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ABSTRACT

Dynamic Image and Fieldmap Joint Estimation Methods for MRI Using Single-Shot Trajectories
by

Antonis Matakos

Chair: Jeffrey A. Fessler

In susceptibility-weighted MRI, ignoring the magnetic field inhomogeneity can lead to severe re-
construction artifacts. Correcting for the effects of magnetic field inhomogeneity requires accurate
fieldmaps. Especially in functional MRI, dynamic updates are desirable, since the fieldmap may
change in time. Also, susceptibility effects that induce field inhomogeneity often have non-zero
through-plane gradients, which, if uncorrected, can cause signal loss in the reconstructed images.
Most image reconstruction methods that compensate for field inhomogeneity, even using dynamic
fieldmap updates, ignore through-plane fieldmap gradients. Another major consideration in MR
image reconstruction is the trajectory selection, since the quality of the obtained results can greatly
depend on the chosen trajectory. Therefore, optimizing the trajectory used for the problem at hand
may greatly improve the reconstruction quality. Furthermore, the echo-planar (EPI) trajectories
used for fast acquisitions are susceptible to misalignments due to scanner imperfections that lead
to ghosting artifacts in the reconstructed images. Finally, standard optimization methods, like
CG-based algorithms, may be slow to converge and recently proposed algorithms based on the
Augmented Lagrangian (AL) framework have shown the potential to lead to more efficient opti-
mization algorithms, especially in MRI reconstruction problems with non-quadratic regularization.

In this work, we propose a computationally efficient, model-based iterative method for joint
reconstruction of dynamic images and fieldmaps in single coil and parallel MRI, using single-shot
trajectories. We first exploit the fieldmap smoothness to perform joint estimation using less than
two full data sets and then we exploit the sensitivity encoding from parallel imaging to reduce
the acquisition length and perform joint reconstruction using just one full k-space dataset. Sub-
sequently, we extend the proposed method to account for the through-plane gradients of the field

xi



inhomogeneity. To improve the efficiency of the reconstruction algorithm we use a linearization
technique for fieldmap estimation, which allows the use of the conjugate gradient algorithm. The
resulting method allows for efficient reconstruction by applying fast approximations that allow the
use of the conjugate gradient algorithm along with FFTs. Our proposed method can be computa-
tionally efficient for quadratic regularizers, but the CG-based algorithm is not directly applicable
to non-quadratic regularization. To improve the efficiency of our method for non-quadratic regu-
larization we propose an algorithm based on the AL framework with variable splitting. This new
algorithm can also be used for the non-linear optimization problem of fieldmap estimation without
the need for the linearization approximation.

In this work, we also explore the use of modified trajectories (both EPI and spiral) that pro-
vide full coverage of k-space and also contain enough inherent time differences to permit accurate
fieldmap estimation. The need for modified trajectories is justified by performing variance predic-
tions, based on the Cramér-Rao bound analysis, on the joint estimation using standard and modified
EPI trajectories. Furthermore, to suppress the ghosting artifacts of the EPI-based reconstructions
we developed a model-based iterative ghost correction method. The proposed method jointly esti-
mates the correction factors and the reconstructed image and can be incorporated in our joint image
and fieldmap reconstruction, instead of applying ghost correction as a post-processing step.

Finally, we investigate the effect of through plane dephasing in parameter estimation. We
derive the Cramér-Rao bound for estimator variance and by its minimization we try to find optimal
echo-times for parameter estimation including image and fieldmap. The goal is to theoretically
explain what trajectories would be optimal for parameter estimation and then verify the theoretical
expectations with simulation results. We develop a simple theoretical method that optimizes the
choice of echo-time given the model parameters that we wish to estimate. Even though echo-time
is just one trajectory parameter, it is possibly the most important one since image contrast and
reconstruction quality can be greatly affected by the choice of echo time. In our method we derive
the Cramér-Rao bound for the estimated parameters and minimize this lower bound on variance
with respect to the echo-time.
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CHAPTER I

Introduction

In functional MRI a series of dynamic images is reconstructed and to satisfy the need for
high temporal resolution, fast single-shot acquisitions, such as echo-planar (EPI) or spirals, are
commonly used. Also these acquisition usually have late echo-times (and consequently long read-
out time) to ensure good BOLD contrast. These characteristics of susceptibility-weighted MR
imaging lead to increased sensitivity to magnetic field inhomogeneities and can lead to significant
artifacts in the reconstructed image if uncorrected. Correcting for these effects requires accurate
inhomogeneity fieldmaps and since the fieldmap may change in time, dynamic updates are desir-
able. The standard approach to correct for field inhomogeneities is to acquire a static fieldmap
before the dynamic series and use this to correct all the subsequent images. This method can be
inaccurate, since motion and fieldmap drifts are not taken into account when reconstructing. This
motivated the development of methods that can jointly reconstruct undistorted images and undis-
torted dynamic fieldmaps, like [3], where one can reconstruct an undistorted image and undistorted
dynamic fieldmap using spiral-in/spiral-out acquisition. However, acquiring two full datasets in a
single acquisition may result in very long readout times and more severe inhomogeneity artifacts.
This work presents a method for jointly estimating the image and dynamic fieldmap in parallel
MRI [4], using a single-shot acquisition that uses just one full dataset by exploiting the sensitivity
encoding [5]. This method retains the advantage of high temporal resolution of single-shot trajec-
tories along with the advantage of shorter readout time by exploiting the coil sensitivity encoding.
The shorter readout time has the potential to improve the reconstruction quality since it leads to less
distortion due to field inhomogeneity and through-plane gradient effects. We also propose the use
of modified single-shot trajectories (both EPI and spiral) that provide full coverage of k-space and
also allow for enough time differences between regions of k-space so that the fieldmap estimation
is facilitated (see §4.3).

Apart from the longer readout times, another disadvantage of the method in [3] is that the
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method used for fieldmap estimation is nonlinear and computationally demanding. The lineariza-
tion method described in [6] can significantly reduce the computation time of fieldmap estimation,
by enabling efficient use of conjugate gradient (CG). CG converges much faster than the gradient
descent (GD) method used in [3]. In this work we use the linearization technique for fieldmap
estimation [6] to improve the efficiency of our reconstruction algorithm.

Furthermore, most methods correcting for field inhomogeneity, even the model-based iterative
ones, treat the inhomogeneity within each voxel as being a constant. However, susceptibility effects
usually cause nonzero through-plane gradients that lead to spin dephasing across the slice within
each voxel. Ignoring through-plane gradients can cause signal loss in the reconstructed images,
especially in functional MR imaging where acquisitions with long readouts and late echo-times
are used. To correct for the through-plane gradient effects, a fast, iterative reconstruction method
is proposed in [7]. The drawback of this method is the assumption that the through-plane gradients
are static and known beforehand, thus being unable to handle dynamic fieldmap changes. Moti-
vated by our earlier work [4], this work presents a computationally efficient, model based, iterative
method that jointly reconstructs images and dynamic fieldmaps, accounting for through-plane gra-
dient effects [8]. The proposed algorithm uses the signal model presented in [7] and applies the fast
approximations introduced in [9]. To improve the efficiency of the reconstruction algorithm, we
employ the same linearization technique for fieldmap estimation [6], that was used in our previous
work [4].

The iterative methods developed in this work for joint estimation [4, 8] use the conjugate gra-
dient method (CG) which is computationally efficient for quadratic regularization. However, non-
quadratic regularization can be beneficial to improve the reconstruction results at an increased
computational cost. Recently there are several MRI reconstruction methods developed using the
Augmented Lagrangian framework with variable splitting, that show accelerated convergence us-
ing non-quadratic regularizers. Motivated by [10] and our work in AL methods for image restora-
tion [11] (presented in Appendix B) we propose a joint image and fieldmap estimation method
based on the AL framework. Our proposed method would benefit from the faster convergence rate
of the AL methods and the improved image reconstruction quality of non-quadratic regulariza-
tion. Another advantage of the AL approach is that our proposed algorithm can also be used for
the non-linear optimization problem of fieldmap estimation without the need for the linearization
approximation [6].

Another important consideration when performing image reconstruction for MRI is the choice
of trajectory, because the quality of the obtained results can greatly depend on that choice. Unfor-
tunately there is no optimal trajectory that fits in all scenarios and choosing or designing the “best”
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trajectory for the problem at hand is a difficult task. Having a theoretical framework that could
be used to evaluate the performance of a given trajectory or provide optimal parameters that could
help in trajectory design, would greatly help in addressing the problem of trajectory selection. In
developing such a framework it would be important to use a generic model that accounts for vari-
ous parameters that affect the reconstruction quality. Such parameters are the field inhomogeneity
and the transverse relaxation (or R∗2 decay). Another effect that is usually ignored and is related
to field inhomogeneity is the effect of through plane gradients [7, 8]. In this work we propose a
way of theoretical analysis that provides optimal trajectory parameters (optimal echo-time), given
the problem parameters that we wish to estimate. Our analysis is based on the derivation of the
Cramér-Rao bound for estimator variance. In particular, we derive the CRB for the parameter(s)
that we wish to estimate and then we find the optimal echo-time that minimizes this bound, which
effectively is the echo-time that minimizes the estimator variance. We especially focus on the ef-
fect of through-plane gradients, since this is an effect that it is not well studied and we would like
to better asses how it affects the echo-time optimization.

Throughout our joint estimation work we validated or algorithms using modified “interleaved”
trajectories (EPI and spirals) that exhibited improved performance compared the the standard ones.
The fact that “interleaved” trajectories resulted in superior reconstruction quality was the motiva-
tion to develop a method to assess the trajectory performance. For this purpose we performed
complex CRB analysis [12] on the resulting reconstructions for both standard and “interleaved”
trajectories. Focusing on the EPI trajectories, enabled us to apply fast approximations leading to a
computationally efficient method for variance prediction. Our findings show significantly reduced
variance for joint reconstruction when the “interleaved” trajectories are used, which supports our
choice of these trajectories. Unfortunately an analytical method that would results in an optimal
trajectory for joint estimation is still elusive, but we could use our developed method to evaluate
other trajectory choices.

Finally, our joint estimation methods depend heavily on the use of EPI-based trajectories where
multiple lines of k-space are acquired after each RF excitation pulse, using readout gradient pulses
of alternating polarity along with phase-encode “blips”. Due to eddy currents or other gradient
imperfections, the k-space data from positive and negative readouts are not perfectly aligned lead-
ing to Nyquist ghosting artifacts in the reconstructed images [13]. These misalignments are more
prominent in the frequency-encoding direction, but can also appear along the phase-ecnoding di-
rection in oblique-plane imaging or due to cross-eddy currents. To effectively correct for these
effects one requires an accurate 2D phase map, usually acquired from reference scans [14]. Other
methods for ghosting artifact correction are proposed [15–19], but they may not be readily applica-
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ble to our model-based reconstruction framework or may not be suitable for the “interleaved” EPI
trajectories used in this work. Thus, we developed a new model-based iterative ghost correction
method that uses a joint estimation method to acquire the ghost-correction factors and an artifact-
free image. Our proposed method incorporates the corrections into the system model and can be
easily incorporated into the joint estimation techniques used throughout this work. Furthermore,
the proposed ghost correction method does not depend on the “structure” of the EPI acquisition
making it suitable for correcting the artifacts of our “interleaved” EPI trajectories.
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CHAPTER II

MRI Background

In this section we will give the necessary background information for MRI leading to the for-
mulation of the signal equation on which the subsequent analysis is based. Then we will address
some additional considerations like field inhomogeneity and parallel imaging that will be necessary
in understanding the work presented in subsequent sections.

Magnetic Resonance Imaging (MRI) is a medical imaging modality that uses magnetic fields
to exploit the magnetic properties of certain atoms with odd number of protons or neutrons. These
atoms, frequently referred to simply as spins, possess a nuclear spin angular momentum that gives
rise to a small magnetic moment µ. In biological specimens, hydrogen with a single proton (1H),
is the most abundant (source is H20), the most sensitive (highest SNR) and the most studied.
Therefore, we will assume 1H (proton) imaging. The nature of MR is based on the interaction of
spins with three types of magnetic fields which will be discussed in the following section.

2.1 Magnetic Fields

Without the presence of a magnetic field the spins are randomly oriented and the net mag-
netic moment is zero. By applying a magnetic field B0 (conventionally along the z direction) the
magnetic moments of the spins tend to align in the direction ofB0, thus creating a net magnetic mo-
ment. In addition spins exhibit resonance, by precessing around the z direction, at a well-defined
frequency called the Larmor frequency ω, which relates to the strength of the applied magnetic
field by the simple expression

ω = γB0 (2.1)

where γ is a unique constant for each type of atom, called the gyromagnetic ratio.
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In the presence of a main magnetic field B0 the equilibrium state of the magnetic moment is to
be aligned in the direction of B0. To obtain an MR signal, a radiofrequency (RF) magnetic pulse
B1 tuned to the resonant frequency of the spins is applied in the xy (transverse) plane. This pulse
excites the spins out of equilibrium by effectively applying a torque which rotates the magnetiza-
tion vectors. The rotation angle depends on the strength of B1 and its duration. If the excitation is
set for a 90◦ tip angle, then when the excitation is turned off, the tipped vectors precess in the xy
plane at the Larmor frequency.

After excitation, relaxation back to equilibrium for the magnetic moments occurs. The recovery
of the magnetic moments along the z-axis (longitudinal axis), is characterized by the time constant
T1 and the decay of the xy-plane component (transverse component) of the magnetization vector
is characterized by the time constant T2. The values of both time constants depend on the type
of tissue, with typical values of T1 being in the range 100-1500ms and T2 being in the range
20-300ms. Both relaxation processes behave in an exponential fashion, with T1 describing the
recovery of the longitudinal magnetization

Mz(t) = Mz0

(
1− e−t/T1

)
and T2 describing the recovery of the transverse magnetization

Mxy(t) = Mz0e
−t/T2 .

Macroscopically, the magnetization vector precesses at the Larmor frequency back to equilib-
rium. By Faradays Law, the rotating magnetization vectors induce an electromagnetic force in an
RF receiver coil. This signal, called Free Induction Decay (FID), is essentially the MRI signal. As
we see it depends not only on spin density, but also on the T1 and T2 time constants.

In the presence only of the main magnetic field B0 it is impossible to excite a selected portion
of the volume, since all the spins precess at the same resonant frequency. For the same reason we
cannot distinguish the signals generated from different spatial locations. To account for this prob-
lem and achieve spatial localization we can apply linear gradient magnetic fields. These magnetic
fields are applied in the direction of B0 but their strength varies linearly with spatial location (in
x,y or z axis). By having a spatially varying magnetic field the frequency of the spins becomes a
function of their location

ω(x, y, z) = γ(B0 +Gxx+Gyy +Gzz) .
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This location dependent frequency can be exploited in two major ways. First in selective excitation
where we can excite only a slice of the entire volume and second in image reconstruction by
performing spatial encoding.

2.2 Excitation

If the RF pulse B1 is applied in the presence of B0 alone, then all the spins are tipped since
they are at the same resonant frequency and the excitation is called non-selective. In this case the
entire volume contributes signal, thus some form of 3D imaging must be performed. 3D imaging
is usually very time consuming and is not preferred for functional MRI applications. Hence, it is
desirable to reduce the 3D imaging problem into a more manageable 2D problem and this can be
achieved by exciting a plane instead of the entire volume. This selective excitation is performed
by applying a linear gradient field along with B1 in the presence of B0. To excite a plane perpen-
dicular to the z-axis we apply a z gradient during the RF excitation. Because B1 must be tuned
to the Larmor frequency and the spin frequencies vary linearly with z, B1 must posses a temporal
frequency bandwidth that matches the bandwidth of resonance frequencies of the spins at the slice
of interest. Hence, a rectangular excitation profile requires the frequency content ofB1 to be a rect-
angle function, which in turn means that B1 must be an infinite sinc pulse. Because of the Fourier
Transform relationship, finding the ideal RF pulse is difficult because both the RF pulse itself and
the resultant slice profile are necessarily band limited. An infinite sinc pulse is impossible to create
in practice, as is the ideal rectangular slice profile. In practice, truncated sincs or Gaussian pulses
are used. However, many algorithms in MRI are based upon the ideal of a infinitely thin and/or
rectangular slice profile achieved in the excitation phase.

2.3 Spatial Encoding and Signal Equation

After excitation of a slice, all the magnetization vectors precess at the same frequency, regard-
less of spatial location. This indicates that for the reconstruction of an image to be achievable, the
signal that the RF receivers detect, needs to include a spatial encoding. Going back to the pre-
cessing magnetization vectors, we can envision them as being a map of tiny magnetic oscillators
at each position(x, y) in the slice. Each oscillator possesses a certain magnitude m(x, y; t), and a
phase term φ(x, y; t). Thus the signal from each oscillator at position (x, y) can be expressed as
m(x, y; t) eiφ(x,y;t). Suppose the receiver coil is uniformly sensitive over the whole slice, then the
received signal s(t) is the summation of all the oscillators in the plane, i.e.
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s(t) =

∫∫
m(x, y; t) e−iφ(x,y;t)dxdy (2.2)

Since frequency is equal to the time rate of change in phase and by using equation (2.2) above,
we observe that the rate of change in φ(x, y; t) can be described by

d

dt
φ(x, y; t) = ω(x, y; t) = γB(x, y; t)

and thus,

φ(x, y; t) =

t∫
0

ω(x, y; τ) dτ = γ

t∫
0

B(x, y; τ) dτ (2.3)

where we assume the initial phase to be zero. To detect the spatial locations of all the oscillators
in the slice we can use a combination of gradient fields and the main magnetic field B0, such that
spatial information is encoded into the frequency distribution. Using this approach, B(x, y; τ) in
equation (2.3) has the following form,

B(x, y; τ) = B0 +Gx(τ)x+Gy(τ)y

where B0 is the strength of the main magnetic field and Gx(t) and Gy(t) are gradient fields used
to encode spatial information into the signal. Using this in equation (2.3), we then get

φ(x, y; t) = γ

t∫
0

B0dτ +

γ t∫
0

Gx(τ)dτ

x+

 t∫
0

Gy(τ)dτ

 y

= ω0t+ 2πkx(t)x+ 2πky(t)y (2.4)

where

kx(t) , γ

t∫
0

Gx(τ)dτ, ky(t) , γ

t∫
0

Gy(τ)dτ

further showing how the gradient fields enable control of the phase of the oscillators. Using this
expression in equation (2.2) and demodulating to remove the ω0t factor we now get the signal
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equation:

s(t) =

∫∫
m(x, y; t) e−i2π(kx(t)x+ky(t)y)dxdy. (2.5)

Equation (2.5) is a 2D Fourier-like transform if m(x, y; t) is independent of t or approximately
so, while the data is being acquired. Using this model, one can reconstruct m(x, y; t) from s(t),
using Fourier reconstruction. By convention in MR literature the space of kx(t) and ky(t) is called
k-space which is in units of cycles/cm, equivalent to spatial frequency. The acquired signal s(t)
thus maps directly from the trajectory in k-space as determined by the time integrals of the gradient
waveforms Gx(t) and Gy(t) as was shown in equation (2.4). There are numerous trajectories that
can be used to acquire the signal, such as the cartesian, the echo planar imaging (EPI) and the spiral
trajectory. The time point when DC is sampled for any trajectory is called the echo-time or TE.
The contrast of the reconstructed MR image is strongly connected to the echo-time, thus making it
an important concept in MRI and functional MRI.

2.4 Field Inhomogeneity in MRI

When formulating the signal equation (2.5) we assumed a homogeneous main magnetic field
B0. However, due to the nature of objects being imaged as well as the difficulty in engineering
perfect magnetic coils, fields are usually inhomogeneous. This field inhomogeneity, if uncorrected,
can severely affect the quality of the reconstructed images in many important MRI applications,
including functional MRI (fMRI).

Field inhomogeneity is location dependent and can be described (in 2D) by a frequency term
ω(x, y). For a signal model that accounts for inhomogeneity, the signal equation becomes:

s(t) =

∫∫
m(x, y; t) e−iω(x,y)te−i2π(kx(t)x+ky(t)y)dxdy. (2.6)

2.4.1 Sources and effects of inhomogeneity

As we have seen in the Larmor equation, resonance frequency is directly related to the magnetic
field strength. Thus, main field inhomogeneity causes different resonant frequencies at each spatial
location. An inhomogeneous main magnet can usually be corrected for via shimming. However,
inhomogeneity can also arise from the specific morphology of the imaged object. Differences in
magnetic susceptibility of structures in the body cause macroscopic field inhomogeneity. Magnetic
susceptibility is highest in areas where air and tissue meet; for example, in the sinuses and ear canal,
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lungs, and the abdomen. Another source of inhomogeneity is chemical shift, which occurs because
of outer electrons shielding the nucleus and slightly reducing the magnetic field experienced by
the nucleus. This causes a small change in the resonant frequency as well. This chemical shift is
experienced usually by fat and causes the fatty parts of an image to be shifted or blurred depending
on the trajectory.

Field inhomogeneity can cause various effects in the reconstructed image and these effects are
strongly trajectory dependent. The longer the readout time of the trajectory the more significant
are the effects of inhomogeneity. Imaging using simple multi-shot cartesian trajectories does not
exhibit significant inhomogeneity effects due to the short readout time (only a single line of k-space
is traversed in each readout). In these cases we can safely ignore inhomogeneity and still get high
reconstruction quality. The disadvantage of these trajectories is the long scan time, since we have
to wait for the magnetization to return to equilibrium before scanning the next line of k-space.
From the other hand, in functional MRI we want to acquire a series of images by performing
a series of short scans each resulting in a single image. To keep the total scan time short, it is
required to use trajectories with long readout times that traverse most, if not all, of k-space in a
single-shot acquisition, so that we can reconstruct an image from a single readout. Imaging using
these trajectories exhibits significant effects of field inhomogeneity because of the long readout
times. To achieve good quality reconstructions it is necessary that we correct for this effect.

Inhomogeneity can affect the amplitude of the signal and result in signal loss. Under field in-
homogeneity, the object has a distribution of different resonant frequencies which leads to phase
incoherence of the spins. When the signal adds up all the contributions from each spin, this de-
phasing causes a signal loss. This effect is referred to as T ∗2 decay and causes a much faster decay
in the transverse magnetization. (Sometimes, the reciprocal of T ∗2 or R∗2 is used). With longer
readout times, this problem becomes even more severe and results in significant signal loss. If the
T ∗2 decay is severe, the k-space trajectory can become weighted, creating a blur in the final image.

Another important effect of inhomogeneity is geometric distortion. In simpler trajectories,
such as cartesian or echo-planar, the resulting geometric distortion due to field inhomogeneity is
a shift. However, in more complex spiral trajectories the effect of inhomogeneity causes a blur in
the resulting image which is harder to correct for.

2.4.2 Correction methods

Correcting for field inhomogeneity requires the use of an inhomogeneity field map. These
field maps can be acquired from separate baseline scans or simultaneously along with the image
reconstruction [3]. The simplest and most used (so far) correction methods are the conjugate phase
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methods, which attempt to compensate for the phase at each voxel (e.g., [20]). These methods
require a spatially smooth field map and do not perform well where this assumption breaks down.
Other methods of correction have also been developed including iterative methods in frequency
domain [21], and image domain [3].

2.4.3 Through-plane dephasing

Most methods correcting for field inhomogeneity, even the model-based iterative ones, treat
the inhomogeneity within each voxel as being a constant. This is not always the case, since sus-
ceptibility effects often have nonzero through-plane gradients that lead to spin dephasing across
the slice within each voxel. Ignoring the through-plane gradient effect and not correcting for it can
cause signal loss in the reconstructed images.

To correct for through-plane gradient effects we need a signal model that accounts for the slice
profile and the through plane gradients of the field inhomogeneity (assumed to be determined by a
pre-scan). By incorporating these parameters in the signal model, as introduced in [7], the signal
equation (in 3D form) becomes:

s(t) =

∫∫∫
h(z − z0)m(x, y, z) e−iω(x,y,z)te−i2π(kx(t)x+ky(t)y)dxdydz, (2.7)

where h(z) denotes the (known) slice-selection profile, z0 denotes the axial center of the slice,
m(x, y, z) denotes the (unknown) transverse magnetization (not depending on time) and ω(x, y, z)

denotes the field map. Since the slice location z0 is fixed we can consider the magnetization as
only a function of the(x, y) location as m(x, y) = m(x, y, z0).

We can simplify the above expression by considering a Taylor series expansion of the fieldmap
around z0 and considering a fixed z = z0 for the entire slice, so that the fieldmap depends spatially
only on the(x, y) coordinates. This can be expressed as:

ω(x, y, z) = ω(x, y, z0) + 2πg(x, y, z0)(z − z0)

= ω(x, y) + 2πg(x, y)(z − z0) ,

where g(·) is the through plane gradient at location(x, y) measured in units of Hz/cm. Using this
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expression in the signal model we get

s(t) =

∫∫ ∫
z

h(z − z0) e−i2πg(x,y)t(z−z0)dz

m(x, y) e−iω(x,y)te−i2π(kx(t)x+ky(t)y)dxdy

=

∫∫
H(g(x, y) t)m(x, y) e−iω(x,y)te−i2π(kx(t)x+ky(t)y)dxdy, (2.8)

where H(v) is the Fourier transform of the slice profile. This last equation is the signal equation
accounting for through plane dephasing and is the model that we will use in subsequent analysis.

2.5 Sensitivity Encoding in Parrallel MRI

The signal equation (2.5) represents the signal at the receiver coil. Up till now we assumed
a single receiver RF coil in our derivations. Also, it is known that each receiver coil has its own
sensitivity which is location dependent and earlier we ignored that effect by assuming a uniform
sensitivity. In a more realistic setting, where we account for receiver sensitivity, the contribution of
a signal source to the induced voltage varies with its relative position. This means that knowledge
of spatial receiver sensitivity implies information about the origin of detected MR signals, which
may be utilized for image generation. Sensitivity is a receiver property and therefore, we can obtain
distinct information content from one object by using multiple receivers in parallel (parallel MRI),
which implies the possibility of reducing scan time by reducing the k-space sampling [5].

In a parallel MRI setting we useK receiver coils and each of them has its own spatial sensitivity
ck(x, y). Based on the signal equation, the received signal from each coil is:

sk(t) =

∫∫
ck(x, y)m(x, y; t) e−i2π(kx(t)x+ky(t)y)dxdy for k = 1, . . . , K. (2.9)

Even though these signals refer to the same object, separation between them is possible because
each superimposed signal occurs with different weights that depend on the coil sensitivity. The
main idea of parallel imaging is to use these distinct signals to produce a single image.

The extra information provided by the multiple coils allows the reduction of k-space sampling
without losing the ability to correctly reconstruct an image. Normally, in single coil imaging,
reduction of k-space sampling means reduced field of view (FOV) and aliasing. In parallel imaging
we can account for the reduced k-space samples by using the distinct information content from each
coil and thus acquire a dataset adequate for full FOV reconstruction without aliasing. This idea
is described in [5] and is applied mainly in Fourier imaging with cartesian sampling. In our work
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we will make implicit use of the sensitivity encoding information in the formulation of our system
model.

2.6 Nyquist Ghosting Artifacts in EPI Trajectories

In echo-planar imaging (EPI) the k-space is sampled in a Cartesian grid and the k-space lines
are traversed with alternating positive and negative gradient polarities. For an ideal EPI, when
inhomogeneity effects are ignored the system matrix reduces to a simple (MN ×MN ) 2D Fourier
encoding matrix F , Fy ⊗Fx, where Fx and Fy are 1D (N ×N ) and (M ×M ) Fourier encoding
matrices respectively, with elements:

fx(k,n) = e−i2πkn/N

fy(l,m) = e−i2πlm/M .

In reality, though, due to eddy currents and other imperfections the sampled k-space lines from
positive and negative gradients are not perfectly aligned. This misalignment can be modeled as a
small shift of k-space along the x and y directions such that the elements of the sub-sampled DFT
matrix, corresponding to the negative readout direction, become

f(k,l),(m,n) = e−i2π((k+δx)n/N+(l+δy)m/M) (2.10)

= e−i2π(kn/N+lm/M)e−i2π(δxn/N+δym/M)

and thus the encoding matrix can be expressed as

F̃− , F− diag e−iθ, (2.11)

where F− is a standard sub-sampled DFT matrix and θ is a phase map such that

θ[n,m] = 2π(δc + δxn/N + δym/M). (2.12)

The Eddy currents and other gradient imperfections also lead to the appearance of the constant
term δc in (2.12) along with the linear terms δx and δy.

For an ideal EPI, reconstructing the positive and negative lines of k-space independently would
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result in

f̂+[n,m] =(f [n,m] + f [n,m+M/2]) /2 (2.13)

f̂−[n,m] =(f [n,m]− f [n,m+M/2]) /2 (2.14)

From the above we see that combining the two images perfectly eliminates theM/2 aliasing ghost.
In contrast, in an actual EPI, due to the k-space misalignment the reconstruction from the negative
readout becomes

f̌−[n,m] =
(
f [n,m] e−iθ[n,m] − f [n,m+M/2] e−iθ[n,m+M/2]

)
/2 (2.15)

and in this case a combination of the two images will not lead to cancellation of the N/2 ghosting
artifact.

If the phase map θ is known then the actual image f [n,m] can be obtained from f̂+[n,m] and
f̌−[n,m] in the following way [14]

f [n,m] = 2
f̂+[n,m] eiθ[n,m+M/2] + f̌−[n,m]

eiθ[n,m] + eiθ[n,m+M/2]
(2.16)

For multi-shot EPI or when parallel imaging is used then one can acquire the ghost-free image by
solving a system of linear equations as presented in [19].
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CHAPTER III

Model Based Nyquist Ghost Correction for EPI

This paper describes a novel method for EPI ghost artifact correction. The method does not
require any reference pre-scans, and is applicable to any coil configuration (single- or multi-coil)
and number of shots, at an arbitrary oblique or double-oblique orientation. A parametric model for
the ghost correction 2D phase-map is used and, unlike existing methods, the correction is incor-
porated in the system model rather than being applied as a post-processing step. The parametric
phase map and the artifact free image are jointly estimated using maximum likelihood (ML) es-
timation. A first-order linear model was used for the correction phase-map and the method was
applied for single-shot and multi-shot EPI using single or multiple coils at an axial scan plane.
In simulation and phantom experiments with several types of acquisitions, the proposed method
greatly suppressed ghosting artifacts, outperforming conventional correction methods (both 1D and
2D) for multi-shot EPI trajectories especially for single-coil acquisitions. The proposed method
requires no calibration or modification of the acquisition pattern and can be easily incorporated
into model-based reconstruction schemes.

3.1 Introduction

In echo-planar imaging (EPI), multiple lines of k-space are acquired after each RF excitation
pulse, using readout gradients of alternating polarity along with phase-encode “blips”. Due to
eddy currents or other gradient imperfections, the k-space data from positive and negative read-
outs are not perfectly aligned, leading to Nyquist ghosting artifacts in the reconstructed images if
uncorrected [13].

The work in this chapter appears in [22].
The authors would like to acknowledge Scott Hoge for helpful discussions and insights on ghost correction.
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The most significant misalignment occurs along the frequency-encoding direction and there
are several methods designed to correct this effect. Since this misalignment corresponds to a linear
phase in one dimension these methods are called 1D correction methods. Conventionally, the 1D
phase can be estimated from a non-phase encoded reference scan [13, 23] or from two phase-
encoded reference scans [24]. In some cases the 1D correction can also be estimated directly
from the scanned data as proposed in [25, 26] without any pre-scans, but these methods do not
work well in multi-shot EPI acquisitions. Using an odd number of shots with alternating polarities
[27, 28] allows correction of N/2 ghosts in multi-shot acquisitions, but requires modification of
the acquisition scheme and introduces constraints in the readout. Alternatively, an iterative phase
cycling method, with the disadvantage of increased computation time, can be used to estimate the
1D correction [29] and it is also applicable to multi-shot EPI [30].

Conventional 1D correction methods can usually reduce most of the ghosting artifacts, but
in many cases there may be significant ghosting even after 1D correction. This can happen in
oblique-plane imaging [31] or in the presence of cross-term eddy currents [32]. In these cases a
2D correction is usually applied by computing 2D phase maps from reference scans [14]. Methods
that rely on reference scans have the disadvantage of being susceptible to variations of the 2D phase
map during a long study which can lead to uncorrected ghosting artifacts [18]. The 2D phase errors
can be corrected with the PLACE method [16] that modifies the acquisition pattern and combines
data from different temporal frames, thus reducing the temporal resolution, or the method in [18]
that does not incur any loss of temporal resolution but is inapplicable to multi-shot EPI. These
methods, along with PAGE [15] and real-time PAGE [17], also rely on parallel imaging and are not
applicable to single-coil acquisitions. In addition, to avoid the latency of PAGE, real-time PAGE
uses incoherent combination of the reconstructed images that loses image phase information. For
single-coil imaging and multi-shot EPI one could use a phase cycling method like [19] to estimate
the 2D correction with the main disadvantage of significantly increased computation time.

Apart from using a correction method, one can reconstruct ghost-free images using a “fly-
back” EPI acquisition (i.e., each k-space line is sampled twice, once in the positive and once in the
negative gradient direction) [33]. Fly-back EPI methods increase echo-train length, doubling the
readout interval and exaggerating the geometric distortion caused by field inhomogeneity effects.
This drawback can be partially alleviated by using an undersampled EPI with parallel imaging as
in [34], although undersampling reduces the SNR or reduces the potential acceleration factor.

In this work we present 2D model-based correction methods. In contrast with existing methods
that apply correction as a post-processing step, our method integrates the 2D correction with the
image estimation using a joint ML estimation approach. Our method requires no reference scans
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or additional data during the acquisition and it is also robust to time varying effects (e.g., scanner
drifts) since the corrections can be updated in each time frame of a dynamic study if needed.
Furthermore, our approach does not require parallel imaging for the 2D correction and also works
effectively in multi-shot EPI trajectories. Also, as we observed in our study, in multi-shot EPI the
amount of misalignment of positive and negative direction gradients may vary from one shot to
the next and there may also be misalignment between the shots. The proposed ML method can
efficiently compensate for these effects by estimating individual 2D correction factors for each shot
with minimal additional computation cost.

3.2 Theory

For an ideal EPI scan with a N samples in the frequency encoding direction and M samples in
the phase encoding direction, the NM ×NM Fourier encoding matrix can be expressed as:

F̌ =

[
F+

F−

]
, (3.1)

where F+ and F− are the NM/2 × NM sub-matrices of the orthonormal DFT corresponding to
positive and negative echoes respectively.

By the (k-space) shift property of the Fourier transform, the misalignment of positive and
negative direction echoes in standard single-shot EPI usually can be accurately modeled with a 2D
phase map θ ∈ RNM , whereNM is the number of pixels in a 2D slice. In this work we incorporate
the phase map in the encoding matrix (system model) F. Accounting for the misalignment of
echoes the system matrix for a single coil becomes:

F(θ) ,

[
F+

F−P(θ)

]
, (3.2)

where P(θ) , diag
{
e−iθ

}
is a NM × NM diagonal matrix with elements e−iθ[n,m] along its

diagonal, where θ[n,m] denotes the 2D phase map with n = 0, . . . , N − 1 and m = 0, . . . ,M − 1.
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We also consider the case of L receiver coils where the system matrix is

F(θ) ,



F+S1

...

F+SL

F−S1P(θ)

...

