity, because the blood signal was also attenuated due to some direct

excitation from the imperfect fat sat pulse, which is why the unsuppressed fat and

optical nerve posterior to the left eye are bright in the FSMT contrast image. In
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no FSMT prep with FSMT prep

Figure 5.4.7: The results of the MRA experiments where the MIP with no FSMT
contrast is on the left and the one with FSMT contrast is on the right.
Red arrows point to the arteries that are better delineated due to MT
effect and two of the fatty regions that are suppressed by the fat sat.

addition, some veins, especially the ones anterior to the circle of Willis, are darker in

the FSMT contrast image, because the 4D fat sat pulse that was designed only for

the imaging slab and the upstream region of the arteries may suppress the upstream

regions of the veins. This may be a good feature that can reduce the need of vein

suppression pulses. In general, the proposed FSMT-SPGR sequence improved the

TOF MRA in the brain by simultaneously suppressing fat and background tissue.

5.5 Discussion and Conclusions

We proposed to apply the multi-dimensional SPSP fat sat pulse to SSI sequences,

i.e., SPGR and STFR, to simultaneously do fat suppression and MTC. We demon-

strated that an adapted RF spoiling scheme is required for fat-sat SSI sequences to

reach steady state. Compared to the conventional SLR fat sat, the MD fat sat is

more robust to field inhomogeneity, and it can additionally produce MTC with SSI
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sequences having high sensitivity to magnetization attenuation. Examples of cartilage

imaging and brain MRA show that the proposed FSMT-SSI sequences can produce

images that appear to be better for clinical use.

For the adapted RF spoiling, the parameter a in [5.2.2] needs to be properly

chosen to completely remove the remnant transverse magnetization at the end of

each repetition. We empirically chose a = 1170 for all our experiments based on

simulations and some phantom experiments. There are also other good values for

the fat-sat SSI sequences with the adapted RF spoiling, such as 740 for fat-sat SPGR

and 760 for fat-sat STFR. For fat-sat SPGR imaging in particular, most spins only

experience one crusher in each repetition when B0 map is uniform, and then the

sequence would almost work as the conventional RF spoiling but with 2 times linear

phase increments. In this case, a = 1170/2 may be a good choice.

We have shown that the proposed sequences are sensitive to magnetization atten-

uation induced by MT effect, which also means that these sequences are very sensitive

to direction excitation of water by imperfect MD fat sat or SLR fat sat pulse in the

presence of field inhomogeneity. We observed significant signal drop in MT-free ma-

terials with SLR pulse that has ripples in the water band smaller than 5% of the fat

band amplitude, which is consistent to Fig. 5.2.2. Thus, the SLR fat sat pulse used

in our experiments were designed with very strict restriction on the amplitude of rip-

ples around water spectrum, and the MD fat sat design had to set high standards on

fitting the target pattern of the water bands. In contrast, these sequences are not so

sensitive to inaccurate fat suppression, so MD fat sat design sets very small penalty

for inaccurate fat band fitting to accommodate the high demands in water bands.

B1 inhomogeneity can be ignored in our 3T experiments, but there are cases where

B1 inhomogeneity can be a potential issue, e.g., breast imaging [138]. Then the MD

fat sat can help to compensate for B1 inhomogeneity or even use parallel excitation,

which is another advantage over the conventional SLR fat sat. Although global SAR
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was kept below the limit in our experiments, local SAR penalty may be problematic

when parallel excitation is used. Moreover, MT effects by the parallel excitation

version of the MD fat sat may need further investigation.

One advantage of SSI sequences over bSSFP for MTC imaging is that MTC SSI se-

quences can adjust the amplitude of MT effects more easily. The proposed sequences

can also adjust MT effects by changing regularization parameter for RF power pe-

nalization. In our experiments, the RF energy of the MD fat sat pulse was able to

be reduced by up to 5-10 times with acceptable penalty on fat suppression perfor-

mance, which may have very minimal MT effects. Thus, the proposed sequences with

RF power penalization can potentially be used for applications that only need fat

suppression.

