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ABSTRACT

Temporal Regularization Use in Dynamic Contrast-Enhanced MRI

by

Kimberly A. Khalsa

Chair: Jeffrey A. Fessler

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) studies de-

mand both high spatial and high temporal resolution. We need high spatial resolution

to accurately visualize tissue morphology, and we need high temporal resolution to

accurately follow the contrast kinetics of the tissue, which provide clinically impor-

tant physiological information. We can only acquire so many measurements per unit

time, however, and this limited data implies an inherent tradeoff between spatial

and temporal resolution in the reconstructed image sequence. Most existing methods

undersample the data and then employ some sort of data sharing technique in the

k-space domain to recover the ‘missing’ data points. These data sharing schemes are

based on an implicit assumption that the dynamic object varies smoothly in time.

We present an image reconstruction scheme based on an object domain model that

does not attempt any k-space data recovery, but rather explicitly uses the assumption

of temporal smoothness in the image domain to estimate the image sequence that best

fits the available data. Our proposed method is called Temporal Regularization Use

in Image Reconstruction (TRUIR), and is a penalized likelihood formulation that in-

cludes spatial and temporal regularization terms in addition to the data fidelity term.

This work presents our TRUIR formulation for both single coil and parallel imaging,

and explores various aspects of TRUIR reconstructed image sequences. We evalu-

ate the effect of the spatial and temporal regularization parameters on the resolution

properties of TRUIR reconstructed image sequences, and present our work toward es-

tablishing selection criteria for these parameters. In evaluating our proposed TRUIR

xiii



method, we focus on the application of DCE-MRI in the characterization and assess-

ment of breast cancer. Our simulation studies model contrast uptake in a dynamic

digital breast phantom. Results show that TRUIR reconstructions offer improved

temporal dynamics when compared to more traditional frame-by-frame reconstruc-

tions, as well as more accurate estimates of kinetic parameters, particularly when

TRUIR is used in conjunction with two new proposed k-space sampling trajectories,

which are also presented in this work. These new trajectories are also shown to be

more robust to regularization parameter choice. Further work is needed to improve

TRUIR’s spatial resolution.
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CHAPTER I

Overview

1.1 Motivation: Application to Breast Cancer

Breast cancer is increasingly prevalent in the United States and throughout the

world. It is the second leading cause of cancer deaths among women in the United

States (after lung cancer). Women have a 1 in 8 chance of being diagnosed with breast

cancer in their lifetime [2]. While regular screening using mammography greatly

increases the chances of early detection, and thus increases chances of survival, this

is not the end of the story for the role of medical imaging in breast cancer detection

and management.

Magnetic Resonance Imaging (MRI) is highly sensitive, and, unlike mammog-

raphy, its sensitivity is independent of breast density. It has been reported that

MRI is more sensitive than mammography for detecting tumor size and additional

lesions [3]. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is

being increasingly used for detection, diagnosis and treatment of breast cancer. In

DCE-MRI, a contrast agent is injected into the patient’s blood stream and we perform

a dynamic MRI scan of the patient as the contrast agent travels throughout the body.

The result is a series of MR images that represent the patient’s internal anatomy over

time, and which provide radiologists with clinically important information both in

terms of physical features and temporal behavior of the tissues.

Tumor morphology is an important factor in detection and diagnosis of breast

cancer [4–6]. There are a number of morphological indicators; for example, spiculated

margins are indicative of a malignant lesion, while smooth edges are indicative of a

benign one. Therefore, we want to have high spatial resolution in our MR images

to best examine the tissue morphology. In addition to morphological features, the

temporal behavior of a tumor in response to injection of a contrast agent is useful in

tumor evaluation. [1, 7, 8]. Slow, persistent enhancement is characteristic of benign
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lesions, while fast enhancement followed by washout is indicative of malignancy. To

accurately assess the temporal kinetics of the tissue, we want to have a series of MR

images with high temporal resolution, i.e., where the images are closely spaced in time.

To recap, high spatial resolution and high temporal resolution are both desirable for

detection, diagnosis, and evaluation of breast cancer. The challenges associated with

simultaneously achieving high spatial and temporal resolution are discussed briefly in

the next section and in more detail in Section 2.2.3.

The overall goal of this project is to develop, implement, and evaluate methods

for improving image quality in dynamic MR imaging. While our methods may have

several potential applications, we focus on areas related to breast cancer. In ad-

dition to detection and diagnosis, DCE-MRI is being investigated as a method of

early prediction of tumor response to neoadjuvant chemotherapy. Chemotherapy is

an intense and extremely physically taxing treatment, and unfortunately not all tu-

mors are responsive to it. Neoadjuvant chemotherapy refers to cases when a patient

undergoes chemotherapy prior to surgery in an attempt to shrink the tumor before

removal. Because some tumors are non-responsive, it is desirable to be able to pre-

dict a tumor’s response to chemotherapy before treatment is complete. We hope the

image sequences created using our proposed reconstruction technique will be able to

assist clinicians in evaluating a tumor’s initial response to chemotherapy, and thus

predict its response (or lack thereof) to an entire course of chemotherapy treatment.

For those patients whose tumors are determined to be non-responsive early in the

chemotherapy treatment, this mode of therapy could be discontinued. This would

save huge amounts to time, emotional strain, and physical distress for these patients,

as well as time and money for health care providers.

1.2 Tradeoff between Spatial and Temporal Resolution

If you have ever tried to take a picture at night, you are likely familiar with the

challenge of capturing a high quality image in a situations where the available data, or

measurements, are limited. In low light, there are fewer photons striking the camera’s

detector, meaning we have fewer incoming measurements representing the scene we

want to capture, and often the resulting pictures are of poor quality.

A common solution for taking pictures in low light is to use a longer exposure

time, which means that we leave the camera’s shutter open longer, allowing more total

photons to strike the detector. That is, we collect more measurements of the scene

by accepting incoming photons over a longer period of time, and more measurements

2



Figure 1.1: Night Photography. Two pictures of the same scene taken with different
exposure times. (Image courtesy of http://www.photoxels.com/tutorial-
night-photography.html)

of the scene results in improved image quality. Figure 1.1 shows an example of two

pictures of the same scene taken in low light with different shutter speeds. The picture

on the left uses a short exposure time of 0.25 seconds, which is clearly not long enough

to collect enough measurements for a good photograph. The picture on the right uses

a much longer exposure time of 3.0 seconds, during which time enough measurements

are recorded to create a clear, spatially resolved photograph.

Similar to night photography, the available data in MRI is also limited in that

we can only collect so many measurements per unit time, and this can result in poor

quality images. And, as with night photography, a common solution in MRI is to

collect data over a longer period of time. The increased number of measurements

enable us to reconstruct a higher quality image.

The focus of this dissertation is dynamic MRI, in which our goal is to create

image sequences that accurately represent a dynamic object as it changes in time.

Returning to the analogy of night photography, consider what happens if the scene is

changing while we are taking the picture. For example, what if a person walks across

the sidewalk in Figure 1.1 during the 3 seconds of exposure? Furthermore, what if

the person’s location at different times is a key element of what we want to capture

in our picture(s)? One option is to stick with the 3 second exposure, which will allow

collection of a sufficient number of measurements of the scene to create a spatially

resolved picture. The caveat, of course, is that the person is walking during those 3

seconds, and will appear as blurred version of himself in the picture. If we want to

3



determine the person’s location over those 3 seconds based on the photograph, we are

essentially limited to stating that during those 3 seconds, he was somewhere within

the area of the blurred representation of himself.

In our attempt to accurately capture this dynamic scene, another option is to

reduce the length of exposure. This means that we are collecting measurements over

a shorter period of time, which will have the positive effect of reducing the blur of the

walker in the resulting photograph. However, using fewer measurements also reduces

the spatial resolution of the photographic image, as we saw in Figure 1.1.

We can think about our predicament thus: we are collecting measurements of the

scene over some length of time, and each individual measurement reflects the scene

at the precise time at which it was collected. In grouping the measurements col-

lected over the full 3 second exposure to create a single photograph, we are implicitly

assuming that all of the combined measurements represent the same scene, and we

consider the resulting photographic image to be an accurate representation of the

scene over those 3 seconds. Now that a person is walking across the sidewalk, that

scene is different at different points in time during data collection, and the resulting

photograph is not a completely accurate representation of the scene, but rather some

sort of time averaged approximation of the scene during those 3 seconds.

Because we have limited measurements of a dynamic scene, there is an inherent

tradeoff between choosing to group measurements over a larger range of time (i.e.

use a long exposure), which will yield photos with high spatial quality (except for the

dynamic features), or choosing to group measurements over a smaller time range (i.e.

use a shorter exposure), which will result in photos with more accurate representation

of the dynamic features, but poorer spatial quality.

This is essentially the same tradeoff we are faced with in dynamic MRI. We want

to create a series of magnetic resonance images over time that has good spatial res-

olution, and that also accurately represents the dynamic features of the object being

imaged. And, like with night photography, we can collect only a limited number

of measurements per unit time. Using large groups of measurements to reconstruct

each image frame results in a dynamic image sequence with high spatial resolution,

but poor temporal resolution. Using small groups of measurements to reconstruct

each image frame results in a sequence of images with high temporal resolution, but

poor spatial resolution. This is the classic spatial vs temporal resolution tradeoff of

dynamic MRI.

This thesis proposes a new approach to dynamic MR image reconstruction, which

attempts to alleviate this tradeoff. Our reconstruction formulation combines infor-
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mation provided by the (limited) measured data with a priori information about the

dynamic object under study in determining the reconstructed image sequence. We ex-

plore various properties of our proposed method, and present results from simulation

studies.

1.3 Contributions of this Thesis

The overall goal of this project is to develop, implement, and evaluate methods

for improving image quality in dynamic MR imaging. We focus specifically on dy-

namic contrast-enhanced (DCE) imaging of breast cancer patients. The fundamental

challenge in dynamic MRI is the tradeoff between spatial resolution and temporal

resolution. In addressing this problem, dynamic acquisition methods usually collect

undersampled dynamic data, and most traditional reconstruction methods have been

based on operations in the data domain, implicitly assuming that the object varies

smoothly in time. We present a reconstruction approach that instead uses explicit

temporal models in object space. We use iterative methods to fit these models to the

measured data using regularized estimators without attempting to synthesize any of

the ‘missing’ data.

The main contributions of this work are:

• An image-domain based reconstruction method for dynamic MRI with a pe-

nalized likelihood formulation that includes explicit temporal regularization in

object space. We refer to our method as Temporal Regularization Use in Image

Reconstruction (TRUIR).

• Acceleration of TRUIR via exploitation of Toeplitz matrices in our reconstruc-

tion process.

• Extension of the TRUIR algorithm to incorporate parallel imaging techniques.

• Presentation of two new phase encode sampling trajectories that are similar to

a current clinical sampling scheme, but offer significantly more flexibility for

reconstructing at higher frame rates.

• Evaluation of the spatial and temporal resolution properties of our system, and

their dependence on chosen regularization parameters.

• An accelerated method of computing the local impulse response of our system

for the single-coil case, which is an important tool in resolution analysis.
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• Improved enhancement curves and kinetic parameter estimates from image se-

quences reconstructed using TRUIR.

1.4 Outline of the Thesis

This thesis first presents an introduction to dynamic contrast-enhanced magnetic

resonance imaging in Chapter II, including its application to breast imaging, its limi-

tations, and discussion of existing reconstruction methods. In Chapter III we present

our proposed TRUIR reconstruction approach in detail. We present one existing and

two new phase encode sampling schemes in Chapter IV, which we use in conjunction

with TRUIR. The challenge of choosing appropriate spatial and temporal regulariza-

tion parameters is discussed in detail in Chapter V, along with a proposed selection

method based on resolution analysis. Chapter VI gives a detailed presentation of

three common kinetic parameters used to quantify the temporal behavior of tissues

in DCE-MRI, and discusses the relationship of these parameters to the underlying

tissue physiology. Here we also provide the mathematical models used to represent

this relationship, and establish how to derive kinetic parameters from a reconstructed

dynamic image sequence. Our simulation study incorporating our proposed TRUIR

reconstruction method with phase encode sampling strategies, regularization param-

eter selection, and kinetic parameter estimation is presented in Chapter VII. Chap-

ter VIII concludes the thesis and discusses possible areas for future work.
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CHAPTER II

Introduction to Dynamic Contrast-Enhanced MRI

2.1 MR Basics

2.1.1 Nuclear Magnetic Resonance

Magnetic Resonance Imaging is based on a phenomenon called nuclear magnetic

resonance (NMR) exhibited by the nucleus of certain atoms. The nuclei of atoms with

an odd number of protons and/or neutrons, such as 1H, 13C and 19F, have an intrinsic

angular momentum that produces a small magnetic moment. Often visualized as tiny

spinning charged spheres, these nuclei are commonly referred to as “spins” throughout

MR literature [9, 10].

In the presence of an external magnetic field B0, these spins can be excited out

of equilibrium by a second applied magnetic field B1, that is tuned to the resonant

frequency of the spins. As they relax back to equilibrium, the spins will precess

around the the axis of the main field B0 at a rate proportional to the strength of that

magnetic field. The rate of precession is called the Larmor Frequency, and depends

on both the type of excited nucleus and the strength of the magnetic field experienced

by the nucleus. This relationship is described by

ω = γB, (2.1)

where ω is the frequency of precession, γ is the gyromagnetic ratio of the nucleus in

question, and B is the magnetic field experienced by the nucleus. In MRI of humans,

we are mostly interested in the behavior of the hydrogen nucleus (γ = γ
2π

= 42.58

MHz/T), since the human body contains an abundance of them (we’re mostly water).