F−SLP(θ)


, (3.3)

with Sl being an NM ×NM diagonal matrix of sensitivity values for the lth coil, i.e.,

Sl , diag{sl[n,m]} for l = 1, . . . , L, (3.4)

where sl[n,m] is the sensitivity map for the lth coil. The system model in (3.2) is just a special
case of (3.3) for L = 1 and S1 = INM , where Id denotes the d× d identity matrix. We will present
methods applicable to multi-coil acquisitions; however, our proposed methods do not require the
use of parallel imaging.

Using the system matrix (3.3), we model the acquired k-space data as[
y+

y−

]
= F(θ) x + ε, (3.5)

where x is the unknown image, ε is complex zero-mean Gaussian noise and y+ and y− are the data
vectors (each of length LNM/2) from the positive and negative echoes respectively.

We propose to jointly estimate the image x and phase map θ from the k-space data in (3.5) by
minimizing the following least squares cost function:(

x̂, θ̂
)

= argmin
x,θ

{
Ψ(θ) , ‖y − F(θ) x‖2

2

}
. (3.6)

Under the usual complex Gaussian noise model [35, 36], (3.6) is equivalent to the joint maximum
likelihood (ML) estimate of x and θ. If needed one could include a regularizer for x in this cost
function, but we did not find that necessary in our experiments. For a known phase map θ, finding
the ML estimate of x by minimizing (3.2) is equivalent to the 2D phase map correction method
in [19], when inhomogeneity effects are ignored.
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Jointly estimating the image and an arbitrary phase map would be under-determined for single-
shot EPI and the estimated phase map values would be inaccurate in regions with low signal with-
out regularizing the phase map. Instead of using regularization, since the phase map can be mod-
eled accurately with a linear or second order polynomial [14,18,19], we adopt a parametric model

θ , Tφ, (3.7)

where θ is the (NM × 1) parameterized phase map, φ is the (p × 1) unknown parameter vector
and T is the (NM × p) known coefficient matrix. Using the parametric model in (3.7) the number
of unknowns is significantly reduced (p � NM ), reducing the computational cost of the joint
estimation and avoiding inaccuracies in the phase map estimation without the need for an additional
regularization term.

Incorporating the parametric model of (3.7) in the cost function in (3.6), the joint estimation
problem becomes (

x̂, φ̂
)

= argmin
x,φ

{
Ψ(φ) , ‖y − F(Tφ) x‖2

2

}
. (3.8)

This minimization problem can be tackled with a variety of methods like gradient descent, conju-
gate gradient with a linearization approximation [6], or variable projection [37].

We adopt the variable projection approach [37] because it exploits the fact that (3.8) is quadratic
in x and reduces the minimization problem to finding the parameter vector φ. The minimizer x̂ for
a given parameter φ is:

x̂(φ) =[F′(Tφ) F(Tφ)]
−1

F′(Tφ) y, (3.9)

where F′ denotes the Hermitian transpose of F. Substituting (3.9) into the cost function (3.8) and
simplifying, the ML estimate φ̂ is found by solving the following p-dimensional maximization
problem (where typically p = 3):

φ̂ = argmax
φ

{
L(φ) , y′F(Tφ)[F′(Tφ) F(Tφ)]

−1
F′(Tφ) y

}
, (3.10)

where L(φ) is the likelihood function. For certain cases where the columns of F(Tφ) are or-
thonormal, the Hessian matrix of (3.8), which appears as F′(Tφ) F(Tφ) in the middle of (3.10),
reduces to an identity matrix. In these cases, the problem of estimating the phase map parameters
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via (3.10) simplifies to

φ̂ = argmax
φ

{
L(φ) , ‖F′(Tφ) y‖2

2

}
. (3.11)

After finding the phase estimate φ̂ using (3.10) or (3.11), we reconstruct the ghost-corrected
image x̂ by substituting φ̂ into (3.9) and solving for x using conjugate gradient (CG) iterations.

The next section presents methods for solving (3.10) and (3.11) based on optimization transfer
methods (also known as majorize-minimize methods [38]) using quadratic surrogates, as well as a
simple FFT-based approach. For cases where these simpler methods are unfeasible, we will also
present an alternating minimization method for joint estimation.

3.3 Methods

3.3.1 Phase Map Model

Following [14] we used the following standard 2D linear model for the phase map:

φ ,
[
φc φx φy

]′
T ,

[
1 nx ny

]
,

where 1 denotes the vector of (NM × 1) ones, nx and ny are the (NM × 1) vectors of the (x, y)

coordinates of the reconstructed pixels. Higher order polynomial models can also be used with
minimal increase in the computation cost, but we did not observe any improved results from such
models compared to the simple linear model. Furthermore, the linear model is consistent with a
shift of the k-space samples, unlike nonlinear phase models.

3.3.2 Object Mask

Using a parametric model (3.7) for the phase map significantly reduces the number of un-
known parameters; however, the problem can still be under-determined for single-coil acquisitions
because we have NM measurements and NM + p unknowns, where typically p = 3 for single-
shot 2D correction. We overcome this problem by using a support constraint — a “mask” around
the object of interest, thus reconstructing only the pixels with non-zero spin density. For a mask
with K < NM pixels, the number of unknowns becomes K + p so the problem potentially is
over-determined when K + p < NM .
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To illustrate the importance of the mask we consider the simpler 1D parametric model where
φ ,

[
φc φx

]′
and T ,

[
1 nx

]
. Under this model, because the 2D DFT acts separately on

the rows and columns of and image, we can write F+ , Fx ⊗ Fy,+ and F− , Fx ⊗ Fy,−, where
Fx is a fully sampled N × N 1D DFT matrix along the readout direction x, Fy,+ and Fy,− are
undersampled M ×M/2 1D DFT matrices along the phase encode direction y, and ⊗ denotes the
Kronecker product. Using DFT properties, including orthogonality, it is easy to show that

F′xFx = FxF
′
x = IN (3.12)

F′y,+Fy,+ =
1

2

[
IM/2 IM/2

IM/2 IM/2

]
(3.13)

F′y,−Fy,− =
1

2

[
IM/2 −IM/2

−IM/2 IM/2

]
(3.14)

Fy,+F′y,+ = Fy,−F
′
y,− = IM/2 (3.15)

Fy,+F′y,− = Fy,−F
′
y,+ = 0M/2 (3.16)

where the off-diagonal elements of the matrices in (3.13) and (3.14) correspond to the well known
“N/2 ghosts” (M/2 in our notation). Furthermore, we can write the phase matrix as

P(Tφ) , Px(Tφ)⊗Py(Tφ) , (3.17)

where

Px(Tφ) , diag
{
e−i(φc+nφx)

}
for n = 0, . . . , N − 1, (3.18)

Py(Tφ) , diag
{
e−mφy

}
for m = 0, . . . ,M − 1. (3.19)

For the case of 1D ghost correction we have φy = 0 and thus, Py(Tφ) = IM .
Using the variable projection formulation of (3.10), and (3.13), (3.14) and (3.17), the Hessian
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of (3.8) for the single-coil case is

F′(Tφ) F(Tφ) = F′+F+ + P′(Tφ) F′−F−P(Tφ)

=(F′xFx)⊗
(
F′y,+Fy,+

)
+(P′x(Tφ) F′xFxPx(Tφ))⊗

(
F′y,−Fy,−

)
= IN ⊗

(
F′y,+Fy,+

)
+ IN ⊗

(
F′y,−Fy,−

)
= IN ⊗

(
F′y,+Fy,+ + F′y,−Fy,−

)
= INM . (3.20)

Thus, the optimization problem reduces to the form of (3.11) and, using (3.12), (3.15), and (3.16),
the likelihood function for 1D correction in the single-coil case simplifies to

L(φ) = ‖F′(Tφ) y‖2
2

= y′

[
F+

F−P(Tφ)

][
F′+ P′(Tφ) F′−

]
y

= y′

[
F+F′+ F+P′(Tφ) F′−

F−P(Tφ) F′+ F−F
′
−

]
y

= y′

[
(FxF

′
x)⊗

(
Fy,+F′y,+

)
(FxP

′
x(Tφ) F′x)⊗

(
Fy,+F′y,−

)
(FxPx(Tφ) F′x)⊗

(
Fy,−F

′
y,+

)
(FxF

′
x)⊗

(
Fy,−F

′
y,−

) ]
y

= y′

[
INM/2 (FxP

′
x(Tφ) F′x)⊗ 0

(FxPx(Tφ) F′x)⊗ 0 INM/2

]
y

= y′y. (3.21)

The likelihood (3.21) is independent ofφ; thus, estimation of the phase map clearly requires further
assumptions or constraints.

We use a mask that excludes pixels outside of the object support to reduce the degrees of
freedom. This constraint enables estimation of the phase map parameters φ. To illustrate, we
consider (for simplicity) a single-coil, single-shot acquisition, 1D phase map, and noiseless data,
i.e., y = A(φ̃)z, where φ̃ is the true parameter vector,

A(φ) , F(Tφ)M (3.22)

is the (NM ×K) system matrix, M is the (NM ×K) matrix for the mask with K < NM − p,
and z ∈ CK is a vector that denotes the K possibly non-zero elements of the image x , Mz. The
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support constraint matrix M (mask) can be obtained from an identity matrix INM by removing
the NM − K columns that correspond to known zero elements of the image x. Thus, we have
M′M = IK and MM′ is an NM ×NM diagonal matrix with 0s and 1s along the diagonal.

Under these assumptions, A′(φ)A(φ) = M′F′(Tφ)F(Tφ)M = M′M = IK using (3.20)
above, and ML estimation for φ is similar to (3.11) with the following likelihood:

L(φ) = ‖A′(φ)y‖2
2

= ‖M′F′(Tφ) y‖2
2

=
∥∥∥MF′(Tφ) F

(
Tφ̃
)

Mz
∥∥∥2

2

=
∥∥∥M′

[
(F′xFx)⊗

(
F′y,+Fy,+

)
+
(
P′x(Tφ) F′xFxPx

(
Tφ̃
))
⊗
(
F′y,−Fy,−

)]
Mz
∥∥∥2

2

=
∥∥∥M′

[
IN ⊗

(
F′y,+Fy,+

)
+
(
P′x(Tφ) Px

(
Tφ̃
))
⊗
(
F′y,−Fy,−

)]
Mz
∥∥∥2

2
. (3.23)

For a single-shot acquisition the matrix F′(Tφ)F(Tφ̃) is banded diagonal that corresponds to
M/2 aliasing and it can be rearranged to a block diagonal with NM/2 blocks, each of size 2× 2.
Using (3.13) and (3.14), each 2× 2 block can be written as

Bnm ,
1

2

[
1 1

1 1

]
+

1

2
ei(φc+nφx)e−i(φ̃c+nφ̃x)

[
1 −1

−1 1

]

=
1

2

[
1 + eiδn 1− eiδn

1− eiδn 1 + eiδn

]
, (3.24)

where δn , φc − φ̃c + n(φx − φ̃x) denotes the difference map between the true phase φ̃ and a
candidate phase parameter φ.

After appropriate permutations, the likelihood (3.23) becomes

L(φ) =
N−1∑
n=0

M/2−1∑
m=0

[Mz]′nm B′nmMnmBnm[Mz]nm ,

where [Mz]nm ,
[
x[n,m] x[n,m+M/2]

]′
for n = 0, . . . , N − 1 and m = 0, . . . ,M/2 − 1,

and Mnm is a 2× 2 block along the diagonal of MM′ permuted.
It is easy to verify that B′nmBnm = I2 and thus, the terms of the summation where Mnm = I2

reduce to components of the form[Mz]′nm[Mz]nm that are independent of φ and do not contribute
to the likelihood. However, for pairs of aliased pixels where one is within the mask and the other
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is outside of the mask, we have

Mnm =

[
1 0

0 0

]
,

and also [Mz]nm =
[
x[n,m] 0

]′
(since the excluded pixels contain no signal) and

Bnm[Mz]nm =
1

2

[
1 + eiδn 1− eiδn

1− eiδn 1 + eiδn

][
x[n,m]

0

]

=
1

2

[
1 + eiδn

1− eiδn

]
x[n,m].

Hence, the corresponding summation term is written as:

Cnm , [Mz]′nm B′nmMnmBnm[Mz]nm

=
1

4
x∗[n,m]

[
1 + eiδn

1− eiδn

]′[
1 0

0 0

][
1 + eiδn

1− eiδn

]
x[n,m]

=
1

2
|x[n,m]|2 (1 + cos(δn)). (3.25)

Therefore the overall likelihood function is

L(φ) =
∑

Mmn 6=I2

1

2
|x[n,m]|2 (1 + cos(δn)). (3.26)

The likelihood function (3.26) is maximized when δn = 0, i.e., the parameter vector that
maximizes the likelihood function is φ̂ = φ̃ for noiseless data.

The above analysis indicates that an appropriate mask selection enables estimation of the pa-
rameter vector in the single coil case. Another important finding is that not all pixels that contribute
signal are useful for the estimation process and thus, we can reduce computation by selecting
an appropriate ROI type of “mask” that includes only pixels such that only one of x[n,m] and
x[n,m+M/2] is non-zero (see Figure 3.1d).

The mask can be selected manually or semi-automatically by thresholding a baseline full FOV
image and then expanding the resulting binary image by a few pixels around the boundaries. To
create an ROI “mask” the original mask is shifted by M/2 along y and only the non-overlapping
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: Selection of reconstruction mask. (a) Baseline image with residual ghosting. (b) Initial
mask from image thresholding. (c) Reconstruction mask from expanding (dilating) initial mask to
ensure that all non-zero pixels are included. (d) Phase estimation ROI “mask” based on including
only pixels whose M/2 counterpart has zero spin-density. (e) ROI “mask” for 2-shot acquisition.
(f) ROI “mask” for 4-shot acquisition

pixels are retained using binary operations between the original and shifted masks1.
For a multi-shot acquisition with Ns shots one can show that phase map estimation is possible

when choosing an ROI “mask” that includes locations such that not all of the x[n,m+kM/(2Ns)]

for k = 0, . . . , Ns − 1 pixels contribute signal, i.e., x[n,m + kM/(2Ns)] = 0 for some k ∈
{1, . . . , Ns − 1}. In this case the ROI “mask” is created as follows. The reconstruction mask
(Figure 3.1c) is shifted by m + kM/(2Ns) along y to create 2Ns − 1 replicates and the common
regions of all 2Ns masks are identified (binary AND). Then these regions are removed from the
original reconstruction mask (binary XOR) to create the ROI “mask”. Figures 3.1e and 3.1f show
examples of these masks for 2-shot and 4-shot acquisitions. The results in §3.5.1 show that phase
map estimation is feasible even in cases where fully unaliased regions cannot be obtained (as is
common for multi-shot acquisitions). Hence, unlike conventional methods, our approach is useful

1In Matlab notation these operations are expressed as: mask roi = xor(mask, circshift(mask, [0
M/2])) & mask
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even in multi-shot acquisitions without the requirement for odd number of shots with alternating
polarities [27, 28].

The analyses presented in this section also apply to 2D parametric phase map estimation,
though the derivations are more complicated and were omitted for clarity of presentation. Also
in the case where parallel imaging is used (with suitable sensitivity maps) the mask is not required
for estimation, but (as illustrated in §3.3.3) using an ROI “mask” facilitates the formulation of a
quadratic surrogate algorithm for solving the optimization problem in (3.10).

3.3.3 Quadratic Surrogate Optimization for Single-Shot EPI

This section presents an algorithm for solving the optimization problem in (3.10) based on the
majorize-minimize approach using quadratic surrogates [38]. The method is applicable to both 2D
and 1D parametric phase map estimation for single-shot acquisitions and for 1D phase maps for
multi-shot acquisitions. Here we consider the case of parallel imaging with L receiver coils with
known sensitivity maps, and a 2D parametric phase map model (the derivations are similar for the
simpler 1D case). Single coil scans are a simple special case of the method.

Under these assumptions for single-shot scans the Hessian of the ML cost function ‖y −A(φ)z‖2
2

is

H(φ) , A′(φ) A(φ) = M′F′(Tφ) F(Tφ) M

= M′G(φy)M, (3.27)
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where

G(φy) ,
L∑
l=1

S′l
(
F′+F+ + P′(Tφ) F′−F−P(Tφ)

)
Sl

=
L∑
l=1

S′l
[
(F′xFx)⊗

(
F′y,+Fy,+

)
+(P′x(Tφ) F′xFxPx(Tφ))⊗

(
P′y(Tφ) F′y,−Fy,−Py(Tφ)

)]
Sl

=
L∑
l=1

S′l
[
IN ⊗

(
F′y,+Fy,+

)
+ IN ⊗

(
P′y(Tφ) F′y,−Fy,−Py(Tφ)

)]
Sl

=
L∑
l=1

S′l
[
IN ⊗

(
F′y,+Fy,+ + P′y(Tφ) F′y,−Fy,−Py(Tφ)

)]
Sl

=
L∑
l=1

S′l

[
IN ⊗

(
1

2

[
IM/2 IM/2

IM/2 IM/2

]
+

1

2

[
IM/2 −e−iφyM/2IM/2

−eiφyM/2IM/2 IM/2

])]
Sl

=
L∑
l=1

S′l

(
IN ⊗

[
IM/2 ρyIM/2

ρ∗yIM/2 IM/2

])
Sl (3.28)

with Sl and P(Tφ) as defined in (3.4) and (3.17) respectively, and ρy , (1− e−iφyM/2)/2.
The matrix G in (3.28) has a banded diagonal structure and can be rearranged into a block

diagonal matrix consisting of NM/2 blocks of size 2× 2. Each block is given by

[G(φy)]nm ,

[
s11[n,m] s12[n,m]

s∗12[n,m] s22[n,m]

]
, (3.29)

s11[n,m] ,
L∑
l=1

|sl[n,m]|2 ,

s22[n,m] ,
L∑
l=1

|sl[n,m+M/2]|2 ,

s12[n,m] , ρy

L∑
l=1

s∗l [n,m]sl[n,m+M/2].

From (3.29) we see that, in addition to the coupling of locations separated by M/2, the Hessian
also depends on the parameter vector φ through the component φy. When φy = 0, corresponding
to 1D phase correction, then s12[n,m] = 0 and [G]nm is diagonal.
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By defining the following coil combination images (cf. [39, eqn. 20]):

v+ ,
L∑
l=1

S′lF
′
+yl,+, v− ,

L∑
l=1

S′lF
′
−yl,−, (3.30)

and also

u+ , M′v+, u− , M′v−,

T̃ , M′T, P(T̃φ) , M′P(Tφ) ,

the likelihood function in (3.10) becomes

L(φ) =(v+ + P′(Tφ) v−)
′
M(H(φ))−1 M′(v+ + P′(Tφ) v−)

= <
{

u′+(H(φ))−1 P′(T̃φ)u−

}
+ u′−P(T̃φ)(H(φ))−1 P′(T̃φ)u−, (3.31)

ignoring constant terms independent of φ.
Due to the M/2 coupling introduced by H, the likelihood in (3.31) does not easily lead to

an efficient optimization algorithm. This problem can be alleviated by choosing an ROI support
constraint (like the mask in Figure 3.1d) where only pixels whose M/2 counterpart is zero are
included. This choice of mask effectively eliminates the M/2 coupling and the dependence on φy,
since each 2 × 2 block [G]nm is either completely eliminated or only one element along the main
diagonal is retained when forming the Hessian using (3.27). Therefore, using this type of mask,
the Hessian simplifies to a (K ×K) diagonal matrix

H = SK , M′

(
L∑
l=1

S′lSl

)
M, (3.32)

with elements

sk ,
L∑
l=1

|sl[nk,mk]|2 ,

where k corresponds to a pixel location [nk,mk] that is included in the mask.
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Using the simplified form of the Hessian in (3.32), the likelihood function in (3.31) becomes

L(φ) = <
{

u′+S−1
K P′(T̃φ)u−

}
=

K∑
k=1

wk cos
([

T̃φ
]
k
− ηk

)
, (3.33)

and the estimate of φ is found by minimizing the following cost function resulting from (3.33):

φ̂ = argmin
φ

{
Ψ(φ) ,

K∑
k=1

wk

(
1− cos

([
T̃φ
]
k
− ηk

))}
, (3.34)

where w is a (K × 1) vector with elements wk , |u+,k| |u−,k| /sk, and η is a (K × 1) vector with
elements ηk , ∠u+,k − ∠u−,k.

The form of the cost function in (3.34) is similar to the one used in [21] for fieldmap estimation,
so we can develop an optimization transfer algorithm of a similar form. By defining � as the
element-wise multiplication of vectors and sinc(t) , sin(t)/t for t 6= 0 and sinc(t) , 1 for t = 0,
the quadratic surrogate algorithm can be expressed as

t(n) = T̃φ(n) − η

c(n) = w � sinc(t(n))

∇Ψ(φ(n)) = T̃
′[

c(n) � t(n)
]

H(n) = T̃
′
diag

{
c(n)
}

T̃

φ(n+1) = φ(n) −
[
H(n)

]−1

∇Ψ(φ(n)). (3.35)

The steps of the algorithm are computationally inexpensive since the matrix inversions are only
3× 3 (or 2× 2 for 1D parametric phase map). Because the cost function is non-convex we need a
good initialization φ(0) to converge to the “correct” local minimum, as discussed in §3.3.5.

The algorithm (3.35) is applicable to single-shot acquisitions with one or more receiver coils
and for both 1D and 2D phase correction. For multi-shot acquisitions formulating a simple quadratic
surrogate algorithm for 2D parametric phase map estimation is difficult because the aliasing pattern
of the Hessian F′(Tφ) F(Tφ) is more complicated. For realistic images that cover most of the
vertical FOV one can rarely obtain an ROI mask where only one of the aliased locations contributes
to the signal. Thus, the matrix inversion of (3.10) cannot be reduced to a diagonal form, which in
turn prohibits the formulation of a simple algorithm like (3.35) for the single-shot case. For 2D
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parametric phase map estimation one can use the alternating minimization method presented in the
following section (§3.3.4). A quadratic surrogate optimization method for 1D parametric phase
map estimation in multi-shot acquisitions is presented in this chapter’s appendix.

3.3.4 Alternating Minimization Method for Multi-Shot EPI

In multi-shot EPI trajectories the misalignment of positive and negative direction echoes may
be different in each shot and also there may be misalignment of the echoes between the shots. In
this case using a single phase map may be inadequate for ghost artifact suppression, so we extended
the proposed model by using multiple phase maps.

For multi-shot EPI with Ns shots we use the positive direction of the first shot as reference
and model all the possible misalignments with 2Ns − 1 phase maps (or parameter vectors for our
model). However, for simplicity of presentation we define 2Ns phase maps, where φ+,1 = 0 by
definition. Thus, our system model for multi-shot EPI is

F(φ) ,



F+,1P
(
Tφ+,1

)
...

F+,NsP
(
Tφ+,Ns

)
F−,1P

(
Tφ−,1

)
...

F−,NsP
(
Tφ+,Ns

)


, (3.36)

where φ+,j is the parameter vector for the misalignment of the positive direction of the jth shot
w.r.t the positive direction of the first shot and φ−,j is the corresponding parameter vector for the
negative direction.

The system model in (3.36) can be written in a more convenient form as:

F(φ) ,


F1P(Tφ1)

...

FqP
(
Tφq

)
 , (3.37)

where q = 2Ns, φj , φ+,j for j = 1, . . . , Ns, φNs+j , φ−,j for j = 1, . . . , Ns, Fj , F+,j for j =

1, . . . , Ns, and FNs+j , F−,j for j = 1, . . . , Ns. For parallel imaging with L receiver coils the
model of (3.37) can be easily extended similarly to (3.3).
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Using the modified system model in (3.37) the cost function in (3.8) becomes

Ψ(x,φ) = ‖y − F(φ) x‖2
2 =

q∑
j=1

∥∥yj − FjP
(
Tφj

)
x
∥∥2

2
(3.38)

where φ ,
(
φ1, . . . ,φq

)
, and y ,

[
y′1 . . . y′q

]′
.

For joint minimization of the cost function in (3.38), in cases where solving (3.10) is not practi-
cal (i.e., 2D parametric phase map with multi-shot acquisition), we employed an alternating mini-
mization scheme, using CG, based on a linearization approximation similar to [4,6]. The lineariza-
tion approximation enables the use of CG for estimating φ since the cost function is non-quadratic
in φ. For x no approximation is necessary since the cost function is quadratic in x. Under the
proposed scheme at the kth step of alternating minimization we have:

x(k+1) = argmin
x

∥∥∥y − F
(
φ(k)

)
x
∥∥∥2

2

=
[
F′
(
φ(k)

)
F
(
φ(k)

)]−1

F′
(
φ(k)

)
y (3.39)

φ
(k+1)
j = argmin

φj

∥∥∥ỹ(k)
j − F̃

(k)

j φj

∥∥∥2

2
for j = 2, . . . , q

= <
{[

(F̃
(k)

j )′F̃
(k)

j

]−1

(F̃
(k)

j )′ỹ
(k)
j

}
for j = 2, . . . , q, (3.40)

where

F̃
(k)

j , −iFjP
(
Tφ

(k)
j

)
diag

{
x(k+1)

}
T

ỹ
(k)
j , yj − FjP

(
Tφ(k)

)
x(k+1) + F̃

(k)

j φ
(k).

We do not update φ+,1, i.e., j = 1, beacuse it is set as zero by definition. We used CG to solve
(3.39) for convenience, whereas we use a matrix inverse for the updates for φj since they involve
inverting only 3 × 3 matrices. The Hessian of (3.39) permutes to a block diagonal matrix and
thus permits a more efficient implementation that inverts the small 2Ns × 2Ns (where Ns is the
number of shots) blocks directly. This approach, that is similar to SENSE “unfolding” [5], is used
in [19, eqn. (2), (4)] and could improve the computational efficiency of our method.

Since the cost function is non-convex with respect to φ we need a fairly accurate initialization
φ(0) to ensure convergence in the “correct” local minimum. For the linear model used, the domi-
nant effects are the constant term φc and the linear term φx along the readout direction, thus a good
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initialization of these values is required as discussed in §3.3.5, whereas we have found it sufficient
to initialize φy, the linear term along the phase encode direction y, to zero.

3.3.5 Initialization and Approximate Estimates

To find initial values φ(0) for the iterative algorithms presented (quadratic surrogate and alter-
nating minimization) the conventional approach would be to use a standard 2D plane fitting or 1D
line fitting in the phase difference of an unaliased region of the images reconstructed with only
the positive or negative readouts [14, 25, 26]. If an unaliased region is unavailable (tight FOV, or
multi-shot acquisition) an initial estimate could be obtained from a reference scan or from previous
scans of the same type if available. This section presents an alternative approach that uses only the
acquired data and (as explained in §3.3.2) does not rely on the existence of unaliased regions, and
thus is applicable to multi-shot acquisitions.

For single-shot acquisitions we can rewrite the likelihood (3.33) as follows:

L(φ) =
K∑
k=1

wk cos([Tφ]k + ηk)

=
∑∑
[m,n]∈Q

w[n,m] cos(φc + nφx +mφy + η[n,m])

= <

∑∑
[m,n]∈Q

ũ[n,m]e−iφce−i(φxn+φym)


= <

{
e−iφc

∞∑
n=−∞

∞∑
m=−∞

u[n,m]e−i(φxn+φym)

}
= <

{
e−iφcU(φx, φy)

}
, (3.41)

where Q is the set of locations [n,m] included in the ROI “mask” (e.g., Figure 3.1d), ũ[n,m] ,

w[n,m]e−iη[n,m], u[n,m] is a zero-padded signal such that u[n,m] = ũ[n,m] if [n,m] ∈ Q and
u[n,m] = 0 otherwise, and U(·, ·) is the 2D discrete space Fourier transform (DSFT) of u[·, ·].

From (3.41) the ML estimate of the constant phase factor is

φ̂c = ∠U(φx, φy). (3.42)
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Substituting into (3.41) the ML estimates for the linear phase terms are given by(
φ̂x, φ̂y

)
= argmax

φx,φy

|U(φx, φy)| . (3.43)

Calculating the DSFT for all frequencies is not feasible, but we can calculate samples of it by
taking an N ′ ×M ′ point 2D DFT of u[n,m], denoted as U [k, l]. Since u[n,m] is space limited
within an N ×M region and by choosing N ′ ≥ N and M ′ ≥ M , from the DFT/DSFT properties
it follows that U [k, l] = U(2πk/N ′, 2πl/M ′). Using this property we can find an approximate
solution for (3.43) by finding the location [k̂, l̂] where |U [k, l]| attains its maximum value. The
approximate values for the parameters are computed using the following relations:

φ̂x = 2πk̂/N

φ̂y = 2πl̂/M (3.44)

φ̂c = ∠U [k̂, l̂].

Since the sample spacing of the DSFT depends on the number of samples N ′,M ′, the quality
of the approximation also depends on the number of samples of the DFT. Thus, we improve the
initial estimates by zero-padding the signal u[n,m] to a larger size. Choosing the amount of zero-
padding is a compromise between accuracy of the initial estimate and computational complexity.
From our experiments zero padding up to 4 times the initial size seemed to be sufficient for good
initialization without significant computational cost. Apart from zero-padding, the accuracy of this
method could be improved by using interpolation to achieve sub-sample accuracy when finding the
locations that maximize |U [k, l]|. However implementing such interpolation method is beyond the
scope of our work.

For multi-shot trajectories we cannot use the above approximation method to find estimates for
a 2D parametric model. However, if we consider just 1D phase correction and a single parame-
ter vector φ according to the model in (3.2) for the purposes of initialization, despite the model
mismatch we can find fairly accurate initial values for the constant term φc and the linear term φx.
These two terms are more important in initialization because usually the value of φy is small and
initializing with 0 appears to be adequate for our iterative methods. For a 1D model, the likelihood
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(3.33) becomes

L(φ) =
K∑
k=1

wk cos([Tφ]k + ηk)

=
∑∑
[m,n]∈Q

w[n,m] cos(φc + nφx + η[n,m])

= <

∑∑
[m,n]∈Q

ũ[n,m]e−iφce−iφxn


= <

{
e−iφc

∞∑
n=−∞

∞∑
m=−∞

u[n,m]e−iφxn

}

= <

{
e−iφc

∞∑
n=−∞

v[n]e−iφxn

}
= <

{
e−iφcV (φx)

}
, (3.45)

where v[n] ,
∑

m u[n,m], and V (·) is the 1D DSFT of v[·]. In this case the set of locations Q
corresponds to a multi-shot ROI “mask” as in Figures 3.1e and 3.1f.

From (3.45) the ML estimate of the constant term is

φ̂c = ∠V (φx) (3.46)

and substituting into (3.45) the ML estimate of the linear term is

φ̂x = argmax
φx

|V (φx)| . (3.47)

Similarly to the 2D formulation, by taking the N ′ point DFT of v[n], with N ′ ≥ N , we have
V [k] = V (2πk/N ′). We can find an approximate solution for (3.47) by finding the location k̂
where |V [k]| attains its maximum value. The approximate values for the parameters are computed
as follows:

φ̂x = 2πk̂/N

φ̂c = ∠V [k̂]. (3.48)

Again, as in the 2D case, the amount of zero-padding is a compromise between estimation accuracy
and computational performance. However, since we only take an 1D FFT we can zero-pad to a
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(a) (b)

Figure 3.2: Example of tight FOV imaging. (a) Image at original FOV (192 × 216). (b) Image at
tight FOV 192× 192 with visible wraparound at the top and bottom.

large extent with minor increase in computational cost. This efficient 1D approach is also suitable
for initializing φ for single-shot cases.

3.3.6 Tight FOV Considerations

In tight field-of-view (FOV) imaging, where the object is larger than the desired FOV, when
parallel imaging (multiple receiver coils) is not available or desirable, there is unavoidable wrap-
around at the edges as seen in Figure 3.2. In this section, for simplicity, we will focus on the case
where wraparound occurs along only the y (phase encode) direction.

First we formulate a more accurate model for the tight FOV case that accounts for the wrap-
around of the image. We assume that the image x at the desired FOV is of size N ×M , but the
actual size of the image x̃ is N ×M ′ with M ′ > M . Since the actual vertical size M ′ is not known
we can assume an image size of N × (M + Mt + Mb) by adding Mt and Mb rows at the top and
bottom of the image respectively to at least guarantee that M + Mt + Mb > M ′. The resulting
NM × N(M + Mt + Mb) system matrix that accounts for the wraparound and the appropriate
phase map “weighting” is given by

A(φ) ,

[
F+W

F−WP(T̃φ)

]
(3.49)
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where W , IN ⊗Wy,

Wy ,


0 IMb

0 0 IMb

0 0 IM−Mt−Mb
0 0

IMt 0 0 IMt 0

 (3.50)

and [T̃φ] corresponds to an N × (M +Mt +Mb) phase map.
Comparing the system model of (3.49) to the one in (3.2) we see that the only difference is in

the phase map “weighting” of the wraparound regions. By choosing a support constraint (mask)
M that excludes the pixels where all aliases contribute signal (implicitly excludes all pixels of the
wraparound regions at top and bottom) similarly to Figure 3.1d the models of (3.49) and (3.2) are
equivalent since the same K pixels are used in both cases. This means that for estimation purposes
either model can be used, even though technically there is model mismatch when using (3.2).

However, for reconstruction purposes when the parameter vector φ is known (already esti-
mated), the model mismatch from using (3.2) can lead to reconstruction artifacts in the resulting
image. We will illustrate this using a Kronecker product decomposition of the system matrices
and noiseless data acquired with the model in (3.49). In this case the least squares estimate of x̃

becomes

x̂ =[F′(Tφ) F(Tφ)]
−1

F′(Tφ) A(φ) x̃

=
[
F′+F+ + P′(Tφ) F′−F−P(Tφ)

]−1
[
F′+F+W + P′(Tφ) F′−F−WP(T̃φ)

]
x̃

=[IN ⊗Hy]
−1
[
IN ⊗

(
F′y,+Fy,+Wy + P′y(Tφ) F′y,−Fy,−WyPy(T̃φ)

)]
x̃ (3.51)

= IN ⊗
[
H−1
y

(
F′y,+Fy,+Wy + P′y(Tφ) F′y,−Fy,−WyPy(T̃φ)

)]
x̃,

where Hy , F′y,+Fy,+ + P′y(Tφ) F′y,−Fy,−Py(Tφ).
As we see from (3.51), for a 2D parametric phase map model ML estimation does not retrieve

x̃ exactly, even from noiseless data because of model mismatch. However for a 1D parametric
phase map model we have Py(Tφ) = IM and Py(T̃φ) = IM+Mt+Mb

which reduces (3.51) to

x̂ =
[
IN ⊗

(
F′y,+Fy,+ + F′y,−Fy,−

)]−1[
IN ⊗

(
F′y,+Fy,+ + F′y,−Fy,−

)
Wy

]
x̃

=[IN ⊗ IM ]−1[IN ⊗Wy] x̃

= Wx̃ = x. (3.52)
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From (3.52) we see that despite the model mismatch we can exactly recover the image x with the
unavoidable wraparound, from noiseless data. This is not surprising since the wraparound is only
along y where there is no phase map “weighting” in the 1D model and thus, no residual ghosting
artifacts due to model mismatch.

Reconstructing with the system model of (3.49) should enable artifact-free reconstruction of x̃

when the 2D phase map parameters φ are known. However, the problem is under-determined and
there is no unique solution unless we enforce a support constraint (mask) or introduce a regular-
ization term.

For the support constraint we can choose an N(M + Mt + Mb) ×K matrix M that excludes
pixels with zero spin-density (no signal) such that K ≤MN . Now we can recover a least squares
estimate of z , Mx̃ using

ẑ = argmin
z
‖y −A(φ) Mz‖2

2

=[M′A′(φ) A(φ) M]
−1

M′A′(φ) y, (3.53)

x̂ = Mẑ.