A drawback of the proposed sequences is that it is hard to separate the fat sat

effect and the MT effect. Although we empirically demonstrated that the majority

of the attenuation should be caused by MT effect, it is hard to precisely quantify the

attenuation caused by MT effect only. In addition, it is also difficult to obtain the

images with the fat sat effect only. Hence, this type of sequences are mainly used for

generating MT contrast rather than quantitative MT studies.

This work shows the applications of the proposed sequences on cartilage imaging

and MRA in brain at 3T. It would be interesting to investigate the proposed sequences

in other clinical applications that can benefit from fat suppression and MTC, e.g.,

cardiac imaging and breast imaging. Furthermore, as Chapter IV has pointed out

other potential benefits and issues of the MD fat sat pulse at other field strengths,

future work may include studies of the proposed sequences at other field strengths.
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CHAPTER VI

Balanced SSFP-like Imaging with Simultaneous

Water-Fat Separation and Band Reduction using

Small-tip Fast Recovery1

6.1 Introduction

Balanced SSFP provides high SNR efficiency and useful T2/T1 weighting, but it

suffers from bright fat signal and off-resonance banding artifacts. Recently, a bSSFP-

based method was proposed for simultaneously suppressing fat and banding artifacts

from two phase-cycled acquisitions [81]. That method requires large tip angle excita-

tion which may be undesirable in some applications, e.g., DESPOT2 [139], and leads

to increased SAR. We propose to use an alternative steady state imaging sequence,

referred to as Small-Tip Fast Recovery imaging (STFR) [2], to do water-fat separa-

tion and suppress banding artifacts, which works well for flip angles ranging from

160 to 900. Specifically, this method is based on the gradient crusher based STFR

(G-STFR) [85] that is equivalent to the chimera SSFP [140]. The proposed method

was demonstrated in phantom and in-vivo experiments on a 3T scanner.

1This chapter is based on [97]

141



6.2 Theory

Similar to [81], the proposed method works by linearly combining two phase-cycled

acquisitions with B0 map acquired separately. The noiseless reconstructed images of

the two acquisitions are modeled as:


S1(x) = W (x)P1(fW (x)) + F (x)P1

′(fF (x))

S2(x) = W (x)P2(fW (x)) + F (x)P2
′(fF (x))

(6.2.1)

where S1(x) and S2(x) are pixel values of the two acquisitions at location x,W (x) and

F (x) are the transverse magnetizations of water and fat respectively, Pi(·) and Pi′(·)

are signal profiles of the ith acquisition in terms of fW (x) and fF (x) which are the

offset frequencies of water and fat respectively, e.g., fF (x) = fW (x)− 440 Hz at 3T.

Pi(·) and Pi′(·) are both normalized so that the tissue contrast is preserved in W (x)

and F (x); Pi(·) and Pi′(·) are centered around the water and fat center frequencies

respectively, and they are not exactly the same as each other due to large difference of

T1; however, it is shown below that Pi(·) and Pi′(·) are relatively insensitive to T1, T2

values within their own reasonable ranges. Since Pi(·) and Pi′(·) can be determined

based on imaging parameters and our G-STFR signal model accurately [85], there

is no approximation necessary for Pi(·) and Pi
′(·), unlike the sinusoidal assumption

in [81]. Calculations of the linear combination weights αWi (x), which are used for

calculating water-only images, are described as:


αW1 (x)P1(fW (x)) + αW2 (x)P2(fW (x)) = 1

αW1 (x)P1
′(fF (x)) + αW2 (x)P2

′(fF (x)) = 0

(6.2.2)

where the spectra of water and fat are set to be 1 and 0 respectively. Similarly, we can

also calculate fat-only images by calculating the linear combination weights αFi (x) as
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follows: 
αF1 (x)P1(fW (x)) + αF2 (x)P2(fW (x)) = 0

αF1 (x)P1
′(fF (x)) + αF2 (x)P2

′(fF (x)) = 1

(6.2.3)

For a given imaging sequence, these weights can be pre-computed offline for reasonable

ranges of frequencies, and the weights for each pixel can be looked up from this

pre-computed table according to the local B0 inhomogeneity during the real-time

experiment. With the linear combination weights for each pixel, we can calculate the

water-only and fat-only images as follows on a pixel-by-pixel base:


W (x) = αW1 (x)S1(x) + αW2 (x)S2(x)

F (x) = αF1 (x)S1(x) + αF2 (x)S2(x)

(6.2.4)

We proposed a G-STFR sequence with both the tip-down and the tip-up pulses

to be the same regular selective or hard excitation pulses. Empirically, we found

that the profiles are insensitive to flip angles ranging from 160 to 900 which cover the

optimal values for most applications.