Precessing spins induce current in a nearby receiver coil, and we measure this current

to determine a spin’s frequency of precession, or equivalently, the strength of the

magnetic field acting on the spin.
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After excitation, spins eventually relax back to equilibrium. The return to equi-

librium is governed by the spin-lattice time constant, T1, and the spin-spin time

constant, T2. T1 characterizes the recovery of the longitudinal component of the

magnetization, and is determined by interactions of spins with the surrounding lat-

tice. T2 defines the decay of the transverse component of the magnetization, and is

determined by interactions of spins with other spins. Different tissues exhibit different

inherent relaxation rates, and these differences are often exploited in MRI acquisitions

to produce images with high contrast between certain tissues.

The phenomenon of nuclear magnetic resonance was discovered by physicists long

before the advent of Magnetic Resonance Imaging in the 1970’s. However it wasn’t

until 1973 that Paul Lauterbur and Peter Mansfield figured out how to take advantage

of this naturally occurring physical phenomenon to create an image of an object

[11, 12]. They each proposed the application of a third, spatially-varying magnetic

field, G, over the object, in the same direction as the main magnetic field B0. Because

these additional magnetic fields vary in space (and time), they are called gradient

magnetic fields.

Use of additional gradient fields enables spatial encoding of the object (and hence

creation of an image of the object), because the location of a spin can be deduced from

its rate of precession, and that rate of precession is determined by the strength of the

known spatially-varying magnetic field. This concept of spatial encoding via gradient

magnetic fields, which Lauterbur initially proposed be called zeugmatography, is the

essence of what we now know as Magnetic Resonance Imaging. In 2003, Lauterbur

and Mansfield were awarded the Nobel Prize in Medicine for its discovery.

2.1.2 K-space

We know that a spin will precess at a rate proportional to the magnetic field it

experiences, as expressed in Eq. (2.1). When we use gradient fields to vary the rate

of precession, a spin at spatial location (x, y) accumulates phase according to

φ(x, y, t) = γ

∫ t

0

B(x, y, τ), dτ, (2.2)

where

B(x, y, t) = B0 + Gx(t)x + Gy(t)y, (2.3)
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and Gx(t) and Gy(t) represent the time-varying gradients applied in the x and y

direction, respectively, and have units of T/m. If we let

kx(t) =
γ

2π

∫ t

0

Gx(τ)dτ, (2.4)

ky(t) =
γ

2π

∫ t

0

Gy(τ)dτ, (2.5)

and combine with Eqs. (2.2) and (2.3), we can rewrite the accumulated phase for a

spin at location (x, y) as,

φ(x, y, t) = ω0 + 2πkx(t)x + 2πky(t)y (2.6)

[10]. From their definition, we see that kx(t) and ky(t) have units 1/distance. The

pair (kx(t), ky(t)) represent a single point in the (2D) spatial frequency domain, which

in MRI we call k-space. We vary the gradients over time to traverse different points

in k-space, but it is important to remember that any particular instance in time

corresponds to a single k-space location.

To gain a better understanding of the meaning of kx and ky and their meaning as

spatial frequencies, we can examine how the 2π periodicity of phase relates spins at

different spatial locations. For simplicity, we let Gy(t) = 0, i.e., apply no gradient in

the y-direction, and evaluate the problem in 1D. We know that spins at two locations

x1 and x2 will have the same phase at time t if

φ(x2, t) = φ(x1, t) + 2πN, (2.7)

where N is any integer. If we want to find the two closest points x1 and x2 that have

the same phase, i.e., we want to know the spatial period of the phase, we let N = 1.

Combining the phase relationship in Eq. (2.7) and the expression of phase in terms

of kx(t) from Eq. (2.6), we can figure out the spatial distance between x1 and x2:

φ(x2, t) = φ(x1, t) + 2π

ω0 + 2πkx(t)x2 = ω0 + 2π(kx(t)x1 + 1)

kx(t)x2 = kx(t)(x1 + 1/kx(t))

x2 = x1 +
1

kx(t)
.

We now clearly see that at time t, the phase is periodic in the x direction with spatial
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period 1/kx(t), and and therefore kx(t) is the spatial frequency in x at time t. Similar

analysis holds for ky(t), which is the spatial frequency in y at time t.

2.1.3 Signal Equation

In MRI we use one or more receiver coils to collect data. The object contains

a multitude of precessing spins, each one of which contributes to an induced time

varying current in the receiver coil that we measure. This leads us to the basic signal

equation for MRI, which relates the object of interest to the received signal in the

coil.

For simplicity, we first present the signal equation for MR imaging that uses a

single receiver coil, which was standard practice for the first 2̃0 years of MRI. Parallel

imaging, which uses multiple receiver coils, is discussed in Section 2.2.4.

Each individual spin over the entire object contributes to the received signal. A

spin at location ~r has accumulated a spatially dependent phase at time t according

to the applied gradient fields. The signal received by the coil at time t is a sum of the

signals produced by all spins throughout the object and therefore is represented as an

integral over space. Ignoring relaxation and field inhomogeneity, the signal equation

for a MR system with a single receiver coil is given by

s(t) =

∫

f(~r, t)e−iφ(~r,t)d~r

=

∫

f(~r, t)e−i2π(~k(t)·~r)d~r, (2.8)

where s(t) is the signal received by the coil at time t, f(~r, t) is the magnetization of

the object at location ~r at time t, and ~k(t) = [kx(t), ky(t)] is the k-space location at

time t, which is a function of the applied magnetic field gradients.

To recover an image that is an estimate of the true magnetization of the object, the

relationship in Eq. (2.8) suggests a Fourier relationship between the object, f(~r, t),

and the received signal, s(t). Indeed, taking an inverse Fast Fourier Transform (IFFT)

of the k-space data is the traditional image reconstruction method used in MRI.

Figure 2.1 shows an object in the image or spatial domain, and the object’s equivalent

representation in the spatial frequency domain, or k-space.
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Figure 2.1: Representation of an object in object space and in k-space. Left: object
represented in the spatial/image domain, Right: the object’s representa-
tion in k-space or the spatial frequency domain.

2.2 Dynamic Contrast-Enhanced MRI

We are interested in dynamic MRI, in which we acquire a series of images over

time. The added temporal component can provide additional important information

for a variety of applications. As discussed in Section 1.1, our application of interest

is the use of dynamic MRI in the study of breast cancer. In most dynamic MRI

studies of the breast, a contrast agent is injected into the patient’s bloodstream,

because the presence of the contrast agent improves the resulting image sequence.

Hence, this method of imaging is called dynamic contrast-enhanced MRI (DCE-MRI).

The most prevalent contrast agent in DCE-MRI studies of the breast is gadolinium

diethylenetriaminepentaacetic acid (Gd-DTPA).

2.2.1 Contrast Agents

Contrast agents (CA) have a T1 shortening affect, which means that tissues where

contrast agent is present will exhibit a shorter apparent T1 than their inherent T1

value, and the longitudinal component of the spins located in those areas will recover

faster than they would in the absence of contrast agent [9, 10, 13]. In a steady-state

gradient echo sequence, an RF pulse is applied at regular intervals and faster recovery

of the longitudinal magnetization during each interval (due to T1 shortening) results

in larger transverse magnetization after the next excitation. This increased transverse

magnetization results in the receiver coils picking up a stronger signal from the spins

in those areas, which in turn translates to higher intensity in the reconstructed images.

The degree of T1 shortening is proportional to the concentration of the contrast agent

present in the tissue, and also depends on the contrast agent of choice as well as
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magnetic field strength. The details of this relationship are discussed in Chapter VI.

Factors affecting CA concentration in a tissue include blood flow and permeability of

the tissue [14, 15].

For any cell to grow and divide, it must have sufficient blood supply to deliver

the nutrients needed for cell survival and growth. Tumor cells grow and divide more

rapidly than healthy tissue cells, and thus require even higher blood flow and nutrient

supply. To ensure this increased supply of blood, many tumor cells produce proteins

that promote angiogenesis (growth of new blood vessels) and vascular permeability.

This same mechanism that promotes rapid tumor growth also results in faster delivery

of an injected contrast agent to tumor tissue, and so we often see higher concentration

of contrast agent in tumor tissue compared to healthy tissue [15].

2.2.2 DCE-MRI of the Breast

While x-ray mammography is still the standard method used for breast cancer

detection and diagnosis, DCE-MRI of the breast offers some important advantages

over mammography. Mammographic images are two-dimensional projections of the

three-dimensional object, and therefore offer less overall resolution than MR images,

which are generally a collection of 2D profiles of the 3D object. MRI also offers better

soft-tissue contrast than mammography, and has been shown to be better at detection

of multi-focal, multi-centric cancer in dense breasts, compared to mammography [3].

DCE-MRI can also provide a measure of vascularity, due to the behavior of the

contrast agent in the body and its affect on the dynamic image sequence [16].

Tumor morphology is an important indicator in breast cancer evaluation, as is

the dynamic behavior of a tumor in the presence of contrast agent. In 1999, Kuhl

et al. established the importance of a tumor’s time-course in lesion diagnosis [1].

They classified tumors into 3 types, according to their enhancement behavior (see

Figure. 2.2). They found that rapid enhancement followed by washout (Type III) was

a strong indicator for malignancy, while tumors that exhibited steady enhancement

over time (Type Ia and Ib) were more likely to be benign. Several additional DCE-

MRI studies have focused on diagnostic characteristics of breast cancer, in terms of

both architectural features and dynamic features, and have found that both types

of features are useful in lesion classification [17–20]. This finding underscores our

need for image sequences with both high spatial resolution (for accurate evaluation

of architectural features), and high temporal resolution (for accurate evaluation of

dynamic features).

Three standard parameters have emerged to quantify the dynamic behavior of
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Figure 2.2: Kuhl et al.’s time intensity curves from [1]. Kuhl et al. characterized
tumors according to 3 types of enhancement. Types Ia and Ib represent
persistent enhancement, Type II plateaus after initial enhancement, and
Type III exhibits washout after initial enhancement.
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tissue in DCE-MRI [14]. These parameters are the transfer constant, Ktrans, the rate

constant, kep, and the volume of extravascular extracellular space (EES) per unit

volume of tissue, ve. These origin and meaning of these parameters are discussed in

detail in Chapter VI.

A major area of focus in the DCE-MRI research community has been investigat-

ing the use of these kinetic parameters in the breast cancer diagnosis and evalua-

tion [21, 22], as well as their utility in predicting and evaluating patients’ response

to treatment. The patients in treatment response studies are undergoing chemother-

apy prior to surgery, with the aim of decreasing the tumor size and better surgi-

cal outcome. However, not all patients respond well to neoadjuvant chemotherapy,

meaning the size and extent of the tumor are not significantly decreased by the treat-

ment. Thus, a method of early prediction of treatment response is desirable, so

non-responders can be identified early and their treatment course altered. Several

studies have focused on evaluating the use of kinetic parameters in early prediction of

a patient’s response to neoadjuvant chemotherapy. [23–26]. In these studies, several

DCE-MRIs are acquired from each patient: one baseline scan is performed before

treatment begins, a second scan is performed early during the treatment (typically

after 1 cycle of chemotherapy), and often further scans are performed at later points

during and/or after treatment.

The results of these studies have been mixed. Pickles et al. found that eventual

responders had significantly higher Ktrans in a lesion “hot spot” during the initial

scan than non-responders, and responders also showed a significant decrease in both

Ktrans and kep between the pre-treatment scan and early treatment scan. They also

found a significant difference in the ve of responders vs non-responders in the early

treatment scan [23]. Meanwhile, a similar study by Thukral et al. found that none

of the parameters were good predictors of treatment response after a single cycle

of chemotherapy [25]. Studies of the use of MRI for response prediction continue,

including one here at the University of Michigan.

The goal of this work is to provide dynamic contrast-enhanced MR image se-

quences that are more accurate than those currently available, thereby enabling better

accuracy in the clinical assessments that are based on these images.

2.2.3 Limitations in Dynamic MRI

The classic trade-off in dynamic magnetic resonance imaging is between spatial

resolution and temporal resolution. For an MR image to have high spatial resolution,

one must collect many measurements in the data domain, called k-space. These
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measurements are then used in a reconstruction algorithm to create an image. As

discussed in Section 2.1.2, acquiring each k-space measurement takes a finite amount

of time. Thus acquiring enough measurements to create an image or volume with

acceptable spatial resolution is far from instantaneous.

We want our dynamic image sequence to have both high spatial resolution and

high temporal resolution. The ideal sequence would be comprised of a series of high

spatial resolution images that are closely spaced in time. That is, a sequence in

which each image frame represents the object at a time shortly after the previous

frame. We would like to be able to increase the frame rate as high as we want,

while maintaining high quality images at each frame. Fixing the frame rate, however,

means that we only have time to collect so many measurements for each frame. This,

in turn, means that the images produced from these measurements using traditional

inverse FFT reconstruction methods will suffer in spatial resolution. Therefore, the

physical limitations of the system combined with traditional reconstruction methods

will not allow us to simultaneously achieve both high spatial resolution and high

temporal resolution. To address this, many alternative sampling and reconstruction

approaches have been proposed. These methods are discussed in Section 2.3.

2.2.4 Parallel Imaging

Traditional MRI uses a single coil to transmit and receive the signal. In the past

decade the idea of using multiple receiver coils has been introduced and the practice of

multi-coil imaging is now widespread [27–32]. The method of using multiple receiver

coils is known as parallel imaging, because each of the coils is receiving signal from

the object at the same time, i.e., in parallel. Because the coils in multi-coil arrays are

distributed in space around the object, each coil has non-uniform spatial sensitivity

to spins generated throughout the object. A coil positioned near the left of the object

will be more sensitive to spins emanating from the left side of the object than those

originating from the right side. Thus, each coil in a multi-coil array has its own spatial

sensitivity pattern or profile, also known as a sensitivity map.