For the regularized least squares estimation one needs to choose an appropriate regularization
term. We chose a regularizer that minimizes the energy of the ghost by forming a matrix R that
isolates the pixels outside the object of interest (pixels that ideally should have zero spin-density
and any signal present should be attributed to ghosting artifacts). The regularization matrix R can
be thought of as the binary complement of the support constraint (mask) M. With this formulation
we reconstruct the image by minimizing the following cost function:

x̂ = argmin
x̃
‖y −A(φ) x̃‖2

2 + λ ‖Rx̃‖2
2

=[A′(φ) A(φ) + λR′R]
−1

A′(φ) y, (3.54)

where λ is parameter that determines the “strength” of the regularizer. Because the cost function
is quadratic, we use CG for minimizing it.

With either approach the reconstruction artifacts may not be completely eliminated, even with
knowledge of the true 2D phase map parameters φ, but they are significantly reduced compared to
reconstructions using the model of (3.2).
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3.4 Experiments

3.4.1 Phantom Study

All the data acquisitions for our experiments were performed on a GE 3T Signa scanner and
for the phantom study we used a uniform spherical phantom.

The first set of experiments used a single receiver coil and the trajectories that were used were
single-shot, 2-shot, and 4-shot EPI at an axial orientation. The reconstructions from the proposed
method were compared to ghost correction using the standard 1D linear phase correction and the
2D phase map correction of [14]. For both of these standard methods the 1D linear correction
parameters and the 2D phase map were estimated from a central alias-free region of the half FOV
images reconstructed from the positive and negative direction gradients (Figure 3.3). For multi-
shot EPI, since an alias free region cannot be obtained from the positive and negative direction
images, the standard methods used the values obtained from the single-shot correction. For our
proposed method we initialized the parameter vector φ using the approximate estimation method
in §3.3.5 where a 2D estimate (3.44) was used for single-shot and an 1D estimate (3.48) was used
for 2-shot and 4-shot and the term φy was initialized to zero. For the proposed method in multi-shot
EPI we performed the joint estimation using the multiple phase map model of (3.37).

The second set of experiments used 8 receiver coils with sensitivity maps [40] for the axial
plane shown in Figure 3.4. For the multi-coil image reconstruction we used the SENSE method
[5]. For these experiments we used the same trajectories and orientations as in the single coil
case. The conventional 2D estimation method that we used for comparison is based on [14],
where the phase map is found by unwrapping the phase difference between the full FOV images
(available using SENSE reconstruction) reconstructed from the positive and negative direction
echoes. The unwrapped phase difference is then used to estimate a parametric 2D phase map with
weighted least squares using the image magnitude as weight. The final conventional 2D phase map
is acquired by directly using the phase difference in regions within the object and the parametric
2D phase map in regions with low signal outside the object. For the 1D linear correction we again
used a central region and estimated a constant and a linear (along x) phase term. For initializing
our proposed method we used the same approximate method (3.44) or (3.48) as in the single-coil
case.

For our iterative methods, both QS and alternating minimization, instead of performing a fixed
number of iterations, we employed a stopping rule that terminates the iterative process when the
normalized difference between two consecutive estimates drops below a predefined threshold. For
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(a)

(b)

(c)

(d)

(e)

Figure 3.3: (a) Magnitude and phase image x+ = F′+y+ from positive direction echoes and (b)
magnitude and phase image x− = F′−y− from negative direction echoes. (e) Difference of the two
phase images. Rectangle denotes area used for conventional 1D linear correction and 2D phase
map fitting.

Figure 3.4: Sensitivity maps from the 8 head coils used in the multi-coil experiments.
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the QS algorithm the stopping rule uses the estimated phase map parameter vector φ as∥∥∥φ(k) − φ(k−1)
∥∥∥ /∥∥∥φ(k)

∥∥∥ < ε, (3.55)

and for the alternating minimization method the stopping rule uses the estimated image as

∥∥x(k) − x(k−1)
∥∥ / ∥∥x(k)

∥∥ < ε. (3.56)

For both methods we chose the threshold ε = 0.001, i.e., the algorithm stops when the difference
between consecutive estimates drops below 0.1%.

3.4.2 Tight FOV

For the tight field-of-view experiment we used a digital phantom from Brainweb with full FOV
of size 192 × 216 (Figure 3.2a) and a reconstruction FOV of 192 × 192 that causes wraparound
along y as seen in Figure 3.2b. For this simulation we performed two separate experiments using
single-coil acquisitions with single-shot trajectories and two different 2D phase map parameter
vectors with the same constant term and the same linear term along x that corresponds to a shift in
kx of 1.2 samples, but different linear terms along y where the first corresponds to a shift in ky of
0.2 sampes and the second to a shift of 0.05 samples.

For 2D phase map estimation we used a support constraint as seen in Figure 3.5a and the
model of (3.2). For the image reconstruction we first used the model of (3.2) to illustrate the
effects of model mismatch and then reconstructed with the more accurate model of (3.49). For
the reconstruction with the model of (3.49) we reconstructed the image once using (3.53) with
a support constraint M shown in Figure 3.5b and once using (3.54) with a regularization matrix
R that corresponds to the support constraint shown in Figure 3.5c. To assess the quality of the
reconstructions we measured the NRMS error between the true image and the reconstructed ones.
For calculating the NRMS error we used the support constraint shown in Figure 3.5d that excludes
the pixels at the wraparound regions.

3.4.3 Approximate Parameter Estimation

To assess the quality of the approximate 2D estimation method of §3.3.5 we designed a sim-
ulation experiment using a single-shot trajectory and an artificial 192 × 256 brain image from
Brainweb (Figure 3.6a). For this experiment we used both single-coil and multi-coil acquisition
with 4 coils with simulated sensitivity maps (Figure 3.6c). We used a 2D parameter vector φ with
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(a) (b) (c) (d)

Figure 3.5: (a) Support constraint (mask) for 2D phase map estimation. (b) Support constraint for
image reconstruction using (3.53). (c) Support constraint corresponding to regularization matrix
R for image reconstruction using (3.54). (d) Support constraint for NRMS error calculation.

(a) (b) (c)

Figure 3.6: (a) Digital phantom used as true image, (b) support constraint for 2D phase map
estimation, and (c) sensitivity maps used in approximate phase estimation experiments.

non-zero constant term and linear terms that correspond to k-space shifts of 1.2 samples in kx and
0.2 samples in ky. The approximate method was applied with varying amount of oversampling
from 2 to 16 times the original size of the image using a support constraint as in Figure 3.6b.
The reconstruction quality was measured quantitatively by calculating the normalized root-mean-
squared (NRMS) error of the correction parameters and the reconstructed images.

3.5 Results

3.5.1 Phantom Study

In this section we present the results from the phantom study. All of the reconstructed images
shown have been displayed with gamma correction to help visualize the ghosting artifacts.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: Ghost corrected images from single-coil acquisition using (a,b) single-shot, (c,d) 2-
shot, and (e,f) 4-shot EPI. Images from left to right: Standard 1D linear phase correction, standard
2D phase map correction, proposed model based correction. (a,c,e) Illustration with gamma cor-
rection using γ = 4 to better visualize ghosting artifacts inside the object. (b,d,f) Illustration with
gamma correction using γ = 0.5 to better visualize artifacts outside the object.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: Ghost corrected images from multi-coil acquisition using (a,b) single-shot, (c,d) 2-shot,
and (e,f) 4-shot EPI. Figure placement and gamma corrections same as in Figure 3.7.

Figure 3.7a shows the ghost-corrected images from a single-coil acquisition using a single-
shot EPI. In this case all three methods sufficiently suppress the ghosting artifacts, although the 2D
correction methods (standard and proposed) exhibit slightly improved image quality.

Figure 3.7c shows the reconstruction results from single-coil acquisition using a 2-shot EPI. In
Figure 3.7c, both conventional methods perform similarly and there are visible residual ghosting
artifacts. In the reconstruction from our proposed method the ghosting artifacts are significantly
reduced, resulting in improved image quality. This improvement is mostly attributed to the use of
the multiple phase map model of (3.37) that allows the use of individual corrections for each shot.

Figure 3.7e shows the reconstruction results from single-coil acquisition using a 4-shot EPI.
In this case we also see that the conventional methods perform similarly and residual ghosting
artifacts are visible. Again as in the 4-shot case we see that the proposed method using individual
phase map corrections from the model in (3.37) reduces ghosting artifacts.

In Figure 3.8a we see the ghost corrected images from a multi-coil acquisition using a single-
shot EPI. Here all three methods perform similarly and fully eliminate the ghosting artifacts. In
this case the proposed method shows no benefit compared to the standard correction methods.
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Figure 3.8c shows the reconstruction results from multi-coil acquisition using a 2-shot EPI.
Here similarly to Figure 3.8a all methods perform similarly and the ghosting artifacts are almost
fully suppressed. In this case the use of individual corrections for each shot of our proposed method
did not visibly improve the reconstruction quality.

Figure 3.8e shows the reconstruction results from multi-coil acquisition using a 4-shot EPI.
In this case both conventional methods perform similarly and there are small residual ghosting
artifacts. The proposed method using individual corrections for each shot slightly improves the
reconstruction quality.

The QS algorithm used for single-shot acquisitions is computationally efficient since the per
iteration cost is low and the algorithm converges within a few iterations. For the chosen threshold
of (3.55) the algorithm converged in only three iterations and even for a much lower threshold
(ε ≈ 10−10) it converged within six or less iterations. The computation time for the QS method
is comparable to the conventional 2D estimation method that uses weighted least squares fitting
(25ms for single-coil and 110ms for multi-coil). Also, in the QS method most computation time is
spent creating the coil combination images (3.30) (15ms for single-coil and 100ms for multi-coil),
whereas the iterations are significantly faster (about 3-4ms per iteration). Thus, even using more
QS iterations does not have a significant impact on the computational performance of our method.

The alternating minimization method used for multi-shot acquisitions converged in 10 to 20
iterations for our choice of threshold ε. The computational bottleneck of this method is the im-
age reconstruction step of (3.9) that is performed using CG. Using a method similar to SENSE
“unfolding” as in [19] could significantly improve the computational efficiency.

3.5.2 Tight FOV

Figure 3.9 shows the reconstructed images from the tight FOV experiment with a 2D parametric
phase map with a large φy component. In this case there is a strong artifact at the middle of the
image in the reconstruction using the model of (3.2) (Figure 3.9a). In the reconstructions with the
more accurate model of (3.49) (Figures 3.9b and 3.9c) there are still visible artifacts the the middle
but more dispersed and the NRMS error is also improved.

Figure 3.10 shows the reconstructed images from the tight FOV experiment with a 2D paramet-
ric phase map with a small φy component. In this case there is a small visible artifact at the middle
of the image in the reconstruction using the model of (3.2) (Figure 3.9a). In the reconstructions
with the more accurate model of (3.49) (Figures 3.9b and 3.9c) there is still some small residual
artifact in the middle, but it is subtle enough that it is barely visible.
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(a) NRMSE: 9.1% (b) NRMSE: 4.7% (c) NRMSE: 4.7%

Figure 3.9: Image reconstructions for tight FOV experiment using 2D phase map with large slope
in y. (a) Reconstruction with model mismatch from model of (3.2). (b) Reconstruction from
accurate model (3.49) using support constraint (3.53). (c) Reconstruction from accurate model
(3.49) using regularization (3.54).

(a) NRMSE: 0.8% (b) NRMSE: 0.4% (c) NRMSE: 0.4%

Figure 3.10: Image reconstructions for tight FOV experiment using 2D phase map with small
slope in y. (a) Reconstruction with model mismatch from model of (3.2). (b) Reconstruction from
accurate model (3.49) using support constraint (3.53). (c) Reconstruction from accurate model
(3.49) using regularization (3.54).
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Table 3.1: Table of NRMS error (in %) of estimated phase map parameters and reconstructed
images. The N× denotes the amount of oversampling of FFT and NC denotes the uncorrected for
ghosting artifacts reconstruction. The results from the QS method are included as reference.

Single-coil Multi-coil
φc φx φy x φc φx φy x

NC 100 100 100 67.3 100 100 100 48.5

2× 22.6 17.8 130.1 26.3 33.4 17.8 130.1 6.2

4× 1.5 2.7 15.1 2.4 2.7 2.7 15.1 1.0

8× 1.5 2.7 15.1 2.4 2.7 2.7 15.1 1.0

12× 1.5 2.7 15.1 2.4 2.7 2.7 15.1 1.0

18× 0.5 0.4 2.3 0.3 0.9 0.4 2.3 0.2

24× 0.0 0.7 4.1 0.6 0.1 0.7 4.1 0.3

QS 0.2 0.0 2.6 0.1 0.4 0.0 2.5 0.1

3.5.3 Approximate Parameter Estimation

Figure 3.11 shows the resulting image reconstructions that were corrected for ghosting artifacts
using 2D parametric phase maps estimated with the approximate FFT-based method using (3.42)
and (3.43). Figure 3.11a shows the results from the single-coil simulation and Figure 3.11b from
the multi-coil simulation. The reconstructed images are displayed with gamma correction to help
visualize the ghosting artifacts.

Table 3.1 shows the NRMS errors for the estimated phase map parameters and the reconstructed
images. The results show that an oversampling of just four times the image size is sufficient
for a decent reconstruction quality. The low NRMS error for the parameters with only modest
oversampling makes this method a suitable initialization for our quadratic surrogate algorithm. On
the other hand we see that the results do not really improve until we use oversampling of 18 or more
times the image size. This amount of oversampling increases the computational cost significantly
and performing a few iterations of our QS method is more computationally efficient compared to
an 18 times oversampled FFT. Therefore, the FFT method, with a small amount of over-sampling,
is probably the most useful as an approach to initializing the QS algorithm (3.35).
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(a)

(b)

Figure 3.11: Reconstructed images from (a) single-coil, and (b) multi-coil acquisitions, corrected
with phase maps estimated with the approximate FFT-based method. From top-left to bottom-right
we have uncorrected reconstruction followed by reconstruction with parameter estimation using 2,
4, 8, 12, 18, and 24 times oversampling of FFT and the bottom-right using the QS approach (3.35)
for comparison.

3.6 Discussion

Our proposed method for ghost correction does not rely on parallel imaging for the estimation
of the correction parameters, but accurate sensitivity maps are important for the reconstruction of
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good quality images in multi-coil acquisitions. In our work we assume that the sensitivity maps are
estimated from data acquired during a calibration scan, similarly to [14, 19]. Other methods that
use SENSE, like [15, 17], estimate the sensitivity maps by combining data from the current and
previous temporal frames and a similar scheme is used by methods using GRAPPA [18] to update
the parameters.

In some cases updating the sensitivity maps is desirable, e.g., changes induced from subject
motion. In our framework we can obtain these updates by using the ghost correction parameters
from a previous temporal frame to reconstruct the coil images and then use them to update the
sensitivity maps. Using the new sensitivity maps we estimate the ghost correction parameters for
the current temporal frame and finally the ghost-corrected image. Even though the ghost correction
parameters can drift during the course of a study, the changes between adjacent temporal frames
are sufficiently small and should not introduce artifacts in the estimated sensitivity maps. As
an alternative, since our method for estimating the ghost correction parameters does not rely on
parallel imaging we could estimate the corrections from single coil data of the current temporal
frame and then create ghost-corrected images for each coil. Using these images we can update the
sensitivity maps and use them to reconstruct the final image using SENSE.

The proposed method improves ghost correction compared to standard correction methods for
single-coil acquisitions and also for multi-shot EPI. The effectiveness of our method in multi-shot
EPI, without the need for pre-scans or modifications of the acquisition pattern, is a significant
advantage; most current methods rely on alternating direction schemes and data sharing across
temporal frames that can reduce the temporal resolution and may not be readily applicable in a
standard scanner or require computation of the correction parameters from a pre-scan with the
disadvantage of being unable to adapt to dynamic changes of the misalignment of echoes due to
scanner drifts [18]. Another benefit of our method that applies to multi-shot EPI is the ability
to apply individual corrections for each shot and also account for misalignments between shots
efficiently with no additional calibration or modification in the acquisition. As our results exhibit,
these individual corrections can significantly reduce ghosting in the reconstructed images.

In addition, our model-based approach can be easily incorporated in any-model based recon-
struction scheme with minimal computational overhead, instead of being an additional post pro-
cessing step.

Our results show that our proposed QS method for single-shot acquisitions is computationally
efficient with similar computational performance as non-iterative conventional methods. Thus,
our method allows for efficient phase map estimation without increased computational overhead.
However, for multi-shot acquisitions our alternating minimization method introduces significant
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computations overhead since it requires solving and image estimation problem for each iteration.
Our implementation of alternating minimization that uses CG to solve (3.9) is the computational
bottleneck of our method and a more efficient implementation similar to SENSE “unfolding” that
is used in [19] could improve the performance significantly. Despite the increased computational
complexity our method could still be more efficient than phase cycling methods [19] with the
additional benefit of using individual phase maps for each shot that improve the suppression of
ghosting artifacts in the reconstructed images.

Throughout this work we focused on a parametric 2D phase map model that considers only
translations (shifts) of k-space. If the eddy currents cause non-linear distortions of k-space one
could use our method with a different parametric model or a method based on measuring the
distorted k-space trajectory and use the non-uniform FFT (NUFFT) [41] for image reconstruction.

3.7 Appendix

3.7.1 Quadratic Surrogate Algorithm for 1D Correction of Multi-Shot EPI

For 1D parametric phase map estimation the Hessian of (3.8) always reduces to a diagonal
form (regardless of the choice of mask), as illustrated in (3.20), and the formulation of a quadratic
surrogate algorithm is similar to (3.35). The only case that is different and will be presented here
is when multiple phase maps are used to account for misalignments between shots. In this case for
Ns shots and using q = 2Ns sets of phase map parameters, the system model is given by (3.37)
with the inclusion of parallel imaging with L receiver coils, and the parameter vector is

φ ,


φ1

...

φq

 .
Similar to (3.20), the Hessian is a diagonal matrix containing the sum-of-squares sensitivity

maps:

S , F′(φ) F(φ) =
L∑
l=1

S′lSl.
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By defining the coil combination images for each shot

vi ,
L∑
l=1

S′lF
′
iyl,i, for i = 1, . . . , q

the optimization problem of (3.10) becomes

φ̂ = argmax
φ

(
q∑
i=1

P′(Tφi) vi

)′
S−1

(
q∑
j=1

P′(Tφj) vj

)

= argmax
φ

q∑
i=1

q∑
j=1

v′iP(Tφi) S−1P′(Tφj) vj

= argmax
φ

q−1∑
i=1

q∑
j=i+1

<
{
v′iP(Tφi) S−1P′(Tφj) vj

}
= argmax

φ

q−1∑
i=1

q∑
j=i+1

K∑
k=1

uij,k cos
(
[Tijφ]k − εij,k

)
= argmin

φ

q−1∑
i=1

q∑
j=i+1

K∑
k=1

uij,k
[
1− cos

(
[Tijφ]k − εij,k

)]
= argmin

φ

Kq(q−1)/2∑
k=1

wk[1− cos([Tsφ]k − ηk)] ,

where uij , (|vi| � |vj|)./s, εij , ∠vi − ∠vj , Tij , [0, . . . , 0,−T, 0, . . . , 0,T, 0, . . . , 0] (with
non-zero blocks at locations i and j), w , [. . . ,uTij, . . .]

T is the stack of all vectors uij , η ,

[. . . , εTij, . . .]
T is the stack of all vectors εij , and Ts , [. . . ,TT

ij, . . .]
T is the stack of all matrices

Tij . As a concrete example, for a 2-shot acquisition the matrix Ts would be

Ts =



−T T 0 0

−T 0 T 0

−T 0 0 T

0 −T T 0

0 −T 0 T

0 0 −T T
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By defining the cost function

Ψ(φ) ,
Kq(q−1)/2∑

k=1

wk[1− cos([Tsφ]k − ηk)] , (3.57)

the quadratic surrogate algorithm can be expressed as

t(n) = Tsφ
(n) − η

c(n) = w � sinc(t(n))

∇Ψ(φ(n)) = T′s
[
c(n) � t(n)

]
H(n) = T′s diag

{
c(n)
}

Ts

φ(n+1) = φ(n) −
[
H(n)

]−1

∇Ψ(φ(n)). (3.58)

The steps of the algorithm are computationally inexpensive since each iteration of the algorithm
requires only inverting a matrix of size 2q × 2q, where q is twice the number of shots. Also, since
the cost function is non-convex we need a good initialization φ(0) to converge to the “correct” local
minimum.
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CHAPTER IV

Joint Estimation of Dynamic Image and Fieldmap

We propose a method for joint reconstruction of dynamic images and fieldmaps in parallel
MRI, using single-shot trajectories. We exploit the sensitivity encoding from parallel imaging to
reduce the acquisition length and perform joint reconstruction using just one full k-space dataset.
We also explore the use of modified trajectories (both EPI and spiral) that provide full coverage of
k-space and also contain enough inherent time differences to permit accurate fieldmap estimation.
Finally we improve the efficiency of the reconstruction algorithm by using a linearization technique
for fieldmap estimation, which allows the use of the conjugate gradient algorithm.

4.1 Introduction

In functional MRI one reconstructs a series of dynamic images and since high temporal res-
olution is required it is common to use fast single-shot acquisitions such as echo-planar (EPI) or
spirals. The disadvantage of these techniques is the long readout time that can cause significant
artifacts in the reconstructed image due to field inhomogeneities if uncorrected. The standard
approach to correct for field inhomogeneities is to acquire a static fieldmap before the dynamic
series and use this to correct all the subsequent images. This method can be inaccurate, since mo-
tion and fieldmap drifts are not taken into account when reconstructing. As proposed in [3] one
can reconstruct an undistorted image and undistorted dynamic fieldmap using spiral-in/spiral-out
acquisition. However, acquiring two full datasets in a single acquisition can require very long
readout times. In this work, motivated by [4, 42], we propose to use the sensitivity encoding [5] to

Part of the work in this chapter appears in [4].
The authors would like to acknowledge Douglas C. Noll and Jon-Fredrik Nielsen for helpful discussions and

insights concerning the effects of R∗
2 decay in the joint reconstruction method.
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acquire just one full dataset from a single-shot acquisition (shorter readout time) and still be able
to reconstruct both the image and dynamic fieldmap.

Another disadvantage of the method in [3] is that the method used for fieldmap estimation is
nonlinear and computationally demanding. The linearization method described in [6] can signifi-
cantly reduce the computation time of fieldmap estimation, by enabling efficient use of conjugate
gradient (CG). CG converges much faster than the gradient descent (GD) method used in [3]. In
this work we will use the linearization technique for fieldmap estimation [6] to improve the effi-
ciency of the reconstruction algorithm.

Due to the long readout times of single-shot trajectories, the effects of R∗2 decay can also have
a significant impact on the quality of the reconstructed images. Thus, in our method we account
for the effects of R∗2 to avoid potential signal loss and other image artifacts. However, it is beyond
the scope of this work to estimate accurate R∗2 maps and for our work we consider the R∗2 map as
a known parameter that is estimated from reference pre-scans.

This work proposes a method for jointly estimating the image and dynamic fieldmap in parallel
MRI, using a single-shot acquisition that uses just one full dataset. This method retains the ad-
vantage of high temporal resolution of single-shot trajectories along with the advantage of shorter
readout time by exploiting the coil sensitivity encoding. The shorter readout time has the potential
to improve the reconstruction quality since it leads to less distortion due to field inhomogeneity and
through-plane gradient effects. We also propose the use of modified single-shot trajectories (both
EPI and spiral) that provide full coverage of k-space and also allow for enough time differences be-
tween regions of k-space so that the fieldmap estimation is facilitated (see §4.3). Finally, we use the
linearization technique for fieldmap estimation [6] to improve the efficiency of the reconstruction
algorithm.

4.2 Theory

Parallel MRI uses multiple receiver coils and the coil sensitivity patterns provide extra infor-
mation that can aid image reconstruction. Assuming that we have K coils, the sensitivity of each
coil ck(p) is location dependent and the signal equation for the kth coil at time t, similarly to (2.9),
is expressed as:

sk(t) =

∫
p

ck(p) f(p) e−r(p)te−iω(p)te−i2πk(t)·pdp, for k = 1, . . . , K, (4.1)
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where f(p) is the object’s magnetization at location p, ω(p) is the field inhomogeneity, r(p) is
the R∗2 decay, and k(t) is the k-space trajectory. By parametrizing the signal equation (4.1) using
rectangular basis functions for the image, fieldmap and coil sensitivities [3], we have:

sk(t) = Φ(k(t))
N−1∑
n=0

ck,nfne
−rnte−iωnte−i2πk(t)·pn , (4.2)

where Φ(k(t)) is the Fourier transform of the basis function φ(p), and fn, rn, ωn, ck,n denote the
pixel values of f(p), r(p), ω(p), and ck(p) respectively.

The MRI measurements are noisy samples of this signal:

yk,m = sk(tm) + εk,m, for m = 1, . . . ,M,

and we can express the noisy measurement vectors yk , (yk,1, . . . , yk,M) for each coil in matrix-
vector form as follows:

yk = A(ω) diag{ck} f + εk, for k = 1, . . . , K, (4.3)

where f , (f1, . . . , fN), ω , (ω1, . . . , ωN) and ck , (ck,1, . . . , ck,N) are the discretized object,
fieldmap and sensitivity map respectively, and the elements of the matrix A(ω) are

a(ω)m,n = Φ(k(tm)) e−rntme−iωntme−i2πk(tm)·pn .

The total measurement vector y is given by stacking the measurement vectors yk for each coil:
y , [y1, . . . ,yK ]T . Hence the overall KM × N system matrix Ã(ω) is given by stacking the
system matrices for each coil:

Ã(ω) ,


A(ω) diag{c1}

...

A(ω) diag{cK}

 . (4.4)

Using the above, the overall measurement model in matrix-vector form can be written as:

y = Ã(ω) f + ε. (4.5)

The image reconstruction problem is to find the image f and the fieldmap ω given the data y,
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the coil sensitivity maps ck, a baseline R∗2 map r, and the k-space trajectory. To estimate f and ω
we minimize a cost function similar to the one derived in [3], with the only difference that we use
Ã(ω) as the system matrix:

Ψ(f ,ω) ,
1

2

∥∥∥y − Ã(ω) f
∥∥∥2

2
+ β1Φ1(C1f) + β2Φ2(C2ω) ,

where Φ1(·) and Φ2(·) are regularization terms and C1 and C2 are sparsifying transforms. The
fieldmap ω is smooth, so we use a quadratic regularizer Φ1(·) , 1

2
‖·‖2

2 and C1 , ∆, where ∆ is a
matrix of second-order differences. For the image f , we could use an edge-preserving regularizer,
but since fMRI images are often smoothed for data analysis, we also used a quadratic regularizer
Φ1(·) , 1

2
‖·‖2

2 with C2 , ∆ here.
We want to jointly estimate f and ω by minimizing Ψ(·):

f̂ , ω̂ = argmin
f ,ω

Ψ(f ,ω) . (4.6)

We minimize the cost function (4.6) by alternating between minimizing with respect to the image
and then the fieldmap. In each step of the minimization process we find a new update for the image
and then for the fieldmap and the process is repeated until convergence. For the kth step in the
alternating minimization scheme, the image update is:

f̂
(k)

= argmin
f

1

2

∥∥∥y − Ã
(
ω̂(k−1)

)
f
∥∥∥2

2
+ β1Φ1(C1f) , (4.7)

and the fieldmap update uses the most recent image and is given by:

ω̂(k) = argmin
ω

1

2

∥∥∥y − Ã(ω) f̂
(k)
∥∥∥2

2
+ β2Φ2(C2ω) . (4.8)

The minimizer of (4.7) is found using the CG-NUFFT method [3], since the problem is quadratic
in f , which is reasonably computationally efficient. For EPI trajectories standard FFTs can be
used instead of the NUFFT. However, since the problem (4.8) in non-quadratic in ω the minimizer
is found using a gradient descent (GD) method that is not as efficient as CG. To improve the
computational efficiency of joint estimation we used a linearization technique that allows the use
of CG for solving (4.8).

Following [6] we can solve (4.8) for ω using a linear approximation to the dynamic changes
between ω and a carefully chosen reference ω̌. By doing that we can avoid using the computa-
tionally demanding GD method and use the CG method instead to solve for ω. The suitability of
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the linearization depends on having a reasonable initial fieldmap estimate ω̌; typically we obtain
ω̌ from a pre-scan or from the previous dynamic frame.

Given an initial fieldmap estimate ω̌ we can write the signal equation for each coil (4.2) as:

sk(t) = Φ(k(t))
N−1∑
n=0

ck,nfne
−rnte−iω̌nte−i(ωn−ω̌n)te−i2πk(t)·pn . (4.9)

Now, assuming the difference ofω and ω̌ is small we can use the following first-order Taylor series
approximation:

e−i(ωn−ω̌n)t ≈ 1− it(ωn − ω̌n), (4.10)

and then by substituting (4.10) in (4.9) and rearranging the terms, the signal equation becomes:

sk(t) ≈ Φ(k(t))
N−1∑
n=0

ck,nfne
−rnte−iω̌nte−i2πk(t)·pn − i(−t)Φ(k(t))

N−1∑
n=0

ck,nfne
−rnte−iω̌nte−i2πk(t)·pnω̌n

+ i(−t)Φ(k(t))
N−1∑
n=0

ck,nfne
−rnte−iω̌nte−i2πk(t)·pnωn, for k = 1, . . . , K. (4.11)

Using the signal equation (4.11) we can rewrite the measurement model for each coil (4.3) in
matrix-vector form as:

yk = A(ω̌) diag{ck} f −B(ω̌, f , ck) ω̌ + B(ω̌, f , ck)ω + εk,

where B(ω̌, f , ck) , − diag{t}A(ω̌) diag{ck} diag{f}, t , (t1, . . . , tM) is a vector of discrete
sampling times, and the elements of the M ×N matrix A(ω̌) are:

a(ω̌)m,n = Φ(k(tm)) e−rntme−iω̌ntme−i2πk(tm)·pn .

The overall measurement vector y is given by stacking the measurement vectors yk, the matrix
Ã(ω̌) is given by (4.4) and B̃(ω̌, f) is given by

B̃(ω̌, f) ,


B(ω̌, f , c1)

...

B(ω̌, f , cK)

 . (4.12)
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Hence the overall linearized measurement model is:

y = Ã(ω̌) f − B̃(ω̌, f) ω̌ + B̃(ω̌, f)ω + ε.

Similarly to (4.6), to estimate the image f and fieldmap ω we minimize the following cost
function:

Ψ(f ,ω) ,
1

2

∥∥∥y − Ã(ω̌) f + B̃
(
ω̌, f̌

)
ω̌ − B̃

(
ω̌, f̌

)
ω
∥∥∥2

2
+ β1Φ1(C1f) + β2Φ2(C2ω) . (4.13)

Similarly to (4.6), we minimize (4.13) by employing an alternating minimization scheme. For
the kth step the image update is:

f̂
(k)

= argmin
f

1

2

∥∥∥y − Ã
(
ω̂(k−1)

)
f
∥∥∥2

2
+ β1Φ1(C1f) (4.14)

and the fieldmap update uses the most recent image and is given by:

ω̂(k) = argmin
ω

1

2

∥∥∥ỹ(k) − B̃
(
ω̂(k−1), f̂

(k)
)
ω
∥∥∥2

2
+ β2Φ2(C2ω) , (4.15)

where,

ỹ(k) , y − Ã
(
ω̂(k−1)

)
f̂

(k)
+ B̃

(
ω̂(k−1), f̂

(k)
)
ω̂(k−1).

Now, in both (4.14) and (4.15) the minimizers are found using the CG-NUFFT method [3] and for
EPI trajectories standard FFTs can be used instead of the NUFFT.

4.3 Materials and Methods

The joint estimation method described in §4.2 can be applied with any trajectory, but the results
will depend on the chosen trajectory. For parallel imaging (multiple coils) we show that we can
exploit the coil sensitivities so that we can achieve joint reconstruction using only one full dataset
acquired with a single-shot trajectory [4, 42]. The trajectories we investigated are a single-shot
“interleaved” EPI (Figure 4.1a) and a single-shot “interleaved” spiral-in (Figure 4.1b). These tra-
jectories provide full coverage of the k-space and also they have some time differences between
neighboring parts of k-space, which intuitively should facilitate fieldmap estimation. We also in-
vestigated the performance of the joint reconstruction method using standard fully sampled EPI
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(a) Interleaved EPI trajectory (b) Interleaved spiral-in trajectory

Figure 4.1: “Interleaved” single-shot trajectories used in simulations and phantom studies.

and spiral trajectories. The parameters used for all trajectories are FOV = 24 cm, matrix size =
64×64. For the interleaved EPI we have readout time = 46 ms and two echo times at TE1 = 18 ms
and TE2 = 42 ms. In this trajectory, since we do not exactly traverse the center of k-space on the
second half, we define as echo time (TE) the time when we are closest to the center of k-space.1 For
the standard EPI we have readout time = 46 ms and one echo time at TE = 30 ms. For interleaved
spiral we have readout time = 20 ms and two echo times at TE1 = 25 ms and TE2 = 35 ms, and
for the standard spiral we have readout time = 20 ms and one echo time at TE = 35 ms.

The matrix-vector multiplications used for computing the gradients in CG are performed with
time segmentation and the use of FFT for EPI trajectories (data are on a Cartesian grid) and the use
of NUFFT for the spiral trajectories [9, 41]. Time segmentation was performed with L = 9 time
segments and the NUFFT used a 6× 6 interpolation neighborhood with minmax interpolation and
two times oversampling for the FFT.

The regularization parameters β1 and β2 in (4.14) and (4.15) were chosen to achieve a specific
spatial resolution [43]. The regularization parameters were chosen such that the spatial resolution,
for both the image and the fieldmap, is the same for all trajectories at a specific level of data
SNR. For the image reconstruction we chose the parameter β1 so that the FWHM of the PSF was
1.2 pixels at 55dB SNR and 1.4 pixels at 30dB SNR. For the fieldmap reconstruction we chose
the parameter β2 so that the FWHM of the PSF was 1.5 pixels for both SNRs. Choosing a fixed
target spatial resolution for both trajectories helps ensure a “fair” comparison between the resulting
reconstructions, but these choices may not be “optimal” in terms of minimum normalized RMS

1This echo time is reported just for intuition; it is never used explicitly by the algorithm. The method considers
the time evolution during the entire readout, not just at the echo times, because of the “t” term in (4.2).
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error. Since the noise properties of EPI and spiral trajectories are very different we could achieve
lower NRMSE by using a smaller regularization parameter for the EPI and a larger for the spiral.
However, then their spatial resolutions would not match. This will be evident in the Results section,
where the reconstructions from the spiral trajectories are more noisy than the ones from the EPI,
whereas the reconstructions from the EPI may seem a little over-smoothed.

To jointly estimate the image and fieldmap the we alternated 40 times between updating the
image and then updating the fieldmap. In each update we used 15 iterations of the CG method. For
parallel imaging, in our simulations, we investigated the use of four coils with smooth B1 maps.
We also performed simulations for single coil imaging, where we assumed a coil with uniform
sensitivity.