For better robustness, we proposed an iterative method to calculate αW1 (x) and

αF1 (x) as follows:

α̂W1 (x)

α̂W2 (x)

 = argmin
αW
1 (x),αW

2 (x)

∥∥∥∥∥∥∥
1
0

−

∣∣∣∣∣∣∣
P1(fW (x)) P2(fW (x))

P1
′(fF (x)) P2

′(fF (x))


αW1 (x)

αW2 (x)


∣∣∣∣∣∣∣
∥∥∥∥∥∥∥
2

2

(6.2.5)

which is an example for calculating αWi (x); in 6.2.5, absolute values are taken to relax

the irrelevant phase of water image, which is a magnitude least square problem [35].

By adjusting the free procession time such that water and fat sit at the peak or the

bottom in each magnitude profile, the problem can be manipulated to be very well-

conditioned, so regularization is not necessary in 6.2.5 to control the magnitude of
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αWi (x) or αFi (x).

Figure 6.2.1: Profiles of 0 and 1800 phase-cycled signals by the proposed G-STFR
sequence. These profiles are produced by typical T1, T2 values of water
and fat for demonstration purpose.

Figure 6.2.2: Examples of the magnitudes of the linear combination weights αWi (x)
for water-only imaging.

Furthermore, since the signal profiles are calculated assuming infinitely narrow

spectra of each component in the voxel, which is not true in practice, we assume

Lorentzian-shaped spectra for water and fat which are convolved with Pi(·) and Pi′(·)

respectively to produce more realistic signal profiles. Fig. 6.2.1 demonstrates some

examples of Pi(·) and Pi′(·), and examples of the magnitudes of the linear combination
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weights αWi (x) for water-only imaging are shown in Fig. 6.2.2. As seen in this

example, the magnitude of the weights are smaller than 1.5, which means there will

not be much noise amplification when applying the linear combinations.

6.3 Methods and Results

6.3.1 Simulations

We first simulated the complex signal profiles, i.e., Pi(·) and Pi′(·), of water and

fat produced by G-STFR over ranges of tissue parameters, i.e., 40 ms 6 T2,fat 6 100

ms, 150 ms 6 T1,fat 6 250 ms, 60 ms 6 T2,water 6 200 ms, and 0.6 s 6 T1,water 6 2 s.

The results in Fig. 6.3.1 demonstrate that the signal profiles are relatively insensitive

to different tissue types, so the method can work based on certain uniform tissue

parameters.

Figure 6.3.1: G-STFR signal profiles for ranges of T1, T2 values.

6.3.2 Phantom Experiments

We tested the method in a spherical phantom filled with water (MnCl2 doped)

and mineral oil on a 3T GE scanner. The actual T1, T2 values are: T1,oil ≈ 200 ms,

T2,oil ≈ 22 ms, T1,water ≈ 1 s, T2,water ≈ 80 ms. A linear gradient was turned on to
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generate some B0 inhomogeneity (−90 ∼ 130 Hz). 3D G-STFR was used to acquire

S1(x) and S2(x): FOV = 24 × 24 × 10 cm, spin-warp readout, 64 × 64 × 20 matrix

size, TR = 8 ms, TE = 3.1 ms, the free procession time Tfree = 5.4 ms, flip angles

were about 350. To demonstrate the robustness of the method to model mismatch,

we used inaccurate T1, T2 values to calculate αWi (x) and αFi (x), i.e., T1,oil = 150 ms,

T2,oil = 70 ms, T1,water = 2 s, T2,water = 120 ms. In addition, a bSSFP image with

TR = 5.38 ms was acquired for the same object.

Figure 6.3.2: The phantom experiment result.

Fig. 6.3.2 shows results from one of the axial slices: The proposed method makes

relatively uniform water (on the bottom) and fat (on the top and some attached to

the bottom) images without banding artifacts compared to the bSSFP image.