The measurements from an individual coil in a multi-coil array are a product of

the true signal from the object and the spatial sensitivity of that particular coil. Us-

ing sl(t) to denote the signal received by the l-th coil and cl(~r) to denote the spatial

sensitivity of the l-th coil, the signal equation becomes

sl(t) =

∫

f(~r, t)cl(~r) exp(−i2π(~k(t) · ~r)d~r. (2.9)
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When the sensitivity maps are known, we have an added dimension of information

for the reconstruction problem. This allows us to reconstruct images from fewer

measurements, thereby decreasing the required acquisition time. The need for speed

in dynamic imaging applications means that most current MR imaging approaches

utilize parallel imaging, although its use is certainly not limited to the dynamic case.

Sensitivity Encoding (SENSE) is one popular method for reconstructing images

from multiple coils [28]. The SENSE method (for Cartesian sampling) calls for un-

dersampling in the phase encode direction. With standard reconstruction, increasing

the sample spacing in k-space (via undersampling) would result in a reduced Field of

View (FOV) in image space and the resulting image would be folded over onto itself.

The SENSE reconstruction method uses the known sensitivity maps to derive an un-

folding matrix, which is then incorporated into the reconstruction process, resulting

in an unaliased final image.

2.3 Existing Reconstruction Methods

A variety of methods have been developed to address the space-time resolution

tradeoff in MRI. Many existing methods rely on k-space interpolation or other k-space

operations, an approach referred to as k-space data sharing. When sharing k-space

data between time frames, one is implicitly using the assumption that the object varies

slowly in time. The Keyhole was one of the first such methods, and exemplifies this

type of data sharing [33, 34]. In a Keyhole acquisition, one acquires a fully sampled

reference frame before the dynamic portion of the study begins. Sometimes a second

fully sampled reference frame is acquired after completion of the dynamic acquisition.

During the dynamic portion of the study, one collects only a subset of the desired

samples for each frame, so as to achieve a faster frame rate (i.e., higher temporal

resolution). To reconstruct these undersampled frames, one uses the data from the

fully sampled reference frame to first fill in the missing data from the undersampled

dynamic frames. The complete image sequence is then reconstructed, frame-by-frame,

by taking the inverse FFT of the now “complete” data for each time frame.

Since the introduction of Keyhole imaging, many adaptations and improvements

have been made to data sharing techniques. A plethora of methods have been de-

veloped for improved recovery of the missing data points. These range from using

a simple sliding window over a set of fully sampled data frames to increase tempo-

ral resolution, to more sophisticated methods of determining the values assigned to

missing k-space locations [30, 35–41].
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Figure 2.3: Traditional Keyhole reconstruction.

Another method proposed for dynamic reconstruction is reduced-encoding imag-

ing by generalized-series reconstruction (RIGR) [42–44]. RIGR also fills in missing

data for each frame, but is not considered a data sharing method because much of the

analysis occurs in the image domain. RIGR recovers the missing samples in under-

sampled dynamic frames using a generalized series model, where the basis functions

are based on the fully sampled reference image(s). While the RIGR method promises

better data consistency than Keyhole, the final step of both methods is the same:

apply an inverse FFT to each frame of the imputed k-space data set. In fact, this is

the final reconstruction step for all data sharing reconstruction methods. We say this

to emphasize the major difference between many existing reconstruction techniques

and our proposed reconstruction method. While data sharing techniques propose to

recover the missing information in the data domain, we propose to use object-based

models to recover the desired information in the image domain.

Another approach to the dynamic imaging problem is Partial Fourier imaging.

Partial Fourier imaging with homodyne reconstruction was first proposed to reduce

the acquisition time in static MRI, and pre-dates the Keyhole method by several

years [45]. Partial Fourier imaging and associated reconstruction methods exploit

k-space symmetry, allowing us to reconstruct an image from just over half of the

prescribed k-space sample locations, thereby reducing the required scan time by al-

most half [46]. As with many data sharing methods, Partial Fourier imaging can

be combined with parallel imaging [47, 48]. As a means of comparison, we imple-

mented the method of King and Angelos [47], which we will refer to as Homodyne +

SENSE (HS) reconstruction. In Chapters V-VI, we compare results from our TRUIR

reconstruction to results from HS reconstruction.

Another approach to dealing with the tradeoff between spatial and temporal res-

olution is to examine the problem in a combined spatiotemporal domain. Krishnan

and Chenevert developed a spatio-temporal bandwidth based method (STBB) based
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on maximizing the energy captured by the acquired samples, for a given class of ob-

jects [49, 50]. Methods such as k-t BLAST and k-t SENSE are based on analyzing

spatiotemporal correlations in the dynamic imaging sequence [51–54]. These methods

rely on temporal periodicity of the dynamic object and are therefore well suited for

dynamic cardiac imaging, but ill suited for DCE-MRI.

While a majority of existing dynamic MRI reconstruction methods are based in

the data domain, there are some, such as RIGR, that include image domain models.

Block et al. uses an image domain based formulation in [55], and Chen et al. explores

the use of Projection onto Convex Sets for reconstruction of DCE-MR images with a

temporal total variation constraint in the image domain [56].

Our proposed TRUIR method is based in the image domain and uses only the

measured data, undersampled as it may be, in reconstruction. Instead of data sharing,

TRUIR explicitly enforces our assumption that the object varies smoothly in time by

using an image-domain temporal regularizer.
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CHAPTER III

TRUIR: Temporal Regularization Use In

Reconstruction

3.1 Measurement Model

Before we can present our proposed TRUIR reconstruction method, it is important

to establish the measurement model that we use.

In Chapter II we discussed the MRI signal equation that relates the object to the

signal we receive from the MR system. Sections 3.1.1 and 3.1.2 describe how we get

from the signal equation to the matrix-vector form of the measurement model that is

used throughout this thesis. For simplicity, we first describe the measurement model

for the case of a static object and a single receiver coil, and then expand on the model

to incorporate dynamic objects and multiple coils.

3.1.1 Static MRI

Ignoring relaxation and field inhomogeneity, the signal equation for a MR system

with a single receiver coil and a static object becomes

s(t) =

∫

f(~r) exp(−i2π(~k(t) · ~r)d~r, (3.1)

where s(t) is the signal received by the coil at time t, f(~r) is the magnetization of

the object at location ~r, and ~k(t) is the k-space sample location at time t, which is a

function of the applied magnetic field gradients [10].

In MRI, the measurements yi are noisy samples of the received signal,

yi = s(ti) + εi, (3.2)
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where εi is random white Gaussian noise. The combination of Eqs. (3.1) and (3.2)

form a continuous to discrete mapping of the object to the MR measurements. Recon-

structing the continuous object from our discrete measurements is quite an ill-posed

problem; there are infinitely many continuous objects, f(~r), that would perfectly

match our N discrete samples.

We want to establish a discrete to discrete model to make the reconstruction prob-

lem more tractable. One approach is to create a discrete estimate of the continuous

space object by parameterizing it using a discrete number of spatial basis functions.

A nice presentation of this approach is given in [57], and we use the same approach,

which is outlined below.

The continuous object f(~r) is parameterized using np basis functions,

f(~r, tm) ≈

np
∑

j=1

xjps(~r − ~rj), (3.3)

where ps(~r) are the spatial basis functions. Because each image is displayed using

pixels, a natural choice for the spatial basis functions is ps(~r) = rect(~r), with np

representing the number of pixels in the reconstructed image. With this formulation,

the reconstruction problem can be reduced to estimating the coefficients, xj , of the

spatial basis functions.

Plugging this discrete object estimate into the signal equation (3.1), we get

s(t) ≈

∫ np
∑

j=1

xjps(~r − ~rj) exp(−i2π(~k(t) · ~r))d~r

≈

np
∑

j=1

xj

∫

ps(~r − ~rj) exp(−i2π(~k(t) · ~r))d~r

≈ P (~ν)

np
∑

j=1

xj exp(−i2π(~k(t) · ~rj)), (3.4)

where P (~ν) is the Fourier Transform of ps(~r).

Combining Eq. (3.4) with (3.2), we now have a discrete to discrete form of our

measurement model:

yi = P (~νi)

np
∑

j=1

xje
−i2π(~νi·~rj) + εi,

where ~νi = ~k(ti) and εi is random white Gaussian noise. We stack our nd measure-

ments collected during the scan and establish the matrix vector form of the measure-
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ment model:

y = Ax + ε,

where

y =









y1

...

ynd









, A =









P (~ν1) exp(−i2π(~ν1 · ~r1) . . . P (~ν1) exp(−i2π(~ν1 · ~rnp
)

...
. . .

...

P (~νnd
) exp(−i2π(~νnd

· ~r1) . . . P (~νnd
) exp(−i2π(~νnd

) · ~rnp
)









,

with x and ε stacked similarly to y. So our system matrix A is an nd x np matrix

with elements aij = P (~νi) exp(−i2π~νi · ~rj).

3.1.2 Dynamic MRI

In dynamic MRI, the measured data is a collection of M scans y1, . . . , yM , where

ym = (ym1, . . . , ym,Nm
) and Nm denotes the number of k-space samples acquired for

the mth scan. To create a discrete representation a dynamic object f(~r, t) we add a

temporal basis function, pt(tm), to Eq. (3.3). We parameterize the dynamic object

f(~r, tm) during the mth scan as:

f(~r, tm) ≈

np
∑

j=1

M
∑

l=1

xljps(~r − ~rj)pt(tm − τl). (3.5)

In this work, we use rect functions as our temporal basis functions, i.e., pt(t) =

rect( t
∆t

). This choice simplifies some of our analysis, although other basis functions

may eventually prove more suitable for modeling the temporal component.

We must also make some notes regarding the temporal argument in Eq. (3.5),

tm. This argument refers to the time point we associate with the mth frame in our

reconstructed image sequence. Although we assign a single time point tm to the mth

reconstructed frame, acquisition of the data used to reconstruct that frame does not

happen instantaneously, and the dynamic object is certainly changing during that

finite acquisition time. Therefore, there is some model mismatch in our measurement

model for dynamic imaging.

Because the predominant noise in MRI is white Gaussian, the measurement model

for the mth frame becomes

E[ym] = Amxm

[Am]ij = P (~νm,i)e
−i2π~νm,i·~rj ,
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where ym are the measurements collected during the mth frame, Am is the system

matrix associated with that frame, and xm is the object at frame m. Note that

because we are using a rect basis function in time, each ym is modeled as a function

of the object at a single frame time, tm. Stacking the data for all M time frames, we

can write the measurement model for the entire dynamic sequence as

E[y] = Ax,

y =









y1
...

yM









, A =















A1 0 . . . 0

0 A2 0
...

... 0
. . . 0

0 . . . 0 AM















,

with x stacked similarly to y.

For complex Gaussian measurements, the negative log-likelihood is

L(x) =
1

2
‖y − Ax‖2,

assuming σ2 = 1. Estimating x = (x1, . . . , xM)T by minimizing the negative log-

likelihood would be equivalent to reconstructing each scan independently. However,

because each ym is undersampled in general, the ML estimator would be poorly condi-

tioned and the reconstructions would have low spatial resolution. Instead, we propose

the TRUIR cost function, which includes penalty terms that better condition the re-

construction problem, and encourage spatial regularity and temporal smoothness.

3.2 TRUIR Cost Function

Our proposed reconstruction method is called Temporal Regularization Use in

Reconstruction (TRUIR). Our reconstruction is the dynamic image sequence, x̂, that

is the minimizer of our cost function, Ψ(x):

x̂ = argmin
x

Ψ(x),

Ψ(x) =
1

2
‖y − Ax‖2 + αRt(x) + βRs(x). (3.6)

The first term in the cost function is the data fidelity term, which ensures that the

image estimate is consistent with the measurements and the system model. The sec-

ond and third terms in the cost function are the temporal and spatial regularizers,
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Figure 3.1: Illustration of the effect of TRUIR’s spatial and temporal regularization.
The temporal regularization term in Eq. (3.6) penalizes differences be-
tween pixels at the same spatial location in adjacent frames.

respectively. We use these terms to incorporate our a priori knowledge about the

object, namely that there is a certain smoothness expected in both space and time.

The regularization parameters α and β determine the relative weighting of the tem-

poral and spatial regularization terms. We use a quadratic penalty in both time and

space, with

Rt(x) =
1

2
‖Ctx‖

2

Rs(x) =
1

2
‖Csx‖

2 =

M
∑

m=1

1

2
‖Cs0xm‖

2,

where Cs0 is a spatial differencing matrix that compares neighboring pixels within an

image frame and Cs
△

= IM ⊗ C′

s0Cs0. The temporal differencing matrix Ct compares

pixels at the same spatial location in adjacent time frames, as illustrated in Figure 3.1.

A first-order temporal penalty function looks like

Rt(x) =

M
∑

m=2

1

2
‖xm − xm−1‖

2,

and higher order penalty functions may also be reasonable. We currently use a

quadratic penalty in space, but certainly think that using edge preserving penalties

in space, such as total variation, will be worth examining in the future.

Letting R(x) = αRt(x) +βRs(x), we can write the minimizer of our TRUIR cost

function as

x̂ = [A′A + R]−1A′y,

where R is the Hessian of R(x). We use the conjugate gradient (CG) algorithm to

compute this estimate.
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Figure 3.2: Enhancement curve used in simulations. True curve (solid) and recon-
structions.