4.3.1 Reconstruction Quality Simulation Study

For the simulations we created an elliptical digital phantom as the true image (Figure 4.2a)
and a smoothed, rapid-changing susceptibility induced, fieldmap acquired from human brain data
as the true fieldmap (Figure 4.2b). The range of the fieldmap is from -36 to 116 Hz. For the
simulation experiments we chose to ignore R∗2 decay, for simplicity. We simulated the k-space
data using the exact system model (4.5), to which we added noise to achieve a 30dB and 55dB data
SNR. For image reconstruction we used an iteratively reconstructed image, uncorrected for field
inhomogeneities, as an initial estimate (top-left subfigure of Figures 4.6–4.11). For the fieldmap
reconstruction the initial estimate was created with the standard phase difference method from
two images, acquired with 4-shot EPI trajectories, at 40dB data SNR (bottom-left subfigure of
Figures 4.6–4.11). Each shot of the EPI had a 11 ms readout time and the echo-times were TE1 =

6.5 ms for the first acquisition and TE2 = 8.5 ms for the second, resulting in a ∆TE = 2 ms echo-
time difference. The images used to initialize fieldmap estimation were created using iterative CG
reconstruction uncorrected for field inhomogeneities and the resulting distorted fieldmaps were
smoothed with a 5× 5 Gaussian filter (σ = 1) to suppress noise.

To simulate the fieldmap drift during the acquisition of a dynamic series in an fMRI study, we
added a constant 5 Hz drift to the true fieldmap to generate the data used for “dynamic” image
reconstruction.

To further evaluate the quality of the joint reconstruction we also created “oracle” image es-
timates that were reconstructed with our method using the true fieldmap (subfigure (d) of Fig-
ures 4.6–4.11) and we also created “oracle” fieldmap estimates that were reconstructed with our
method using the true image (subfigure (e) of Figures 4.6–4.11). These oracle estimates provide
an upper bound on the accuracy of the proposed joint reconstruction method.
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(a) True image (b) True fieldmap

Figure 4.2: True image and fieldmap used in simulations.

(a) (b) (c)

Figure 4.3: (a) Initial R∗2 map without activation regions. (b) R∗2 map during simulated fMRI study
with four activation regions. (c) Normalized difference of R∗2 maps of (a) and (b) to illustrate
activation.

4.3.2 Functional MRI Simulation Study

The purpose of this simulation study is to assess the ability of our proposed method to identify
activation regions during an fMRI study. We used the same image and fieldmap as in §4.3.1 and
a simulated R∗2 map, with a range of values between 20 and 24s−1, shown in Figure 4.3a as the
initial R∗2 map without activation regions (denoted as r1). To simulate activation during an fMRI
study we added four activation regions as rectangular blocks smoothed with a Gaussian blur at a
maximum of 20% of the initial R∗2 map amplitude. Figure 4.3b shows the R∗2 map with activation
regions (denoted as r2) and Figure 4.3c shows the normalized difference of the R∗2 maps (defined
as (r2 − r1)/r1) that highlights the activation regions.

For this experiment we created noiseless data using both R∗2 maps to simulate the two phases
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of the fMRI experiment. The initial image and fieldmap estimates were obtained with the same
method as in §4.3.1. Since the “interleaved” EPI used for joint estimation exhibits large effective
echo time difference, the reconstruction quality can be severely degraded if the effects of R∗2 decay
are uncorrected for using a known R∗2 map. To illustrate this we perform joint estimation once
ignoring R∗2 decay and then using the R∗2 map of Figure 4.3a as a known parameter. For both
sets of reconstructions we identify the activation regions by taking the normalized difference of
the images corresponding to the beginning (no activation as in Figure 4.3a) and during (activation
regions as in Figure 4.3b) the simulated fMRI study.

4.3.3 Phantom Study

The data for the phantom study were collected on a GE 3T Signa Scanner. We used a spherical
homogeneous phantom with a staple attached to induce magnetic field non-uniformity and the
selected slice was 5 cm below the staple to avoid severe signal loss, but still contain significant
field inhomogeneity effects. A standard SPGR sequence was used with an echo-time of TE = 30

ms to acquire a reference image (Figure 4.4a). A reference fieldmap was created using data from
SPGR sequences with echo-times TE1 = 5 ms and TE2 = 7 ms (Figure 4.4c). For the reference R∗2
map we used a monoexponential fitting method [44] and 2 images from standard SPGR sequences
at TE1 = 5 ms and TE2 = 7 ms echo-times (Figure 4.4c). Due to the uniform nature of the
phantom and the noise in the R∗2 estimates the R∗2 map was smoothed with a Gaussian filter to
suppress noise. The sensitivity maps were estimated [21] using data from the 8 head coils and the
body coil, acquired with a SPGR sequence with an echo-time of TE = 5 ms (Figure 4.5).

For the joint estimation we acquired data using the “interleaved” and standard EPI trajectories
described in §4.3. The initial fieldmap estimate was created with the same method that was used in
simulations, i.e., using the phase difference method on two images acquired with 4-shot EPI trajec-
tories with ∆TE = 2 ms (Figures 4.4d). The initial image estimate was an iteratively reconstructed
image, uncorrected for field inhomogeneities (subfigure (a) of Figures 4.13 and 4.14).

To further evaluate the quality of the joint reconstruction we also created “oracle” image es-
timates that were reconstructed with our method using the reference fieldmap (subfigure (c) of
Figures 4.13 and 4.14). Unlike the simulations, creating an “oracle” fieldmap was not possible
since the reference image was acquired with a standard SPGR sequence and the mismatch of tra-
jectories did not allow for accurate fieldmap estimation. The oracle image estimates provide a
standard of comparison for the qualitative assessment of the joint reconstruction method.

To reduce the N/2 ghosting artifacts in the EPI reconstructions, a simple 1D linear phase cor-
rection was applied to the data prior to the reconstruction process. To estimate the linear phase we
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(a) (b)

(c) (d) RMSE 2.7Hz (e)

Figure 4.4: Reference (a) image, (b) R∗2 map, and (c) fieldmap along with (d) initial fieldmap
estimate and (e) difference of reference and initial fieldmap, for phantom Study.

Figure 4.5: Sensitivity maps for phantom study.
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used the data from a single shot standard EPI as described in §4.3. We reconstructed two images
from undersampled datasets, one using only the positive direction and the other using only the
negative direction, and a central line from each image was used to calculate the phase difference.
Then, we estimated the linear phase with least squares fitting on the calculated phase difference.
Using the values from the linear fit, we applied the phase correction to the data in the image domain
(via FFT) and then created the phase corrected data via inverse FFT. Alternatively, the correction
could be applied in the k-space trajectory, since the linear phase in the image domain is a shift in
k-space. However, applying the correction in k-space would lead to an irregular sampling grid and
require reconstruction using the slower non-uniform FFT. The calculated linear phase coefficient
for both the phantom and human study was found to be 0.373 rad/sample which corresponds to
a 3.8 samples shift in the readout direction of k-space. The ghost correction method presented
in chapter III can be easily integrated into the joint estimation process and it could potentially
improve the reconstruction results, but it was not used for now.

4.4 Results

4.4.1 Reconstruction Quality Simulation Study

Figures 4.6 and 4.7 show the resulting reconstructions from the “interleaved” EPI and “inter-
leaved” spiral with four coils for the 55dB SNR simulations. In both figures the resulting joint
reconstructions closely match the oracle reconstructions for both the image and the fieldmap. This
can also be verified in terms of NRMS error as seen in Table 4.1. For the “interleaved” spiral, the
reconstructed images appear to be somewhat more noisy and result in higher NRMS errors com-
pared to the EPI reconstructions. This happens because the regularization parameter was chosen to
achieve a target spatial resolution rather than minimizing the NRMS error. In all these figures the
uncorrected reconstruction exhibits severe inhomogeneity artifacts. The reconstructed images us-
ing the initial distorted fieldmap exhibit obvious inhomogeneity artifacts because of the inaccuracy
of the initial fieldmap estimate and the simulated fieldmap drift.

Figures 4.8 and 4.9 show the reconstructions from the standard EPI and spiral trajectories for
four coils, at 55dB SNR. The jointly reconstructed fieldmaps do not match the oracle reconstruc-
tions and this leads to inhomogeneity artifacts in the image reconstructions. This is also verified
from the NRMS errors seen in Table 4.1.

The reason why the joint fieldmap reconstruction fails to produce accurate results for standard
trajectories is possibly the very small effective echo-time difference in the sampling of similar
parts of k-space. For example, in the “interleaved” EPI we can think of the acquisition as two

63



Figure 4.6: Reconstructed images and fieldmaps from “interleaved” EPI trajectory, with four coils
at 55dB SNR. Top row shows the reconstructed images. From left to right: Uncorrected image;
reconstructed image using standard, distorted, initial fieldmap; oracle image reconstructed using
true fieldmap; jointly reconstructed image. Bottom row shows the reconstructed fieldmaps. From
left to right: Standard, distorted initial fieldmap; oracle fieldmap reconstructed using true image;
jointly reconstructed fieldmap.

Figure 4.7: Reconstructed images and fieldmaps from “interleaved” spiral trajectory, with four
coils at 55dB SNR. Subfigures same as in Figure 4.6.
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Figure 4.8: Reconstructed images and fieldmaps from standard EPI trajectory, with four coils at
55dB SNR. Subfigures same as in Figure 4.6.

Figure 4.9: Reconstructed images and fieldmaps from standard spiral trajectory, with four coils at
55dB SNR. Subfigures same as in Figure 4.6.
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undersampled acquisitions with an echo-time difference ∆TE = 10.25 ms. This ∆TE is more
than enough to allow for sufficient phase accrual due to inhomogeneity and facilitate the fieldmap
estimation. On the other hand, the standard EPI can be though of as two undersampled acquisitions
with a very small echo-time difference, which is approximately ∆TE = 0.32 ms. This ∆TE is
really small and the phase accrual due to inhomogeneity is negligible, thus leading to inaccurate
fieldmap estimates. One could argue that the echo-time difference of the “interleaved” EPI is
too large and can lead to phase wrapping. However, this does not seem to be the case, since we
start from a fairly accurate initial fieldmap estimate and the joint reconstruction method essentially
estimates the difference between the true fieldmap and the initial estimate, which typically is in the
order of 0–15Hz, thus avoiding the phase wrapping effects.

The reconstruction NRMS error for the spirals at 30dB SNR can be misleading, since the results
are noisy especially when a single coil is used. In this case even the oracle reconstructions are of
poor quality and any inhomogeneity artifacts in the joint reconstructions are buried under the high
noise levels. Thus, we see NRMS errors in the joint reconstructions that are comparable to the
NRMS errors in the oracle reconstructions, because the error introduced by the high noise levels
overpowers the error introduced from the inhomogeneity artifacts.

Figures 4.10 and 4.11 show the reconstructions from the “interleaved” EPI and “interleaved”
spiral trajectories, using just a single coil, at 55dB SNR. Here we see that the joint reconstruction
for both trajectories fails to produce image and fieldmap estimates of quality comparable to the
oracle reconstructions. As it is seen, the jointly reconstructed fieldmap is inaccurate and this leads
to inhomogeneity artifacts in the jointly reconstructed image. This is also evident from the NRMS
errors in Table 4.1.

Table 4.1 shows quantitative results, in terms of NRMS error, for all coil settings using both
the “interleaved” and standard EPI and spiral trajectories. As it is evident from the NRMS errors,
the problematic part of the joint estimation for standard trajectories and the single coil setting is
the failure to produce accurate fieldmap estimates. This in turn impacts the image reconstruction
where we have high NRMS errors because of inhomogeneity artifacts. By using multiple coils with
the proposed “interleaved” trajectories, very accurate fieldmaps and images are reconstructed.

4.4.2 Functional MRI Simulation Study

Figures 4.12a and 4.12b show the reconstructed images with and without activation when the
R∗2 decay is ignored during reconstruction. These reconstruction are severely distorted, possibly
due to the large difference between the two effective echo times of the “interleaved” EPI trajectory
that causes inconsistencies in the image contrast when R∗2 effects are ignored. However, as we
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Figure 4.10: Reconstructed images and fieldmaps from “interleaved” EPI trajectory, with single
coil at 55dB SNR. Subfigures same as in Figure 4.6.

Figure 4.11: Reconstructed images and fieldmaps from “interleaved” spiral trajectory, with single
coil at 55dB SNR. Subfigures same as in Figure 4.6.
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Table 4.1: Comparative table of NRMS error of reconstruction with all trajectory and coil settings.
*Note: The same standard estimate was used for all cases as initial fieldmap for joint estimation.

Four coils Single coil
Traj. type “Interleaved” Standard “Interleaved”

EPI Spiral EPI Spiral EPI Spiral
SNR 30dB 55dB 30dB 55dB 30dB 55dB 30dB 55dB 30dB 55dB 30dB 55dB

Reconstructed image (NRMSE in %)
uncorrected 53.8 52.7 40.5 39.4 26.9 21.6 28.4 25.3 65.8 66.4 54.5 54.3

init. fieldmap 13.1 11.8 10.8 8.1 12.3 12.3 11.1 8.6 18.6 18.7 17.9 13.3

joint est. 6.9 3.6 8.0 3.9 10.9 9.4 8.1 5.0 18.6 14.4 16.3 10.5

oracle 6.8 3.3 7.7 3.5 6.8 3.8 7.3 3.3 11.2 6.3 13.8 6.6

Reconstructed fieldmap (RMSE in Hz)
standard est.* 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2

joint est. 1.0 1.2 1.3 1.4 2.9 3.4 2.9 3.4 2.4 2.4 2.8 2.6

oracle 0.3 0.2 0.8 0.3 1.2 1.2 1.9 2.3 0.7 0.5 0.8 0.4

see in Figure 4.12c the activation regions are visibly comparable to the actual activation regions of
Figure 4.3c. Figures 4.12d and 4.12e show the reconstructed images with and without activation
when the R∗2 decay is accounted for using the R∗2 map of Figure 4.3a as a known parameter during
reconstruction. The reconstructed images are almost artifact-free and the reconstruction quality
significantly improved compared to Figures 4.12a and 4.12b. In this case, as seen in Figure 4.12f,
the activation regions are successfully identified and with higher relative intensity compared to
Figure 4.12c. These results show that accounting for R∗2 decay in our proposed joint estimation
method is beneficial not only for the obvious improvement in the reconstruction quality, but also
because the activation regions are more clearly identified, thus improving robustness to noise.

4.4.3 Phantom Study

Figure 4.13 shows the resulting reconstructions from the “interleaved” EPI with eight coils
for the phantom study. As we see the uncorrected image (Figure 4.13a) is severely distorted due
to field inhomogeneity, and the reconstruction using the initial fieldmap estimate (Figure 4.13b)
has some slight geometric distortion on the top part due to inaccuracies in the fieldmap estimate.
The resulting joint reconstruction (Figure 4.13d) does not show this distortion and resembles more
closely the “oracle” reconstruction (Figure 4.13c). However, due to residual ghosting artifacts
these results cannot be conclusive in terms of the quality of the joint estimation method, since it’s
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(a) (b) (c)

(d) (e) (f)

Figure 4.12: Top row (a,b,c) shows results from simulated fMRI study when R∗2 decay is ignored
during reconstruction. Bottom row (d,e,f) shows results when R∗2 decay is accounted for during re-
construction using theR∗2 map of Figure 4.3a. (a,d) Reconstructed images at the beginning of study
(denoted as f1) corresponding to R∗2 map of Figure 4.3a without activation. (b,e) Reconstructed
images during fMRI study (denoted as f2) corresponding to R∗2 map of Figure 4.3b with activation
regions. (c,f) Normalized difference of images (defined as (f1 − f2)/f1) to illustrate identification
of activation regions.
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(a) (b) (c)

(d) (e) RMSE 2.6Hz

Figure 4.13: Reconstructed images and fieldmaps from phantom study using “interleaved” EPI tra-
jectory, with eight coils. (a) Uncorrected image reconstruction. (b) Image reconstruction corrected
with initial fieldmap estimate of Figure 4.4d. (c) “Oracle” image reconstruction corrected with ref-
erence fieldmap of Figure 4.4c. (d) Joint image reconstruction. (e) Joint fieldmap reconstruction.

not clear whether or not the artifacts appear due to incorrect N/2 ghost suppression or incorrect
fieldmap estimation.

Figure 4.14 shows the resulting reconstructions from the standard EPI with eight coils for the
phantom study. As we see the uncorrected image (Figure 4.14a) is severely distorted at the to
part where the fieldmap is stronger, and the reconstruction using the initial fieldmap estimate (Fig-
ure 4.14b) has some slight geometric distortion on the top part due to inaccuracies in the fieldmap
estimate. The resulting joint reconstruction (Figure 4.14d) shows the same type of distortion as the
image that uses the initial fieldmap estimate, whereas the “oracle” reconstruction (Figure 4.13c)
appears to be undistorted. Also, compared to the results from the “interleaved” EPI there are no
ghosting artifacts, which means that the simple ghost suppression method that was used works well
for the standard EPI unlike the “interleaved” one.
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(a) (b) (c)

(d) (e) RMSE 2.8Hz

Figure 4.14: Reconstructed images and fieldmaps from phantom study using standard EPI trajec-
tory, with eight coils. Subfigure placement same as in Figure 4.13.
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4.5 Discussion

This work presented an efficient method for jointly estimating image and fieldmap in par-
allel MRI. The simulation results showed that we can achieve high quality reconstruction with
this method by using significantly reduced datasets compared to standard methods for image and
fieldmap estimation. Due to this fact, this method has the potential to be used in functional MRI
where dynamic updates of the image and fieldmap are desirable. A disadvantage of this method
is that non-standard single-shot trajectories seem to be required to achieve good reconstruction
and also that in a real setting the “interleaved” EPI suffers from ghosting artifacts that need to be
eliminated before the method can be of practical use. The ghost suppression could be significantly
improved by using the proposed method in chapter III. This ghost suppression method could be
very beneficial for the “interleaved” EPI for which we have seen that a simple 1D correction is
not sufficient. Also, it would be interesting as a future step to find an analytic relation between
trajectories and reconstruction quality as this could explain why the standard trajectories failed to
perform well in our simulations. Finally our method can be easily extended for joint estimation of
R∗2 decay as well combined with the estimation of image and fieldmap in a way similar to [6].
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CHAPTER V

Dynamic MR Image and Fieldmap Joint Reconstruction
Accounting for Through-Plane Fieldmap Gradients

In susceptibility-weighted MRI, ignoring magnetic field inhomogeneity can lead to severe re-
construction artifacts. Correcting for the effects of magnetic field inhomogeneity requires accurate
fieldmaps. Especially in functional MRI, dynamic updates are desirable, since the fieldmap may
change in time. Also, susceptibility effects that induce field inhomogeneity have non-zero through-
plane gradients, which, if uncorrected, can cause signal loss in the reconstructed images. Most im-
age reconstruction methods that compensate for field inhomogeneity, even using dynamic fieldmap
updates, ignore through-plane fieldmap gradients. This chapter proposes a computationally effi-
cient, model based iterative method for joint reconstruction of image and dynamic fieldmap that
accounts for the through-plane gradients of the field inhomogeneity. The proposed method allows
for efficient reconstruction by applying fast approximations that allow the use of the conjugate
gradient algorithm along with FFTs.

5.1 Introduction

In functional MRI a series of dynamic images is reconstructed and to satisfy the need for
high temporal resolution, fast single-shot acquisitions are commonly used. Also these acquisition
usually have late echo-times to ensure good BOLD contrast. These characteristics of susceptibility-
weighted MR imaging lead to increased sensitivity to magnetic field inhomogeneities. Correcting
for these effects requires accurate inhomogeneity fieldmaps and since the fieldmap may change in
time, dynamic updates are desirable. This motivated the development of methods that can jointly
reconstruct undistorted images and undistorted dynamic fieldmaps [3, 4, 45].

Part of the work in this chapter appears in [8].
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Most methods that correct for field inhomogeneity, even the model-based iterative ones, treat
the inhomogeneity within each voxel as being a constant. However, susceptibility effects cause
nonzero through-plane gradients that lead to spin dephasing across the slice within each voxel.
Ignoring through-plane gradients can cause signal loss in the reconstructed images, especially in
functional MR imaging where acquisitions with long readouts and late echo-times are used. To
correct for the through-plane gradient effects, a fast, iterative reconstruction method is proposed
in [7]. That method assumed that the through-plane gradients are known, so it cannot handle
dynamic fieldmap changes.

Motivated by [4], this work proposes a computationally efficient, model based, iterative method
that jointly reconstructs images and dynamic fieldmaps, accounting for through-plane gradient
effects. The proposed algorithm uses the signal model presented in [7] and applies the fast ap-
proximations introduced in [9]. Finally to improve the efficiency of the reconstruction algorithm,
similarly to [6], a linearization technique for fieldmap estimation is used, that allows the use of the
CG algorithm.

5.2 Theory

To correct for through-plane gradient effects, we need a signal model that accounts for the slice
profile and the through plane gradients of the field inhomogeneity. Assuming a total of J slices
and parallel imaging with K coils, a reasonable model for the signal in slice selective MRI is:

sj,k(t) =

∫∫∫
h(z − zj)ck(x, y, z) f(x, y, z) e−iω(x,y,z)te−i2π(kx(t)x+ky(t)y)dxdydz, (5.1)

for k = 1, . . . , K and j = 1, . . . , J,

where h(z) is the (known) slice-selection profile, zj is the axial center of the jth slice, f(x, y, z)

is the (unknown) object, ω(x, y, z) is the fieldmap, ck(x, y, z) is the coil sensitivity and k(t) ,

(kx(t), kx(t)) is the k-space trajectory. We assume that the object f and the fieldmap ω are static
during a single-shot readout. In this work we ignored the effects of R∗2 decay, but the model in
(5.1) can be easily extended to accommodate a known R∗2 map similarly to (4.1).

The model in (5.1) is equivalent to that in (2.7) [7] and using the assumptions and approxima-
tions of §2.4.3, the discretized signal equation, derived from (2.8), is expressed as:

sj,k(t) = Φ(k(t))
N−1∑
n=0

H(gj,nt) cj,k,nfj,ne
−iωj,nte−i2πk(t)·pn , (5.2)
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where Φ(k(t)) is the Fourier transform of the basis function, H(·) is the Fourier transform of the
slice profile and g is the through-plane gradient map. Since the gradient map g depends on the
fieldmap ω (derivative along the through-plane direction z), it would be impractical to consider g

as an unknown parameter and jointly estimate the image, fieldmap and gradient map. Thus, we
express the gradient map g in terms of the fieldmap ω using central differences

gj,n ,
ωj+1,n − ωj−1,n

4π∆z
, (5.3)

and then jointly estimate the image f and fieldmap ω.
The model of (5.2) is nonlinear in ω. To avoid using a computationally demanding GD method

as in [3], we follow [6] and linearize the signal equation by approximating the term H(gjt)e
−iωjt

using first-order Taylor series expansion around a carefully chosen reference ω̌. The suitability
of the linearization depends on having a reasonable initial fieldmap estimate ω̌; typically ω̌ is
obtained from a pre-scan or from the previous dynamic frame. This leads to the following approx-
imation:

H
(
gjt
)
e−iωjt ≈ H

(
ǧjt
)
e−iω̌jt − itH(ǧjt)e

−iω̌jt(ωj − ω̌j) (5.4)

− t

4π∆z
H ′
(
ǧjt
)
e−iω̌jt(ωj−1 − ω̌j−1) +

t

4π∆z
H ′
(
ǧjt
)
e−iω̌jt(ωj+1 − ω̌j+1),

where H ′(·) , dH(·)
du

and ǧj ,
ω̌j+1−ω̌j−1

4π∆z
.

MRI measurements are noisy samples of the signal. Using the approximation (5.4) in the signal
equation (5.2), the measurement vectors yj,k for each slice and each coil can be expressed in matrix
vector form as:

yj,k = A
(
ω̌j, ǧj

)
f j + B

(
ω̌j, ǧj, f j

)
(ωj − ω̌j) + D

(
ω̌j, ǧj, f j

)
(ωj−1 − ω̌j−1)

−D
(
ω̌j, ǧj, f j

)
(ωj+1 − ω̌j+1) + εj,k, (5.5)

where f j , (fj,1, . . . , fj,N), ωj , (ωj,1, . . . , ωj,N) and cj,k , (cj,k,1, . . . , cj,k,N) are the discretized
object, fieldmap and sensitivity map respectively, and the elements of the M ×N system matrices
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A
(
ω̌j, ǧj

)
, B
(
ω̌j, ǧj, f j

)
and D

(
ω̌j, ǧj, f j

)
are:

a
(
ω̌j, ǧj

)
m,n

= H(ǧj,ntm)w
(
ω̌j, ǧj

)
m,n

,

b
(
ω̌j, ǧj, f j

)
m,n

= −itma
(
ω̌j, ǧj

)
m,n

fj,n, (5.6)

d
(
ω̌j, ǧj, f j

)
m,n

= − tm
4π∆z

H ′(ǧj,ntm)w
(
ω̌j, ǧj

)
m,n

fj,n,

w
(
ω̌j, ǧj

)
m,n

, Φ(k(tm)) e−iω̌j,ntme−i2πk(tm)·pn .

When one ignores through-plane gradients (assuming gj = 0), the measurement model in
(5.5) is equivalent to the approach described in [4] and Chapter IV, and the joint reconstruction
problem can be solved with the fast iterative algorithm described therein. The presence of the
H
(
gjt
)

and H ′
(
gjt
)

terms in (5.6) prohibits the direct application of those fast methods. To solve
this problem, we used the following approximations based on the histogram PCA basis expansion
approach described in [9]:

H(ǧj,ntm) e−iω̌j,ntm ≈
L∑
l=1

pj,l,mqj,l,n, (5.7)

H ′(ǧj,ntm) e−iω̌j,ntm ≈
L∑
l=1

uj,l,mvj,l,n. (5.8)

Using the approximations in (5.7) and (5.8) into the expressions in (5.6), allows the evaluation of
the forward model or its adjoint using L NUFFT calls. An analysis of the error introduced due to
the approximations of (5.7) and (5.8) is included in this chapter’s appendix.

The measurement vector for each slice yj is given by stacking the measurement vectors yj,k

for each coil and the overall KM ×N system matrices are given by stacking the system matrices
for each coil. Hence, the overall measurement model for each slice in matrix-vector form can be
written as:

yj = Ǎ
(
ω̌j, ǧj

)
f j + B̌

(
ω̌j, ǧj, f j

)
(ωj − ω̌j) + Ď

(
ω̌j, ǧj, f j

)
(ωj−1 − ω̌j−1) (5.9)

− Ď
(
ω̌j, ǧj, f j

)
(ωj+1 − ω̌j+1) + εj.

In (5.9) there is coupling between adjacent slices of the fieldmap. It should be beneficial to account
for this coupling when reconstructing, by estimating all the slices at once and treating the problem
as a 3D reconstruction instead of a slice-by-slice 2D reconstruction. With this in mind, we write
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the measurement model as:

y = Ã(ω̌) f + B̃(ω̌, f)(ω − ω̌) + ε, (5.10)

where the vectors y, f and ω are created by stacking the individual slice vectors yj , f j and ωj
respectively and the JKM × JN matrices Ã(ω̌) and B̃(ω̌, f) are defined as follows:1

Ã ,


Ǎ1 0 · · · 0

0 Ǎ2
. . . ...

... . . . . . . 0

0 · · · 0 ǍJ

 (5.11)

B̃ ,



B̌1 + 2Ď1 −2Ď1 0 · · · 0

Ď2 B̌2 −Ď2
. . . ...

0
. . . . . . . . . 0

... . . . ĎJ−1 B̌J−1 −ĎJ−1

0 · · · 0 2ĎJ B̌J − 2ĎJ


To estimate the image and fieldmap accounting for noise statistics, we minimize the following

regularized least squares cost function:

Ψ(f ,ω) =
1

2

∥∥∥y − Ã(ω̌) f − B̃(ω̌, f)(ω − ω̌)
∥∥∥2

2
+ β1Φ1(f) + β2Φ2(ω) , (5.12)

where Φ1(f) and Φ2(ω) are regularization terms. The fieldmap is smooth, both in the in-plane and
through-plane directions, so we use a quadratic regularization penalty Φ2(ω) , 1

2
‖C2ω‖2

2, where
C2 is a matrix of second-order differences along all three directions (x, y, z). For the image f ,
an edge-preserving regularizer could be used, but since fMRI images are often smoothed for data
analysis, we also used a quadratic regularizer Φ1(f) , 1

2
‖C1f‖2

2 here, where C1 is a matrix of
second-order differences along the x and y directions.

In this chapter we applied the linearization approximation before the formulation of the cost
function in (5.12) leading to a formulation using an approximate measurement model. However,
the linearization approximation is a technique used to allow the application of CG in the cost

1In (5.11), the dependency of Ǎ, B̌ and Ď on ωj , gj and f j is only expressed through the subscript j = 1, . . . , J
for brevity.
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function minimization. Thus, more accurately the cost function should be formulated with the
exact, nonlinear model of (5.2) and then apply the linearization approximation leading to (5.12).
Our approach for the cost function formulation was used here for simplicity of presentation.

We minimize the cost function (5.12) by alternating between updating the image and the
fieldmap. In each step of the minimization process a new update is found for the image and then
for the fieldmap and the process is repeated until convergence. For the kth step in the alternating
minimization scheme, the image update is:

f̂
(k)

= argmin
f

1

2

∥∥∥y − Ã
(
ω̂(k−1)

)
f
∥∥∥2

2
+ β1Φ1(f) (5.13)

and the fieldmap update uses the most recent image:

ω̂(k) = argmin
ω

1

2

∥∥∥ỹ(k) − B̃
(
ω̂(k−1), f̂

(k)
)
ω
∥∥∥2

2
+ β2Φ2(ω) , (5.14)

where

ỹ(k) , y − Ã
(
ω̂(k−1)

)
f̂

(k)
+ B̃

(
ω̂(k−1), f̂

(k)
)
ω̂(k−1).

In both (5.13) and (5.14) we find the minimizers using the CG-Toeplitz method [9] which is rea-
sonably computationally efficient. For EPI trajectories standard FFTs can be used instead of the
NUFFT.

5.3 Materials and Methods

The proposed method is applicable with any k-space trajectory, although the results depend on
the trajectory choice. As proposed in Chapter IV and [4], the choice of an “interleaved”, single-
shot EPI trajectory, along with sensitivity encoding, enables successful joint reconstruction of
image and fieldmap. Thus, we used this type of trajectory to assess the proposed method. The
trajectory parameters are FOV = 24 cm, matrix size = 64 × 64, readout time = 46 ms and two
echo-times at TE1 = 18 ms and TE2 = 42 ms. For parallel imaging in simulations, a four coil
setting with smooth B1 maps was used.

For the simulation experiments human brain data (both images and fieldmaps) were used, ac-
quired with the method described in [46]. The scans were 64×64 by 20 slices, with 24 cm transaxial
FOV and 2 cm axial FOV, resulting in slice spacing of 1 mm. For the slice selection, a rectangular
profile was used with 4 mm width. The choices for slice spacing and slice thickness in our sim-
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ulation experiment are unrealistic since using a wider slice compared to the spacing can lead to
undesirable spin saturation effects. However, it was used in this simulation to better illustrate the
effect of the through-plane gradients since a wider slice thickness results in more prominent signal
loss. The magnitude images and the corresponding fieldmaps of 4 slices are shown in Figs. 5.1a
and 5.1b. The fieldmap gradients, shown in Fig. 5.1c, were estimated from the fieldmaps using
central differences.

The experiments were performed with simulated data, created using the exact system model
(5.2), to which noise was added to make a 30dB and 50dB data SNR. We used an iteratively
reconstructed image, uncorrected for field inhomogeneities, as the initial estimate f̂

(0)
, and we

created the initial estimate ω̂(0) with the standard phase difference method from two images using
iterative CG reconstruction uncorrected for field inhomogeneities. The images were acquired with
2-shot EPI trajectories, at 40dB data SNR. Each shot of the EPI had a 22.5 ms readout time and
the echo-times were TE1 = 12.3 ms for the first acquisition and TE2 = 14.3 ms for the second,
resulting in a ∆TE = 2 ms echo-time difference. The resulting distorted fieldmaps were smoothed
with a Gaussian filter to suppress the noise. Table 5.1 shows the RMS and maximum error of the
initial fieldmap. As seen in the results section, the joint reconstruction method works well when
the initial fieldmap is within 10 Hz from the true fieldmap, although a more thorough investigation
of these limits is required. Nevertheless, the expected variations of the fieldmap in an fMRI study,
as presented in [3], are well within this range.

To further evaluate the quality of the joint reconstruction, an oracle image estimate was recon-
structed with our method using the true fieldmap (Figure 5.2a) and an oracle fieldmap estimate was
reconstructed with our method using the true image (Figure 5.2b). These oracle estimates provide
an upper bound on the accuracy of the proposed joint reconstruction method.

The regularization parameters β1 and β2 in (5.13) and (5.14) were chosen to achieve a specific
spatial resolution [43]. For the image we chose β1 so that the FWHM of the PSF was 1.1 pixels at
50dB SNR and 1.2 pixels at 30dB SNR. For the fieldmap we chose β2 so that the FWHM of the
PSF was 1.2 voxels (since 3D regularization is applied) for both SNRs.

To jointly estimate the image and fieldmap the we alternated 20 times between updating the im-
age and then updating the fieldmap. In each update we used 15 iterations of the CG method. The
necessary matrix-vector multiplications in each CG iteration were performed with the Toeplitz,
histogram PCA method of [9], with L = 9 basis functions. The CG-Toeplitz method requires
updates of the basis and coefficients in each alternating step, which can be a computational bottle-
neck, since calculating a new basis requires to perform a SVD. To alleviate this problem, the basis
functions were precalculated at the beginning of the study and only the coefficients were updated
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(a) True image f [arbitrary units]

(b) True fieldmap ω [Hz]

(c) True gradient map g [Hz/cm]

Figure 5.1: True image, fieldmap, and gradient map for 4 out of 20 slices. Slices 3, 8, 13 and 18
are shown from left to right.
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(a) “Oracle” image f̂ [arbitrary units]

(b) “Oracle” fieldmap ω̂ [Hz]

(c) “Oracle” gradient map ĝ [Hz/cm]

Figure 5.2: “Oracle” image, fieldmap, and gradient map for 4 out of 20 slices. Slices 3, 8, 13 and
18 are shown from left to right.
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in each alteration. Given reasonable initial estimates, this is a reasonable simplification, because
the nature of the image and the fieldmap does not change dramatically with each update. The com-
putational cost per iteration is in the order of O(N logN) and it requires roughly three times more
computations per iteration compared to the method in [6].

5.4 Simulation results

Figure 5.3a shows the reconstructed image without correction for field inhomogeneities. Be-
cause of the fieldmap and gradient strength and the long readout time, there are significant ge-
ometric artifacts along with signal loss. Figure 5.3b shows the reconstructed image when field
inhomogeneities were corrected using the true fieldmap, but the through-plane gradients were ig-
nored. In this reconstruction there are no geometric artifacts caused by field inhomogeneity, but
there is significant signal loss due to the fieldmap gradients. Figure 5.3c shows the reconstructed
image with correction for field inhomogeneities and through-plane gradients, using the initial,
standard fieldmap estimate (Figure 5.3d) and the resulting gradients. In this case the artifacts are
reduced but not completely eliminated, there is also some residual signal loss, and the reconstruc-
tion quality is not close to the one achieved in the oracle reconstruction (Figure 5.2a), where the
true fieldmaps and through-plane gradients are used. This is also evident in terms of normalized
RMS error, as seen in Table 5.1. Figures 5.4a, 5.4b and 5.4c show the jointly reconstructed images,
fieldmaps and through-plane gradient maps that were reconstructed with our proposed method. In
this case there are significantly reduced inhomogeneity artifacts and almost negligible signal loss
in the reconstructed images; both the images, fieldmaps and gradients are of comparable qual-
ity to the oracle reconstructions (Figures 5.2a, 5.2b and 5.2c). This can also be seen in terms of
RMS error in Table 5.1. As seen from these preliminary simulation results, the proposed method
seems promising in performing efficient joint reconstruction of image and dynamic fieldmap in the
presence of through-plane gradients.