6.3.3 In-vivo Experiments

Furthermore, the method was tested with the same 3D G-STFR sequence in a

human head on the 3T GE scanner. We acquired 3D images of a 4 cm thick axial

slab around eyes: FOV = 24× 24× 10 cm, spin-warp readout, 256× 256× 20 matrix

size, TR = 10.6 ms, TE = 4.0 ms, the free procession time Tfree = 8.0 ms, flip angles

are about 200. A corresponding bSSFP image with TR = 8.0 ms was acquired. We

use uniform tissue parameters for the reconstruction: T1,fat = 200 ms, T2,fat = 70 ms,

T1,water = 1 s, T2,water = 100 ms.

Fig. 6.3.3 shows one of the slices, where the fat (behind eye balls and around
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skull) and the water image are separated. With a relatively uniform B0 field, we

only observe a small banding artifact in bSSFP (pointed by the red arrow) which

is removed by the proposed method. There are still some artifacts in the combined

results: the flow-induced artifacts around the through-slab arteries can be reduced

by exciting a thicker slab and/or applying flow compensation gradients; moreover,

the eye balls are not reconstructed well in both images, which might be due to eye

motion between scans.

Figure 6.3.3: The in-vivo experiment result.

6.4 Conclusions

The proposed method for steady-state water fat separation and banding artifacts

suppression is demonstrated at 3T. This steady-state method works for a wide range

of flip angles and T1, T2 values, and it can potentially be an alternative to the bSSFP-

based method which commonly requires high flip angle and thus high SAR.

However, some more work is still needed to improve the robustness of the method

for different applications. We have investigated its use in human knees and calves at

3T, but the fat could not be suppressed completely in those experiments. We suspect
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that the results are too sensitive to B0 mapping errors in the regions where the signals

are away from the bottoms and the peaks of the signal profiles (Fig. 6.2.1). Thus,

one may consider to improve the signal model or modify the sequence to change the

signal profiles, so that the methods can better tolerate such model mismatches.
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CHAPTER VII

Future Work

For the separate magnitude and phase regularization discussed in Chapter II, more

work can be done to improve the optimization algorithm for the phase. The nonlin-

ear CG with backtracking line search generally works well in our experiments, but

it is not guaranteed to converge fast enough all the time. Hence, one may investi-

gate other optimization algorithms, such as optimization transfer [62] and nonlinear

CG with monotonic line search [115] combined with augmented Lagrangian meth-

ods [141]. Furthermore, the method can potentially be improved by taking advantage

of the correlation between the magnitude and the phase maps, such as boundary in-

formation. One drawback of this method is the additional regularization parameters

that need to be determined, which are manually set in this work. One may investi-

gate more automatic parameter selection methods, such as spatial resolution analysis

based method [98] and Monte Carlo SURE-based method [142]. In addition, one may

investigate the use of this work on more clinical applications other than temperature

mapping and velocity mapping. This work can also be modified or extended to other

applications that need phase reconstruction, and the work for BS B1 mapping (Chap-

ter III) is one example. More broadly, the method may be extended to applications

outside MRI fields, e.g., terahertz imaging, holography, synthetic aperture radar and

sonar [143].

149



For the BS B1 mapping work discussed in Chapter III, the proposed alternating

optimization for the regularized B1 estimation can be improved to converge faster.

Optimization for the B1 magnitude may be accelerated by designing a monotonic

line search method, and the phase part may also be improved with better surrogate

functions for the monotonic line search. One may also investigate alternatives to

the alternating optimization methods. Instead of estimating composite B1 maps,

regularized estimation of the individual B1 maps directly can avoid noise amplification

from decomposition of the composite B1 maps. This could be challenging, because

this method will involve an even more nonlinear and nonconvex cost function and it

will be very challenging to design MLS updates for both B1 magnitude and phase.