3.3 Preliminary Simulation Results

As a first validation step, we performed simulations using a digital phantom in

which we generated k-space data and reconstructed an image sequence using our

method as well as some existing methods. The digital phantom was comprised of

a real, bilateral breast image with an inserted (simulated) circular lesion. The le-

sion exhibited enhancement according to the curve in Fig. 3.2, while the rest of the

image remained static. We generated k-space data for one fully-sampled reference

frame, prior to contrast agent injection/enhancement, and eight subsequent under-

sampled dynamic frames. The undersampled frames were sampled using a rotating

blade trajectory. Each blade contains 1/16 the samples of the fully sampled frame

and is centered in k-space. Essentially, we alternated the phase encode and read-

out directions for each dynamic frame. The k-space sampling trajectory is shown in

Figure 3.3). For these initial simulations, we did not use multi-coil data, but rather

simulated data for a single coil. We reconstructed the data using the methods of

simple zero-padding, Keyhole, and RIGR, and compared to reconstructions using

TRUIR.
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Figure 3.3: K-space trajectory used in simulations.

Because we used a digital phantom, we can compare the spatial resolution and

temporal resolution of our reconstructed image sequences to the known true image

sequence. For our TRUIR approach, the reconstructions are highly dependent on the

choice of the temporal and spatial regularization parameters, α and β. The choice of

these parameters is discussed in detail in Chapter V. For the results presented here,

α is 214 and β is 24.

The true enhancement curve, which reflects temporal resolution for the true ob-

ject, along with enhancement curves from various reconstructions are shown in Fig-

ure 3.2. The values for the tumor intensity were determined by averaging the pixel

values for a region within the lesion boundaries. The TRUIR reconstruction achieves

an enhancement curve much closer to the true enhancement curve than the other

methods.

As a quantitative measure, we computed the normalized root mean square error

(NRMSE) for each frame of the reconstructed sequences over the entire image, as well

as within a region of interest (ROI) surrounding the lesion. The error over the object

at each frame is shown in Figure 3.4. The error of the zero-padded reconstruction

is huge, as expected, due to the severe undersampling of the dynamic frames. The

error in the Keyhole and RIGR methods is significantly smaller, although both are

outperformed by our iterative, TRUIR reconstruction.

We defined a second, larger circular ROI surrounding the lesion with a diame-

ter twice that of the true lesion. Because accurate reconstruction of morphological

features is a primary goal of our method, defining the ROI to surround the lesion

allows us to potentially capture poor reconstruction of the lesion edges/margins. The

NRMSE within this larger ROI is shown in Figure 3.5 across time. Again, our iterative

TRUIR method has lower error than the other reconstructions.

The reason TRUIR has lower error than the competitors can be seen by exam-

ining the images reconstructed for the 5th time frame in Figure 3.6. From left to

right, top to bottom, the images are: true image, zero-padded reconstruction, Key-
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Figure 3.4: Reconstruction error, entire object.
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Figure 3.5: Reconstruction error in ROI surrounding lesion.
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Figure 3.6: 5th frame of reconstructed image sequence. Top row (left to right): True
image, zero-padded reconstruction, Keyhole reconstruction. Bottom row
(left to right): RIGR reconstruction, our TRUIR reconstruction.

hole reconstruction, RIGR reconstruction, and our TRUIR reconstruction. The effect

of undersampling is best seen in the zero-padded reconstruction, which shows signifi-

cant blur in the undersampled direction. Note that the direction of the blur alternates

in each time frame (not shown), as expected from the alternating blade trajectory

(see Fig. 3.3). While both Keyhole and RIGR produce sharper reconstructions than

zero-padding, the dynamic feature, the lesion, still shows significant blur in the un-

dersampled direction. Both of these methods use the pre-enhancement, fully sampled

frame as a reference, but because the lesion is not visible in the reference frame,

neither method is able to adequately reconstruct this dynamic feature. Because our

TRUIR method jointly estimates the entire image sequence at once, it is better able

to take advantage of the information in the reference frame as well as the alternating

blade trajectory to produce an image sequence with significantly reduced blur of the

dynamic feature. This can be seen in Figure 3.6 and is also reflected in the reduced

NRMSE in the ROI for the iterative method in Figure 3.5.

3.4 Extension to Parallel Imaging

In parallel imaging, we use multiple coils to simultaneously record the measure-

ments. The signal equation for multiple receiver coils is shown in Eq. (2.9), and

indicates that the measurements recorded on a particular coil are now a function of

both the the object and that coil’s sensitivity pattern (see Fig. 3.7).
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Figure 3.7: The measurement model for parallel imaging includes coil sensitivity
maps. Each coil records the signal from the object, scaled by that coil’s
spatial sensitivity profile.

The use of multiple coils of course changes our measurement model. The mea-

surements recorded by the lth coil for the mth frame are given by

ym,l = Am









cl,1xm,1

...

cl,np
xm,np









+ ε

= AmClxm + ε,

where the sensitivity of coil l is represented by Cl. The sensitivity of the lth coil to

position ~rj is given by clj = cl(~rj), and Cl = diag{clj}.

Combining the measurements from all L coils, we have the multi-coil measurement

model for the mth frame:

ym = Bmxm + ε, ym =









ym,1
...

ym,L









, Bm =









AmC1

...

AmCL









,

where ym are the stacked measurements from all L coils for the m-th frame, and Bm

incorporates the system matrix for the m-th frame as well as the coil sensitivities.

Finally, for dynamic parallel imaging, we can write the multi-coil measurement

model for the entire image sequence as

y = Bx + ε, y =









y1
...

yM









, B =















B1 0 . . . 0

0 B2 0
...

... 0
. . . 0

0 . . . 0 BM















,
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and x stacked similarly to y. In our experiments, we assume that the sensitivity

maps are static throughout the scan, although this measurement model does allow

the use of updated sensitivity maps for each frame.

For parallel imaging our TRUIR cost-function minimization becomes,

x̂ = argmin
x

Ψ(x),

Ψ(x) =
1

2
‖y −Bx‖2 + αRt(x) + βRs(x),

and the minimizer is given by

x̂ = [B′B + R]−1B′y, (3.7)

where R is again the Hessian of R(x). Most of the results presented in the following

chapters are for the multi-coil case.

3.5 Algorithm Acceleration

A drawback of iterative reconstruction methods, compared to conventional meth-

ods, is increased computation time. The most computationally expensive step in using

the conjugate gradient algorithm to minimize our cost function, Ψ(x), is computing

its gradient:

∇Ψ(x) = −A′(y − Ax) + α∇Rt(x) + β∇Rs(x). (3.8)

If we let T = A′A and b = A′y, we can rewrite the equation as

∇Ψ(x) = Tx − b + α∇Rt(x) + β∇Rs(x). (3.9)

Because b does not depend on x, it needs to be computed only once per minimization,

and not once per CG iteration. Additionally, for equally spaced (spatial) basis func-

tions, T is block Toeplitz with Toeplitz blocks. Recall that we are using rect(~r−~rj) as

our spatial basis functions, chosen because we are reconstructing image pixels. This

choice also means that the spatial coordinates ~rj are equally spaced.

Calculating the gradient in each iteration using Eq. (3.9) now involves multiplying

T by the current guess of x, which can be done efficiently by embedding T into a block

circulant matrix and doing an FFT [58]. This acceleration technique has previously

been investigated for use in static, field-corrected MR image reconstruction [59], but

to our knowledge, we are the first to apply it to dynamic MRI.
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To validate the speed-up in minimizing our cost function via Eq. (3.9) compared

to Eq. (3.8), we performed (single-coil) simulations using each formulation. We found

that the Toeplitz-modified conjugate gradient algorithm was 1.7 times faster than the

original CG algorithm [60]. While a speed-up factor of 1.7 hardly brings the compu-

tation time of our iterative algorithm down to the level of non-iterative reconstruction

methods, it is a significant improvement and is certainly a step in the right direction.
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CHAPTER IV

Phase Encode Sampling Schemes

Any reconstructed MR image is dependent on the k-space locations that were

sampled during data acquisition, and our TRUIR reconstruction method is no excep-

tion. Because the dynamic object is changing continuously in time, each individual

measurement represents the object at a different point in time. However one cannot

reconstruct an entire image of the object from a single measurement, so measure-

ments are grouped into frames for reconstruction. We think of a single frame of the

reconstructed image sequence as representing the dynamic object at a single point in

time, but in actuality, that image frame is created from measurements taken over a

range in time, and is thus only an approximation of the dynamic object during that

time.

We employ a flexible definition of an image frame in our TRUIR model, and there-

fore the acquired k-space locations, as well as their order, are especially important. We

explored three k-space sampling schemes and examined the resulting reconstructed

image sequences created using both TRUIR and conventional reconstructions. Be-

cause sampling in the readout direction happens fairly quickly, we focus only on

rearranging/redistributing the phase encode sample locations in our studies. In all

of our studies, the phase encode directions are ky and kz, and we ignore the readout

direction kx.

4.1 Original Trajectory

The first phase encode (PE) sampling scheme we studied is one that is currently

in use for DCE MRI studies of the breast at the University of Michigan hospital, on

a Philips 3T scanner. We refer to this as the Original Trajectory. It is an elliptically

shuttered, partial Fourier acquisition, that is also undersampled by a factor of 2 in the

SENSE direction, ky. The complete set of sample locations acquired for each frame is
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Figure 4.1: Clinical PE sample locations, and full sampling. PE sample locations used
in current clinical acquisitions (blue), and sample locations prescribed
for full Nyquist sampling (cyan). The original (clinical) pattern is an
elliptically shuttered, partial-Fourier acquisition. It also has a SENSE
undersample factor of 2 in the ky direction, which can be seen in the
zoomed in portion of k-space pictured on the right.

shown in Figure 4.1 (blue), along with the sample locations that would be prescribed

for a fully sampled acquisition (cyan), based on the reconstructed image size of 384

x 166 and Nyquist criteria. This acquisition has a TR of 4.6 msec, and includes 4766

PE sample locations, which means the nominal frame rate is 22 sec/frame.

One can see that the Original Trajectory is severely undersampled; in fact it sam-

ples only 4766 PE locations, compared to the 63,744 locations that would constitute

full sampling. The Philips setup at the UM hospital uses a 7-coil receiver array for

acquisition, bringing the total number of measurements per frame up to 33,362, which

is still barely half of the number required for full sampling. Therefore we can expect

imperfect reconstruction of this undersampled data set, regardless of reconstruction

method. In all of the alternative sampling schemes we present, we hold constant the

total number of samples in a complete trajectory at 4766 to ensure a consistent total

scan time. Thus all of the presented PE trajectories are severely undersampled, so

when examining various reconstruction schemes, we are not looking for perfect recon-

structions, but rather dynamic image sequences that represent an improvement over

those created with conventional reconstruction of the original PE sample locations

and order.

We are interested in utilizing a flexible definition of frame in our reconstruction

methods, in particular, looking at assigning fewer samples per frame, thereby increas-

ing the frame rate, or, equivalently, reconstructing more frames from a given set of

dynamic data. For a given set of measurements, if we increase the frame rate by a

factor of 2, we reduce the number of measurements per frame by half. The Original
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Figure 4.2: Original Trajectory. Dark circles represent PE locations that are sam-
pled earlier in the acquisition, and light circles represent locations that
are sampled later during acquisition. The Original Trajectory starts sam-
pling near DC and works its way out, with the highest frequency sample
locations being sampled latest in the acquisition.

Trajectory acquires samples roughly from the inside out. That is, it samples low

frequency locations earlier in the acquisition and high frequency locations later in the

acquisition. Figure 4.2 shows the sample acquisition order of the Original Trajectory.

The color of the circle at each PE location indicates when during the acquisition the

data at that location is measured. Dark circles indicate locations that are sampled

earlier in the acquisition, with the circles getting lighter as time progresses.

The low to high frequency ordering of the original PE acquisition means that if

we break the data into 2 subframes, the first half-frame of PE locations will all be

from lower spatial frequencies, while the second half-frame of data will all be from

higher spatial frequencies. This is illustrated in the top row of Figure 4.3. Without

any data sharing or temporal regularization, reconstructing at this higher frame rate

would result in an image sequence where every odd frame has only low frequency

information, and therefore increased spatial blur, and every even frame has has only

high frequency information and therefore shows only edges and has very little contrast.

Clearly, this is an undesirable result. A 24-frame reconstruction of data collected

according to the Original Trajectory would not be a recommended strategy, and is

somewhat of a straw man. That is, no one would plan to reconstruct 24 image frames

from 12 frames of data acquired with the Original Trajectory, due to the obvious
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negative results. But, we are in part considering the situation in which one has only

retrospective access to 12 frames of collected data, and one wants to reconstruct 24

image frames; therefore we include the case of a 24-frame reconstruction with the

Original Trajectory for completeness.

4.2 Reordered Trajectory 1

We would like the samples within each subframe to be more balanced than those

from the Original Trajectory in terms of information content, so that we have the

option to increase the frame rate used for reconstruction without suffering the detri-

mental effects described above. This train of thought led us to examine a trajectory

that samples the same k-space locations as the original one, but in a different order.

Our first reordered trajectory implements a reordering based on the samples’ radial

distance from the center of k-space. First we take the range of k-space covered by the

Original Trajectory and break it into NR annuli or rings. The number of samples

that fall within each annulus determines how frequently we sample from that annulus.