5.5 Discussion

This chapter proposed an efficient method for joint estimation of dynamic images and fieldmaps
compensating for through-plane gradient effects. The preliminary simulation results showed that
high quality reconstruction can be achieved with this method, by using a more accurate signal
model and fast approximations. Thus, this method can be potentially useful in functional MRI,
where dynamic fieldmap updates are desirable and through-plane gradient effects can cause sig-
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(a) Uncorrected image. (b) Reconstructed image ignoring fieldmap gra-
dients.

(c) Reconstructed image using initial fieldmap. (d) Initial fieldmap estimate.

Figure 5.3: Image and fieldmap reconstructions for one slice (slice 3 of sequence).
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(a) Jointly reconstructed image f̂ [arbitrary units]

(b) Jointly reconstructed fieldmap ω̂ [Hz]

(c) Jointly reconstructed gradient map ĝ [Hz/cm]

Figure 5.4: Jointly reconstructed image, fieldmap, and gradient map for 4 out of 20 slices. Slices
3, 8, 13 and 18 are shown from left to right.
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Table 5.1: Comparative table of RMS error of reconstruction methods, for all 20 slices.
30dB 50dB 30dB 50dB

Reconstructed images NRMS in % Max. Err. in %
uncorrected 49.4 49.1 99.7 99.9

using initial fieldmap 15.4 14.5 98.3 111.0

true fieldmap, no gradients 20.2 19.0 98.9 97.1

oracle (using true fieldmap) 9.1 4.9 41.4 29.5

joint estimation 10.2 7.3 67.6 74.9

Reconstructed fieldmaps RMS in Hz Max. Err. in Hz
standard estimate 3.3 3.3 15.9 15.9

oracle (using true image) 0.3 0.2 2.4 2.3

joint estimation 1.3 1.4 11.8 13.9

Reconstructed gradients RMS in Hz/cm Max. Err. in Hz/cm
standard estimate 17.0 17.0 150.3 150.3

oracle (using true image) 1.4 1.1 14.3 13.4

joint estimation 3.6 3.7 49.5 59.1

nificant image quality degradation. A disadvantage of this method, as in [4], is that non-standard
single-shot trajectories seem to be required to achieve good reconstruction.

As a future step it would be interesting to investigate the benefits, in terms of quality of the
reconstructed images, from incorporating in-plane fieldmap gradients in the signal model. Also, in
this study, a 3D regularizer was used for fieldmap reconstruction, with promising results in terms
of image quality. However, a more thorough study of its effects on the reconstructed images is
required. Furthermore, as illustrated in chapter IV, it is important to account for R∗2 decay in joint
reconstruction and including a known R∗2 map in the system model is a straightforward extension
of the proposed system model. Finally, to further evaluate the proposed method it is necessary to
perform experiments using real data from phantom and human studies.
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(a)

(b)

Figure 5.5: (a) Fieldmaps and (b) gradient maps used in the error analysis of the approximations
in (5.7) and (5.8).

5.6 Appendix

5.6.1 Error Analysis of Approximations in (5.7) and (5.8)

In this section we present an error analysis for the basis expansion approximations of (5.7) and
(5.8). The approximation error was measured for 3 slices with fieldmaps and gradient maps shown
in Figure 5.5. We measured the NRMS error introduced from the approximation using from one
to twenty basis functions.

Figures 5.6a and 5.6b show the approximation NRMS (in log scale) of (5.7) and (5.8) respec-
tively, in terms of the number of basis functions used. The results show that the NRMS error
depends heavily on the fieldmap and gradient map of each slice; however, choosing more than
twelve basis functions seems sufficient to reduce the NRMS error to approximately 1%, even for
particularly strong fieldmaps and gradient maps as in Figure 5.5. Since this analysis performed af-
ter the simulation experiments, it appears that the choice of nine basis functions used in simulations
may not have been sufficient for all the slices. Thus, in subsequent experiments using the proposed
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(a) (b)

Figure 5.6: NRMS error plots in log scale in terms of number of basis functions L. (a) Approxi-
mation of (5.7). (b) Approximation of (5.8).

joint estimation method the number of basis functions used may be increased accordingly.
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CHAPTER VI

Augmented Lagrangian (AL) Approach for Joint Estimation

6.1 Introduction

The iterative methods developed in Chapters IV and V for joint estimation [4,8] use the conju-
gate gradient method (CG) which is computationally efficient for quadratic regularization. How-
ever, non-quadratic regularization can be beneficial to improve the reconstruction results at an
increased computational cost. Recently there are several MRI reconstruction methods developed
using the Augmented Lagrangian framework with variable splitting that show accelerated conver-
gence using non-quadratic regularizers. Motivated by [10] and our work in AL methods for image
restoration [11] (presented in Appendix B) we propose a joint image and fieldmap estimation
method based on the AL framework. Our proposed method would benefit from the faster con-
vergence rate of the AL methods and the improved image reconstruction quality of non-quadratic
regularization. Another advantage of the AL approach is that our proposed algorithm can also
be used for the nonlinear optimization problem of fieldmap estimation without the need for the
linearization approximation [6].

6.2 Definitions

The M ′ × N Fourier encoding matrix, for image size N and M ′ measurements from single
receiver coil, is

[G]m′,n = e−i2πk(tm′ )·pn . (6.1)
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For non-Cartesian imaging, using NUFFT, (6.1) is approximated as

G ≈ PQKDs, (6.2)

where QK is an oversampled DFT matrix (K > N,M ′), such that Q′KQK = KIK , Ds is a
diagonal (K ×N ) matrix of scaling factors, and P is a (M ′ ×K) sparse interpolation matrix. The
number of non-zero elements in P depends on the interpolation neighborhood (P × P � K) for
a maximum of M ′ × P 2 � M ′ ×K non-zero elements. For Cartesian imaging, (6.1) reduces to
G = QN .

In the presence of fieldmap, the MRI system matrix becomes

[A(ω)]m′,n = e−i2πk(tm′ )·pne−iωntm′ . (6.3)

Using time segmentation approximation for L time segments, (6.3) becomes

A(ω) ≈
L∑
l=1

BlGCl(ω) = BG̃C(ω) , (6.4)

where

B ,
[

B1 B2 . . . BL

]
,

C(ω) ,
[

C′1(ω) C′2(ω) . . . C′L(ω)
]′
,

G̃ , IL ⊗G ≈(IL ⊗P)(IL ⊗QK)(IL ⊗Ds) ,

with Bl , diag{bl(tm′)} being the basis of the time segmentation approximation, and Cl(ω) ,

diag
{
e−iωn ťl

}
being the coefficients.

For parallel imaging with J receiver coils, and allowing for acceleration by undersampling
k-space, the MRI system matrix becomes

Ã ,(IJ ⊗(DuA)) S ≈ B̃D̃uǦC̃S (6.5)
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where

S ,
[

S′1 . . . S′K

]′
, B̃ , IJ ⊗B, C̃(ω) , IJ ⊗C(ω) ,

Ǧ , IJL ⊗G ≈ P̃Q̃KD̃s, D̃u , IJL ⊗Du, P̃ , IJL ⊗P,

Q̃K , IJL ⊗QK , D̃s , IJL ⊗Ds.

The matrix Du is an (M ×M ′, with M ≤ M ′) undersampled identity, where the missing rows
correspond to the undersampled locations. Also in this case the matrix of time-segmentation coef-
ficients B is of size (M × LM ) accounting for the undersampling of k-space. For non-Cartesian
imaging the undersampling matrix Du can be incorporated into the interpolation matrix P leading
to a new interpolation matrix P̌ , D̃uP̃ of size (JLM × JLK). From now on the undersampling
matrix Du will be shown explicitly only in the case of Cartesian MRI.

6.3 System Models

The MRI measurement model for single receiver coil is

y = Ax + n, (6.6)

where y is a (M ′ × 1) vector and n is zero mean Gaussian noise vector of the same size. For
parallel imaging (J receiver coils)

ỹ = Ãx + ñ, (6.7)

where ỹ is a(JM × 1) vector and ñ is zero mean Gaussian noise vector of the same size. In both
equations x is the unknown image vectorized as a(N × 1) vector.

For image estimation, given a known fieldmap, we can find the estimate by minimizing a
regularized cost function as

x̂ = argmin
x

{
Ψ(x) ,

∥∥∥ỹ − Ãx
∥∥∥2

2
+ λΦ(Rx)

}
, (6.8)

where Φ(·) is a general regularizer, e.g., l2, l1, or TV norm and R is a sparsifying transform, e.g.,
finite differences or wavelet transform.
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For the simpler case of quadratic regularization with finite differences

Φ(Rx) , ‖Rx‖2
2 ,

and solving the optimization problem in (6.8) for this case leads to the well-known closed-form
solution

x̂ =
(
Ã
′
Ã + λR′R

)−1

Ã
′
ỹ. (6.9)

The estimate in (6.9) can be easily obtained without the need for iterative algorithms only in the
case of Cartesian MRI with a single receiver coil and no fieldmap, i.e., Ã = QN . For parallel
imaging, fieldmap and/or non-Cartesian trajectories a CG iterative solution is required.

If the image x were known, the fieldmap ω could be estimated by minimizing the following
regularized cost function

ω̂ = argmin
ω

{
Ψ(ω) ,

∥∥∥y − Ã(ω) x
∥∥∥2

2
+ λΦ(Rω)

}
. (6.10)

The cost function in (6.10) is non-convex and non-linear in ω, thus a solution is harder to obtain
compared to image estimation. One way is to apply gradient descent iterations, that converges
slowly [3], or apply a linearization technique [4] and solve using CG iterations. Both methods
depend on an accurate choice of the initialization due to the non-convex nature of the cost function.

We focus here on joint estimation of both an unknown image and fieldmap, by minimizing the
following regularized cost function

[x̂, ω̂] = argmin
x,ω

{
Ψ(x,ω) ,

∥∥∥y − Ã(ω) x
∥∥∥2

2
+ λ1Φ(R1x) + λ2Φ(R2ω)

}
. (6.11)

The cost function in (6.11) is convex and linear in x, but non-convex and non-linear inω. To obtain
a solution of the joint estimation problem we applied an alternating minimization scheme, where
the updates are given by

x(k+1) = argmin
x

∥∥∥ỹ − Ã
(
ω(k)

)
x
∥∥∥2

2
+ λ1Φ(R1x)

ω(k+1) = argmin
ω

∥∥∥ỹ − Ã(ω) x(k+1)
∥∥∥2

2
+ λ2Φ(R2ω)

The update x(k+1) can be easily found either directly or using CG iterations. For the update ω(k+1)
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one can apply gradient descent [3] or linearization [4, 6], similarly to the fieldmap estimation case
in (6.10).

6.4 Image Estimation with Known Fieldmap

For the general case of parallel imaging with non-Cartesian trajectories and the presence of
fieldmap, when the NUFFT and time-segmentation approximations are used, the cost function
(6.8) becomes

x̂ = argmin
x

1

2

∥∥∥ỹ − B̃P̌Q̃KD̃sC̃Sx
∥∥∥2

2
+ λΦ(Rx) . (6.12)

The goal is to decouple the Fourier encoding matrix, the block-diagonal matrices of the time seg-
mentation approximation and sensitivity encoding, the sparse matrix of NUFFT interpolation, and
the sparsifying matrix of the regularizer. By choosing auxiliary variables u0 = x, u1 = Ru0,
u2 = Q̃KD̃sC̃Sx, the associated AL function of the constrained problem becomes1

L(x,u,η) =
1

2

∥∥∥ỹ − B̃P̌u2

∥∥∥2

2
+ λΦ(u1) +

µ

2
‖u0 − x− η0‖

2
2 +

µν1

2
‖u1 −Ru0 − η1‖

2
2

+
µν2

2

∥∥∥u2 − Q̃KD̃sC̃Sx− η2

∥∥∥2

2
. (6.13)

Solving with an alternating minimization scheme the updates are obtained as

u
(k+1)
0 = argmin

u0

∥∥∥u0 − x(k) − η(k)
0

∥∥∥2

2
+ ν1

∥∥∥u(k)
1 −Ru0 − η(k)

1

∥∥∥2

2
(6.14)

u
(k+1)
1 = argmin

u1

λ̃Φ(u1) +
1

2

∥∥∥u1 −Ru
(k+1)
0 − η(k)

1

∥∥∥2

2
(6.15)

u
(k+1)
2 = argmin

u2

∥∥∥ỹ − B̃P̌u2

∥∥∥2

2
+ µν2

∥∥∥u2 − Q̃KD̃sC̃Sx(k) − η(k)
2

∥∥∥2

2
(6.16)

x(k+1) = argmin
x

∥∥∥u(k+1)
0 − x− η(k)

0

∥∥∥2

2
+ ν2

∥∥∥u(k+1)
2 − Q̃KD̃sC̃Sx− η(k)

2

∥∥∥2

2
(6.17)

η
(k+1)
0 = η

(k)
0 − u

(k+1)
0 + x(k+1) (6.18)

η
(k+1)
1 = η

(k)
1 − u

(k+1)
1 + Ru

(k+1)
0 (6.19)

η
(k+1)
2 = η

(k)
2 − u

(k+1)
2 + Q̃KD̃sC̃Sx(k+1) (6.20)

where λ̃ , λ/µν1.

1The resulting expressions would be of equivalent complexity if we chose the alternative split u2 = D̃sC̃Sx

92



In the update for u0 both terms are quadratic and the closed form solution is

u
(k+1)
0 =(ν1R

′R + IN)
−1
[
x(k) + η

(k)
0 + ν1R

′
(
u

(k)
1 − η

(k)
1

)]
, (6.21)

where the inversion can be performed efficiently using FFTs, since R′R is circulant.
In the update for u1 the form of the solution depends on the choice of regularizer. For l1 or TV

norm the solution reduces to a scalar or vector shrinkage rule as

u
(k+1)
1 = shrink

{
Ru

(k+1)
0 + η

(k)
1 , λ̃

}
. (6.22)

For the simpler l2 norm regularizer, the solution is

u
(k+1)
1 =

1

1 + λ̃

(
Ru

(k+1)
0 + η

(k)
1

)
. (6.23)

For the update of u2 both terms are quadratic and the closed form solution is

u
(k+1)
2 =

(
P̌
′
B̃
′
B̃P̌ + µν2IJLK

)−1

ṽ
(k)
2

=
1

µν2

[
IJLK − P̌

′
B̃
′(

B̃P̌P̌
′
B̃
′
+ µν2IJM

)−1

B̃P̌

]
ṽ

(k)
2 (6.24)

ṽ
(k)
2 , P̌

′
B̃
′
ỹ + µν2

(
Q̃KD̃sC̃Sx(k) + η

(k)
2

)
.

This update requires the inversion of the sparse matrix
(
B̃P̌P̌

′
B̃
′
+ µν2IJM

)
. The inversion can

be efficient since it only depends on the number of non-zero elements which is in the order of
O(MJ2) and results in a sparse matrix making the resulting matrix-vector multiplication efficient
as well.

The update for x also involves quadratic terms and the solution in closed form is

x(k+1) =
(
ν2S

′C̃
′
D̃s
′
Q̃
′
KQ̃KD̃sC̃S + IN

)−1

ṽ(k)
x

=
(
ν2KS′C̃

′
D̃s
′
D̃sC̃S + IN

)−1

ṽ(k)
x (6.25)

=
(
ν2LKS′D̃s

′
D̃sS + IN

)−1

ṽ(k)
x

ṽ(k)
x , u

(k+1)
0 − η(k)

0 + ν2S
′C̃
′
D̃s
′
Q̃
′
K

(
u

(k+1)
2 − η(k)

2

)
.

This update only involves inversion of diagonal matrices (S′D̃s
′
D̃sS is diagonal) and it can be
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computed efficiently. The most costly operation is the back projection with the DFT matrix Q̃K .
In case that the update for u2 cannot be performed efficiently an alternative set of auxiliary

variables can be used by defining u0 = x, u1 = Ru0, u2 = Ǧu3, and u3 = C̃Sx. Now, the
associated AL function of the constrained problem becomes

L(x,u,η) =
1

2

∥∥∥ỹ − B̃u2

∥∥∥2

2
+ λΦ(u1) +

µ

2
‖u0 − x− η0‖

2
2 +

µν1

2
‖u1 −Ru0 − η1‖

2
2

+
µν2

2

∥∥u2 − Ǧu3 − η2

∥∥2

2
+
µν3

2

∥∥∥u3 − C̃Sx− η3

∥∥∥2

2
. (6.26)

Solving with an alternating minimization scheme the updates for u0, u1, η0, and η1 are the same
as in the previous case shown in (6.21), (6.22), (6.18), and (6.19). The remaining updates are
obtained as

u
(k+1)
2 = argmin

u2

∥∥∥ỹ − B̃u2

∥∥∥2

2
+ µν2

∥∥∥u2 − Ǧu
(k)
3 − η

(k)
2

∥∥∥2

2
(6.27)

u
(k+1)
3 = argmin

u3

ν2

∥∥∥u(k+1)
2 − Ǧu3 − η(k)

2

∥∥∥2

2
+ ν3

∥∥∥u3 − C̃Sx(k) − η(k)
3

∥∥∥2

2
(6.28)

x(k+1) = argmin
x

∥∥∥u(k+1)
0 − x− η(k)

0

∥∥∥2

2
+ ν3

∥∥∥u(k+1)
3 − C̃Sx− η(k)

3

∥∥∥2

2
(6.29)

η
(k+1)
2 = η

(k)
2 − u

(k+1)
2 + Ǧu

(k+1)
3 (6.30)

η
(k+1)
3 = η

(k+1)
3 − u

(k+1)
3 + C̃Sx(k+1). (6.31)

For all three updates the minimization terms are quadratic and result to the following closed form
solutions.

For the update of u2 we have

u
(k+1)
2 =

(
B̃
′
B̃ + µν2IJLM

)−1

ṽ
(k)
2

=
1

µν2

[
IJLM − B̃

′(
B̃B̃

′
+ µν2IJM

)−1

B̃

]
ṽ

(k)
2 (6.32)

ṽ
(k)
2 , B̃

′
ỹ + µν2

(
Ǧu

(k)
3 + η

(k)
2

)
.

This update requires the inversion of a diagonal matrix that can be performed efficiently. The most
costly operation is the forward projection with the NUFFT matrix Ǧ.
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For the update of u3 we have

u
(k+1)
3 =

(
ν2Ǧ

′
Ǧ + ν3IJLN

)−1

ṽ
(k)
3 (6.33)

ṽ
(k)
3 , ν2Ǧ

′
(
u

(k+1)
2 − η(k)

2

)
+ ν3

(
C̃Sx(k) + η

(k)
3

)
.

For this update the Hessian Ǧ
′
Ǧ is block-Toeplitz but not circulant, thus exact inversion cannot

be performed efficiently. However, an inexact update can be obtained efficiently using PCG with
a circulant preconditioner and warm starting. An alternative way of finding such an update is
presented in [10].

Finally, for the update of x we have

x(k+1) =
(
ν3S

′C̃
′
C̃S + IN

)−1

ṽ(k)
x

=(ν3LS′S + IN)
−1

ṽ(k)
x (6.34)

ṽ(k)
x , u

(k+1)
0 − η(k)

0 + ν3S
′C̃
′(

u
(k+1)
3 − η(k)

3

)
.

This update only involves inversion of diagonal matrices (S′S is diagonal) and it can be com-
puted efficiently. Also all other operations involve block-diagonal matrices and thus, they can be
performed in linear time.

Another alternative is to choose the auxiliary variables u0 = x, u1 = Ru0, u2 = P̌u3, and
u3 = Q̃KD̃sC̃Sx. Now, the associated AL function of the constrained problem becomes

L(x,u,η) =
1

2

∥∥∥ỹ − B̃u2

∥∥∥2

2
+ λΦ(u1) +

µ

2
‖u0 − x− η0‖

2
2 +

µν1

2
‖u1 −Ru0 − η1‖

2
2

+
µν2

2

∥∥u2 − P̌u3 − η2

∥∥2

2
+
µν3

2

∥∥∥u3 − Q̃KD̃sC̃Sx− η3

∥∥∥2

2
. (6.35)

Solving with an alternating minimization scheme the updates for u0, u1, η0, and η1 are the same
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as in the previous case. The remaining updates are obtained as

u
(k+1)
2 = argmin

u2

∥∥∥ỹ − B̃u2

∥∥∥2

2
+ µν2

∥∥∥u2 − P̌u
(k)
3 − η

(k)
2

∥∥∥2

2
(6.36)

u
(k+1)
3 = argmin

u3

ν2

∥∥∥u(k+1)
2 − P̌u3 − η(k)

2

∥∥∥2

2
+ ν3

∥∥∥u3 − Q̃KD̃sC̃Sx(k) − η(k)
3

∥∥∥2

2
(6.37)

x(k+1) = argmin
x

∥∥∥u(k+1)
0 − x− η(k)

0

∥∥∥2

2
+ ν3

∥∥∥u(k+1)
3 − Q̃KD̃sC̃Sx− η(k)

3

∥∥∥2

2
(6.38)

η
(k+1)
2 = η

(k)
2 − u

(k+1)
2 + P̌u

(k+1)
3 (6.39)

η
(k+1)
3 = η

(k+1)
3 − u

(k+1)
3 + Q̃KD̃sC̃Sx(k+1). (6.40)

For all three updates the minimization terms are quadratic and result to the following closed form
solutions.

For the update of u2 we have

u
(k+1)
2 =

(
B̃
′
B̃ + µν2IJLM

)−1

ṽ
(k)
2

=
1

µν2

[
IJLM − B̃

′(
B̃B̃

′
+ µν2IJM

)−1

B̃

]
ṽ

(k)
2 (6.41)

ṽ
(k)
2 , B̃

′
ỹ + µν2

(
P̌u

(k)
3 + η

(k)
2

)
.

This update requires the inversion of a diagonal matrix that can be performed efficiently. The most
costly operation is the forward projection with the interpolation matrix P̌.

For the update of u3 we have

u
(k+1)
3 =

(
ν2P̌

′
P̌ + ν3IJLN

)−1

ṽ
(k)
3 (6.42)

ṽ
(k)
3 , ν2P̌

′
(
u

(k+1)
2 − η(k)

2

)
+ ν3

(
Q̃KD̃sC̃Sx(k) + η

(k)
3

)
.

For this update the Hessian P̌
′
P̌ is sparse so the inverse could be computed efficiently. If this is not

possible, an inexact update can be obtained efficiently using PCG with a circulant preconditioner
and warm starting.
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Finally, for the update of x we have

x(k+1) =
(
ν3S

′C̃
′
D̃s
′
Q̃
′
KQ̃KD̃sC̃S + IN

)−1

ṽ(k)
x

=
(
ν3LKS′D̃s

′
D̃sS + IN

)−1

ṽ(k)
x (6.43)

ṽ(k)
x , u

(k+1)
0 − η(k)

0 + ν3S
′C̃
′
D̃s
′
Q̃
′
K

(
u

(k+1)
3 − η(k)

3

)
.

This update only involves inversion of diagonal matrices (S′D̃s
′
D̃sS is diagonal) and it can be

computed efficiently. Also all other operations involve block-diagonal matrices and thus, they can
be performed in linear time.

In the following subsections we will present some important special cases of the image es-
timation problem, namely quadratic regularization, Cartesian imaging, and single receiver coil
imaging.

6.4.1 Quadratic Regularization

For quadratic regularization the cost function (6.8) becomes

x̂ = argmin
x

∥∥∥ỹ − B̃P̌Q̃KD̃sC̃Sx
∥∥∥2

2
+ λ ‖Rx‖2

2 . (6.44)

In this case the auxiliary variable u1 = Ru0 is not required and the associated AL function be-
comes

L(x,u,η) =
∥∥∥ỹ − B̃P̌u2

∥∥∥2

2
+ λ ‖Ru0‖2

2 + µ ‖u0 − x− η0‖
2
2 + µν2

∥∥∥u2 − Q̃KD̃sC̃Sx− η2

∥∥∥2

2

(6.45)

for the first choice of auxiliary variables, or

L(x,u,η) =
∥∥∥ỹ − B̃u2

∥∥∥2

2
+ λ ‖Ru0‖2

2 + µ ‖u0 − x− η0‖
2
2 + µν2

∥∥u2 − Ǧu3 − η2

∥∥2

2

+ µν3

∥∥∥u3 − C̃Sx− η3

∥∥∥2

2
(6.46)

for the alternative choice.
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The only thing that changes are the updates of u0 and η0 which are expressed as

u
(k+1)
0 = argmin

u0

λ ‖Ru0‖2
2 + µ

∥∥∥u0 − x(k) − η(k)
0

∥∥∥2

2
(6.47)

η
(k+1)
0 = η

(k)
0 − u

(k+1)
0 + x(k+1). (6.48)

Now, the closed form solution for the update of u0 is

u
(k+1)
0 =(λR′R + µIN)

−1
[
µ
(
x(k) + η

(k)
0

)]
, (6.49)

and it can be computed exactly, since the Hessian is circulant (R′R is circulant) and inversion can
be performed efficiently using FFTs.

6.4.2 Cartesian MRI

For Cartesian MRI the encoding matrix reduces to Ǧ = Q̃M,N , D̃uQ̃N (Q̃M,N is an under-
sampled FFT matrix of size M ×N ) and the cost function (6.8) becomes

x̂ = argmin
x

1

2

∥∥∥ỹ − B̃Q̃M,NC̃Sx
∥∥∥2

2
+ λΦ(Rx) . (6.50)

By choosing auxiliary variables u0 = x, u1 = Ru0, u2 = C̃Sx, the associated AL function of the
constrained problem becomes2

L(x,u,η) =
1

2

∥∥∥ỹ − B̃Q̃M,Nu2

∥∥∥2

2
+ λΦ(u1) +

µ

2
‖u0 − x− η0‖

2
2 (6.51)

+
µν1

2
‖u1 −Ru0 − η1‖

2
2 +

µν2

2

∥∥∥u2 − C̃Sx− η2

∥∥∥2

2
.

The updates for u0, η0, u1, and η1 are the same as in the previous section in (6.21), (6.18), (6.22),
and (6.19) respectively. The remaining updates for u2, η2, and x are obtained as

u
(k+1)
2 = argmin

u2

∥∥∥ỹ − B̃Q̃M,Nu2

∥∥∥2

2
+ µν2

∥∥∥u2 − C̃Sx(k) − η(k)
2

∥∥∥2

2
(6.52)

x(k+1) = argmin
x

∥∥∥u(k+1)
0 − x− η(k)

0

∥∥∥2

2
+ ν2

∥∥∥u(k+1)
2 − C̃Sx− η(k)

2

∥∥∥2

2
(6.53)

η
(k+1)
2 = η

(k)
2 − u

(k+1)
2 + C̃Sx(k+1). (6.54)

2Choosing u2 = C̃Sx is more beneficial compared to the choice u2 = Q̃N C̃Sx, since the projection with
Q̃M,N , D̃uQ̃N can be performed as one operation of an undersampled FFT in O(M logN)
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For the update of u2 both terms are quadratic and the closed form solution is

u
(k+1)
2 =

(
Q̃
′
M,NB̃

′
B̃Q̃M,N + µν2IJLN

)−1

ṽ
(k)
2

=
1

µν2

[
IJLN − Q̃

′
M,NB̃

′(
NB̃B̃

′
+ µν2IJM

)−1

B̃Q̃M,N

]
ṽ

(k)
2 (6.55)

ṽ
(k)
2 , Q̃

′
M,NB̃

′
ỹ + µν2

(
C̃Sx(k) + η

(k)
2

)
.

This update can be computed exactly, since it only requires the inversion of diagonal matrices (B̃B̃
′

is diagonal). The most costly operations are the multiplications with Q̃M,N that can be performed
efficiently in O(LM logN), since they correspond to undersampled FFT operations.

The update for x also involves quadratic terms and the solution in closed form is

x(k+1) =
(
ν2S

′C̃
′
C̃S + IN

)−1

ṽ(k)
x

=(ν2LS′S + IN)
−1

ṽ(k)
x (6.56)

ṽ(k)
x , u

(k+1)
0 − η(k)

0 + ν2S
′C̃
′(

u
(k+1)
2 − η(k)

2

)
.

This update only involves inversion of diagonal matrices (S′D̃s
′
D̃sS is diagonal) and it can be

computed efficiently. All remaining operations also involve block-diagonal matrices and they can
be computed in linear time.

6.4.3 Single Coil Imaging

When a single receiver coil is used the sensitivity matrix reduces to S = IN . For non-Cartesian
imaging this simplification does not lead to a form with reduced number of auxiliary variables,
thus the solutions of the previous sections can be applied with the simple substitution of S = IN .
However, for the case of Cartesian imaging further simplifications are possible. In this case the
encoding matrix reduces to G̃ = Q̃N , with J = 1 and there is no undersampling (D̃u = ILN ).
Thus, the cost function (6.8) becomes

x̂ = argmin
x

1

2

∥∥∥y −BQ̃NCx
∥∥∥2

2
+ λΦ(Rx) . (6.57)
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By choosing auxiliary variables u1 = Rx, and u2 = Cx, the associated AL function of the
constrained problem becomes3

L(x,u,η) =
1

2

∥∥∥y −BQ̃Nu2

∥∥∥2

2
+ λΦ(u1) +

µ

2
‖u1 −Rx− η1‖

2
2 +

µν

2
‖u2 −Cx− η2‖

2
2 .

(6.58)

Solving with an alternating minimization scheme the updates are obtained as

u
(k+1)
1 = argmin

u1

λ̃Φ(u1) +
1

2

∥∥∥u1 −Rx(k) − η(k)
1

∥∥∥2

2
(6.59)

u
(k+1)
2 = argmin

u2

∥∥∥y −BQ̃Nu2

∥∥∥2

2
+ µν

∥∥∥u2 −Cx(k) − η(k)
2

∥∥∥2

2
(6.60)

x(k+1) = argmin
x

∥∥∥u(k+1)
1 −Rx− η(k)

1

∥∥∥2

2
+ ν

∥∥∥u(k+1)
2 −Cx− η(k)

2

∥∥∥2

2
(6.61)

η
(k+1)
1 = η

(k)
1 − u

(k+1)
1 + Rx(k+1) (6.62)

η
(k+1)
2 = η

(k)
2 − u

(k+1)
2 + Cx(k+1) (6.63)

where λ̃ , λ/µ.
In the update for u1 the form of the solution depends on the choice of regularizer. For l1 or TV

norm the solution reduces to a scalar or vector shrinkage rule as

u
(k+1)
1 = shrink

{
Rx(k) + η

(k)
1 , λ̃

}
. (6.64)

For the simpler l2 norm regularizer, the solution is

u
(k+1)
1 =

1

1 + λ̃

(
Rx(k) + η

(k)
1

)
. (6.65)

For the update of u2 both terms are quadratic and the closed form solution is

u
(k+1)
2 =

(
Q̃
′
NB′BQ̃N + µνILN

)−1

v
(k)
2

=
1

µν

[
ILN − Q̃

′
NB′(NBB′ + µνIN)

−1
BQ̃N

]
v

(k)
2 (6.66)

v
(k)
2 , Q̃

′
NB′y + µν

(
Cx(k) + η

(k)
2

)
.

This update can be computed exactly, since it only requires the inversion of diagonal matrices

3The resulting expressions would be of equivalent complexity if we chose the alternative split u2 = Q̃NCx
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(BB′ is diagonal). The most costly operations are the forward and back projections with Q̃N that
can be performed efficiently in O(LN logN), since they correspond to FFT operations.

The update for x also involves quadratic terms and the solution in closed form is

x(k+1) =(R′R + νC′C)
−1

v(k)
x

=(R′R + νLIN)
−1

v(k)
x (6.67)

v(k)
x , R′

(
u

(k+1)
1 − η(k)

1

)
+ νC′

(
u

(k+1)
2 − η(k)

2

)
.

This update is exact since the Hessian is circulant (R′R is circulant) and can be inverted efficiently
using FFTs.

6.5 Fieldmap Estimation with Known Image

For the general case of parallel imaging with non-Cartesian trajectories and the presence of
fieldmap, when the NUFFT and time-segmentation approximations are used, the cost function
(6.10) becomes

ω̂ = argmin
ω

1

2

∥∥∥ỹ − B̃P̌Q̃KD̃sC̃(ω) Sx
∥∥∥2

2
+ λΦ(Rω) . (6.68)

The goal is to decouple the time segmentation coefficient matrix C̃(ω) from the encoding and
sparsifying matrix. By choosing auxiliary variables u0 = ω, u1 = Ru0, u2 = Ǧu3 and u3 =

C̃(ω) Sx, the associated AL function of the constrained problem becomes

L(ω,u,η) =
1

2

∥∥∥ỹ − B̃u2

∥∥∥2

2
+ λΦ(u1) +

µ

2
‖u0 − ω − η0‖

2
2 +

µν1

2
‖u1 −Ru0 − η1‖

2
2

+
µν2

2

∥∥u2 − Ǧu3 − η2

∥∥2

2
+
µν3

2

∥∥∥u3 − C̃(ω) Sx− η3

∥∥∥2

2
. (6.69)
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Solving with an alternating minimization scheme the updates are obtained as

u
(k+1)
0 = argmin

u0

∥∥∥u0 − ω(k) − η(k)
0

∥∥∥2

2
+ ν1

∥∥∥u(k)
1 −Ru0 − η(k)

1

∥∥∥2

2
(6.70)

u
(k+1)
1 = argmin

u1

λ̃Φ(u1) +
1

2

∥∥∥u1 −Ru
(k+1)
0 − η(k)

1

∥∥∥2

2
(6.71)

u
(k+1)
2 = argmin

u2

∥∥∥ỹ − B̃u2

∥∥∥2

2
+ µν2

∥∥∥u2 − Ǧu
(k)
3 − η

(k)
2

∥∥∥2

2
(6.72)

u
(k+1)
3 = argmin

u3

ν2

∥∥∥u(k+1)
2 − Ǧu3 − η(k)

2

∥∥∥2

2
+ ν3

∥∥∥u3 − C̃
(
ω(k)

)
Sx− η(k)

3

∥∥∥2

2
(6.73)

ω(k+1) = argmin
ω

∥∥∥u(k+1)
0 − ω − η(k)

0

∥∥∥2

2
+ ν3

∥∥∥u(k+1)
3 − C̃(ω) Sx− η(k)

3

∥∥∥2

2
(6.74)

η
(k+1)
0 = η

(k)
0 − u

(k+1)
0 + ω(k+1) (6.75)

η
(k+1)
1 = η

(k)
1 − u

(k+1)
1 + Ru

(k+1)
0 (6.76)

η
(k+1)
2 = η

(k)
2 − u

(k+1)
2 + Ǧu

(k+1)
3 (6.77)

η
(k+1)
3 = η

(k)
3 − u

(k+1)
3 + C̃

(
ω(k+1)

)
Sx. (6.78)

where λ̃ , λ/µν1.
The update for u0 is given by

u
(k+1)
0 =(ν1R

′R + IN)
−1
[(
ω(k) + η

(k)
0

)
+ ν1R

′
(
u

(k)
1 − η

(k)
1

)]
. (6.79)

The update is exact since R′R is circulant and the inverse is computed efficiently with FFTs.
In the update for u1 the form of the solution depends on the choice of regularizer. For l1 or TV

norm the solution reduces to a scalar or vector shrinkage rule as

u
(k+1)
1 = shrink

{
Ru

(k+1)
0 + η

(k)
1 , λ̃

}
. (6.80)

For the simpler l2 norm regularizer, the solution is

u
(k+1)
1 =

1

1 + λ̃

(
Ru

(k+1)
0 + η

(k)
1

)
. (6.81)
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For the update of u2 both terms are quadratic and the closed form solution is given by

u
(k+1)
2 =

(
B̃
′
B̃ + µν2IJLM

)−1

ṽ
(k)
2

=
1

µν2

[
IJLM − B̃

′(
B̃B̃

′
+ µν2IJM

)−1

B̃

]
ṽ

(k)
2 (6.82)

ṽ
(k)
2 , B̃

′
ỹ + µν2

(
Ǧu

(k)
3 + η

(k)
2

)
.