For the coil combination optimization, one may compare the proposed method with

existing solutions other than “all-but-one”. Although the optimized coil combination

works in practice, this CRLB analysis is only an approximation because the MLE ofB1

magnitude and phase are biased estimators in general. Furthermore, more estimation

bias may be introduced if we include regularization to this method. Thus, future

work could be to design a coil combination optimization based on the biased CRLB

analysis [122] which is theoretically valid for the proposed regularized estimation. In

addition, the proposed coil combination optimization does not contrain SAR, which

could be of a concern in BS B1 mapping sequences. Applying complex weights to PEX

channels may cause unpredictable local SAR increase without the knowledge of local

electromagnetic properties of the tissue [123], so a future work can be to consider

SAR limit in the coil combination optimization, especially for high field PEX B1

mapping. Moreover, simulated annealing produces random results which are not very

robust and also highly depend on initial guess, so other optimization algorithms can be

investigated for this problem. We only investigated the coil combination optimization

for phantoms and simulations on human brain using SPGR based BS B1 mapping

sequences, so one may investigate this method on in-vivo experiments of different
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parts of human body and with different BS B1 mapping sequences. More future

work could be done to investigate the proposed methods on applications at different

field strengths. Although the proposed coil combination optimization was developed

for BS B1 mapping sequence, the framework of the CRLB based coil combination

optimization can be applied to other popular multi-coil B1 mapping methods, e.g.,

AFI [46].

For the 4D fat sat pulse design discussed in Chapter IV, there will be many op-

portunities to improve and extend the work on both technical side and clinical side

in the future. First of all, the strategies for the phase initialization in the STA design

is an open problem, and we suggest starting with randomly varying the phase over

spatial locations while keeping it linear over frequency or using a longer pulse to ini-

tialize the phase. For the parallel excitation version of the design, more phantom and

in-vivo experiments are needed for investigation. Other than the spoke trajectory

and SPINS trajectory, one may study other 3D k-space trajectory, such kT -points

trajectory. Optimization of the k-space trajectory is another open problem for fur-

ther research. Another idea that can possibly improve the design is to incorporate

the spatial distribution of water or fat into the design, which may be obtained by

segmentation of the images acquired for field mapping. In addition, the study of local

SAR needs to be incorporated into the design before further research on clinical ap-

plications. Certainly, more research is needed for the clinical use of this work, such as

abdominal imaging. Furthermore, investigation of the proposed method at different

main field strengths could be an interesting future work. At lower field where the

pulse length of the conventional fat sat is more problematic, the 4D fat sat pulse

could be even more advantageous, because sparser sampling along kf at lower field

allows the 4D fat sat pulse to better compensate for spatial variations which is smaller

than at 3T, so that the task in the spectral domain can be simplified even more. In

addition, SAR is less of a concern at lower field strength. On the other hand, it will
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be more challenging to design 4D fat sat pulses at fields higher than 3T where B0

and B1 inhomogeneity is more severe. In such designs, the required shorter sampling

interval along kf leaves smaller room for the pulse to compensate for the even larger

spatial variations, and parallel excitation will probably be required. Since the pulse

length of the conventional fat sat is less of an issue at high field, the proposed method

will mainly help to compensate for the field inhomogeneities rather than to shorten

the pulse length. We have done some simulation studies on 7T 4D fat sat pulse design

which showed some promising results, but SAR may be more problematic.

For the fat sat and MT work discussed in Chapter V, one may design experiments

to separate the fat sat effect and the MT effect. Although it is demonstrated in the

section 5.4.3 that the majority of attenuation in the MT phantom should be caused

by MT effect, more precise studies may be required for quantitative MT studies.

Moreover, the phase increments in the adapted RF spoiling schemes may be optimized

for better robustness. Similar to the fat sat pulse work, further research of this

work includes investigation of the sequences on different field strengths and other

clinical applications, e.g., breast imaging, lung imaging and cardiac imaging. It is

also interesting to study the parallel excitation version of the proposed method. The

study of local SAR for the proposed sequences is also very important. Furthermore, it

may also be interesting to investigate the proposed pulse for other saturation transfer

techniques, such as chemical exchange saturation transfer [144].

For the water-fat separation work discussed in Chapter VI, some more work is still

needed to improve the robustness of the method for different applications. In some

situations, the reconstruction results of the proposed method may be too sensitive to

B0 mapping errors. Thus, one may consider to improve the signal model or modify

the sequence to change the signal profiles, so that the methods can better tolerate

such model mismatches.
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APPENDIX A

Separate magnitude and phase regularization

A.1 The cost function for x

Ψ(x,m(n)) = ∥y − Am(n)eix∥2 + β1Rx(x) + β2∥U ′m(n)∥1 (A.1)

where Rx(x) represents any possible regularizer for the phase map, including the four

regularizers discussed in Chapter II.