That is, each annulus is sampled with a period that is inversely proportional to the

number of samples in that annulus. For a 20 second acquisition, a ring containing 2

samples should be sampled every 10 seconds, and our ring-based reordering scheme

will assign integer sample time indices to these samples that correspond to 0 sec and

10 sec. A ring containing 4 samples should be sampled every 5 seconds, and those

samples will be assigned integer sample time indices

that correspond to 0, 5, 10, and 15 sec. It is easy to see that conflicts will quickly

arise with this approach, because prescribed sample times will overlap for rings con-

taining the same number of samples as each other, or for rings that contain a number

of samples that is a multiple of the number contained in another ring. And we can

only sample one PE location at a time (1 PE location per TR). We solve this overlap

problem by adding a small random perturbation to the integer time index assigned

to each sample. Sorting the PE locations according to their perturbed time indices

(in ascending order) gives us our ring-based reordering. Limiting the perturbations

to the range (-0.4 to 0.4) ensures that all PE locations that were prescribed to be

sampled at a particular time index will be sampled before any samples that were

prescribed to the next time index.

Figure 4.4 shows the Original Trajectory as well as a few ring-based reorderings

for different values of NR. As in Fig. 4.2, darker circles represent PE locations that

are sampled earlier in the acquisition, and lighter circles represent locations that are
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Figure 4.3: PE locations sampled in the first and second half of a “full” frame acqui-
sition. Sample locations acquired during the first half of acquisition are
shown in the left column and those acquired during the second half are
shown on the right. The top row shows half frame sample locations from
the Original Trajectory, the middle row shows those from Reordered Tra-
jectory 1, and the bottom row shows results from Reordered Trajectory
2.
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Figure 4.4: Ring-based reordering of PE locations. PE sampling patterns resulting
from our initial reordering scheme using varying number of rings (NR).
Sample order is indicated by the darkness of circles. PE locations sampled
early in the acquisition are darkest, and the markers get lighter as time
progresses. The Original PE order is included for reference (top left) and
ring-based reordered sampling patterns are shown for NR = 5 (top right),
NR = 10 (bottom left), and NR = 100 (bottom right).

sampled later. Reorderings using 5 and 10 rings exhibit a clear circular structure,

while the samples reordered using 100 rings look more distributed. Therefore we used

the reordering resulting from using 100 rings as our Reordered Trajectory 1, which is

shown in Figure 4.5.

The intended (and actual) result of the ring-based reordering is that if we take any

given subframe in time, the samples associated with that subframe in the reordered

trajectory will cover a wider range of k-space locations than those acquired for the

same subframe in the Original Trajectory. This feature is illustrated in Figure 4.6,

which plots each sample location of the acquisition in terms of its radial distance from

the center of k-space vs the time at which that that sample is acquired. In the plot
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Figure 4.5: Reordered Trajectory 1. This trajectory is composed of the same sample
locations as the Original Trajectory, but with a different sample order.
PE locations indicated by dark circles are sampled earlier in the acquisi-
tion, and those indicated by lighter circles are sampled later. Reordered
Trajectory 1 was created using our ring-based reordering scheme with 100
rings.

for the Original Trajectory (top), the samples’ increasing radial distance over time

indicates the inside to out ordering of that trajectory. If we look at samples for only

a subframe of the acquisition, say the first 4 seconds, we see that with the Original

Trajectory, the samples only cover a small range of radial distances. In contrast, the

samples acquired during the first 4 seconds with the Reordered Trajectory 1 (middle

plot) essentially cover the same range of radial distances as a full frame acquisition.

Another view of the improved distribution of sample locations in Reordered Tra-

jectory 1 can be seen in Figure 4.3 (second row), which shows that if we break the

samples into two half-frames, each half-frame will cover the same range of k-space as

a full frame. Figure 4.3 also shows that, even using 100 rings, our Reordered Tra-

jectory 1 exhibits some structure in terms of the distribution of samples, such that

taking samples from only the first or second half-frame leaves some undesirable holes

in k-space coverage. This led us to reconsider our initial reordering scheme, and come

up with a second reordering scheme that more uniformly samples k-space throughout

the scan.
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Figure 4.6: Radial distribution of sample locations over time. Original Trajectory
(top), Reordered Trajectory 1 (middle), and Reordered Trajectory 2 (bot-
tom). Both reordered trajectories show a more uniform distribution of
sample locations over time, in terms of the samples’ radial distance from
the center of k-space (shown on the y-axis), than the Original Trajectory.
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Figure 4.7: Creation of Reordered Trajectory 2. In the first step, we break the original
PE sample locations into equally sized random subframes. This figure
shows the PE locations for 4 subframes: sample locations for the first
subframe are indicated in red, and those in the second, third and fourth
subframes and indicated with cyan, blue, and yellow, respectively. After
division into subframes, the samples from each subframe are reordered
using the ring-based method from Reordered Trajectory 1.

4.3 Reordered Trajectory 2

Our Reordered Trajectory 2 is based on the same premise as the Reordered Tra-

jectory 1, the goal being a more uniform distribution of PE sample locations over

time. Our second reordering scheme is similar to our first, but involves one extra

step. The Reordered Trajectory 2 is a ring-based reordering of nsub random subsets

of the original PE locations. To create our Reordered Trajectory 2, we first divide

the original sample locations into nsub distinct random subsets of even size. This

first step is depicted in Figure 4.7, where nsub = 4 and PE locations belonging to the

first, second, third and fourth subsets are represented by red, cyan, blue and yellow,

respectively.

The second step in creating our Reordered Trajectory 2 is to individually feed

each subset of samples from Step 1 through the ring-based reordering scheme used

for the reordered trajectory 1. Lastly, we concatenate the results from Step 2 to

form our final reordered trajectory 2. We used a trajectory computed using nsub =

4 and NR = 100 for all of our simulations, and this Reordered Trajectory 2 is show

in Figure 4.8. As the figure shows, the Reordered Trajectory 2 seems to have less
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Figure 4.8: Reordered Trajectory 2. Phase encode locations sampled earlier in the
acquisition are indicated with dark circles, with the circles getting lighter
for locations sampled later during the acquisition.

structure than the Reordered Trajectory 1. This is confirmed by looking at samples

from the first and second half frames of our Reordered Trajectory 2 in Figure 4.3,

bottom row. Each half frame shows more uniform k-space coverage and fewer large

holes than Reordered Trajectory 1 (and certainly than the Original Trajectory).

The radial distribution of samples for Reordered Trajectory 2 is shown in Fig-

ure 4.6 (bottom). As with Reordered Trajectory 1, for any given subframe in time,

the second reordering shows a more uniform distribution of samples’ radial distance

from DC than the Original Trajectory.

Changing the k-space sample trajectory is a modification made to the acquisition

portion of an MRI study. Chapters V-VI discuss reconstruction related aspects of

MRI, which of course also affect the final image sequence. Therefore, we postpone

full presentation of results from simulations using the three PE sampling schemes

described here to later chapters, where they are presented in combination with a

variety of reconstruction methods. Here we simply mention that, as expected, our

results show that both Reordered Trajectories do indeed result in more accurate re-

constructed image sequences than the Original Trajectory when reconstructing with a

higher frame rate. Additionally, reconstructions based on the Reordered Trajectories

are much more robust to the choice of the temporal regularization parameter, α, than

those based on the Original Trajectory. The effect of the regularization terms and
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the challenges of choosing appropriate values for the regularization parameters are

discussed in detail in Chapter V.
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CHAPTER V

Regularization Parameters

A challenging aspect of any regularized formulation is choosing appropriate reg-

ularization terms, as well as determining the relative weights of these terms. These

weights, or regularization parameters, have a significant affect on the reconstructed

image sequences. Choosing good values for the regularization parameters provides

the appropriate weighting between data fidelity and enforcement of our a priori

assumptions about the object. However, determining these “good” values for the

regularization parameters is not straightforward, and using poor regularization pa-

rameter values can have an extremely detrimental affect on the resulting dynamic

image sequence. This chapter presents our investigations on the effect of regulariza-

tion parameter choice for TRUIR reconstructed image sequences, and discusses our

work towards establishing selection criteria for these parameters.

5.1 Initial DCE-MRI Simulation

To better understand how regularization parameter choice affects dynamic images,

we performed a simulation of contrast agent uptake using a real bilateral breast image

with an inserted (simulated) circular lesion. The lesion exhibited enhancement over

time according to the true curve in Fig. 5.1 (marked with circles), while the rest of

the image remained static.

We simulated a dynamic MR scan using the same alternating blade k-space trajec-

tory from our preliminary TRUIR simulations in Chapter III (Fig. 3.3). We generated

k-space data for one reference frame and eight subsequent frames, each undersampled

by a factor of 1/16. For the partially sampled frames, we alternated the phase encode

and readout directions with each frame.

We reconstructed the data using a spatial regularization parameter of β = 24 and

first order temporal regularization with several values of the temporal regularization
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Figure 5.1: Enhancement curve for simulated lesion and reconstructions

parameter, α. Fig. 5.2 shows the true (A) and reconstructed images from the 5th time

frame; zero-padded reconstruction (B), and Keyhole reconstruction (C) are shown for

reference. The “tumor” enhancement curves from the reconstructed images appear

in Fig. 5.1.

Using an α that is too large degrades the temporal dynamics of the reconstructed

sequence, as can be seen for α = 220 in Fig. 5.1 (+). However, for this value of

α, the reconstructed image from the middle frame of the dynamic sequence, shown

in Fig. 5.2(E), has good spatial resolution. In this case the large weighting of the

temporal regularization term in the TRUIR cost function (Eq. (3.7)) enforces strong

correlation between image frames associated with the reference and partial datasets.

The result is a sequence of reconstructed images with excellent spatial resolution, but

a flattened enhancement curve, i.e., poor temporal resolution.

Choosing α too small can also degrade the quality of the reconstructed images.

Fig. 5.2(D) shows the 5th frame of the reconstructed image sequence, using α = 25.

This image appears quite blurry because the temporal regularization term in Eq. (3.7)

is not large enough to overcome the spatial blur represented by the log-likelihood

term (which is due to undersampling of the k-space data in the individual frames).

Note that the corresponding enhancement curve in Fig. 5.1 (x) shows good/accurate
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Figure 5.2: True image and various reconstructions. True image (A), reconstruction
with zero-padding (B), Keyhole (C), TRUIR with α = 25 (D), TRUIR
with α = 220 (E), TRUIR with α = 214 (F).

temporal dynamics.

Essentially, we need α large enough to provide adequate “connectivity” between

the frames (especially with the reference frame), but small enough so that the re-

constructed image sequence correctly reflects dynamic changes in the object. In this

simulation, α = 214 provided such a balance. The reconstructed enhancement curve in

Fig. 5.1 (triangles) is a good fit to the true enhancement curve, and the reconstructed

image in Fig. 5.2(F) has good spatial resolution.

While Fig. 5.2 shows only a single frame from the reconstructed image sequences

(the middle frame), we did look at other image frames (e.g., the 2nd frame and

the final frame) as well as the sequences as a whole (not shown). The findings and

conclusions regarding spatial resolution based on this more complete examination of

the results are consistent with those previously stated; essentially what we see in the

5th frame in Fig. 5.2 is representative of the spatial resolution properties for the entire

image sequence.

By reconstructing with a range of regularization parameters and evaluating the

resulting image sequences, we have found regularization parameters that work well in

reconstruction of this particular simulated data set. However, we would prefer an an-

alytical approach to regularization parameter selection over this ad hoc method. The

following section presents our work towards establishing such an analytical method.
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5.2 Local Impulse Response

We aim to address the issue of regularization parameter selection by analyzing

the resolution properties of the TRUIR method, which is a penalized-likelihood re-

constructor. To do this, we examine the local impulse response, which is a measure

of resolution [61]. Similar analysis of penalized-likelihood reconstruction for (static)

tomography was presented in [62].

In Chapter III, we established the TRUIR cost function:

x̂ = argmin
x

Ψ(x),

Ψ(x) =
1

2
‖y −Bx‖2 + αRt(x) + βRs(x), (5.1)

and saw that the minimizer of the TRUIR cost function is given by

x̂ = [B′B + R]−1B′y,

where R is the Hessian of R(x), and

R(x) = αRt(x) + βRs(x)

= α
1

2
‖Ctx‖

2 + β
1

2
‖Csx‖

2

= α
1

2
‖Ctx‖

2 + β
M

∑

m=1

1

2
‖Cs0xm‖

2,

where Ct is a temporal differencing matrix and Cs0 is a spatial differencing matrix.

For practical use of this estimator, one must understand how the regularization

parameters α and β in the cost function (Eq. (5.1)) affect the spatial and temporal

resolution of the reconstructed image sequence. One method of analyzing resolution is

to look at the local impulse response [62]. Noting that E(y) = Bx, the local impulse

response near the jth pixel is given by

lj = [B′B + R]−1B′Bej . (5.2)

This expression could be evaluated using the CG algorithm, but computation would

be slow as the matrices involved are quite large and non-sparse.

Because only a partial k-space dataset is collected for each time frame, and the

sampled k-space locations generally vary from frame to frame, the TRUIR method
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is not locally shift-invariant in time. That is, reconstruction of an object at time

frame m + 1 will not simply be a time-shifted version of the reconstruction of the

same object in the mth frame. This complicates the analysis of the local impulse

response for dynamic imaging in MRI compared to previous such analyses for Positron

Emission Tomography (PET) [63]. In particular, previous methods based solely on

FFT calculations are not directly applicable. But, by building on this previous work,

we present an accelerated method to determine the local impulse response of the

TRUIR formulation for single-coil dynamic MRI. The multi-coil case is quite a bit

more complicated and is discussed in Section 5.3

5.2.1 Accelerated Computation for the Single Coil Case

For the single coil case, we do not need sensitivity maps (i.e., C1 = I and B = A)

and we can simplify the expression for lj by using the relationship between circulant

matrices and FFTs. Namely, the eigenvalues of a circulant matrix are the DFT

coefficients of the first column of the matrix [64]. Because the operators A′

mAm and

C′

s0Cs0 are locally shift invariant in the spatial dimension (but not in the temporal

dimension), they can be approximated by circulant matrices and have the following

orthonormal eigenvector decompositions:

A′

mAm ≈ QΛmQ′

C′

s0Cs0 ≈ QΩQ′, (5.3)

which implies

A′A ≈ (IM ⊗ Q)Λ(IM ⊗ Q)′ (5.4)

where

Λ =















Λ1 0 . . . 0

0 Λ2 0
...