This update requires the inversion of a diagonal matrix that can be performed efficiently. The most
costly operation is the forward projection with the NUFFT matrix Ǧ.

For the update of u3 we have

u
(k+1)
3 =

(
ν2Ǧ

′
Ǧ + ν3IJLN

)−1

ṽ
(k)
3 (6.83)

ṽ
(k)
3 , ν2Ǧ

′
(
u

(k+1)
2 − η(k)

2

)
+ ν3

(
C̃
(
ω(k)

)
Sx + η

(k)
3

)
.

For this update the Hessian Ǧ
′
Ǧ is block-Toeplitz but not circulant, thus exact inversion cannot

be performed efficiently. However, an inexact update can be obtained efficiently using PCG with a
circulant preconditioner and warm starting.

For the update of ω the problem decouples to one-dimensional minimization problems, since
the matrix C̃(ω) S is block-diagonal. In this case the updates for each pixel are obtained as

ω(k+1)
n = argmin

ωn

1

ν2

∣∣qkn − ωn∣∣2 +
K−1∑
j=0

L−1∑
l=0

∣∣∣pkj,l,n − e−iωn ťlsj,nxn

∣∣∣2 (6.84)

= argmin
ωn

1

ν2

(
ω2
n − 2ωn<

{
qkn
})
− 2<{F (ωn)}

F (ωn) , x∗n

K−1∑
j=0

sj,n

L−1∑
l=0

pkj,l,ne
iωn ťl

sj,n , [S]jN+n,n

qkn ,
[
u

(k+1)
0 − η(k)

0

]
n

pkj,l,n ,
[
u

(k+1)
3 − η(k)

3

]
jLN+lN+n

.

For these one-dimensional problems, if an analytic solution is not feasible they can still be solved
efficiently with an iterative method. Of course, since these problems are not convex the solution
depends on the initialization and an accurate initializer is required to obtain a suitable local mini-
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mum. From the above expressions we could conjecture that any errors in the pixel estimates of ω
should be localized, but in fact any inaccuracies at a single pixel can potentially propagate to other
locations because of the way the updates for u1 and u2 make use of the values of ω.

By applying the linearization technique in [4, 6], using a carefully chosen reference ω̌ the
minimization problem can be expressed as

ω̂ = argmin
ω

∥∥∥y̌ −DtB̃P̌Q̃KD̃sC̃(ω̌) SDxω
∥∥∥2

2
+ λΦ(Rω) (6.85)

y̌ , ỹ − B̃P̌Q̃KD̃sC̃(ω̌) Sx + DtB̃P̌Q̃KD̃sC̃(ω̌) SDxω̌

Dt , IK ⊗ diag{tm} ,m = 0, . . . ,M − 1

Dx , diag{xn} , n = 0, . . . , N − 1.

The problem is now linear in ω and The goal is to decouple the Fourier encoding matrix from
the diagonal matrices of the time segmentation approximation. By choosing auxiliary variables
u0 = ω, u1 = Ru0, u2 = Ǧu3 and u3 = C̃(ω̌) SDxω, the associated AL function of the
constrained problem becomes

L(ω,u,η) =
1

2

∥∥∥y̌ −DtB̃u2

∥∥∥2

2
+ λΦ(u1) +

µ

2
‖u0 − ω − η0‖

2
2 +

µν1

2
‖u1 −Ru0 − η1‖

2
2

+
µν2

2

∥∥u2 − Ǧu3 − η2

∥∥2

2
+
µν3

2

∥∥∥u3 − C̃(ω̌) SDxω − η3

∥∥∥2

2
. (6.86)
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Solving with an alternating minimization scheme the updates are obtained as

u
(k+1)
0 = argmin

u0

∥∥∥u0 − ω(k) − η(k)
0

∥∥∥2

2
+ ν1

∥∥∥u(k)
1 −Ru0 − η(k)

1

∥∥∥2

2
(6.87)

u
(k+1)
1 = argmin

u1

λ̃Φ(u1) +
1

2

∥∥∥u1 −Ru
(k+1)
0 − η(k)

1

∥∥∥2

2
(6.88)

u
(k+1)
2 = argmin

u2

∥∥∥y̌ −DtB̃u2

∥∥∥2

2
+ µν2

∥∥∥u2 − Ǧu
(k)
3 − η

(k)
2

∥∥∥2

2
(6.89)

u
(k+1)
3 = argmin

u3

ν2

∥∥∥u(k+1)
2 − Ǧu3 − η(k)

2

∥∥∥2

2
+ ν3

∥∥∥u3 − C̃
(
ω(k)

)
SDxω

(k) − η(k)
3

∥∥∥2

2
(6.90)

ω(k+1) = argmin
ω

∥∥∥u(k+1)
0 − ω − η(k)

0

∥∥∥2

2
+ ν3

∥∥∥u(k+1)
3 − C̃

(
ω(k)

)
SDxω − η(k)

3

∥∥∥2

2
(6.91)

η
(k+1)
0 = η

(k)
0 − u

(k+1)
0 + ω(k+1) (6.92)

η
(k+1)
1 = η

(k)
1 − u

(k+1)
1 + Ru

(k+1)
0 (6.93)

η
(k+1)
2 = η

(k)
2 − u

(k+1)
2 + Ǧu

(k+1)
3 (6.94)

η
(k+1)
3 = η

(k)
3 − u

(k+1)
3 + C̃

(
ω(k+1)

)
SDxω

(k+1), (6.95)

where λ̃ , λ/µν1.
The updates for u0 and u1 are the same as in the previous case and are given by (6.79), and

(6.80) respectively.
In the update for u2 both terms are quadratic and the closed form solution is

u
(k+1)
2 =

(
B̃
′
Dt
′DtB̃ + µν2IJLM

)−1

ṽ
(k)
1

=
1

µν2

[
IJLM − B̃

′
Dt
′
(
DtB̃B̃

′
Dt
′ + µν2IJM

)−1

DtB̃

]
ṽ

(k)
1 (6.96)

ṽ
(k)
1 , B̃

′
Dt
′y̌ + µν2

(
Ǧu

(k)
3 + η

(k)
2

)
,

where the inversion only involves diagonal matrices (DtB̃B̃
′
Dt
′ is diagonal) and the most costly

operations are the the forward projections with the Fourier encoding matrix Ǧ.
For the update of u3 we have

u
(k+1)
3 =

(
ν2Ǧ

′
Ǧ + ν3IJLN

)−1

ṽ
(k)
3 (6.97)

ṽ
(k)
3 , ν2Ǧ

′
(
u

(k+1)
2 − η(k)

2

)
+ ν3

(
C̃
(
ω(k)

)
SDxω

(k) + η
(k)
3

)
.

As before, for this update the Hessian Ǧ
′
Ǧ is block-Toeplitz but not circulant, thus exact inversion
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cannot be performed efficiently. However, an inexact update can be obtained efficiently using PCG
with a circulant preconditioner and warm starting.

For the update of ω, both terms are quadratic and the closed form solution is

ω(k+1) =
(
ν3Dx

′S′C̃
(
ω(k)

)′
C̃
(
ω(k)

)
SDx + IN

)−1

ṽ(k)
ω

=(ν3LDx
′S′SDx + IN)

−1
ṽ(k)
ω (6.98)

v(k)
ω , u

(k+1)
0 − η(k)

0 + ν3Dx
′SC̃

(
ω(k)

)′(
u

(k+1)
3 − η(k)

3

)
. (6.99)

The update for ω is exact, since it only requires the inversion of diagonal matrices (Dx
′S′SDx is

diagonal).

6.5.1 Quadratic Regularization

For quadratic regularization the cost function (6.10) becomes

ω̂ = argmin
ω

1

2

∥∥∥ỹ − B̃P̌Q̃KD̃sC̃(ω) Sx
∥∥∥2

2
+ λ ‖Rω‖2

2 . (6.100)

and when using linearization

ω̂ = argmin
ω

∥∥∥y̌ −DtB̃P̌Q̃KD̃sC̃(ω̌) SDxω
∥∥∥2

2
+ λ ‖Rω‖2

2 . (6.101)

In both cases the auxiliary variable u1 = Ru0 is not required and the associated AL functions
become

L(ω,u,η) =
∥∥∥ỹ − B̃u2

∥∥∥2

2
+ λ ‖Ru0‖2

2 + µ ‖u0 − ω − η0‖
2
2

+ µν2

∥∥u2 − Ǧu3 − η2

∥∥2

2
+ µν3

∥∥∥u3 − C̃(ω) Sx− η3

∥∥∥2

2
, (6.102)

and for linearization

L(ω,u,η) =
∥∥∥y̌ −DtB̃u2

∥∥∥2

2
+ λ ‖Ru0‖2

2 + µ ‖u0 − ω − η0‖
2
2

+ µν2

∥∥u2 − Ǧu3 − η2

∥∥2

2
+ µν3

∥∥∥u3 − C̃(ω̌) SDxω − η3

∥∥∥2

2
. (6.103)
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The only thing that changes are the updates of u0 and η0 which are expressed as

u
(k+1)
0 = argmin

u0

λ ‖Ru0‖2
2 + µ

∥∥∥u0 − ω(k) − η(k)
0

∥∥∥2

2
(6.104)

η
(k+1)
0 = η

(k)
0 − u

(k+1)
0 + ω(k+1). (6.105)

Now, the closed form solution for the update of u0 is

u
(k+1)
0 =(λR′R + µIN)

−1
[
µ
(
ω(k) + η

(k)
0

)]
, (6.106)

and it can be computed exactly, since the Hessian is circulant (R′R is circulant) and inversion can
be performed efficiently using FFTs.

6.5.2 Cartesian MRI

For parallel imaging and Cartesian MRI using the time segmentation approximation of (6.4) in
the cost function (6.10) we get

ω̂ = argmin
ω

1

2

∥∥∥ỹ − B̃Q̃M,NC̃(ω) Sx
∥∥∥2

2
+ λΦ(Rω) . (6.107)

The goal is to decouple the time segmentation coefficient matrix C̃(ω) from the encoding and
sparsifying matrix. By choosing auxiliary variables u0 = ω, u1 = Ru0, and u2 = C̃(ω) Sx, the
associated AL function of the constrained problem becomes

L(ω,u,η) =
1

2

∥∥∥ỹ − B̃Q̃M,Nu2

∥∥∥2

2
+ λΦ(u1) +

µ

2
‖u0 − ω − η0‖

2
2 (6.108)

+
µν1

2
‖u1 −Ru0 − η1‖

2
2 +

µν2

2

∥∥∥u2 − C̃(ω) Sx− η2

∥∥∥2

2
. (6.109)

Solving with an alternating minimization scheme the updates for u0, u1, η0, η1, and ω are the
same as in §6.5 and are given by (6.79), (6.80), (6.75), (6.76), (6.84) respectively, where in the
case of ω we use u2 instead of u3 in (6.84). The remaining updates are given by

u
(k+1)
2 = argmin

u2

∥∥∥ỹ − B̃Q̃M,Nu2

∥∥∥2

2
+ µν2

∥∥∥u2 − C̃
(
ω(k)

)
Sx− η(k)

2

∥∥∥2

2
(6.110)

η
(k+1)
2 = η

(k)
2 − u

(k+1)
2 + C̃

(
ω(k+1)

)
Sx. (6.111)
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In the update for u2 both terms are quadratic and the closed form solution is

u
(k+1)
2 =

(
Q̃
′
M,NB̃

′
B̃Q̃M,N + µν2IJLN

)−1

ṽ
(k)
2

=
1

µν2

[
IJLN − Q̃

′
M,NB̃

′(
B̃Q̃M,NQ̃

′
M,NB̃

′
+ µν2IJM

)−1

B̃Q̃M,N

]
ṽ

(k)
2

=
1

µν2

[
IJLN − Q̃

′
M,NB̃

′(
NB̃B̃

′
+ µν2IJM

)−1

B̃Q̃M,N

]
ṽ

(k)
2 (6.112)

ṽ
(k)
2 , Q̃

′
M,NB̃

′
ỹ + µν2

(
C̃
(
ω(k)

)
Sx + η

(k)
2

)
,

where the inversion only involves diagonal matrices (B̃B̃
′
is diagonal) and the most costly opera-

tions are the the forward projections with the Fourier encoding matrix Q̃M,N .
By applying the linearization technique the minimization problem can be expressed as

ω̂ = argmin
ω

∥∥∥y̌ −DtB̃Q̃M,NC̃(ω̌) SDxω
∥∥∥2

2
+ λΦ(Rω) (6.113)

y̌ , ỹ − B̃Q̃M,NC̃(ω̌) Sx + DtB̃Q̃M,NC̃(ω̌) SDxω̌

Dt , IK ⊗ diag{tm} ,m = 0, . . . ,M − 1

Dx , diag{xn} , n = 0, . . . , N − 1.

The problem is now linear in ω and The goal is to decouple the Fourier encoding matrix from
the diagonal matrices of the time segmentation approximation. By choosing auxiliary variables
u0 = ω, u1 = Ru0, and u2 = C̃(ω̌) SDxω, the associated AL function of the constrained
problem becomes

L(ω,u,η) =
1

2

∥∥∥y̌ −DtB̃Q̃M,Nu2

∥∥∥2

2
+ λΦ(u1) +

µ

2
‖u0 − ω − η0‖

2
2 +

µν1

2
‖u1 −Ru0 − η1‖

2
2

+
µν2

2

∥∥∥u2 − C̃(ω̌) SDxω − η3

∥∥∥2

2
. (6.114)

Solving with an alternating minimization scheme the updates for u0, u1, η0, η1, and ω are the
same as in §6.5 and are given by (6.79), (6.80), (6.75), (6.76), (6.98) respectively, where in the
case of ω we use u2 instead of u3 in (6.98). The remaining updates are given by

u
(k+1)
2 = argmin

u2

∥∥∥y̌ −DtB̃Q̃M,Nu2

∥∥∥2

2
+ µν2

∥∥∥u2 − C̃
(
ω̌(k)

)
SDxω

(k) − η(k)
2

∥∥∥2

2

η
(k+1)
2 = η

(k)
2 − u

(k+1)
2 + C̃

(
ω(k+1)

)
SDxω

(k+1). (6.115)
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In the update for u2 both terms are quadratic and the closed form solution is

u
(k+1)
2 =

(
Q̃
′
M,NB̃

′
Dt
′DtB̃Q̃M,N + µν2IJLN

)−1

ṽ
(k)
2

=
1

µν2

[
IJLN − Q̃

′
M,NB̃

′
Dt
′
(
DtB̃Q̃M,NQ̃

′
M,NB̃

′
Dt
′ + µν2IJM

)−1

DtB̃Q̃M,N

]
ṽ

(k)
2

=
1

µν2

[
IJLN − Q̃

′
M,NB̃

′
Dt
′
(
NDtB̃B̃

′
Dt
′ + µν2IJM

)−1

DtB̃Q̃M,N

]
ṽ

(k)
2 (6.116)

ṽ
(k)
1 , Q̃

′
M,NB̃

′
Dt
′y̌ + µ

(
C̃
(
ω(k)

)
SDxω

(k) + η
(k)
1

)
,

where the inversion only involves diagonal matrices (DtB̃B̃
′
Dt
′ is diagonal) and the most costly

operations are the the forward projections with the Fourier encoding matrix Q̃M,N .

6.5.3 Single Coil Imaging

When a single receiver coil is used the sensitivity matrix reduces to S = IN . For non-Cartesian
imaging this simplification does not lead to a form with reduced number of auxiliary variables,
thus the solutions of the previous sections can be applied with the simple substitution of S = IN .
Also, even for cartesian imaging further reduction of the auxiliary variables is not possible since
the splits u0 = ω and u1 = Ru0 are necessary to decouple ω from R and allow solving for ω
using (6.84) or (6.98). Thus, the methods from §6.5.2 can be used by substituting B̃, Q̃M,N , and
C̃(ω̌) with B, Q̃N , and C(ω̌) respectively.

6.6 Joint Image and Fieldmap Estimation

For the general case of parallel imaging with non-Cartesian trajectories and the presence of
fieldmap, when the NUFFT and time-segmentation approximations are used, the cost function
(6.11) becomes

x̂, ω̂ = argmin
x,ω

1

2

∥∥∥ỹ − B̃ǦC̃(ω) Sx
∥∥∥2

2
+ λ1Φ(Rx) + λ2Φ(Rω) . (6.117)

The goal is to decouple the time segmentation coefficient matrix C̃(ω) from the encoding and
sparsifying matrix. By choosing auxiliary variables u0 = x, u1 = Ru0, u2 = ω, u3 = Ru2,
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u4 = Ǧu5 and u5 = C̃(ω) Sx, the associated AL function of the constrained problem becomes

L(ω,u,η) =
1

2

∥∥∥ỹ − B̃u4

∥∥∥2

2
+ λ1Φ(u1) + λ2Φ(u3) +

µ

2
‖u0 − x− η0‖

2
2 (6.118)

+
µν1

2
‖u1 −Ru0 − η1‖

2
2 +

µν2

2
‖u2 − ω − η2‖

2
2 +

µν3

2
‖u3 −Ru2 − η3‖

2
2

+
µν4

2

∥∥u4 − Ǧu5 − η4

∥∥2

2
+
µν5

2

∥∥∥u5 − C̃(ω) Sx− η5

∥∥∥2

2
.

Solving with an alternating minimization scheme the updates are obtained as

u
(k+1)
0 = argmin

u0

∥∥∥u0 − x(k) − η(k)
0

∥∥∥2

2
+ ν1

∥∥∥u(k)
1 −Ru0 − η(k)

1

∥∥∥2

2
(6.119)

u
(k+1)
1 = argmin

u1

λ̃1Φ(u1) +
1

2

∥∥∥u1 −Ru
(k+1)
0 − η(k)

1

∥∥∥2

2
(6.120)

u
(k+1)
2 = argmin

u2

ν2

∥∥∥u2 − ω(k) − η(k)
2

∥∥∥2

2
+ ν3

∥∥∥u(k)
3 −Ru2 − η(k)

3

∥∥∥2

2
(6.121)

u
(k+1)
3 = argmin

u3

λ̃2Φ(u3) +
1

2

∥∥∥u3 −Ru
(k+1)
2 − η(k)

3

∥∥∥2

2
(6.122)

u
(k+1)
4 = argmin

u4

∥∥∥ỹ − B̃u4

∥∥∥2

2
+ µν4

∥∥∥u4 − Ǧu
(k)
5 − η

(k)
4

∥∥∥2

2
(6.123)

u
(k+1)
5 = argmin

u5

ν4

∥∥∥u(k+1)
4 − Ǧu5 − η(k)

4

∥∥∥2

2
+ ν5

∥∥∥u5 − C̃
(
ω(k)

)
Sx− η(k)

5

∥∥∥2

2
(6.124)

x(k+1) = argmin
x

∥∥∥u(k+1)
0 − x− η(k)

0

∥∥∥2

2
+ ν5

∥∥∥u(k+1)
5 − C̃

(
ω(k)

)
Sx− η(k)

5

∥∥∥2

2
(6.125)

ω(k+1) = argmin
ω

ν2

∥∥∥u(k+1)
2 − ω − η(k)

2

∥∥∥2

2
+ ν5

∥∥∥u(k+1)
5 − C̃(ω) Sx(k+1) − η(k)

5

∥∥∥2

2
(6.126)

η
(k+1)
0 = η

(k)
0 − u

(k+1)
0 + x(k+1) (6.127)

η
(k+1)
1 = η

(k)
1 − u

(k+1)
1 + Ru

(k+1)
0 (6.128)

η
(k+1)
2 = η

(k)
2 − u

(k+1)
2 + ω(k+1) (6.129)

η
(k+1)
3 = η

(k)
3 − u

(k+1)
3 + Ru

(k+1)
2 (6.130)

η
(k+1)
4 = η

(k)
4 − u

(k+1)
4 + Ǧu

(k+1)
5 (6.131)

η
(k+1)
5 = η

(k)
5 − u

(k+1)
5 + C̃

(
ω(k+1)

)
Sx(k+1). (6.132)

where λ̃1 , λ/µν1, and λ̃2 , λ/µν3.
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The updates for u0 and u2 are given by

u
(k+1)
0 =(ν1R

′R + IN)
−1
[(

x(k) + η
(k)
0

)
+ ν1R

′
(
u

(k)
1 − η

(k)
1

)]
(6.133)

u
(k+1)
2 =(ν3R

′R + ν2IN)
−1
[
ν2

(
ω(k) + η

(k)
2

)
+ ν3R

′
(
u

(k)
3 − η

(k)
3

)]
. (6.134)

The update is exact since R′R is circulant and the inverse is computed efficiently with FFTs.
In the updates for u1 and u3 the form of the solution depends on the choice of regularizer. For

l1 or TV norm the solution reduces to a scalar or vector shrinkage rule as

u
(k+1)
1 = shrink

{
Ru

(k+1)
0 + η

(k)
1 , λ̃1

}
(6.135)

u
(k+1)
3 = shrink

{
Ru

(k+1)
2 + η

(k)
3 , λ̃2

}
. (6.136)

For the simpler l2 norm regularizer, the solution is

u
(k+1)
1 =

1

1 + λ̃1

(
Ru

(k+1)
0 + η

(k)
1

)
. (6.137)

u
(k+1)
3 =

1

1 + λ̃2

(
Ru

(k+1)
2 + η

(k)
3

)
. (6.138)

For the update of u4 both terms are quadratic and the closed form solution is given by

u
(k+1)
4 =

(
B̃
′
B̃ + µν4IJLM

)−1

ṽ
(k)
4

=
1

µν4

[
IJLM − B̃

′(
B̃B̃

′
+ µν4IJM

)−1

B̃

]
ṽ

(k)
4 (6.139)

ṽ
(k)
2 , B̃

′
ỹ + µν4

(
Ǧu

(k)
5 + η

(k)
4

)
.

This update requires the inversion of a diagonal matrix that can be performed efficiently. The most
costly operation is the forward projection with the NUFFT matrix Ǧ.

For the update of u5 we have

u
(k+1)
5 =

(
ν4Ǧ

′
Ǧ + ν5IJLN

)−1

ṽ
(k)
5 (6.140)

ṽ
(k)
5 , ν4Ǧ

′
(
u

(k+1)
4 − η(k)

4

)
+ ν5

(
C̃
(
ω(k)

)
Sx(k) + η

(k)
5

)
.

For this update the Hessian Ǧ
′
Ǧ is block-Toeplitz but not circulant, thus exact inversion cannot

be performed efficiently. However, an inexact update can be obtained efficiently using PCG with a
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circulant preconditioner and warm starting.
For the update of x we have

x(k+1) =
(
ν5S

′C̃
(
ω(k)

)′
C̃
(
ω(k)

)
S + IN

)−1

ṽ(k)
x

=(ν5LS′S + IN)
−1

ṽ(k)
x (6.141)

ṽ(k)
x , u

(k+1)
0 − η(k)

0 + ν5S
′C̃
(
ω(k)

)′(
u

(k+1)
5 − η(k)

5

)
.

This update only involves inversion of diagonal matrices (S′S is diagonal) and it can be com-
puted efficiently. Also all other operations involve block-diagonal matrices and thus, they can be
performed in linear time.

For the update of ω the problem decouples to one-dimensional minimization problems, since
the matrix C̃(ω) S is block-diagonal. In this case the updates for each pixel are obtained as

ω(k+1)
n = argmin

ωn

1

ν2

∣∣qkn − ωn∣∣2 +
K−1∑
j=0

L−1∑
l=0

∣∣∣pkj,l,n − e−iωn ťlsj,nxn

∣∣∣2 (6.142)

= argmin
ωn

1

ν2

(
ω2
n − 2ωn<

{
qkn
})
− 2<{F (ωn)}

F (ωn) , x∗n

K−1∑
j=0

sj,n

L−1∑
l=0

pkj,l,ne
iωn ťl

sj,n , [S]jN+n,n

xn ,
[
x(k+1)

]
n

qkn ,
[
u

(k+1)
2 − η(k)

2

]
n

pkj,l,n ,
[
u

(k+1)
5 − η(k)

5

]
jLN+lN+n

.

This update is equivalent to (6.84) and the same methods can be used to find a solution.
When linearization is used along with an alternating minimization scheme the joint estimation
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problem becomes

x(k+1) = argmin
x

∥∥∥ỹ − B̃ǦC̃
(
ω(k)

)
Sx
∥∥∥2

2
+ λ1Φ(Rx) (6.143)

ω(k+1) = argmin
ω

∥∥∥ỹ −DtǦC̃
(
ω(k)

)
SDxω

∥∥∥2

2
+ λ2Φ(Rω) (6.144)

y̌ , ỹ − B̃ǦC̃
(
ω(k)

)
Sx(k+1) + DtǦC̃

(
ω(k)

)
SDxω

(k)

Dt , IK ⊗ diag{tm} ,m = 0, . . . ,M − 1

Dx , diag
{
xk+1
n

}
, n = 0, . . . , N − 1.

for the kth update.
Using this formulation we can apply the AL methodology of §6.4 to find the one step updates

for (6.143) and then use the x(k+1) update and the AL methodology of §6.5 to find the one step
updates for (6.144). This process is then repeated untill convergence.

All special cases of interest like quadratic regularization, cartesian imaging and single receiver
coil can be easily derived from the methods presented for image and fieldmap estimation in §6.4
and §6.5 respectively. Using the presented methodology the results for joint estimation will be
equivalent to those in the above section for each special case.
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CHAPTER VII

Discussion and Future Work

In this work we presented an efficient method for jointly estimating image and fieldmap in
parallel MRI. The simulation results showed that we can achieve high quality reconstruction with
this method by using significantly reduced datasets compared to standard methods for image and
fieldmap estimation. Due to this fact, this method has the potential to be used in functional MRI
where dynamic updates of the image and fieldmap are desirable. A disadvantage of this method
is that non-standard single-shot trajectories seem to be required to achieve good reconstruction
and also that in a real setting the “interleaved” EPI suffers from ghosting artifacts that need to be
eliminated before the method can be of practical use. Our model-based ghost correction method
has the potential to reduce the ghosting artifacts and can be easily incorporated into the joint
reconstruction of image and fieldmap. As a future step we plan to use this ghost correction when
performing joint reconstruction for phantom and in-vivo studies. Also, it would be interesting as a
future step to find an analytic relation between trajectories and reconstruction quality as this could
explain why the standard trajectories failed to perform well in our simulations.

Furthermore we proposed an efficient method for joint estimation of dynamic images and
fieldmaps compensating for through-plane gradient effects. The preliminary simulation results
showed that high quality reconstruction can be achieved with this method, by using a more accu-
rate signal model and fast approximations. Thus, this method can be potentially useful in functional
MRI, where dynamic fieldmap updates are desirable and through-plane gradient effects can cause
significant image quality degradation. As a future step it would be interesting to investigate the
benefits, in terms of quality of the reconstructed images, from incorporating in-plane fieldmap
gradients in the signal model. Also, in this study, a 3D regularizer was used for fieldmap recon-
struction, with promising results in terms of image quality. However, a more thorough study of its
effects on the reconstructed images is required. Finally, to further evaluate the proposed method it
is necessary to perform experiments using real data from phantom and human studies.
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Finally we proposed a method for joint image and fieldmap estimation based on the Aug-
mented Lagrangian (AL) framework with variable splitting. This methodology has the potential
to significantly improve the performance of joint estimation especially in cases of non-quadratic
regularization where standard CG methods cannot be used directly. Another benefit of the pro-
posed method is that the non-convex and non-linear fieldmap estimation problem can be handled
efficiently as a set of one-dimensional optimization problems without the need for the linearization
approximation. As part of our future work we intend to validate our proposed method through
simulation and phantom studies. Also we intend to investigate the possibility of applying the pro-
posed AL methodology to the joint estimation problem in the presence of through-plane fieldmap
gradients.

115



APPENDICES

116



APPENDIX A

CRB Analysis for Trajectory Optimization

Echo-Time Optimization

Motivation

As stated in the introduction, in image reconstruction for MRI the selection of trajectory is a
major consideration, since the quality of the obtained results can greatly depend on the chosen
trajectory. Therefore, optimizing the trajectory used for the problem at hand may greatly improve
the reconstruction quality. Motivated by this fact, we develop a simple theoretical method that
optimizes the choice of echo-time given the model parameters that we wish to estimate. Even
though echo-time is just one trajectory parameter, it is possibly the most important one since image
contrast and reconstruction quality can be greatly affected by the choice of echo time. In our
method we derive the Cramer-Rao bound for the estimated parameters and we minimize this lower
bound on variance with respect to the echo-time.

Model formulation and CRB derivation

For this problem we will consider a complex circularly gaussian noise model consisting of n
measurements at echo times ti for i = 1, . . . , n. The parameters that we use for the signal model
are the complex image f , fR + ifI , field inhomogeneity ω through the term e−iωti , R∗2 decay
through the term e−rti and through-plane gradients through the term H(tig).
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For simplicity we perform our analysis on a single voxel and the measurement at time ti will
be a noisy version of the signal, that can be expressed as:

yi = fH(tig)e−iωtie−rti + εi

where εi is the complex gaussian noise. To avoid using complex analysis for the CRB we split each
measurement in real and imaginary part and the resulting measurement model can be expressed as:

Y = N





[
gR,1

gI,1

]
H(t1g)e−rt1

...[
gR,n

gI,n

]
H(tng)e−rtn


, σ2I2n×2n


, (A.1)

where gR,i , fR cos(ωti) + fI sin(ωti) and gI,i , −fR sin(ωti) + fI cos(ωti).
From (A.1) we can see that the log-likelihood function is:

L(fR, fI , r, ω) = − 1

2σ2

N∑
i=1

((
xR,i − gR,iH(tig)e−rti

)2
+
(
xI,i − gI,iH(tig)e−rti

)2
)

=
1

2σ2

N∑
i=1

(
|xi|2 − 2xR,igR,iH(tig)e−rti − 2xI,igI,iH(tig)e−rti + |f |2H2(tig)e−2rti

)
For the general case the vector of parameters θ that we wish to estimate is: θ = [fR, fI , r, ω]T .

Since we have a vector of parameters we will derive the vector CRB which is based on calculating
the Fisher information matrix.

To find the Fisher information matrix F we first need to find the partial derivatives of L w.r.t.
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the estimation parameters. Hence, we have:

∂L

∂fR
=

1

σ2

N∑
i=1

H(tig)e−rti((xR,i − µR,i) cos(ωti)−(xI,i − µI,i) sin(ωti)) (A.2)

=
1

σ2

N∑
i=1

H(tig)e−rti
(
xR,i cos(ωti)− xI,i sin(ωti)− fRH(tig)e−rti

)
∂L

∂fI
=

1

σ2

N∑
i=1

H(tig)e−rti((xR,i − µR,i) sin(ωti) +(xI,i − µI,i) cos(ωti)) (A.3)

=
1

σ2

N∑
i=1

H(tig)e−rti
(
xR,i sin(ωti) + xI,i cos(ωti)− fIH(tig)e−rti

)
∂L

∂r
= − 1

σ2

N∑
i=1

tiH(tig)e−rti((xR,i − µR,i) gR,i +(xI,i − µI,i) gI,i) (A.4)

= − 1

σ2

N∑
i=1

tiH(tig)e−rti
(
xR,igR,i + xI,igI,i − |f |2H(tig)e−rti

)
∂L

∂ω
= − 1

σ2

N∑
i=1

tiH(tig)e−rti((xR,i − µR,i) gI,i −(xI,i − µI,i) gR,i) (A.5)

= − 1

σ2

N∑
i=1

tiH(tig)e−rti(xR,igI,i − xI,igR,i) ,

where µR,i , gR,iH(tig)e−rti and µI,i , gI,iH(tig)e−rti .
We now find the matrix F by taking the expectation of products of the partial derivatives in the

form E
[
∂L
∂p

∂L
∂q

]
, where p and q are some estimated parameters. Since the random variables xR,i,

xI,i are independent the cross terms will be zero and thus the matrix F is

F =


∑N

i=1 bi/ti 0 −fR
∑N

i=1 bi fI
∑N

i=1 bi

0
∑N

i=1 bi/ti −fI
∑N

i=1 bi −fR
∑N

i=1 bi

−fR
∑N

i=1 bi −fI
∑N

i=1 bi |f |
2∑N

i=1 biti 0

fI
∑N

i=1 bi −fR
∑N

i=1 bi 0 |f |2
∑N

i=1 biti


where bi , 1

σ2 tiH
2(tig)e−2rti .

To find the Cramer-Rao lower bound on estimator variance we need to find the diagonal el-
ements of the inverse matrix F−1. For this purpose we need the determinant |F| and the minor
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determinants |Mjj|. After some algebra we get:

|F| = |f |4
( N∑

i=1

bi/ti

)(
N∑
i=1

biti

)
−

(
N∑
i=1

bi

)2
2

M11 = |f |4
(

N∑
i=1

biti

)( N∑
i=1

bi/ti

)(
N∑
i=1

biti

)
−

(
N∑
i=1

bi

)2


M22 = |f |4
(

N∑
i=1

biti

)( N∑
i=1

bi/ti

)(
N∑
i=1

biti

)
−

(
N∑
i=1

bi

)2


M33 = |f |2
(

N∑
i=1

bi/ti

)( N∑
i=1

bi/ti

)(
N∑
i=1

biti

)
−

(
N∑
i=1

bi

)2


M44 = |f |2
(

N∑
i=1

bi/ti

)( N∑
i=1

bi/ti

)(
N∑
i=1

biti

)
−

(
N∑
i=1

bi

)2


For the variance of the image parameters (fR, fI) we have:

var f̂R ≥ [F−1]11 =
|M11|
|F|

=

∑N
i=1 biti(∑N

i=1 bi/ti

)(∑N
i=1 biti

)
−
(∑N

i=1 bi

)2 (A.6)

var f̂I ≥ [F−1]22 =
|M22|
|F|

=

∑N
i=1 biti(∑N

i=1 bi/ti

)(∑N
i=1 biti

)
−
(∑N

i=1 bi

)2 (A.7)

For the variance of the R∗2 relaxation (r) we have:

var r̂ ≥ [F−1]33 =
|M33|
|F|

=
1

|f |2

∑N
i=1 bi/ti(∑N

i=1 bi/ti

)(∑N
i=1 biti

)
−
(∑N

i=1 bi

)2 (A.8)

Finally, for the variance of the fieldmap (ω) we have:

var ω̂ ≥ [F−1]44 =
|M44|
|F|

=
1

|f |2

∑N
i=1 bi/ti(∑N

i=1 bi/ti

)(∑N
i=1 biti

)
−
(∑N

i=1 bi

)2 (A.9)

In the subsequent sections we will use the equations derived above to solve the optimization
problem of choosing the echo times ti that minimize these lower bounds.
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Optimization problem

Simplified form

To find the optimal echo times we have to solve the following optimization problems:

min
t1,...,tn

[F−1]jj for j = 1, 2, 3, 4.