A.2 Newton Raphson algorithm in the line search for PCG

Let define a 1D cost function for the optimized step size α:

fn(α) = Ψl(x
(n) + αd(n),m(n)) (A.1)

where dn is the search direction for x(n+1) by PCG. Using 2.2.8:

fn(α) = L(x(n) + αd(n)) + βlRl(x
(n) + αd(n)) (A.2)
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where L(x) , ∥y − Am(n)eix∥2.

Then we update x as the following:

x(n+1) = x(n) + α̂nd
(n) (A.3)

where α̂n denotes the optimized step size α and it is updated as follows:

α(k+1) = α(k) − ḟn(α
(k))

f̈n(α(k))
(A.4)

where

ḟn(α) = d(n)′[∇L(x(n) + αd(n)) + β1∇Rl(x
(n) + αd(n))] (A.5)

f̈n(α) = d(n)′[∇2L(x(n) + αd(n)) + β1∇2Rl(x
(n) + αd(n))]d(n) (A.6)

A.3 Gradients and Hessian matrices (real unknowns)

a) The data fit term L(x):

∇L(x) = 2Re{diag{ie−ix}[Am′(y − Ame
ix)]} = 2Re{g1(x)} (A.1)

∇2L(x) = 2Re{diag{e−ix. ∗ Am′(y − Ame
ix)}+ diag{e−ix}Am′Amdiag{eix}} (A.2)

where Am , A ∗ diag{m(n), “.*” means entry-by-entry multiplication, g1(x) ,

diag{ie−ix}[Am′(y − Ame
ix)]. Note that since ∇2L(x) is only used in A.6, the equa-

tion A.2, which is very expensive, does not need to be computed explicitly. Combing
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A.6-A.2 yields an efficient expression for f̈n(α):

f̈n(α) = 2(Re{d(n)′[(−ig1(xd). ∗ d(n))]}+ b1
′b1) + f̈R,n(α) (A.3)

where xd , x(n)+αd(n), b1 , Amdiag{eixd}d(n), and f̈R,n(α) , β1d
(n)′∇2Rx(xd)d

(n).

b) The regularizers Rl(x):

(1) Regularizer 1:

R1(x) = ∥Cx∥2 (A.4)

∇R1(x) = 2C ′Cx (A.5)

∇2R1(x) = 2C ′C (A.6)

In A.3, f̈R,n(α) can be simplified as: f̈R,n(α) = 2β1∥Cd(n)∥2.

(2) Regularizer 2:

R2(x) = ∥Cex∥2 (A.7)

∇R2(x) = −2Re{ie−ix. ∗ [C ′Cx]} = −2Re{g2(x)} (A.8)

∇2R2(x) = 2Re{diag{e−ix}C ′Cdiag{eix} − diag{e−ix. ∗ (C ′Ceix)}} (A.9)

where g2(x) , ie−ix. ∗ [C ′Ceix].

In A.3, f̈R,n(α) = 2β1(Re{d(n)′[(−ig2(xd)).∗d(n)]}+b2
′b2), where b2 , Cdiag{eixd}d(n).

(3) Regularizer 3:

R3(x) =
K∑
k=1

ψk([Cx]k) (A.10)
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∇R3(x) = C ′diag{ωψ(Cx)}Cx (A.11)

∇2R3(x) = C ′diag{ψ̈k(Cx)}C (A.12)

In A.3, f̈R,n(α) = 2β1p
′diag{ψ̈k(Cxd)}p, where p , Cd(n).