... 0
. . . 0

0 . . . 0 ΛM















,

and IM is the M × M identity matrix. Combining (5.2), (5.3), and (5.4), we get

lj ≈ (IM ⊗ Q)x̂f (5.5)

x̂f
△

= [Λ + β(IM ⊗ Ω) + αC′

tCt]
−1Λ(IM ⊗ Q′)ej . (5.6)
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While the inverse term in Eq. (5.6) is not diagonal, it is composed of two diagonal

matrices, Λ and β(IM ⊗ Ω), and one sparse matrix, αC′

tCt. Thus it should be

relatively quick to invert. Due to the approximations and simplifications described

above, computing x̂f in Eq. (5.6) is much faster than computing lj in Eq. (5.2). Once

we have x̂f , we obtain the local impulse response near the j-th pixel, lj, using (5.5)

through a simple inverse (spatial) FFT.

5.2.2 Single Coil Results

We simulated dynamic MR scans using the same alternating blade k-space trajec-

tory from our preliminary TRUIR simulations in Chapter III (Fig. 3.3). We generated

k-space data for one reference frame and eight subsequent frames, each undersampled

by a factor of 1/16. For the partially sampled frames, we alternated the phase encode

and readout directions with each frame.

We computed the local impulse response using the accelerated method in Eqs. (5.5)

and (5.6) for many values of α and β. For this study, using the accelerated method

was over 3 times faster than evaluating the original expression for the local impulse

response in Eq. (5.2).

Fig. 5.3 shows the effect of the spatial regularization parameter β on the Full

Width at Half Maximum (FWHM) of the Point Spread Function (PSF) in space.

The spatial PSF is 2D, and we evaluated (and show) the angularly averaged FWHM

of the 2D PSF. As expected, higher values of β result in wider point spread functions,

because they increase the weight of the spatial differencing penalty in the cost func-

tion. For a given sampling trajectory, we can choose the desired spatial resolution of

our reconstructed image sequence and then use the established spatial FWHM vs β

relationship to determine an appropriate value for β.

For these single-coil studies, we also looked at the temporal PSF and its depen-

dence on α. We modeled an impulse in time as an image sequence that is uniformly

zero, except with a single unit impulse in the middle (5th) frame. Reconstructing

‘true’ simulated data representing this temporal impulse yields the temporal point

spread function. We measure the FWHM of the temporal PSF in units of time

frames.

In this study, we found that the temporal regularization parameter α mainly

affects the temporal PSF, and this dependence is shown in Fig. 5.4. Increasing α

increases the width of the temporal point spread function, but the shape of the curve

is quite different from the one representing the spatial PSF in Fig. 5.3. The shape of

the temporal FWHM vs α curve is strongly dependent on the kspace trajectory in use.
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Figure 5.3: FWHMs vs β for single-coil TRUIR. Angularly averaged FWHM of spatial
PSF as a function of spatial regularization parameter β for the alternating
blade k-space trajectory shown in Fig. 3.3.
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Figure 5.4: FWHMt vs α for single-coil TRUIR. FWHM of the temporal PSF is shown
as a function of temporal regularization parameter α for the alternating
blade trajectory using first order and second order temporal penalties.

In this case, we are using a fully sampled reference frame, followed by an alternating

blade trajectory in the dynamic frames. This sampling pattern is reflected in the

temporal FWHM curve.

Use of a very small temporal regularization parameter (log2 α < −10) results in

essentially no temporal regularization, and thus the FWHM in time is near 1 frame.

As we increase log2 α from -10 to 0, the TRUIR cost function enforces more regularity

between time frames, and the point spread function widens accordingly. Increasing

log2 α more yet, from 0 to 10, the TRUIR cost function is weighted even more toward

temporal smoothness, yet we see essentially no change in the FWHM of the temporal

PSF.

As we saw in our earlier results of a simulated breast lesion, using log2 α = 14

yielded the best reconstructed image sequence. This value for the temporal reg-

ularization was large enough to draw important spatial information from the initial

reference frame throughout the image sequence. In Figure 5.4, we see that log2 α = 14

corresponds to a FWHMt of 2̃.7 frames for a first order temporal penalty. As with the

choice of the spatial regularization parameter, the relationship of α to the temporal

PSF is entirely trajectory dependent. Next we present our analysis of the effect of
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regularization parameters for parallel TRUIR.

5.3 Multi-coil Case

For the multi-coil case, we must include sensitivity maps in our TRUIR reconstruc-

tion, and this significantly complicates the analysis of the affect of the regularization

parameters in reconstruction. We performed a number of simulations and evaluated

the results over a range of values for both α and β. Our multi-coil simulations gener-

ate simulated data from a 7-coil array, and we use real sensitivity maps to create the

simulated data and also in our TRUIR reconstructions. See Chapter VII, Section 7.1.2

for details on the sensitivity maps used in our multi-coil simulations.

5.3.1 Spatial PSF vs β

We began our evaluation of regularization parameters for the multi-coil case by

again looking at the local impulse response in space. Because the net sensitivity of

our coils is not uniform throughout the field of view (FOV), we placed the spatial

impulse off center, at (x,y) = (289, 84), where we know there is good sensitivity.

Sensitivity at the origin is poor for the smaps we used, so using an impulse at that

location would not yield very useful results.

To get a feel for the affect of β on spatial resolution, we looked at a single frame

sampled with the Original Trajectory and reconstructed using multi-coil TRUIR with

a range of β values. Because all the trajectories under study are undersampled in

ky by a factor of 2, reconstructing the full FOV without taking coil sensitivity into

account (i.e., reconstructing using uniform sensemaps) yields two peaks, one at the

true spatial location of the impulse, and one aliased peak located ny/2 pixels away

from the true location. Note that because the modeled object (impulse) is static

during the course of acquisition, our results will also hold for reconstructions using

the reordered trajectories, since they sample the same PE locations as the Original

Trajectory.

As in the single-coil case, we looked at the FWHM of the PSF as a function of β,

which is shown in Figure 5.5. We know that for single-coil MRI, the FWHM of the

PSF is useful for choosing an appropriate value for β. The existence of multiple peaks

in multi-coil undersampled MRI, however, means that the FWHM alone doesn’t tell

us the entire story. In particular, the FWHM of the main (true) peak doesn’t indicate

much about the secondary (aliased) peak. Therefore, we thought it worthwhile to look

at some measure of the two peaks in our analysis, in addition to FWHM.
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Figure 5.5: Spatial PSF measures vs β for multi-coil TRUIR. FWHM and other PSF
measures are shown vs log2 β (‘l2b’) for a single frame, fully sampled with
the Original Trajectory.
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We found that varying the value of β changed the magnitudes of both the main

peak and the secondary peak in the reconstructed image. Figure 5.5 also shows the

ratio of the peak magnitudes as a function of β (middle), as well as the individual

magnitudes of the two peaks (bottom). Interestingly, while the FWHM vs β curve

has the standard shape that we saw in the single-coil case, which alone would indicate

that we can choose an appropriate value for β based on the desired FWHM of the

reconstructed image, the plots of the peak magnitudes tell quite a different story.

The height of the main peak decreases with increasing spatial regularization, and the

height the secondary peak also changes with β. Although it’s rather hard to see in

the plot of peak magnitudes vs β, the magnitude of the secondary peak decreases

for log2 β between 0 and 10. The existence of the decreased secondary peak is better

seen in the plot of the ratio of the peaks (Figure 5.5, middle), which is higher for β

values between 0 and 10, and then decreases drastically for log2 β of 10 or higher.

Based on these findings, we decided to use log2 β = 6 for the subsequent set of

simulations which look at the affect of the temporal regularization parameter, α, on

spatial resolution.

5.3.2 Spatial PSF vs α

We are interested in using TRUIR to increase the number of frames in a recon-

structed dynamic image sequence, without increasing the amount of data. Doubling

the number of reconstructed image frames reduces the number of measurements asso-

ciated with each frame by half, and TRUIR makes up for the reduced measurements

per frame through its regularization terms. In particular, adjacent frames that sample

different kspace locations will contain complementary information about the object,

even when the object is static. The temporal regularizer enforces smoothness be-

tween frames, and thereby allows image domain sharing of information between time

frames.

We performed a series of simulations to test the effect of the temporal regulariza-

tion parameter, α, on an image sequence reconstructed at an increased frame rate.

For these simulations, the object is an impulse at a single spatial location that is

static over time. We generated 12 “full” frames worth of dynamic data, according to

each of three trajectories: the Original Trajectory, Reordered Trajectory 1, and Re-

ordered Trajectory 2. We then used TRUIR to reconstruct 24-frame image sequences

from each of the data sets, with a range of values of α (log2 α = [−20 : 5 : 40] and

log2 α = [−10 : 2 : 20]).

Because we double the frame rate during reconstruction, the results are no longer
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independent of the order in which we acquire sample locations, as was the case for

our spatial PSF v β results. Reconstructing 24 image frames from 12 full trajectory

acquisitions means that every odd frame in the reconstruction is associated with PE

locations measured during the first half of the trajectory’s acquisition, and every even

frame in the reconstruction is associated with PE locations from the second half of

acquisition. Figure 4.3 in Chapter IV shows the first and second half PE locations

for each of the three simulated trajectories.

Reconstructing at this higher frame rate also means that the spatial PSF will

differ from one frame to the next, because each frame is associated with a different

subset of the data. Thus it is not sufficient to examine the PSF in a single frame. We

looked at the spatial PSF in two adjacent image frames when evaluating the effect of

α: frames 12 and 13 (of 24). We first looked at image sequences reconstructed from

the Original Trajectory. The FWHM of the main peak as a function of α is shown

in the top right plot of Figure 5.6. The plotted value of the FWHM at each α is the

average of the measured FWHMs from the two adjacent frames. We can see that the

mean FWHM is not much affected by the value of α. The mean FWHM is a constant

for all values of log2 α less than 0, as well as for all values greater than 10, and these

two FWHM values differ only by about 0.3 pixels.

The ratio of the main and secondary peaks is also shown in Figure 5.6 (middle

right), as well as the individual magnitudes of those peaks (bottom right). Again,

the plotted values are the mean of the measure values in frames 12 and 13. Unlike

the mean FWHM, the mean peak ratio shows a stronger dependence on α, with

values of log2 α around 10-15 yielding the best ratio. Looking at the individual peak

magnitudes (bottom right), we see that the magnitude of the main peak begins to

increase around log2 α = 5, and the main peak magnitude is maximized for log2 α in

the range of 10 to 15.

The utility of using the peak ratio (or the magnitude of the main peak) as a

measure of goodness of the temporal regularization parameter remains unvalidated

until we visually examine the full PSFs in space. Sample PSFs for log2 α = 10 from

frames 12 and 13 are shown in the left column of Figure 5.6, as well as the middle

row of Figure 5.7.

To get a better idea of the affect of α on spatial PSFs, we examined two extreme

cases. Figure 5.7 shows three sets of PSFs that result from using three different values

of α. The low extreme of log2 α = -20 is shown in the top row, a mid-range value of

log2 α = 10 is shown in the middle row, and the upper extreme of log2 α = 40 is shown

in the bottom row. The PSFs from frames 12 and 13 are pictured (stacked on top
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Figure 5.6: Spatial PSF measures vs α, for multi-coil TRUIR. FWHM and other
PSF measures are shown for 24-frame reconstruction of samples from the
Original Trajectory.
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Figure 5.7: PSF for 3 αs.
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of one another) in the left column for each value of α. The right column shows the

corresponding profiles through the PSFs, where the profiles for frames 12 and 13 are

included on the same plot. For the very small value of α (log2 α = −20), representing

essentially no temporal regularization, we see that the PSFs in the two frames look

quite different from each other (top left). The PSF from frame 12 is pictured directly

above the PSF from frame 13 in the top left of Figure 5.7. The peak in frame 12 is

weaker and more diffuse than the peak in frame 13. The profiles through the PSFs

(top right) confirm the difference between the frames.

The second row of Figure 5.7 shows PSFs reconstructed using log2 α = 10 (left),

and their profiles (right). Here, the PSFs from adjacent frames look nearly identical,

both in terms of the images and in the profile plot: profiles from both frames are

plotted, but we see only a single line because the profile plots lie directly atop one

another. Note that the magnitude of the PSF peak is also higher for log2 α = 10 than

for log2 α = -20, by about two-fold.

The bottom row of Figure 5.7 shows PSFs and profiles for very large temporal

regularization, with log2 α = 40. As we would expect from such high temporal reg-

ularization, the PSFs from the two adjacent frames look identical in 2D space (left),

and the profiles of the PSFs from the two frames lie exactly atop one another, as they

did for log2 α = 10. The peak magnitude in these profiles is significantly smaller, on

the order of 10−5, than the peaks for either log2 α = 10 or log2 α = 20, which are on

the order of 10−1. The profiles for log2 α = 40 also show a significant secondary peak

at the expected location for SENSE aliasing. We suspect that perhaps the TRUIR

algorithm takes longer to converge with such a large regularization parameter, and

that running it for more iterations may reduce the secondary peak.