As we see from equations (A.6), (A.7), (A.8) and (A.9) an analytic solution may be intractable or
computationally intensive. To simplify the optimization problem we will focus on the case of a
two measurement model with t1 = 0 and t2 = t. Also for this part we will ignore the effect of
through-plane gradients (H(tig) , 1). By applying these simplifications and after some algebra
we get:

[F−1]11 = [F−1]22 =
1
σ2 t

2e−2rt

1
σ4 t2e−2rt

= σ2 (A.10)

[F−1]33 = [F−1]44 =
1
σ2 (1 + e−2rt)
|f |2
σ4 t2e−2rt

=
σ2

|f |2 t2
(1 + e2rt) (A.11)

From equation (A.10) we see that the lower bounds for image parameter (fR, fI) estimation are
constant. Thus any choice of echo time t can be considered optimal since it has no effect on the
lower bound. From equation (A.11) we can see that the optimal echo time that minimizes the lower
bound on variance for r and ω can be found from solving the following optimization problem:

topt = arg min
t

σ2

|f |2 t2
(1 + e2rt)

= arg min
t

1

t2
(1 + e2rt)

We can solve this by taking the derivative w.r.t. t and equating to zero which leads to:

1 + e2rt − rte2rt = 0.

The solution of this problem is:

topt =
1.1089

r
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Effect of through-plane gradients

In this section we will again solve the simplified optimization problem for the case of a two
measurement model with t1 = 0 and t2 = t. This time we will account for the effect of through-
plane gradients and we will investigate how they affect the solution of the echo time optimization.
Taking the equations (A.6), (A.7), (A.8) and (A.9) and applying for the case of two echo times we
get:

[F−1]11 = [F−1]22 =
1
σ2 t

2H2(tg)e−2rt

1
σ4h2

0t
2H2(tg)e−2rt

=
σ2

h2
0

(A.12)

[F−1]33 = [F−1]44 =
1
σ2 (h2

0 +H2(tg)e−2rt)
|f |2
σ4 h2

0t
2H2(tg)e−2rt

=
σ2

|f |2 h2
0t

2H2(tg)
(H2(tg) + e2rt) (A.13)

where H(u) is the Fourier transform of the slice profile and h0 , H(0). For simplicity since h0 is
just a scaling factor we can consider h0 = 1.

From equation (A.12) we see again that the lower bounds for image parameter (fR, fI) estima-
tion are constant. Thus any choice of echo time t can be considered optimal since it has no effect
on the lower bound. From equation (A.13) we can see that the optimal echo time that minimizes
the lower bound on variance for r and ω can be found from solving the following optimization
problem:

topt = arg min
t

σ2

|f |2 h2
0t

2H2(tg)
(H2(tg) + e2rt)

= arg min
t

1

t2H2(tg)
(H2(tg) + e2rt)

= arg min
t

1

t2
+

e2rt

t2H2(tg)
. (A.14)

This minimization problem depends on the slice profile H(u) and in this case we will try to solve
using the simple case of rect slice profile which leads to H(u) = sinc(wu). Now the problem
becomes:

topt = arg min
t

1

t2 sinc2(wtg)

(
(sinc(wtg))2 + e2rt

)
= arg min

t

1

t2
+

e2rt

t2 sinc2(wtg)
. (A.15)

An analytic solution for this problem is elusive so we draw some conclusions through simulations.
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By setting y , rt and p , wg/r we get a parametrized problem:

yopt = arg min
y

r2

y2 sinc2(yp)
((sinc(yp))2 + e2y)

= arg min
y

r2

y2
+

r2e2y

y2 sinc2(yp)
. (A.16)

From simulations for various values of the parameter pwe have seen that by increasing p the values
of the solution y decrease (see Figure A.1). This roughly means that for stronger through-plane
gradients we require smaller values for the echo times, but still those values will depend on the
relaxation parameter r.

Special cases for image and fieldmap estimation

The derivations of the previous sections apply to cases when we want to estimate all parameters.
In some interesting cases some of the parameters can be considered known or their effect can be
ignored. In this section we will see those cases and we will make analogous derivations comparing
the results to the ones presented in the sections A and A.

Estimating image and fieldmap

In this case we estimate the image parameters (fR, fI) and the fieldmap ω. First we will see
the optimization problem in the full form and then see how it changes by ignoring R∗2 decay and
through-plane gradients.

Starting from the partial derivatives of the log likelihood (equations (A.2), (A.3) and (A.5)) we
get the Fisher information matrix:

F =


∑N

i=1 bi/ti 0 fI
∑N

i=1 bi

0
∑N

i=1 bi/ti −fR
∑N

i=1 bi

fI
∑N

i=1 bi −fR
∑N

i=1 bi |f |
2∑N

i=1 biti
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Figure A.1: Plot showing how echo-time is affected by the through-plane gradients. Horizontal
axis represents the parameter y depending on the echo-time t, as y = rt. Each curve represents
a different value of the parameter p (increasing value from bottom to top curve) that depends on
the through-plane gradient g, as p = wg/r. The curves show that the optimal echo-time (value of
y where curve attains minimum value) shifts to the left (smaller echo-time) as the through-plane
gradient strength increases (increased values of p). The bottom line corresponds to the case where
there are no through plane gradients.
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Now we need the determinant |F| and the minor determinants |Mjj|. After some algebra we get:

|F| = |f |2
(

N∑
i=1

bi/ti

)( N∑
i=1

bi/ti

)(
N∑
i=1

biti

)
−

(
N∑
i=1

bi

)2


M11 = |f |2
(

N∑
i=1

bi/ti

)(
N∑
i=1

biti

)
− f 2

R

(
N∑
i=1

bi

)2

M22 = |f |2
(

N∑
i=1

bi/ti

)(
N∑
i=1

biti

)
− f 2

I

(
N∑
i=1

bi

)2

M33 =

(
N∑
i=1

bi/ti

)2

For the variance of the image parameters (fR, fI) we have:

var fR ≥ [F−1]11 =
|M11|
|F|

=
|f |2
(∑N

i=1 bi/ti

)(∑N
i=1 biti

)
− f 2

R

(∑N
i=1 bi

)2

|f |2
(∑N

i=1 bi/ti

)((∑N
i=1 bi/ti

)(∑N
i=1 biti

)
−
(∑N

i=1 bi

)2
)

=
1(∑N

i=1 bi/ti

)
1 +

f 2
I

(∑N
i=1 bi

)2

|f |2
((∑N

i=1 bi/ti

)(∑N
i=1 biti

)
−
(∑N

i=1 bi

)2
)


var fI ≥ [F−1]22 =
|M22|
|F|

=
|f |2
(∑N

i=1 bi/ti

)(∑N
i=1 biti

)
− f 2

I

(∑N
i=1 bi

)2

|f |2
(∑N

i=1 bi/ti

)((∑N
i=1 bi/ti

)(∑N
i=1 biti

)
−
(∑N

i=1 bi

)2
)

=
1(∑N

i=1 bi/ti

)
1 +

f 2
R

(∑N
i=1 bi

)2

|f |2
((∑N

i=1 bi/ti

)(∑N
i=1 biti

)
−
(∑N

i=1 bi

)2
)


and for the variance of the fieldmap (ω) we have:

varω ≥ [F−1]33 =
|M33|
|F|

=
1

|f |2

∑N
i=1 bi/ti(∑N

i=1 bi/ti

)(∑N
i=1 biti

)
−
(∑N

i=1 bi

)2

As we see from the lower bound for the variance of the image parameters, direct minimization
may be intractable. Hence, we will try to minimize using the simplified two measurement model,
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which after some algebra leads to:

[F−1]11 =
1

1
σ2 (h2

0 +H2(tg)e−2rt)

(
1 +

f 2
I

|f |2 h2
0

H2(tg)e−2rt

)
=

|f |2 h2
0 + f 2

IH
2(tg)e−2rt

1
σ2 |f |2 h2

0(h2
0 +H2(tg)e−2rt)

=
σ2

h2
0

1− f 2
R

|f |2
(

1 +
h2

0

H2(tg)
e2rt

)


[F−1]22 =
1

1
σ2 (h2

0 +H2(tg)e−2rt)

(
1 +

f 2
R

|f |2 h2
0

H2(tg)e−2rt

)
=

|f |2 h2
0 + f 2

RH
2(tg)e−2rt

1
σ2 |f |2 h2

0(h2
0 +H2(tg)e−2rt)

=
σ2

h2
0

1− f 2
I

|f |2
(

1 +
h2

0

H2(tg)
e2rt

)


From the above equations the minimization problem for the real part can be formed as:

topt = arg min
t

σ2

h2
0

1− f 2
I

|f |2
(

1 +
h2

0

H2(tg)
e2rt

)


= arg max
t

1

1 +
h2

0

H2(tg)
e2rt

= arg min
t

1

H2(tg)
e2rt

By following the same derivation we end up in the same problem for the imaginary part of the
image. Now from the above equation we can see the minimizer is t = 0 if we assume that the slice
profile function is maximum at zero (this holds true for the rect profile). If we ignore through-
plane gradients the results is the same and if we ignore R∗2 decay then the result depends only on
the maximum of the slice profile, which is again zero for the rect profile. Ignoring both terms
makes the function to be minimized a constant and any choice of t can be considered as a solution
to the problem.
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Now, as we see from the lower bound on the variance of the fieldmap it is the same as the one
derived in the previous sections. This means that the optimization problem in this case is the same
as before and the solutions we found apply to this case. The only case that we need to consider
is when we ignore the R∗2 relaxation (r = 0). In this case and for the two measurement model
equation (A.13) becomes:

[F−1]33 =
1
σ2 (h2

0 +H2(tg))
|f |2
σ4 h2

0t
2H2(tg)

=
σ2

|f |2 h2
0t

2H2(tg)
(1 +H2(tg))

Now the minimization problem becomes:

topt = arg min
t

σ2

|f |2 h2
0t

2H2(tg)
(1 +H2(tg))

= arg min
t

1

t2H2(tg)
(1 +H2(tg))

Using the rect slice profile we have:

topt = arg min
t

1

t2 sinc2(wgt)
(1 +

2

sinc(wgt))

= arg min
t

1

t2
+

π2w2g2

sin2(πwgt)

We can easily see that the first term is minimized when t goes to infinity and the second term when
the sine is maximized which means t = 1

wg

(
k + 1

2

)
. Combining both we see that the optimal echo

time is when t goes to infinity and is of the previous form which means choose t = 1
wg

(
k + 1

2

)
for

large k.
If we also ignore the through-plane gradients then we have:

[F−1]33 =
2 1
σ2

|f |2
σ4 t2

=
2σ2

|f |2 t2

From that we see that the optimal echo time would be for time going to infinity which may make
sense since larger echo time leads to better estimation of the fieldmap, but such a choice is not
feasible. We could say that it would be reasonable to choose the largest possible time such that the
effect of R∗2 and others can still be ignored without significant error in the computation.
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Estimating fieldmap and R∗2 decay

In this case we estimate the fieldmap (ω) and the R∗2 decay r, while we consider the image
parameters to be known. First we will see the optimization problem in the full form and then see
how it changes by ignoring through-plane gradients.

Starting from the partial derivatives of the log likelihood (equations (A.5) and (A.4)) we get
the Fisher information matrix:

F =

[
|f |2

∑N
i=1 biti 0

0 |f |2
∑N

i=1 biti

]

It is easy to see that the determinant is:

|F| = |f |4
(

N∑
i=1

biti

)2

and the lower bounds on variance are:

[F−1]11 = [F−1]22 =
1

|f |2
(∑N

i=1 biti

)
Instead of trying to minimize the lower bound we will try to maximize the inverse. Thus we will
solve the problem:

max
ti

1

[F−1]11

= max
ti
|f |2
(

N∑
i=1

biti

)

= max
ti

1

σ2
|f |2

N∑
i=1

t2iH
2(tig)e−2rti

= max
ti

N∑
i=1

t2iH
2(tig)e−2rti

As we see this problem can be solved independently for each ti since by taking the derivatives only
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the corresponding term is non-zero. Hence, for every ti we solve the problem:

topt = arg max
ti

t2iH
2(tig)e−2rti

= arg min
ti

e2rti

t2iH
2(tig)

. (A.17)

Comparing (A.17) with (A.14) we see that they only differ in the additive term 1
t2

. This term can
be viewed as the effect of the unknown image (which is a nuisance parameter when estimating the
fieldmap) in the optimization problem.

Without ignoring the through-plane gradients and considering a rect slice profile we have:

topt = arg min
ti

e2rti

t2i sinc2(wtig)

= arg min
ti

π2w2g2e2rti

sin2(πwtig)
. (A.18)

If we apply a parametrization similar to the one in equation (A.16) we get the following expression:

yopt = arg min
y

r2e2y

y2 sinc2(yp)
. (A.19)

From equation (A.18) we see that the solution oscillates and the minimum can roughly be found
for the smallest possible value of ti such that the sine is maximized. We can see this intuitive result
in Figure A.2 where we plot equation (A.19) for several values of the parameter p. Again we see
that the presence of through-plane gradients will lead to smaller values for the optimal echo times.

This intuition can be verified by the analytic solution of this problem. Therefore, by taking the
derivative and equating to zero we have:

π2w2g2
(
2re2rti sin2(πwtig)− 2πwg sin(πwtig) cos(πwtig)e2rti

)
sin4(πwtig)

= 0

2π2w2g2e2rti(r sin(πwtig)− πwg cos(πwtig)) = 0

r sin(πwtig)− πwg cos(πwtig) = 0

tan(πwgti) =
πwg

r

ti =
arctan(

πwg

r
)

πwg
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Figure A.2: Plot showing how echo-time is affected by the through-plane gradients similarly to
Figure A.1. The bottom line corresponds to the case where there are no through plane gradients.
Comparing to Figure A.1 we see that the optimal echo-times have slightly smaller values for the
same value of the parameter p.
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The last equation is the solution to the minimization problem and applies for each ti.
Now we will solve the problem by ignoring the effect of through-plane gradients and the min-

imization problem becomes:

topt = arg min
ti

1

t2i
e2rti .

For this case we have the well known solution:

topt =
1

r
.

The solutions we found apply to both parameters r and ω. Also since the formulation is inde-
pendent for each parameter we would get the same results if we tried to estimate only one parameter
(either r or ω).

In the case that we only estimate r we can ignore the field inhomogeneity in some cases.
However, since ω is not involved in the optimization process the results will be the same with the
ones presented previously.

Another interesting case is to see how the optimization problem changes when we only estimate
ω and we ignore R∗2 decay. In this case the problem is formulated as:

topt = arg min
ti

1

t2iH
2(tig)

.

Consideting the rect slice profile we can see that the solution can be found as:

topt = arg min
ti

1

t2i sinc2(πwgti)

= arg min
ti

π2w2g2

sin2(πwgti)

= arg max
ti

sin2(πwgti)

=
1

wg

(
k +

1

2

)
for k = 0, 1, 2, . . .

From the last equation we see that se have infinite choices for the optimal echo times. The smallest
echo time that satisfies the optimization problem is ti = 1

2wg
.

131



Now if we ignore the effect of through-plane dephasing we have the following problem:

topt = arg min
ti

1

t2i
.

Obviously the solution of this problem is for ti going to infinity and we have seen a similar result
in a previous case (see section A).

Estimating image

The last special case of interest is when we only estimate the image parameters (fR and fI) and
we consider the fieldmap and R∗2 decay as known. Later we will also derive results for cases when
we can ignore these two effects.

Starting from the partial derivatives of the log likelihood (equations (A.2) and (A.3)) we get
the Fisher information matrix:

F =

 ∑N
i=1 bi/ti 0

0
∑N

i=1 bi/ti


It is easy to see that the determinant is:

|F| =

(
N∑
i=1

bi/ti

)2

and the lower bounds on variance are:

[F−1]11 = [F−1]22 =
1∑N

i=1 bi/ti

Instead of trying to minimize the lower bound we will try to maximize the inverse. Thus we will
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solve the problem:

max
ti

1

[F−1]11

= max
ti

N∑
i=1

bi/ti

= max
ti

1

σ2

N∑
i=1

H2(tig)e−2rti

= max
ti

N∑
i=1

H2(tig)e−2rti

As we see this problem can be solved independently for each ti since by taking the derivatives only
the corresponding term is non-zero. Hence, for every ti we solve the problem:

topt = arg max
ti

H2(tig)e−2rti .

Assuming that the function of the slice profile has its maximum at zero (which is true for the rect
profile) we can easily see that the above problem is maximized for ti = 0. This solution does not
change if we ignore field inhomogeneity since the parameter ω does not appear in the problem
and if we also ignore the through-plane gradients since we only maximize the factor e−2rti . If we
ignore the R∗2 decay the maximum depends only on the function of the slice profile and we have
to find ti that maximizes H2(tig). For the rect profile this happens again at ti = 0. Finally if
we ignore all other effects then the function we wish to maximize is just a constant and then any
choice of ti can be a solution to the problem.

Trajectory Performance

Motivation

CRB Derivation

The Cramér-Rao analysis is based on the Complex CRB methods presented in [12]. Assuming
a complex circularly Gaussian noise model and the measurement model of (4.5), the measurement
vector y is a Gaussian random vector with mean

m = Ã(ω) f
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and covariance matrix

R = σ2IN ,

and for simplicity we will also assume that the image f is real. Following the method in [12] we
have:

m̃ ,

[
m

m∗

]
=

[
Ã(ω) f

Ã
∗
(ω) f

]

and

R̃ ,

[
R 0

0 R∗

]
= σ2I2N ,

where ∗ denotes complex conjugation. Now using the Slepian-Bangs formula the elements of the
Fisher information matrix are given by

[F]mn =

(
∂m̃

∂θm

)′
R̃
−1
(
∂m̃

∂θn

)
, (A.20)

where ′ denotes conjugate transpose and the parameter vector is θ ,

[
f

ω

]
. For this parameter

vector we have

∂m̃

∂fn
=

[
Ãen

Ã
∗
en

]
(A.21)

and

∂m̃

∂ωn
=

[
−iD̃tÃenfn

iD̃tÃ
∗
enfn

]
, (A.22)

where en is an indicator vector with only one “1” at the nth position and D̃t is a diagonal matrix
of sampling times

D̃t , IK ⊗ diag{tm} for m = 1, . . . ,M.
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Using (A.20), (A.21), (A.22) and the fact that R̃
−1

= 1
σ2 I2N , the Fisher information matrix is

given by:

F =
2

σ2

 <
{

Ã
′
Ã
}

=
{

Ã
′
D̃tÃ

}
Df

−Df=
{

Ã
′
D̃tÃ

}
Df<

{
Ã
′
D̃t

2
Ã
}

Df

 , (A.23)

where Df , diag{fn} for n = 1, . . . , N .
The general expression for the Fisher information matrix in (A.23) applies to any trajectory, but

it does not provide any insight on the variance bounds and it is also impractical for computational
purposes since it requires the inversion of a large 2N × 2N matrix. To simplify the analysis and
acquire a tractable form of the Fisher information matrix we will assume the use of Cartesian (or
EPI) trajectories, with Dirac basis functions, of sizeN = NxNy for an image withNxNy pixels and
we will also assume that the sampling of each readout line happens simultaneously, thus reducing
the number of distinct sampling points from N to only Ny =

√
N for a square image.

Under the above simplifications the elements of the system matrix Ã can be written as:

a(k,m),n = e−iω(nx,ny)t(mx,my)e−i2πk(t(mx,my))·r(nx,ny)ck,(nx,ny)

= e−iω(nx,ny)tmy e−i2πnxmx/Nxe−i2πnymy/Nyck,(nx,ny),

where the paired indexes ((mx,my), (nx, ny)) are equivalent to the vectorized indexes (m,n). Now
we can rewrite the blocks of the Fisher information matrix (A.23) using the following simplifica-
tions:

[
Ã
′
Ã
]
n,n′

=
K∑
k=1

c∗k,n′ck,n

Nx∑
mx=1

e−i2π(nx−n′x)mx/Nx

Ny∑
my=1

e−i(ωn−ωn′ )tmy e−i2π(ny−n′y)my/Ny

= Nxδ[nx − n′x]
K∑
k=1

c∗k,n′ck,n

Ny∑
my=1

e−i(ωn−ωn′ )tmy e−i2π(ny−n′y)my/Ny (A.24)

[
Ã
′
D̃tÃ

]
n,n′

= Nxδ[nx − n′x]
K∑
k=1

c∗k,n′ck,n

Ny∑
my=1

e−i(ωn−ωn′ )tmy e−i2π(ny−n′y)my/Nytmy (A.25)
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[
Ã
′
D̃t

2
Ã
]
n,n′

= Nxδ[nx − n′x]
K∑
k=1

c∗k,n′ck,n

Ny∑
my=1

e−i(ωn−ωn′ )tmy e−i2π(ny−n′y)my/Nyt2my
(A.26)

From the expressions in (A.24), (A.25) and (A.26) we see that the blocks of the Fisher infor-
mation matrix reduce to diagonal block matrices and by rearranging the matrix in (A.23) we can
write it as a diagonal block matrix

F = diag{Fi} for i = 1, . . . , Nx. (A.27)

Each block Fi is given by:

Fi =
2Nx

σ2

 <
{

Ã
′
iÃi

}
=
{

Ã
′
iDtÃi

}
Df ,i

Df ,i=
{

Ã
′
iDtÃi

}′
Df ,i<

{
Ã
′
iDt

2Ãi

}
Df ,i

 , (A.28)

where Df ,i is a diagonal matrix from the ith row of f , Df ,i , diag{fi,j} , j = 1, . . . , Ny, Dt is
a diagonal matrix from the sample times of each phase encode, Dt , IK ⊗ diag

{
tmy

}
,my =

1, . . . , Ny, and Ãi is a KNy ×Ny matrix given by

Ãi ,


AiSi,1

...

AiSi,K

 ,
where Si,k is a diagonal matrix from the ith row of the sensitivity map of the kth coil, Si,k ,

diag
{
ck,(i,j)

}
, j = 1, . . . , Ny, k = 1, . . . , K, and Ai is a 1D MRI encoding matrix, of sizeNy×Ny,

that depends on the ith row of the fieldmap ωi, with elements given by

amy ,j(ωi) = e−iωi,jtmy e−i2πmyj/Ny .

As we see from (A.27), the diagonal block structure of the Fisher information matrix reduces
the CRB analysis of the joint reconstruction to the analysis of Nx smaller 1D reconstructions.
Thus, the numerical computation of the CRB can be performed efficiently, since it requires only the
inversion of the smaller blocks Fi (A.28). However, the expression in (A.28) still does not provide
any insight on how the CRB is affected by the choice of trajectory (standard or “interleaved” EPI)
and other imaging parameters. To achieve that, further assumptions on the structure of the Fisher
information matrix are required.
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Using the block inversion formulas on (A.28) and by defining Hf ,i , <
{

Ã
′
iÃi

}
, Hfω,i ,

=
{

Ã
′
iDtÃi

}
, and Hω,i , <

{
Ã
′
iDt

2Ãi

}
we have

F−1
f ,i ,

σ2

2Nx

(
Hf ,i −H′fω,iDf ,iD

−1
f ,iH

−1
ω,iD

−1
f ,iDf ,iHfω,i

)−1

=
σ2

2Nx

(
Hf ,i −H′fω,iH

−1
ω,iHfω,i

)−1 (A.29)

F−1
ω,i ,

σ2

2Nx

(
Df ,iHω,iDf ,i −Df ,iH

′
fω,iH

−1
f ,iHfω,iDf ,i

)−1

=
σ2

2Nx

D−1
f ,i

(
Hω,i −H′fω,iH

−1
f ,iHfω,i

)−1
D−1

f ,i (A.30)

Now, we can use the expressions in (A.29) and (A.30) to calculate the CRB for any given pixel
(i, j) of the image and fieldmap as follows:

var{fi,j} ≥
[
F−1

f ,i

]
j,j

=
σ2

2Nx

[(
Hf ,i −H′fω,iH

−1
ω,iHfω,i

)−1
]
j,j

(A.31)

var{ωi,j} ≥
[
F−1
ω,i

]
l,l

=
σ2

2Nxf 2
i,j

[(
Hω,i −H′fω,iH

−1
f ,iHfω,i

)−1
]
j,j

(A.32)

From (A.32) we see an explicit dependence of the fieldmap variance on the image magnitude
at the given pixel. This dependence essentially means that higher magnitude values lead to higher
SNR and in turn to lower variance. Since, this dependence is well understood and simple to
quantify we will consider from now on a uniform image, so that we can focus on the dependence
of the CRB on implicit parameters like the trajectory choice and the fieldmap.

For a given trajectory choice the expressions in (A.31) and (A.32) can be used to calculate the
CRB provided that the fieldmap is known. However, the fieldmap is an unknown parameter to be
estimated, but these expressions can still be used by using the initial fieldmap estimate instead of
the actual fieldmap. Unfortunately, we cannot use these expressions to find an optimal trajectory
for joint reconstruction or optimize the parameters (like echo-time or readout duration) of a chosen
trajectory. Thus, in this work, we will evaluate the CRB for the standard and “interleaved” EPI
trajectories presented in §4.3, using the true fieldmap for the simulation data and the initial fieldmap
estimate for the phantom and brain data. We will also compare the CRB for joint estimation to the
CRB for “oracle” image estimation (known fieldmap) and fieldmap estimation (known image).
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The expression for these “oracle” bounds are given by

var{fi,j} ≥
σ2

2Nx

[
H−1

f ,i

]
j,j

≈ σ2

2NxNysi,j

≈ σ2

2NxNy

for single coil

var{ωi,j} ≥
σ2

2Nxf 2
i,j

[
H−1
ω,i

]
j,j

≈ σ2

2NxNyT 2
Esi,j

≈ σ2

2NxNyT 2
E

for single coil,

assuming the image is uniform, where si,j ,
∑K

k=1

∣∣ck,(i,j)∣∣2 and TE is the echo-time defined in
this case as the time at the midpoint of the readout. The approximate expressions were derived
under the assumption that the implicit effect of the fieldmap on the encoding matrix can be ignored
and provide the lowest possible bound. As we will see from the results, the actual oracle bounds
are affected by the effects of the fieldmap.
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APPENDIX B

Accelerated Edge-Preserving Image Restoration Without
Boundary Artifacts

To reduce blur in noisy images, regularized image restoration methods have been proposed
that use non-quadratic regularizers (like l1 regularization or total-variation) that suppress noise
while preserving edges in the image. Most of these methods assume a circulant blur (periodic
convolution with a blurring kernel) that can lead to wraparound artifacts along the boundaries of
the image due to the implied periodicity of the circulant model. Using a non-circulant model could
prevent these artifacts at the cost of increased computational complexity.

In this work we propose to use a circulant blur model combined with a masking operator that
prevents wraparound artifacts. The resulting model is non-circulant, so we propose an efficient al-
gorithm using variable splitting and augmented Lagrangian (AL) strategies. Our variable splitting
scheme when combined with the AL framework and alternating minimization leads to simple lin-
ear systems that can be solved non-iteratively using FFTs, eliminating the need for more expensive
CG-type solvers. The proposed method can also efficiently tackle a variety of convex regularizers
including edge-preserving (e.g., total-variation) and sparsity promoting (e.g., l1 norm) regulariz-
ers. Simulation results show fast convergence of the proposed method, along with improved image
quality at the boundaries where the circulant model is inaccurate.

Introduction

Image restoration is a well studied problem and there are several proposed methods for de-
blurring and denoising. Usually image restoration is treated as an optimization problem where

The work in this chapter appears in [11].
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the restored image is obtained by minimizing a cost function consisting of a data fidelity term
and a regularization term. The data fidelity term ensures good fit of the blur model to the measure-
ments, and the regularizer ensures stability of the solution and incorporates smoothness to suppress
noise. A quadratic data fidelity term is often used, based on the additive zero-mean Gaussian noise
model. For the regularizer, using a quadratic term can lead to over-smoothing. Recently there is in-
creasing interest in non-quadratic regularizers, especially edge-preserving ones like total variation
(TV) [47–49] and sparsity promoting ones like l1 regularization [50, 51].

Most existing restoration methods make simplifying assumptions concerning the system model
and the most common one is the use of a circulant blurring model [49–56] because it facilitates
FFT-based optimization (e.g., non-iterative matrix inversions [52, 56]).. Despite its popularity, the
purely circulant model is inaccurate, since it implies an unrealistic periodic extension at the image
boundaries that can lead to severe reconstruction artifacts [2].

In this work we focus on a more realistic non-circulant blurring model that is shift-invariant
within the region of interest and propose an efficient algorithm for image restoration with non-
quadratic regularization. Our model is equivalent to that proposed in [2], and similarly to [57] we
focus on edge-preserving regularizers instead of the quadratic regularizer used in [2]. However,
unlike [2, 57] which treat boundaries explicitly via a low-dimensional auxiliary variable, our ap-
proach is based on an elegant formulation that requires no pre-processing of the data or explicit
treatment of the unknown, extrapolated boundaries. In addition, the methods in [2,57] require CG-
type solvers to optimize the associated auxiliary variable that is avoided in our proposed algorithm
based on the AL framework with variable splitting.

Our formulation combines a circulant blur model with a masking operator to prevent wrap-
around artifacts. Then we use a specific variable splitting strategy that decouples the circulant blur
and the mask. When combined with the AL framework and alternating minimization, our splitting
leads to an iterative algorithm with simple update steps that can be implemented non-iteratively
in closed-form. We present numerical results that illustrate the improved quality of reconstructed
images using a non-circulant model and also the improved convergence speed of our proposed
algorithm compared to other state-of-the-art methods that can be used to tackle the non-circulant
reconstruction problem.

Problem Formulation

Regularized image restoration can be approached in two main ways. One is the analysis for-
mulation [58], where the objective is to obtain an estimate of the true image x̂, and the other is the
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synthesis formulation [50], where the objective is to estimate a set of transform coefficients ŵ and
obtain the reconstructed image through a transform as x̂ = Wŵ. In this work, we focus on the
analysis formulation. Our approach can be extended to the synthesis one using techniques similar
to that proposed in [52].

For image restoration, we consider the following analysis formulation, where the image esti-
mate x̂ is obtained by minimizing a cost function

x̂ = argmin
x

{
Ψ(x) , J(x) + λΦ(Rx)

}
, (B.1)

J(·) is the data fidelity term, Φ(·) is a regularizer function, R is a sparsifying transform (e.g.,
wavelet frames or finite differences) and λ is the regularization parameter.

Data Fidelity

To design a restoration algorithm one must make some modeling assumptions. Often deblur-
ring algorithms are developed assuming a circulant blur model represented by Ǎ and the data
fidelity term is modeled as [49–56]:

J(x̌) ,
∥∥y − Ǎx̌

∥∥2

2
(B.2)

where y is the observed (M × 1) vectorized blurred and noisy image, x̌ is the vectorized (M × 1)
image to be reconstructed, and Ǎ is a (M ×M ) circulant blurring matrix. Even though this model
is very popular in the image restoration literature [49–56], it is inaccurate since the assumption of
circulant blur rarely, if ever, applies in practice.

Reconstructing images under the assumption of a purely circulant model can lead to severe
artifacts due to discontinuities at the boundaries caused by the periodic extension of the image [2].
Simple approaches like zero-padding or replicated boundary extension do not resolve this issue
since they do not eliminate the discontinuity at the boundaries. As suggested in [2] data pre-
processing techniques like replicated boundary extension combined with edge-tapering can reduce,
but not completely eliminate the artifacts. This will be illustrated in the experiments section (§B).
A typical data preprocessing approach yields an augmented (N × 1, with N > M )1 data vector

ỹ , edgetaper{replicate(y)} , (B.3)

1For an observed image y of size M = Ny × Ny and a PSF of size Nh × Nh the size of the processed data is
N = (Ny +Nh − 1)× (Ny +Nh − 1).
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where replicate corresponds to boundary extension using Matlab’s padarray function with the
‘replicate’ option and edgetaper corresponds to Matlab’s edgetaper function. A corre-
sponding data fidelity term is given by:

J(x) , ‖ỹ −Ax‖2
2 , (B.4)

where x is the (N × 1) image to be reconstructed, and A is a (N ×N ) circulant blurring matrix.
An alternative to the circulant model (that corresponds to periodic boundary extension) is to

use reflexive boundary conditions along with DCT, as suggested in [1]. In this case the blurring
matrix has the Toeplitz-plus-Hankel form and can be diagonalized using the DCT. A corresponding
data fidelity term is given by:

J(x̌) , ‖y −ARx̌‖2
2 , (B.5)

where x̌ is the (M × 1) image to be reconstructed, and AR is a (M ×M ) Toeplitz-plus-Hankel
blurring matrix. This DCT method requires the PSF to be symmetric [1, 2], which may not hold
for some applications e.g., motion blur. In cases of non-symmetric PSFs this method can only be
used to find preconditioners that facilitate iterative solvers like CG [1].

To eliminate boundary artifacts, the methods in [2, 57] use a data fidelity term

J(x) ,
∥∥∥y − Ãx

∥∥∥2

2
, (B.6)

with a (M ×N ) non-circulant blurring matrix Ã. Then, the non-circulant matrix Ã is augmented
with additional rows (using a low dimensional auxiliary matrix a) to create a circulant (N × N )
system matrix A. Instead of tackling the non-circulant Hessian Ã

′
Ã directly, it is rewritten as:

Ã
′
Ã = A′A− a′a, (B.7)

consisting of a block-circulant (with circulant blocks) Hessian A′A and a low rank component a′a.
Inverting the non-circulant Hessian Ã

′
Ã (along with a suitable block-circulant regularization ma-

trix) is then carried out using the Sherman–Morrison Matrix Inversion Lemma (MIL) [2, Eq. (5)–
(7)]. The MIL separates the two terms in the RHS of (B.7) and involves inverting the circulant
part (i.e., A′A with the regularization term) and a low-dimensional matrix involving the auxiliary
matrix a. The circulant component is inverted using FFTs and inversion of the low dimensional
component can be performed with an iterative algorithm (e.g., CG).
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In this work, similarly to [2, 57], we consider a more realistic non-circulant model, that is
shift-invariant within the region of interest, but avoids the assumption of periodic end conditions.
However, instead of using the manipulation in (B.7), we introduce a masking operator that elimi-
nates the wraparound artifacts at the boundaries caused by periodic convolution. With our proposed
model the data fidelity term becomes

J(x) , ‖y −TAx‖2
2 , (B.8)

where T is a (M ×N ) masking matrix that truncates the circular wraparound at the boundaries, A

is a (N × N ) circulant matrix, and x is a (N × 1) vector as in (B.4) and (B.6)2. The matrix T is
a truncated identity matrix resulting from the removal of rows corresponding to boundary pixels,
and thus, T′T is a (N × N ) diagonal matrix with 0s and 1s. Even though the model in (B.8) is
shift-invariant within the image, the masking operator makes the overall system model TA shift-
variant. To efficiently handle this shift-variant model, we propose to use a variable splitting scheme
that decouples T and A and in turn allows the use of FFT-based computations as described in §B.

Regularizer

The algorithms discussed in this paper can tackle a general class of convex regularizers Φ(·) in
(B.1), but we will focus on edge-preserving and sparsity promoting regularizers like Total Variation
(TV) and analysis l1 regularization, respectively, for brevity.

1. l1 regularization or discrete anisotropic total-variation:

Φ(Rx) = ‖Rx‖1 , (B.9)

where R = W is a wavelet frame, typically excluding the approximation level, or R = C ,

[C′1 C′2]′ is a matrix of horizontal and vertical finite differences.