(4) Regularizer 4:

R4(x) =
K∑
k=1

ψk(|[Ceix]k|) (A.13)

∇R4(x) = −Re{e−ix. ∗ [C ′diag{ωψ(|Ceix|)}Ceix} (A.14)

∇2R4(x) = −Re{diag{e−ix. ∗ [C ′diag{ωψ(|Ceix|)}Ceix]}}

+ Re{diag{e−ix}C ′diag{ωψ(|Ceix|)}Cdiag{eix}}

+ Re{i ∗ diag{e−ix}C ′diag{ω̇ψ(|Ceix|)}. ∗ (Ceix)./|Ceix|}}

∗ Re{i ∗ diag{Ceix}Cdiag{e−ix}}

(A.15)

If g3(x) , ie−ix. ∗ [C ′diag{ωψ(|Ceix|)}h(x)] and h(x) , Ceix, then in A.3,

f̈R,n(α) = 2β1(Re
′[(−ig3(xd)). ∗ d(n)]} + b2

′diag{ωψ(|h(xd)|)}b2 + b3b4), where b3 ,

Re{ib2′diag{ω̇ψ(|h(xd)|). ∗ (h(xd))./|h(xd)|}}, x̄ denotes the conjugate of x, and

b4 , Re{i ∗ diag{h(xd)}b̄2}.
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APPENDIX B

Bloch-Siegert B1 mapping

B.1 Optimization Algorithms for the Regularized Estimation

The detailed derivations for the optimization algorithm used for the regularized

BS estimations (3.2.7), i.e. CG-LS, are shown in this section. For a general cost

function Ψ(x) of the unknown x, an optimized step size α needs to be determined in

each iteration of the CG algoritm. α in the nth iteration is found by optimizing the

line search function fn(α):

fn(α) , Ψ(x(n) + αd(n))

= L(x(n) + αd(n)) + βR(x(n) + αd(n))

(B.1)

where d(n) denotes the search direction for x(n+1) by CG algorithm, the cost function

is the sum of data fit term L(x(n) + αd(n)) and regularization term R(x(n) + αd(n)),

and β is the scalar regularization parameter. x is updated in the algorithm as follows:

x(n+1) = x(n) + α̂nd
(n) (B.2)
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where α̂n is the optimized step size and it is optimized by iterative updates as follows:

α(m+1)
n = α(m)

n − ḟn(α
(m)
n )

c̆(m)
(B.3)

where c̆(m) = f̈n(α
(m)) when it is BLS and c̆(m) is independent of α(m) and is an upper

bound of f̈n(α) when it is MLS.

We use CG-BLS for the B1 magnitude updates where the step size update is done

by plugging c̆(k) = f̈n(α) into (B.3). For the B1 phase, we use CG-MLS and the

derivation for the design of c̆(k) is shown in the following:

f̈n(α) = L̈(x(n) + αd(n)) + βR̈(x(n) + αd(n)) (B.4)

According to (3.2.7):

∇2L(ϕ̃) = diag{∂L
2(ϕ̃)

∂ϕ2
j

}

= diag{
∑
ς=+,−

2Re{Sς
jM

ς
je

−i(Kς
BS,jB̃

2
j+ϕ̃

′
j)}}

≤ diag{
∑
ς=+,−

2|Sς
jM

ς
j|}

(B.5)

where j = 1, 2, . . . , N×Np, and Re{·} denotes the real part of the number. Therefore,

L̈(x(n) + αd(n)) = d(n)H [∇2L(x(n) + αd(n))]d(n)

≤ d(n)Hdiag{
∑
ς=+,−

2|Sς
jM

ς
j|}d(n)

(B.6)
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The regularization term:

R(x(n) + αd(n)) = ∥Cei(x(n)+αd(n))∥2

=
∑
k

|
∑
j

ckje
i(x

(n)
j +αd

(n)
j )|2

=
∑
k

|
∑
j

zkje
iαd

(n)
j |2

=
∑
k

(
∑
j

z∗kje
−iαd(n)

j )(
∑
l

zkle
iαd

(n)
l )

=
∑
k

∑
j

|zkj|2

+ 2
∑
k

∑
j

∑
l>j

Re{z∗kjzkleiα(d
(n)
l −d(n)

j )}

=
∑
k

∑
j

|zkj|2

+ 2
∑
j

∑
l>j

|pjl| cos(α(d(n)l − d
(n)
j ) + ∠pjl)