Visual inspection of the PSFs from two adjacent frames reconstructed with log2 α =

10 has shown that they are nearly identical, which tells us that using a temporal reg-

ularization value of log2 α = 10 provides sufficient connectivity between frames to

overcome each frame’s undersampled data in this simulation. Because we are recon-

structing a static impulse, however, we will not be able to differentiate here between

sufficient temporal connectivity and oversmoothing in time.

Thus far we have looked at the effect of temporal regularization on various aspects

of the spatial PSF for a large range of αs that are rather roughly sampled, with a

spacing of log2 α = 5 between evaluated α values. We have determined that looking

at FWHM of the main peak (averaged over two adjacent frames) does not provide the

same insight into choosing the temporal regularization parameter as it did for choosing

the spatial regularization parameter. The ratio of the main peak to secondary peak,
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or the magnitude of the main peak alone, may be useful in choosing an appropriate

value for the temporal regularization parameter, or at least in narrowing the range of

values to be tested.

Next we take a closer look at PSFs created from a finer sampling of α values,

and evaluate yet more properties of these PSFs in terms of their predictive value

for determining an appropriate weight of the temporal regularization term in our

TRUIR reconstructions. We evaluated the static impulse response of reconstructions

using log2 α = [−10 : 2 : 10], for each of the three phase encode trajectories, again

reconstructing 24 frames from 12 frames of data.

For all tested values of α, we visually examined the PSF over all 24 frames, and

plotted the value of the PSF peak vs frame, as well as the frame to frame change

in FWHM of the PSF. The results for PSFs of the Original Trajectory are shown in

Figure 5.8. The top portion of the figure shows the PSF at each of the 24 reconstructed

frames (along the x-axis) for each of the tested values of α (along the y-axis). Here we

clearly see that for log2 α = -10, the PSF at every even frame looks quite different from

the PSFs in the odd frames. For the Original Trajectory, all of the odd frames are

associated with the low-frequency half of the PE samples, and all of the even frames

are associated with the high-frequency samples in the acquisition. Therefore, the odd

and even image frames initially contain complementary information (based on the

data-fidelity term), and without sufficient temporal regularization this information

is not adequately shared between frames. Thus, for log2 α = -10 the PSFs in the

odd frames are from only low-frequency samples and appear rather blurred, while the

PSFs in the even frames are from only high-frequency samples, which is reflected in

the reduced energy and visible sharp edges in the even frames. When we increase

log2 α to 8 or 10, we start to see the effect of the temporal regularizer across the PSFs

of all 24 frames. There is less variability between PSFs in adjacent frames with log2 α

= 8 than log2 α = 6, and the interframe variability is smaller yet with log2 α = 10.

In an attempt to quantify these qualitative observations, we looked at how the

magnitude of the PSF peak changes from frame to frame, for the range of α values.

This is the middle plot of Figure 5.8, where each value of α is represented by a

different colored line. Interestingly, we found that the magnitude of the PSF peak

changes very little from frame to frame, regardless of the value of α, and larger values

of αs (particularly log2 α = 8 and log2 α = 10) result in slightly more variation of

PSF peak magnitude between frames. Using log2 α = 8 and 10 also increased the

peak height for all frames, which is in line with our previous findings from Figure 5.6

(bottom right).
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While the peak magnitude across the dynamic sequence does provide some infor-

mation, it does not fully capture the inter-frame variability we observe qualitatively by

looking at the PSFs. As a second attempt to quantify those qualitative observations,

we looked at the change in FWHM from frame to frame, which appears in the bottom

plot of Figure 5.8. Here we see a clear distinction in interframe FWHM variability

between α values that resulted in qualitatively bad and good looking PSFs. Values

of αs whose PSFs show distinct differences between odd and even frames have high

interframe FWHM variability. For all tested log2 α values less than 6, the FWHM

for even frames was about 2.5 pixels, while the FWHM for odd frames was almost

twice that, at about 4.5 pixels. However, for log2 α = 8 and 10, which we have ob-

served result in the best looking PSF sequences, the difference in FWHM between

odd and even frames is much smaller, around 0.1-0.2 pixels. These findings suggest

that looking at the interframe variability of the FWHM could be useful in choosing

a good value for α. A temporal regularization parameter that is sufficient to reduce

the interframe FWHM variability of a static PSF may also be sufficient to support

adequate sharing of information in reconstructed image sequences of dynamic objects.

Figure 5.9 shows the PSF images, PSF peak and FWHM over 24 frames for data

acquired using Reordered Trajectory 1, and log2 α = [−10 : 2 : 10]. Figure 5.10 shows

the same for Reordered Trajectory 2. The results for both reordered trajectories are

largely similar, and the following observations hold for both. Because the samples

in the reordered trajectories are more evenly distributed in kspace over time, we do

not see any strong visible differences between PSFs of even and odd frames, even for

the smallest tested temporal regularization parameter value of log2 α = -10. In fact,

visual inspection does not show a significant difference in the PSF over 24 frames for

log2 α = -10 compared to the PSF for log2 α = 10. Furthermore, the PSFs for the

reordered trajectories with any of the tested values for α look visually superior to

the best PSF for the Original Trajectory. The plot of peak magnitude across frames

for both Reordered Trajectories shows very little dependence on the value of alpha,

with all peak magnitudes falling within 10% of each other. Similarly the difference

in FWHM between frames does not show much dependence on α, at least within the

range of αs included in this simulation. The maximum change in FWHM between

frames is about 2%, over all values of α.

These results suggest that reconstructions of samples acquired using Reordered

Trajectory 1 or Reordered Trajectory 2 are more robust to the choice of the temporal

regularization parameter, α, than are reconstructions of samples acquired using the

Original Trajectory.
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Figure 5.9: PSF features as a function of α for Reordered Trajectory 1 with 24-frame
TRUIR reconstruction. The top figure shows the PSF over 24 frames
(along the x-axis) for various values of α (y-axis). The middle and bottom
plots are of the peak PSF value at each of the 24 frames, and (angularly
averaged) FWHM of the PSF at each frame, respectively. Each value of
α is represented by a different colored line.
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Figure 5.10: PSF features as a function of α for Reordered Trajectory 2 with 24-
frame TRUIR reconstruction. The top figure shows the PSF over 24
frames (along the x-axis) for various values of α (y-axis). The middle
and bottom plots are of the peak PSF value at each of the 24 frames,
and (angularly averaged) FWHM of the PSF at each frame, respectively.
Each value of α is represented by a different colored line.
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We looked at one final measure of the effect of α on the static impulse response:

the energy contained in the tails of the PSF. For each PE ordering, we computed the

energy in the PSF tails, for frame 12 and frame 13. We defined the tails to consist

of any signal located outside of a ry x rz rectangle, centered at the location of the

impulse, where the dimensions of the rectangle were chosen to be equal to 3 FWHMs

of the PSF reconstructed from a full frame’s worth of samples. In this study, ry =

13 pixels and rz = 9 pixels. The results are shown as a function of α in Figure 5.11.

In the Original Trajectory, the odd frames are associated with low frequency data,

and the even frames are associated with high frequency data, and the energy we

see in the tails for the Original Trajectory is consistent with this. Frame 12 (high

frequencies) has much higher energy in the tails than frame 13 (low frequencies),

when the reconstructed image sequence is under-regularized in time. Figure 5.11 also

plots the mean of the tail energy in frames 12 and 13, as well as the tail energy that

results from “full” sampling, i.e., a 12-frame reconstruction in which each frame is

associated with a full trajectory’s worth of samples. Curiously, for larger values of α,

the energy seen in the tails for frames 12 and 13 of all three 24-frame reconstructions

is lower than the tail energy of a “fully sampled” 12-frame reconstruction.

Figure 5.11 supports our previous findings that the choice of temporal regulariza-

tion parameter has a much larger effect on PSFs of the Original Trajectory than on

those from the Reordered Trajectories. Again this suggests relative robustness of the

Reordered Trajectories to temporal regularization parameter choice.

The tail energy plots are similar for all three trajectories in that tail energy remains

constant (within a frame) for α values of log2 α from -10 to 2, and the tail energy is

also relatively constant for values of log2 α greater than 10. Within the range of log2 α

between 4 and 10, we see a clear shift in the amount of energy in the tails of the spatial

PSF. For the Reordered Trajectories, the most pronounced decrease in tail energy

occurs between log2 α = 4 and log2 α = 8. Interestingly, in our dynamic simulations

(results of which are presented in Chapter VII), TRUIR reconstructions exhibited the

best temporal dynamics, i.e., the most accurate lesion enhancement curves, for values

of α in this same range (see Figure 7.19). This suggests that evaluation of the tail

energy of the spatial PSF may be useful in determining appropriate values for the

temporal regularization parameter in TRUIR reconstructions of data acquired using

the Reordered Trajectories.

The conclusions from our studies on the selection of the temporal regularization

parameter for multi-coil TRUIR are as follows. For 24-frame reconstructions of sam-

ples acquired according to the Original Trajectory, we need to use a relatively large
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Figure 5.11: PSF tail energy vs α. The energy in the tails of the spatial PSF is plotted
vs log2 α (‘l2a’), for frame 12 (blue circles) and frame 13 (red squares) of
24-frame reconstructions using the Original Trajectory (top), Reordered
Trajectory 1 (middle), and Reordered Trajectory 2 (bottom). The mean
tail energy seen in frames 12 and 13 is also plotted (black dashed line), as
well as the tail energy that results from “full” sampling, i.e., a 12-frame
reconstruction in which each frame is associated with a full trajectory’s
worth of samples (as opposed to the 24-frame reconstructions in which
each frame is associated with only half of the samples that comprise the
full trajectory).
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value for α, in the range of log2 α = 10, to enforce enough temporal smoothness

for adjacent frames to adequately share their complementary information, thereby

compensating for the undersampling in each frame. For 24-frame reconstructions of

samples acquired using Reordered Trajectory 1 or Reordered Trajectory 2, we exam-

ined many measures, and we found all of the PSF features that we investigated to be

relatively insensitive to the choice of α (within the range that we tested). This is good

news, as it suggests a relative robustness to temporal regularization parameter choice

for the Reordered Trajectories, which means that we should be able to reconstruct

quality image sequences without spending too much time looking for an α that is

“just right”. Examining the energy in the tails of the spatial PSF may be useful in

predicting “good” values of α for reconstructions of the Reordered Trajectories.

Examining simulation results of a realistic dynamic phantom will shed further

light on the topic of temporal regularization parameter selection, and these results

are presented in Chapter VII.

5.3.3 Temporal PSF

For single coil TRUIR, we examined the temporal impulse response as a function of

α (see Figure 5.4). After some reflection, we decided not to look at this relationship

for the multi-coil case, for a number of reasons discussed below. We feel that the

spatial PSF measures examined in the previous section are a sufficient, or perhaps

better, measure of the intended purpose of our temporal regularizer.

To measure the true temporal resolution of the system, we would need to measure

the system’s response to an impulse in time. In our single-coil simulations, we modeled

this temporal impulse as a one-pixel object that appeared in a single image frame.

However, acquisition of the data that is reconstructed to create that single image

frame is not instantaneous, it takes several (tens of) seconds. A true impulse in time

would only be reflected in a single k-space sample, and the resulting reconstructed

image would depend on which k-space location happened to be sampled at the instant

the temporal impulse occurred. The image frame would exhibit a sinusoidal pattern,

and the image sequence would certainly not resemble the true object. Needless to

say, the system is absolutely not temporally shift invariant, even locally, since shifting

the temporal impulse by just milliseconds would alter the resulting image sequence.

This is a major reason we decided not to examine the temporal PSF in our later (i.e.,

multi-coil) studies.

Additionally, our TRUIR formulation is based on an assumption of an object that

varies smoothly in time. A temporal impulse is the antithesis of a smoothly varying
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dynamic object, and therefore the response of our system to a temporal impulse is not

necessarily a good measure of the general response of our system for reconstructing

the intended class of dynamic objects for which it was designed.

Furthermore one of the main goals of the temporal regularizer is to provide a

means of sharing complementary information between undersampled image frames.

The degree of information sharing between frames can be evaluated by examining

the variability of the spatial PSF between adjacent frames, which we measured in

various ways in the previous section. Therefore, we feel that the simulations performed

and results presented in Section 5.3.2 adequately establish the degree of information

sharing between image frames as a function of the temporal regularization parameter,

α, and evaluation of the somewhat hazy concept of the temporal PSF is not necessary.

Examining the effect of the temporal regularization parameter on a smoothly varying

dynamic object will provide more information, and these results are presented in

Chapter VII.
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CHAPTER VI

Kinetic Parameters in DCE-MRI

In dynamic contrast-enhanced (DCE) MRI, a contrast agent is used to enhance

the MR images. The contrast agent is injected into the subject’s blood stream and as

it travels through the body, it affects the underlying physical mechanisms of MRI con-

trast and thereby alters the appearance of vascularized tissues in the MR image. This

section describes the mathematical models we use to represent the physical processes

that occur during DCE-MRI, and how they affect MR images. These mathematical

representations are useful for both accurate modeling the system to create realistic

simulations, as well as for interpreting reconstructed DCE-MR image sequences to

determine important underlying physiological processes.

6.1 Modeling Tissue Physiology

In DCE-MRI studies, a contrast agent (CA) is injected into the patient’s blood

stream at a particular rate for a particular amount of time. The concentration of

CA in the blood stream and various tissues affects the resulting MR image sequence.