2. Discrete isotropic total-variation

Φ(Cx) =
N∑
n=1

√∣∣[C1x]n
∣∣2 +

∣∣[C2x]n
∣∣2. (B.10)

2For the overall system model we have TA = Ã and it corresponds to a non-circular convolution operator
with extended end conditions. For a blurring kernel h of size Nh × Nh we have y = h ∗ ∗x and the size of x is
N = (Ny +Nh − 1) × (Ny +Nh − 1), which corresponds to the size of the unknown image that contributes to the
observed Ny ×Ny image.
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To reduce computational complexity and allow FFT-based non-iterative solving of linear systems,
the sparsifying matrix R (wavelet frame or finite differences) is assumed to have periodic end
conditions such that R′R is circulant.

Proposed Model-Based Restoration

In this work, our goal is to estimate the image x by minimizing the following cost function that
we call problem P1:

x̂ = argmin
x

{
Ψ(x) ,

1

2
‖y −TAx‖2

2 + λΦ(Rx)

}
. (B.11)

Minimizing (B.11) is a non-trivial optimization problem. Existing methods include non-linear
conjugate gradient (NCG) [59], iterative shrinkage/thresholding (ISTA) [50, 60], (M)FISTA [54,
61], and variable splitting/ADMM (Alternating Direction Method of Multipliers) algorithms [52,
56,62–64]. Some of these methods, e.g., (M)FISTA, SALSA [52], Split-Bregman (SB) [64], and
FTVd [62] are computationally efficient when used with the data model in (B.2) since they exploit
the circulant nature of A in (B.2). However, a straightforward application of these methods to
the non-circulant model in (B.8) may increase their computation time since the inner sub-probems
of these algorithms may no longer admit explicit closed-form updates. We discuss this in detail
in §B and also provide experimental evidence in §B. To handle the non-circulant model in (B.8)
we propose a specific variable splitting strategy [10, 52] presented in §B. We then use the AL
framework and alternating minimization to obtain an iterative algorithm that exploits the structures
of T and A and thereby, converges faster.

Existing Restoration Algorithms

Non-linear Conjugate Gradient (NCG)

Using NCG to solve P1 requires computing the gradient of Ψ(x). This is problematic for TV
or l1 norm regularizers that use the non-smooth absolute value function. To alleviate this problem
the common approach is to use a rounding parameter to approximate the absolute value function
as

|x| ≈
√
|x|2 + ε, (B.12)
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where ε is the rounding parameter. NCG also needs a line search method for which we can use the
technique proposed in [59, Sec. IV].

The disadvantages of NCG are slow convergence, and perhaps, the fact that it does not converge
to a solution of P1, due to the approximation in (B.12).

(MF)ISTA

ISTA was first introduced for restoration problems with synthesis-type priors [50, 60] and it
was later generalized to analysis-type priors [54, 61]. (M)FISTA is an improvement on ISTA that
converges faster to a solution of P1. The general methodology of both ISTA and (M)FISTA is
to convert the original problem P1 into a denoising problem that can be solved non-iteratively for
l1-synthesis priors or iteratively for analysis priors. The difference between ISTA and (M)FISTA
is the use of a specific two-step update in (M)FISTA [54, Eq. (4.1)–(4.3)] that accelerates con-
vergence [54, Thm. 4.4]. For analysis regularizers, the denoising step cannot be performed in a
single-step, in which case one can use a Chambolle-type algorithm as in [53, Eq. (5)–(7)].

Even though MFISTA converges faster than the simpler ISTA, variable-splitting/ADMM al-
gorithms [10, 52, 56] have been developed that exhibit faster convergence.

Variable-Splitting/ADMM Algorithms [52, 62, 64]

The main idea of these algorithms is to break down the original problem P1 into smaller tasks
by introducing appropriate auxiliary constraint variables. The resulting minimization subproblems
are decoupled and easier to solve compared to the original minimization problem P1. There are
several different ways to choose the splitting variables that lead to a variety of such variable-
splitting based algorithms [10, 52, 56]. These algorithms have been shown to converge faster than
MFISTA [52]. The algorithm we developed for the non-circulant image restoration problem is
based on the variable-splitting ADMM framework presented in [10, 56, 65].

SALSA [52] One approach for solving P1 is to split the regularization term by introducing an
auxiliary variable u = x. The constrained problem is formulated as:

min
x,u

{
Ψ(x,u) ,

1

2
‖y −TAx‖2

2 + λΦ(Ru)

}
s.t. u = x, (B.13)
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and the associated AL function is

L(x,u, µ,η) = Ψ(x,u) +
µ

2
‖u− x− η‖2

2 , (B.14)

where η is linearly related to the Lagrange multiplier for the constraint in (B.13) and µ > 0 is an
AL penalty parameter [10, 52, 56, 65].

This formulation leads to SALSA [52], where (B.13) is solved with the following alternating
minimization scheme:

x(k+1) = argmin
x

{
1
2
‖y −TAx‖2

2

+µ
2

∥∥u(k) − x− η(k)
∥∥2

2

}
(B.15)

u(k+1) = argmin
u

{
λΦ(Ru) +

µ

2

∥∥u− x(k+1) − η(k)
∥∥2

2

}
(B.16)

η(k+1) = η(k) − u(k+1) + x(k+1). (B.17)

Since the cost function (B.15) is quadratic, the minimization with respect to x can be expressed
in closed form as:

x(k+1) = H−1
µ,1

[
A′T′y + µ

(
u(k+1) − η(k)

1

)]
, (B.18)

where

Hµ,1 , A′T′TA + µI. (B.19)

For the purely circulant model in (B.2), T = I and one can invert Hµ,1 using FFTs. However,
for the more realistic model in (B.8), the Hessian Hµ,1 has no exploitable structure and finding
a minimizer non-iteratively can be computationally intensive for large N . Instead, one can apply
a few PCG iterations using the circulant preconditioner M1 , (A′A + µI)

−1 along with warm
starting to find an approximate solution.

The minimization with respect to u in (B.16) can be implemented non-iteratively for certain
synthesis-type regularizers. However, for analysis-type regularizers (e.g., involving finite differ-
ences or wavelet frames), it has to be performed iteratively. Following the implementation of
SALSA [52], we used the Chambolle-type algorithm [53, Eq. (6)–(7)] for the update of u. Despite
the approximate update steps, SALSA can be shown to converge to a solution of P1 [52, 66].
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Split-Bregman Algorithm [64] An alternative approach is to split the regularization term by
introducing the auxiliary variable v = Rx. In this case the constrained problem is formulated as

min
x,v

{
Ψ(x,v) ,

1

2
‖y −TAx‖2

2 + λΦ(v)

}
s.t. v = Rx, (B.20)

and the associated AL function is

L(x,v, µ,η) = Ψ(x,v) +
µ

2
‖v −Rx− η‖2

2 , (B.21)

where η is related to the Lagrange multiplier for the constraint in (B.20).
The splitting in (B.20) is similar to that in the SB [64] and FTVd [62] algorithms, and the

problem is again solved using the AL framework and by performing the following minimizations
alternatively:

x(k+1) = argmin
x

{
1
2
‖y −TAx‖2

2

+µ
2

∥∥v(k) −Rx− η(k)
∥∥2

2

}
(B.22)

v(k+1) = argmin
v

{
λΦ(v) +

µ

2

∥∥v −Rx(k+1) − η(k)
∥∥2

2

}
(B.23)

η(k+1) = η(k) − v(k+1) + Rx(k+1). (B.24)

As in SALSA, the minimization with respect to x in (B.22) has a closed-form solution since
the associated cost function is quadratic:

x(k+1) = H−1
µ,2

[
A′T′y + µR′

(
v(k+1) − η(k)

)]
, (B.25)

where

Hµ,2 , A′T′TA + µR′R. (B.26)

Again in this case, for the model in (B.8), the Hessian matrix Hµ,2 has no exploitable structure and
solving (B.25) can be computationally intensive for large N . As in SALSA, one can apply a few
PCG iterations with warm starting and a circulant preconditioner M2 ,(A′A + µR′R)

−1.
The minimization with respect to v in (B.23) can be performed non-iteratively for several

synthesis- and analysis-type regularizers, including TV and l1 norm of wavelet coefficients, using
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a soft thresholding/shrinkage rule:

v(k+1) = shrink

{
Rx(k) + η(k),

λ

µ

}
. (B.27)

For the bilateral TV and l1 regularization the shrinkage operator is element-wise, whereas for
isotropic TV a vector shrinkage rule can be used, as in [62, §2.1].

A reviewer suggested a variation of the SB algorithm, formulated by using the method in [2]
for the updates of x in (B.22). Although it is more complicated than applying CG to (B.25), this
formulation has the benefit of solving a much smaller problem using CG iterations only for the
boundaries and updates the rest of the image with the use of FFTs. The method is explained in
detail in [2] and also in the alternating minimization scheme of [57]. For the purpose of conver-
gence speed comparisons we will refer to this variation as the Split-Bregman-MIL (SB-MIL)
algorithm. This name was used since the method is based on the Matrix Inversion Lemma (MIL)
to decouple the circulant part from the boundaries and efficiently perform the update for x.

Compared to SALSA, the benefit of SB and SB-MIL is the single-step update for v that avoids
the inner iterations of the Chambolle-type [53, Eq. (6)–(7)] algorithm required in SALSA.

Proposed Algorithm: ADMM-P2

Even though both SALSA and SB-based algorithms (e.g., SB [64] and SB-MIL studied here)
decouple the regularization term, their main caveat is the need for (P)CG iterations to obtain the
update of x ((B.18) and (B.25)) or a low-dimension vector corresponding to the boundaries in
SB-MIL. These inner iterations can increase convergence time. Our method alleviates this prob-
lem by introducing a second auxiliary variable u0 = Ax. This additional splitting is similar to
those used in [10, Sec. IV-B] for MRI, [65, Sec. III] for CT, and [56] for image restoration, al-
though in [56] the goal is to separate the entire data-fidelity term from the data model, whereas
in our case the additional splitting u0 separates the blur and the masking operator inside the data-
fidelity term in (B.11). The resulting constrained problem P2 is given by:

min
x,u0,u1

{
Ψ(u0,u1) ,

1

2
‖y −Tu0‖2

2 + λΦ(u1)

}
(B.28)

s.t. u0 = Ax and u1 = Rx.
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where A is the N ×N circulant blurring matrix and R is an R×N sparsifying transform matrix.
We can now rewrite P2 in a more concise form as follows:

min
x,w

Ψ(w) s.t. w = Dx (B.29)

where

w ,

[
u0

u1

]
, D ,

[
A

R

]
. (B.30)

From this formulation it is evident that the constraint matrix D is full column rank provided that
the null spaces of A′A and R′R intersect only trivially, which is usually true in image restoration
problems (low-pass nature of A and high-pass nature of R). This requirement does not impose
serious restrictions on R for deblurring problems, i.e., it is not necessary for R to be full column
rank, which can be the case with commonly used sparsifying transforms, e.g., finite differences,
wavelets (excluding the approximation level). The importance of D being full column rank relates
to the hypothesis of a theorem due to Eckstein and Bertsekas [66, Thm. 8], summarized below, that
guarantees convergence of ADMM type algorithms.

To solve the problem P2 with the method of multipliers we construct the Augmented La-
grangian (AL) function , which can be expressed as:

L(x,w,γ) = Ψ(w) +
µ

2
‖w −Dx− η‖2

Λ , (B.31)

where µ is the AL penalty parameter, the parameter η relates to the Lagrange multiplier, and Λ is
a symmetric positive definite weighting matrix defined as

Λ ,

[
IN 0

0 νIR

]
, (B.32)

where ν > 0.
To solve P2 in (B.28) we apply an alternating minimization scheme, which at the kth iteration,
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leads to the following updates

x(k+1) = argmin
x

∥∥w(k) −Dx− η(k)
∥∥2

Λ
(B.33)

w(k+1) = argmin
w

Ψ(w) +
µ

2

∥∥w −Dx(k+1) − η(k)
∥∥2

Λ
(B.34)

η(k+1) = η(k) −w(k+1) + Dx(k+1). (B.35)

Although the theorem [66, Thm. 8] allows for inexact updates, i.e., εkx ,
∥∥∥x(k) − x

(k)
∗

∥∥∥
2
> 0 and

εkw ,
∥∥∥w(k) −w

(k)
∗

∥∥∥
2
> 0 where

(
x

(k)
∗ and w

(k)
∗

)
are solutions of (B.33) and (B.34) respectively,

our formulation leads to closed-form updates for (B.33)–(B.34), that can be implemented non-
iteratively, i.e., εkx = εkw = 0 (up to numerical round-off errors). We review below the theorem of
Eckstein and Bertsekas [66, Thm. 8] that is useful for analyzing the convergence of (B.33)–(B.35).

Theorem 1. Consider (B.28) where Ψ(·) is closed, proper and convex and D has full column

rank. Let η(0) ∈ RN+R, µ > 0,
∑

k ε
k
x < ∞, and

∑
k ε

k
w < ∞. If (B.28) has a solution(x∗,w∗)

then the sequence of updates
{(

x(k),w(k)
)}

k
generated by (B.33)–(B.35) converges to(x∗,w∗). If

(B.28) has no solution then at least one of the sequences
{(

x(k),w(k)
)}

k
or
{
η(k)

}
k

diverges.

Even though the theorem of Eckstein and Bertsekas [66, Thm. 8] uses an AL function with
Λ = I, we can still apply the theorem to (B.31) through a simple variable transformation [65,
Footnote 3].

Using the structure of Ψ(w) and D, we can reformulate the AL function from (B.31) as

L(x,u, µ, ν,η) = Ψ(u0,u1) +
µ

2
‖u0 −Ax− η0‖

2
2 (B.36)

+
µν

2
‖u1 −Rx− η1‖

2
2 ,

where η0 and η1 are related to the Lagrange multipliers for the constraints in (B.28). Using this
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form of the AL function, the alternating minimization scheme at the kth step can be expressed as:

u
(k+1)
0 = argmin

u0


1
2
‖y −Tu0‖2

2

+µ
2

∥∥∥u0 −Ax(k) − η(k)
0

∥∥∥2

2

 (B.37)

u
(k+1)
1 = argmin

u1

{
λΦ(u1) +

µν

2

∥∥∥u1 −Rx(k) − η(k)
1

∥∥∥2

2

}
(B.38)

x(k+1) = argmin
x


µ
2

∥∥∥u(k+1)
0 −Ax− η(k)

0

∥∥∥2

2

+µν
2

∥∥∥u(k+1)
1 −Rx− η(k)

1

∥∥∥2

2

 (B.39)

η
(k+1)
0 = η

(k)
0 − u

(k+1)
0 + Ax(k+1) (B.40)

η
(k+1)
1 = η

(k)
1 − u

(k+1)
1 + Rx(k+1). (B.41)

The minimization with respect to u0 in (B.37) is straightforward since the corresponding cost
function is quadratic. The closed-form solution is expressed as

u
(k+1)
0 =(T′T + µIN)

−1
[
T′y + µ

(
Ax(k) + η

(k)
0

)]
, (B.42)

and can be easily computed in a single-step update since it only requires inversion of the diagonal
matrix(T′T + µIN).

The minimization with respect to u1 in (B.38) can be performed non-iteratively using a (vector)
soft thresholding/shrinkage rule similar to (B.27), using a threshold value λ

µν
instead of λ

µ
used in

(B.27).
Finally the minimization with respect to x in (B.39) is also straightforward due to the corre-

sponding quadratic cost function. The closed form of the update is

x(k+1) = H−1
ν

[
A′
(
u

(k+1)
0 − η(k)

0

)
+ νR′

(
u

(k+1)
1 − η(k)

1

)]
, (B.43)

where

Hν , A′A + νR′R. (B.44)

We perform multiplication by H−1
ν in (B.43) efficiently using FFTs since the blurring matrix A is

circulant and the sparsifying operator R (frame or differencing matrix) consists of circulant blocks
(periodic end conditions) such that R′R is circulant. Thus, the update of x can be computed
non-iteratively.

151



Combining the above expressions for the updates, we now summarize the proposed AL algo-
rithm for solving P2.

ADMM-P2: AL algorithm for P2.

1: Select x(0), ν > 0, and µ > 0

2: Precompute T′y

3: Set η(0)
0 = 0, η(0)

1 = 0 and k = 0

4: repeat
5: Obtain u

(k+1)
0 using (B.42)

6: Obtain u
(k+1)
1 using (B.27)

7: Obtain x(k+1) using (B.43)
8: η

(k+1)
0 = η

(k)
0 −

(
u

(k+1)
0 −Ax(k+1)

)
9: η

(k+1)
1 = η

(k)
1 −

(
u

(k+1)
1 −Rx(k+1)

)
10: k = k + 1

11: until stop criterion is met

Unlike SB-based algorithms (including SB-MIL) and SALSA for solving (B.11), all the steps
of ADMM-P2 are single-step updates due to the extra splitting that decouples the circulant blur
operator A from the masking operator T. The experiments in §B show that the non-iterative
updates of ADMM-P2 help achieve convergence in less time than other methods.

AL Parameter Selection

SALSA and ADMM-P2 belong to the general class of ADMM algorithms. Thus, the ADMM
convergence theorem of Eckstein and Bertsekas [66, Thm. 8] applies in these cases and the algo-
rithms are guaranteed to converge to a solution of the original problem P1, even when the inner
minimization steps are not performed exactly. The SB-based algorithms are also convergent, al-
though the convergence theory is different from that of ADMM [63, 64].

SALSA, ADMM-P2, SB, and SB-MIL are guaranteed to converge regardless of the choice of
AL parameters µ and ν [66]. However, the choice of AL parameters affects the convergence speed
of these algorithms. We found experimentally that the best AL parameters for fast convergence
depend on the regularization parameter λ and the maximum intensity (xmax) of the blurred image,
similarly to the choice proposed in [55]. The best parameters can also depend on the spread of
eigenvalues of A′A and R′R

For SALSA we found that a choice of µ = 27λ/xmax works well for several different choices
of regularization parameter λ.
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For SB and SB-MIL, we found experimentally that the choice of the AL parameter µ also
depends on µmin , argminµ κ(A′A + µR′R), where κ(·) is the condition number. As a rule of
thumb we choose the AL parameter as µ = 28λµmin/xmax.

For ADMM-P2, we found experimentally that the best product µν depends on λ, xmax and
νmin , argminν κ(A′A + νR′R). Thus, for fast convergence we choose the AL parameters to
achieve µν = 28λνmin/xmax. Also, we found that we can fix the parameter µ to a value µ0 = 2−4

and then choose the parameter ν as: ν = 28λνmin/µ0xmax.
The above rules for the parameter selection work well when the blurring system matrix A is

scaled such that the maximum eigenvalue of A′A is equal to 1.

Experiments

The first part of the experiments compares the quality of the reconstructed images obtained
using the proposed non-circulant (B.8) and the purely circulant (B.2) reconstruction models. The
second part compares the convergence speed of the proposed ADMM-P2 algorithm to that of
NCG, ISTA, MFISTA, SALSA, SB, and SB-MIL for restoration using the proposed non-circulant
model.

Non-Circulant Versus Circulant Restoration

For all our experiments we used the 256× 256 cameraman image as the true, noise-free image,
and following the experimental setting in [54] we scaled it to the range [0, 1] (Figure B.1a). For the
blurring kernel we used a uniform 9×9 blur, a uniform 15×15 blur and a 15 pixel straight motion
blur at a 30◦ angle. For this image and blur sizes the valid part of the convolution is the 248× 248

(for 9× 9 blur) or 242× 242 (for 15× 15 blur) central region and the data simulated with Matlab’s
conv2 function using the ‘valid’ option are of this size.

To assess the quality of our proposed non-circulant reconstruction method we compared it to
reconstructions from

• a purely circulant model (B.2) without data pre-processing,

• a purely circulant model (B.2) where we used data pre-processing with boundary replication
combined with edge tapering,

• and reflexive end conditions and DCT (B.5).

153



When using the non-circulant model in (B.8) or the purely circulant model with data pre-processing
in (B.4), the reconstructed images have original 256×256 size and then they are truncated to match
the data size. When reconstructing with the purely circulant model without pre-processing in (B.2)
or with the DCT method in (B.5), the reconstructed image has the same size as the data, so no
truncation is necessary.

For our experiments, we used three types of regularizers, namely isotropic and anisotropic
Total Variation, and l1 norm of the coefficients of the undecimated 2-level Haar wavelet transform,
excluding the approximation level.

We performed three sets of experiments with different levels of Blurred Signal-to-Noise Ratio
(BSNR , 10 log10(var(Ax) /σ2)) [49] and we chose the regularization parameter λ to achieve low
Normalized Root Mean Square (NRMS) error for a given BSNR level. The experimental setup is
as follows

1. 20 dB BSNR (σ2 = 5.03× 10−4) with λ = 2−10,

2. 30 dB BSNR (σ2 = 5.03× 10−5) with λ = 2−12,

3. 40 dB BSNR (σ2 = 5.03× 10−6) with λ = 2−15,

4. 50 dB BSNR (σ2 = 5.03× 10−7) with λ = 2−17,

where σ2 is the Gaussian noise variance. We quantified the reconstruction quality by computing
the Improvement in Signal-to-Noise Ratio (ISNR) between the restored image x̂ and the true image
xtrue. The ISNR was measured in the 248× 248 or 242× 242 (depending on the blur size) central
region that corresponds to the valid part of the convolution, since this was the actual size of the
input data vector y. Any extrapolated values (when reconstructing with the non-circulant model)
are not used in the ISNR calculations and not shown in any of the figures.

Figure B.1 shows the restored images from experiment 4 (50dB BSNR) with uniform 15× 15

blur using isotropic TV regularization. Figure B.1c shows that the restored image using the purely
circulant model in (B.2) exhibits severe ringing artifacts, similar to those in the results of [2], that
are not confined to the boundaries of the image. When data pre-processing is used, the ringing
artifacts are significantly reduced, but not completely removed (Figure B.1d). These artifacts can
be more severe and lead to more degradation when the strength of the regularizer decreases as
seen in the quantitative results in Table B.1. When reflexive boundary conditions and the DCT are
used, the artifacts are again significantly reduced but clearly visible in high BSNR cases. Finally,
we see that the reconstructed images from the proposed non-circulant model in (B.8) are free
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(a) (b) (c)

(d) (e) (f)

Figure B.1: Experiment 4 using 15 × 15 uniform blur: Restoration results using isotropic TV
regularization. (a) Cameraman true image (242 × 242), scaled to the range [0, 1]. (b) Blurred and
noisy image from Matlab’s ’valid’ conv2 operation. (c) Restored image from purely circulant
model (B.2). (d) Restored image from purely circulant model with data pre-processing (B.4). (e)
Restored image using reflexive boundary conditions and DCT (B.5). (f) Restored image from
proposed non-circulant model (B.8).

of any ringing artifacts and the reconstructed image closely resembles the true noise-free image
(Figure B.1f).

Figure B.2 shows the restored images from experiment 2 (30dB BSNR) with 15 pixel straight
motion blur using isotropic TV regularization. Figure B.2c shows that the restored image using the
purely circulant model in (B.2) exhibits severe ringing artifacts, similar to those in Figure B.1c.
When data pre-processing is used (Figure B.2d) the ringing artifacts are reduced and are less ob-
vious compared to Figure B.1d because of the high regularization parameter for low BSNR. When
reflexive boundary conditions and the DCT are used (Figure B.1e) the method fails to produce ac-
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(a) (b) (c)

(d) (e) (f)

Figure B.2: Experiment 3 using 15 pixel motion blur: Restoration results using isotropic TV
regularization. (a) Cameraman true image (248 × 248), scaled to the range [0, 1]. (b) Blurred and
noisy image from Matlab’s ’valid’ conv2 operation. (c) Restored image from purely circulant
model (B.2). (d) Restored image from purely circulant model with data pre-processing (B.4). (e)
Restored image using reflexive boundary conditions and DCT (B.5). For this case, the results are
inaccurate since this method is not applicable for non-symmetric PSF [1,2]. Also the image had to
be scaled to fit the dynamic range of the rest of the reconstructed images. (f) Restored image from
proposed non-circulant model (B.8).

curate results since the PSF is non-symmetric [1, 2]. Finally, we see that the reconstructed images
from the proposed non-circulant model in (B.8) are free of any ringing artifacts and the recon-
structed image closely resembles the true noise-free image (Figure B.2f).

Figure B.3 shows the restored images from experiment 1 (20dB BSNR) with with uniform
9× 9 blur using isotropic TV regularization. The restored image using the purely circulant model
(Figure B.3c) exhibits severe ringing artifacts as in the previous cases. However, the reconstructed
images using data pre-processing (Figure B.3d) and using reflexive boundary conditions and DCT
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(a) (b) (c)

(d) (e) (f)

Figure B.3: Experiment 1 using 15 × 15 uniform blur: Restoration results using isotropic TV
regularization. (a) Cameraman true image (248 × 248), scaled to the range [0, 1]. (b) Blurred and
noisy image from Matlab’s ’valid’ conv2 operation. (c) Restored image from purely circulant
model (B.2). (d) Restored image from purely circulant model with data pre-processing (B.4). (e)
Restored image using reflexive boundary conditions and DCT (B.5). (f) Restored image from
proposed non-circulant model (B.8).

(Figure B.3e) look very similar to the reconstructed images from the non-circulant model (Fig-
ure B.3f). This happens because the strong regularizer used to suppress noise over-smooths the
image and thus the reconstruction artifacts are smoothed out as well making the images look al-
most identical.

Table B.1 gives the quantitative results in terms ISNR for all experiments. In all cases, the ISNR
of reconstructions based on the non-circulant model are higher than that of the reconstructions
based on the purely circulant model without data pre-processing. In the case of reconstruction
with the circulant model and data preprocessing or with reflexive boundary conditions and DCT,
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we can see that for lower SNR, where stronger regularization is required, the smoothing of the
regularizer can suppress the ringing artifacts leading to reconstruction ISNR comparable to that
of the proposed non-circulant model reconstruction. However, in higher SNR regimes, where
less smoothing is required, the artifacts from the circulant model reconstruction become more
prominent and the non-circulant reconstruction shows significantly reconstruction quality.

Table B.1: ISNR in dB for all experiments. The * denotes reconstruction using the purely circulant
model with data pre-processing (B.4). For the case of motion blur the results for reflexive end
conditions are not presented since the method is not appropriate for non symmetric PSF.

Blur Type 9× 9 Unif. 15× 15 Unif. 15 Pix. Mot.

Reg. Type Non-Circ. Circ. Circ.* Refl. Non-Circ. Circ. Circ.* Refl. Non-Circ. Circ. Circ.* Refl.

Experiment 1: BSNR = 20 dB
Wavelet l1 3.7 -0.9 3.6 3.6 3.4 -2.7 3.3 3.4 4.1 -1.3 4.1 N/A

TVANISO 3.5 -1.2 3.4 3.4 3.7 -2.9 3.6 3.7 4.3 -1.5 4.3 N/A

TVISO 3.6 -1.4 3.6 3.4 4.0 -3.1 3.9 3.7 4.5 -1.7 4.4 N/A

Experiment 2: BSNR = 30 dB
Wavelet l1 5.7 -3.3 5.6 5.7 4.9 -5.3 4.7 4.8 7.1 -4.4 6.7 N/A

TVANISO 5.4 -3.5 5.4 5.4 5.1 -5.6 4.8 5.1 7.1 -4.6 6.7 N/A

TVISO 5.8 -3.7 5.7 5.4 5.4 -5.8 5.1 5.1 7.4 -4.8 6.8 N/A

Experiment 3: BSNR = 40 dB
Wavelet l1 8.6 -8.1 7.9 8.2 7.2 -12.8 6.4 7.1 11.6 -9.2 8.8 N/A

TVANISO 8.4 -8.4 7.5 7.9 7.2 -13.5 6.2 6.9 11.4 -10.2 8.1 N/A

TVISO 8.3 -8.6 7.3 7.9 7.4 -13.8 6.3 6.9 11.4 -10.6 7.7 N/A

Experiment 4: BSNR = 50 dB
Wavelet l1 11.8 -10.5 9.0 10.6 9.8 -15.0 6.4 9.3 15.7 -13.2 8.1 N/A

TVANISO 11.5 -10.4 8.3 10.1 9.7 -15.2 3.1 9.3 15.0 -13.5 6.6 N/A

TVISO 11.6 -10.6 8.2 10.1 9.9 -15.3 2.4 9.3 14.7 -13.8 5.8 N/A

Convergence Speed Comparison

For the convergence speed experiments we used the setting from Experiment 3 (i.e., 40 dB
BSNR, σ2 = 5.03× 10−6 with λ = 2−15) with 9× 9 uniform blur. We compared the convergence
speed of the following algorithms that were all implemented in Matlab.

• NCG-L with L line-search sub-iterations [59];

• ISTA [53];
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• MFISTA-M with M sub-iterations of the Chambolle-type algorithm [53, Eq. (6)–(7)];

• SALSA-N -M with N CG sub-iterations and M sub-iterations of [53, Eq. (6)–(7)];

• SB-N with N CG sub-iterations;

• SB-MIL-N with N CG sub-iterations;

• ADMM-P2 (proposed).

For these experiments we focused on algorithms that solve P1 in (B.11). Thus, methods that use ap-
proximations in the data-fit term, i.e., circulant reconstruction (with or without data pre-processing
(B.2) and (B.4)) and reflexive end conditions with DCT (B.5), were not included, since they would
obviously not converge to a solution of (B.11). NCG is an exception since the approximation
affects the regularization and not the data-fit term.

For NCG we chose the rounding parameter to be ε = 10−6, which yielded good convergence
speed without compromising too much the resulting solution. We also used L = 2, and 5 line-
search iterations. For MFISTA, we used M = 1, 4, 10, and 20 iterations of [53, Eq. (6)–(7)].
For SALSA we used N = 1, 4, and 10 CG iterations and M = 1, 4, 10, and 15 iterations of [53,
Eq. (6)–(7)]. Finally, for SB and SB-MIL we used N = 1, 4, and 10 CG iterations. The CG-
solvers inside SALSA and SB were terminated when ‖x(k+1)‖2

2/α
(k)‖d(k)‖2

2 < δ, where x(k+1) is
the new update, d(k) is the search direction vector, α(k) is the step size after the kth iteration, and δ
is a threshold chosen as δ = 10−6. For all AL-based algorithms we chose the parameters µ and ν
using the rules described in §B, with λ = 2−15, xmax = 1, and µ0 = 2−4.

All the experiments were conducted on a PC with a dual quad-core 2.6GHz Intel Xeon proces-
sor. Table B.2 shows the per-iteration time of each algorithm measured in milliseconds.

Since the goal of the restoration problem is to find a solution to the original problem P1, we
quantified the speed of convergence as the normalized l2 distance between the estimate at iteration
k (x(k)), and the limit x(∞) (that represents a solution of P1) given by

ξ(k) = 10 log10

(∥∥x(k) − x(∞)
∥∥2

2

‖x(∞)‖2
2

)
.

The limit x(∞) was obtained by running 105 iterations of MFISTA-20, since MFISTA converges to
a solution of P1 and also it would not give an unfair advantage to the proposed ADMM algorithm.
Since the computational load per-iteration of each algorithm varies, we evaluated ξ(k) as a function
of both iteration number and algorithm run-time. For all algorithms we used x(0) = A′T′y as the
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Table B.2: Outer iteration time of competing algorithms measured in milliseconds. L is the number
of line-search iterations, M is the number of Chambolle-type iterations and N is the number of
CG iterations.

TV Wavelet l1 norm

NCG 36 + 7L 95 + 15L

ISTA 34 159

MFISTA 17 + 19M 57 + 135M

SALSA 20 + 19M + 23N 22 + 135M + 24N

SB 39 + 31N 100 + 30N

SB-MIL 40 + 13N 102 + 14N

ADMM-P2 38 90

initial guess. Table B.3 shows the time and iteration number required from each algorithm to reach
a -50dB error ξ(k). The threshold of -50dB was chosen as a benchmark since below this point there
are practically no visual differences between the reconstructed image x(k) and the converged image
x(∞).

Table B.3: Time and iteration number required for every algorithm to reach -50dB error compared
to the converged image x(∞).

TV Wavelet l1
Time Iter. # Time Iter. #

NCG-5 56.1 298 155.6 1897

ISTA 559.1 15000 885.0 8000

MFISTA-1 18.1 355 46.8 323

MFISTA-4 44.1 407 161.8 367

SALSA-4-1 11.7 88 15.4 71

SALSA-4-4 13.6 71 29.6 60

SALSA-4-10 24.3 74 66.2 61

SB-4 12.5 82 21.9 103

SB-MIL-4 4.9 80 10.7 100

ADMM-P2 2.8 107 5.8 109

Figure B.4 shows the convergence rate ξ(k) in terms of iteration and run-time for experiments
involving TV and wavelet l1 norm regularizers. The AL based algorithms (SALSA, SB, SB-MIL
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(a) Convergence speed comparison for TV regularization
measured in terms of iteration number
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(b) Convergence speed comparison for TV regularization
measured in terms of run-time
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(c) Convergence speed comparison for wavelet l1 norm
regularization measured in terms of iteration number
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(d) Convergence speed comparison for wavelet l1 norm
regularization measured in terms of run-time

Figure B.4: Experiment 3: Algorithm convergence speed results with convergence measured in
terms of drop in NRMSE in dB, ξ(k), between the estimated image x̂ and the converged image
x(∞). Left column (a,c) is convergence per iteration, and right column (b,d) is convergence in
run-time. First row (a,b) is from TV regularizer, and second row (c,d) is from wavelet l1 norm
regularizer.

and ADMM-P2) converge significantly faster than the rest for all cases.
In terms of convergence rate per iteration, SALSA has a slight advantage over SB, SB-MIL

and ADMM-P2 when we use enough inner Chambolle-type iterations. However, since the inner
iterations can be computationally expensive, especially for the analysis l1 regularization with a
wavelet frame, its run-time is significantly higher. In terms of run-time, ADMM-P2 is the fastest

161



algorithm with a speed-up of about 2 times compared to the Split-Bregman-MIL algorithm, which
is the closest competitor.

Discussion

As seen in Figure B.1, image restoration with a circulant model can lead to severe image distor-
tion, when applied to data with realistic boundaries. The ringing artifacts due to the discontinuity
at the boundaries are not localized and even existing methods for data-preprocessing [2] either can-
not fully suppress these artifacts and/or may be applicably only in specific cases like symmetric
PSFs.

Our proposed method showed significant improvement of the restored images compared to the
standard method (that uses an unrealistic, purely circulant blur model), when applied to data with
more realistic boundaries. Our results reinforce the importance of using reconstruction models
that do not make any specific assumptions about boundary extension in the data, and also show
that the effects of model mismatch at the boundaries (although often ignored) can be severe in
terms of image quality degradation. In the case of reflexive boundary conditions the artifacts
can be significantly reduced, but the applicability of this method is only limited to symmetric
PSFs [1, 2], whereas our more general model based approach can handle efficiently any type of
PSF. In addition, the formulation of our model, even though similar to the one used in [2,57], leads
to a more elegant approach of the non-circulant reconstruction problem that does not require any
data pre-processing and estimation of the extrapolated image boundaries.

Our proposed ADMM-P2 algorithm, using an additional splitting variable, can efficiently han-
dle the additional complexity introduced by the masking operator without the need for costly CG
iterations for the inner sub-problems. The fact that our algorithm uses only non-iterative updates
enhances its efficiency even when compared to more sophisticated approaches like SB-MIL. In
addition the formulation is more straightforward compared to SB-MIL and allows for easier im-
plementation. The caveat of tuning one additional AL parameter can be easily alleviated by using
an empirical method like the one presented in §B. In conclusion, our ADMM-P2 algorithm, be-
ing specifically designed for non-circulant deblurring problems, exhibits improved performance
compared to existing state-of-the-art methods [52, 61, 64].
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