(B.7)

where k = 1, 2, . . . , Ni, Ni is the number of rows of the finite differencing matrix C,

j = 1, 2, . . . , Np, l = 1, 2, . . . , Np, ckj is the element in the kth row jth column of C,

zkj , ckje
ix

(n)
j , and pjl ,

∑
k z

∗
kjzkl. Therefore,

R̈(x(n) + αd(n)) ≤ 2
∑
j

∑
l>j

|pjl|(d(n)l − d
(n)
j )2

=
∑
j

∑
l

|pjl|(d(n)l − d
(n)
j )2

= 2[
∑
j

∑
l

|pjl|d(n)j

2
−
∑
j

∑
l

d
(n)
j |pjl|d(n)l ]

= 2[1TMd(n) − d(n)HMd(n)]

(B.8)

where 1 is the column vector with elements to be 1, M denotes the Np ×Np matrix

160



where the element in the kth row and jth column is |pjl|.

M = |CHC| = |CH ||C| (B.9)

where |Z| denotes the matrix the elements of which are absolute values of those of

the matrix Z. Therefore, the curvature c̆(m) in the mth iteration of the step size

optimization is designed as follows:

c̆(k) = d(n)Hdiag{
∑
ς=+,−

2|Sς
jM

ς
j|}d(n)

+ 2[1T |CH ||C|d(n) − ∥|C|d(n)∥2]
(B.10)

where |C| can be implemented efficiently [145].

B.2 CRLB Analysis

This section shows the detailed derivation for the CRLB analysis discussed in

section II.E. Following (3.3.2), we can get the log-likelihood, L(θ), and its gradient:

L(θ) = − 1

2σ2
(y − µ(θ))H(y − µ(θ)) (B.1)

∇L(θ) = 1

σ2
[∇µ(θ)]ϵ (B.2)

where the superscripts H denotes Hermitian transpose, and ∇ denotes column gradi-

ent of vectors. Thus, the estimation satisfies the regularity condition, i.e., E(∇L(θ)) =

0. The Fisher information F (θ) of this estimation is:

F (θ) , E[(∇L(θ))(∇L(θ))H ] = 2M2

σ2

4K2B2 0

0 1

 (B.3)
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According to CRLB, if the estimators [B̂, ϕ̂] are unbiased, their covariance has a lower

bound:

cov([B̂, ϕ̂]) > F (θ)−1 (B.4)

Assuming B̂ and ϕ̂ are close to the true values, the variance of B̂eiϕ̂ can be derived by

Taylor expansion approximation. For an arbitrary multi-dimensional function g(z),

we have:

g(z) ≈ g(z̄) +∇g(z̄)(z − z̄) (B.5)

var(g(z)) ≈ ∇g(z̄)cov(z)∇g(z̄)H (B.6)

so if z = (B̂, ϕ̂), g(z) = B̂ne
iϕ̂, ∇g(z̄) = E[eiϕ, iBeiϕ], and (B.4) are plugged into

(B.6), we have:

var( ˆ̃Bn,r(A)e
i
ˆ̃
ϕ′n,r(A)) > σ2

2M2
n,r(A)

[B̃2
n,r(A) +

1

4K2B̃2
n,r(A)

] (B.7)

where we have put back the subscripts n, indices r, primes and tildes in (3.2.5) except

that we put indices r to the subscripts and make A be the argument, as A is the

main unknown of this optimization problem.

We assume that noise in different scans is independent with each other, so the

covariance ˆ̃Cr(A) , [ ˆ̃B1,r(A)e
i
ˆ̃
ϕ′1,r(A), . . . , ˆ̃BN,r(A)e

i
ˆ̃
ϕ′N,r(A)] is:

cov( ˆ̃Cr(A)) = diag{var( ˆ̃Bn,r(A)e
i
ˆ̃
ϕ′n,r(A))} (B.8)

Using (3.2.9), the covariance of the original individual B1 estimates Ĉr(A) ,

[B̂1,r(A)e
iϕ̂′1,r(A), . . . , B̂N,r(A)e

iϕ̂′N,r(A)] is:

cov(Ĉr(A)) = A−1cov( ˆ̃Cr(A))A
−H (B.9)
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where z−H , (z−1)
H
. Since the diagonal entries of the covariance matrix are the

variances of the elements of the estimator, then by plugging in (B.7) and (B.8) into

(B.9), we can get the key formula of this CRLB analysis, which is (3.3.3).
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