We need to know how the CA concentration varies over time in order to accurately

interpret these images. Commonly, CA concentration in a large artery is measured

to establish an arterial input function (AIF), which serves as a starting point for de-

termining the CA concentrations in other areas of the body and ultimately inferring

information about the tissue(s) of interest. When an accurate AIF is not available,

researchers have proposed use of reference region methods to determine CA concen-

trations in the tissue of interest [65].

Parker et al. established a model for the concentration of an injected contrast

agent in the aorta based on a population-averaged AIF [66], and we use Yang et

al.’s modified version of this model in our simulations [67]. In this model the CA
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concentration in the aorta over time is given by

CAorta
p (t) = 7.5527 exp

[

−(t − 0.171)2

0.00605

]

+1.0003 exp

[

−(t − 0.364)2

0.035912

]

+1.064 exp(−0.083t)/
[

1 + exp
(

− 37.772(t − 0.482)
)]

, (6.1)

where t is provided in minutes, and the calculated concentration, CAorta
p , is given in

mMol.

As the contrast agent travels through the blood stream, it disperses somewhat.

The contrast agent concentration in the blood plasma near the tissue of interest,

Cp(t), is modeled as a convolution of the aortic CA concentration with a dispersive

transport function, h(t):

Cp(t) = CAorta
p (t) ∗ h(t), (6.2)

where ∗ is the convolution operator. Yang et al. define the transport function, h(t),

as

h(t) = β−α(t − t0)
α−1 exp[−(t − t0)/β]Γ(α), (6.3)

where Γ is the Gamma function, t0 is the bolus arrival time, and they (and we) use

α = 4 and β = 0.03 min.

We have now established a mathematical representation for the CA concentration

in the blood plasma near the tissue of interest. The following section explains the

relationship between the plasma concentration, Cp(t), and the CA concentration in

the tissue of interest, Ct(t).

6.1.1 Definition of Kinetic Parameters

The flow of contrast agent between the blood plasma and tissue depends on both

blood flow and vascular permeability, and varies depending on tissue type. In fact, it

is this inter-tissue variability that we are trying to determine in a DCE-MRI study.

The two-compartment model in Figure 6.1 is commonly used to represent the flow of

contrast agent between the blood plasma and the tissue of interest. According to this

model, the tissue concentration, Ct(t), is related to the plasma concentration, Cp(t),

via

Ct(t) = KtransCp(t) ∗ e−kept, (6.4)
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Figure 6.1: The two-compartment model relates the contrast agent concentration in
the blood plasma, Cp(t), to the tissue concentration, Ct(t). The physi-
ology of the tissue affects the flow of contrast agent between the plasma
and the tissue, and is modeled by two kinetic parameters. The transfer
constant Ktrans represents the flow of contrast agent from the plasma to
the tissue, and the rate constant kep, represents the flow of contrast agent
from the tissue back to the plasma.

where Ktrans represents the flow rate of CA from the plasma to the tissue and is known

as the volume transfer constant, and kep represents the flow rate from tissue to plasma

and is known as the flux rate constant. A third kinetic parameter is also regularly

referenced in DCE-MRI: ve, which is the volume of extravascular extracellular space,

per unit volume of tissue, and is related to Ktrans and kep by kep = Ktrans/ve [14].

Typical concentration curves for CAorta
p (t), Cp(t), and Ct(t) are shown in Fig. 6.2,

for a slowly enhancing lesion. The transport function, h(t), is shown in Fig. 6.3, and

a plot of the plasma-tissue transfer function given by the two-compartment model,

ht(t) = Ktrans exp(−kept), is shown in Figure 6.4.

Contrast agents like Gd-DTPA act as T1 shortening agents, thereby affecting the

MR signal received. Each contrast agent has a characteristic relaxivity that affects

the relaxation rates of a tissue (T1 and T2). Relaxivity is denoted by the variable r

and is defined as the increase in relaxation rate per unit increase in contrast agent

concentration; thus it has units mMol-1 sec-1, where concentration is measured by

molarity (Mol), which is the number of moles of solute in 1 liter of solution, and 1

mole is 6.02 x 1023 particles. Longitudinal relaxivity is denoted as r1 and relates the

contrast concentration to T1 according to:

1

T1(t)
=

1

T10
+ r1Ct(t), (6.5)

where T1 is the (new) longitudinal relaxation rate of the tissue, T10 is the inherent (pre-

injection) longitudinal relaxation rate of the tissue, and r1 is the relaxivity induced
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Figure 6.3: Transport function, hp(t), that models the dispersion in concentration of
contrast agent as it travels through the blood stream from the injection
site to the blood plasma near the tissue of interest.

69



0 1 2 3 4
0

0.05

0.1

0.15

0.2

time (min)

h
tissue

(t)

Figure 6.4: Tissue transfer function, ht(t). This transfer function characterizes the
flow of contrast agent between the blood plasma and the tissue of inter-
est. This transfer function is based on the two-compartment model and
incorporates the kinetic parameters Ktrans and kep.

by the contrast agent

[13]. In addition to varying by contrast agent, the relaxivity also depends on the

main field strength, B0. For our simulations we used r1 = 4.5 mMol-1 sec-1, which is

based on the findings of Sasaki for studies of Gd at 3T [68]. Average values for T10

of breast tissue at 3T were found by Rakow-Penner to be 366.78 msec for fat tissue

and 1444.83 msec for glandular tissue [69]. We used the T10 for glandular tissue in

our simulations.

The relationship between T1 and the MR signal, ρ̂, is given by

ρ̂(θ, TE) = ρ0 sin θ
(1 − E1)

(1 − E1 cos θ)
e−TE/T ∗

2 ,

where T1 is embedded in the variable E1:

E1 ≡ e−TR/T1 (6.6)

[9, p. 455]. Here ρ0 is the voxel spin density, and θ is the flip angle. For our studies,

we assume uniform voxel spin density and use a flip angle of θ = 10 degrees and
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TR = 4.6 msec. Both the flip angle and TR were chosen to match those used in

clinical MR breast studies at our institution.

We have now established all of the equations we need to relate tissue specific

kinetic parameters to the enhancement we see in an MR image. This enables us

to create realistic simulations of DCE-MRI based on chosen true kinetic parameter

values, and in Chapter VII we do just that. The following section discusses the

process of deriving kinetic parameter estimates from a reconstructed dynamic image

sequence.

6.2 Estimating Kinetic Parameters from an Image Sequence

Ultimately we want to estimate these kinetic parameters from a reconstructed

image sequence, so they can be of diagnostic value. This basically involves working

backwards through the series of equations relating kep and Ktrans to signal intensity,

which are given in the previous section.

6.2.1 Computing Contrast Agent Concentration

Assuming a static, pre-enhancement scan is performed, and explicitly including

the parameters’ dependence on spatial location ~r, we can write the magnitude of the

transverse magnetization for this scan as

m0(~r, θ) = ρ0(~r) sin θ exp(−TE/T ∗

2 (~r))
1 − E10(~r)

1 − E10(~r) cos θ

= ρ(~r, θ)
1 − E10(~r)

1 − E10(~r) cos θ
, (6.7)

where

ρ(~r, θ) ≡ ρ0(~r) sin θ exp(−TE/T ∗

2 (~r)),

and

E10(~r) ≡ e−TR/T10(~r).

Because we know the tip angle θ and TR used in the acquisition, and assuming

T10(~r) is known, we can easily compute ρ(~r, θ) from the pre-enhancement image,

m0(~r, θ). Assumption of a known T10(~r) is reasonable since in practice one could

acquire a T1 map prior to the dynamic scan.

During the dynamic portion of the scan, the image is of course dependent on time,
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so we rewrite Eq. (6.7) to explicitly include this dependence:

m(~r, t, θ) = ρ(~r, θ)
1 − E1(~r, t)

1 − E1(~r, t) cos θ
. (6.8)

Solving for E1(~r, t) we get

E1(~r, t) =
m(~r, t, θ)/ρ(~r, θ) − 1

m(~r, t, θ) cos θ/ρ(~r, θ) − 1
, (6.9)

where ρ(~r, θ) is known from the pre-enhancement scan.

Next, we compute the estimated tissue concentration of the contrast agent by

combining and rearranging Eqs. (6.6) and (6.5):

Ct(~r, t) = −
1

r1TR
ln(E1(~r, t)e

TR/T10(~r)). (6.10)

Theoretically, we can now compute the CA tissue concentration for any location

within the object, ~r at any time t. This would require a continuous representation

of the object in both space and time, which of course we don’t have. In practice

our reconstructed image sequences are discrete in both space and time, so Eq. (6.10)

actually enables us to estimate the tissue concentration only at a discrete set of

locations and a discrete set of time points. Namely, we can estimate the tissue

concentration at any pixel location in any time frame.

6.2.2 Concentration to Kinetic Parameter Estimates

Once we have estimated Ct(t), we then need to transform that estimate into

estimates of the clinically relevant kinetic parameters, Ktrans, kep, and ve. The rela-

tionship between the kinetic parameters of a tissue and CA concentration within that

tissue was established by the two-compartment model discussed in Section 6.1.1 (see

Figure 6.1 and Eq. (6.4)). To determine Ktrans and kep from our estimate of Ct(t),

we employ the method of Variable Projection, which is discussed in Section 6.3.

6.3 Variable Projection

The final step in determining the kinetic parameters Ktrans, kep, and ve, based on

a reconstructed image sequence uses the known (or estimated) contrast agent con-

centrations, Cp(t) and Ct(t), and the two-compartment model pictured in Figure 6.1

and represented by the convolution relationship in Eq. (6.4). Note that for simula-
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tions, we know Cp(t) based on Eqs. (6.1), (6.3) and (6.2). For images reconstructed

from real data, Cp(t) can be determined from pixels in the dynamic image sequence

corresponding to arterial blood vessels. To solve Eq. (6.4) for Ktrans and kep, we use

the variable projection (VP) method. The current section discusses the method of

variable projection for the general case, and Section 6.3.1 covers our implementation

of VP to estimate Ktrans and kep.

Variable Projection is a well-established method of solving separable nonlinear

least squares problems. In these problems, the measurement model is a linear com-

bination of non-linear functions. Golub and Pereyra provide a nice review in [70],

summarizing “the method of variable projections eliminates the linear variables ob-

taining a somewhat more complicated function that involves only the non-linear pa-

rameters.” One solves this more complicated function, obtaining the optimal esti-

mates of the nonlinear parameters, and then uses those estimates to calculate the

linear parameters.

The general model for a separable nonlinear least squares problem can be written

as:

yi =
n

∑

j=1

xjaj(θ; ti) + εi, (6.11)

where yi are the noisy observations, which are modeled as the linear combination

of n basis functions, aj(·), weighted by linear coefficients, xj , and εi is noise. The

basis functions depend on parameter vector θ as well as ti, which are independent

variables associated with each observation (e.g., samples in time). In this model,

the form of the nonlinear functions aj(·) is known, and the goal is to estimate the

n unknown linear parameters, xj , as well as the unknown nonlinear parameters, θ,

from the observations, yi.

Given m observations, we can stack the measurements yi into a vector, y =

[y1, . . . , ym]T , and write the model in matrix-vector form as:

y = A(θ)x + ε, (6.12)

where A(θ) is a matrix with [A(θ)]ij = aj(θ, ti), x is the vector of linear parameters,

[x1, . . . , xn]T , and ε = [ε1, . . . , εm]T is the noise vector.

The residual vector is

r(x, θ) = y − A(θ)x, (6.13)

and we want to determine the linear parameters x and nonlinear parameters θ by
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finding the arguments that minimize the norm of the residual:

(x, θ) =
1

2
argmin

x,θ
‖r(x, θ)‖2

2 (6.14)

=
1

2
argmin

x,θ
‖y − A(θ)x‖2

2.

Minimizing the residual as represented in Eq. (6.14) can be difficult however, because

there are multiple unknown parameters (θ and x). Variable projection “simplifies”

the expression by eliminating the linear parameters in Eq. (6.14), thereby reducing

the expression to one that includes only the nonlinear parameters. Because the form

of the basis functions aj(·) is known, note that if we knew the nonlinear parameters

θ, then we would also know A(θ), and we could easily solve for the linear parameters

x in terms of the pseudo-inverse of A(θ):

x = A(θ)+y. (6.15)

Taking this expression for the linear parameters and plugging into the expression

for the residual in Eq. (6.14), we can rewrite the minimization problem as

θ = argmin
θ

1

2
‖y −A(θ)A(θ)+y‖2

2. (6.16)

Although this functional expression is somewhat more complicated than the form

in Eq. (6.14), it now involves fewer parameters (only the nonlinear ones), and as

Golub and Pereyra discuss, this reduction in the dimension of the parameter space

ultimately makes the problem more tractable [70].

The method of variable projection is basically composed of first solving this mod-

ified minimization problem to find the optimal estimates of the nonlinear parameters

and then using those estimates to find the optimal estimates of the linear parameters,

based on the relationship established in Eq. (6.15). To see the origin of the naming

of the variable projection method, we can rewrite Eq. (6.16) as

θ = argmin
θ

1

2
‖(I −A(θ)A(θ)+)y‖2

2. (6.17)

In this form, the matrix in parenthesis, which operates on y, is the projector of the

orthogonal complement of the column space of A(θ) and the expression inside the

norm is called the variable projection of y.

There are a variety of methods for solving Eq. (6.16) (or equivalently Eq. (6.17)),
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some of which are better suited for certain types of problems and many of which are

discussed in [70]. As we will see in Section 6.3.1, when variable projection is applied to

the problem of estimating kinetic parameters from tissue CA concentrations, the form

of Eq. (6.16) simplifies greatly and no fancy minimization techniques are required.

6.3.1 Using VP to Estimate Kinetic Parameters

Variable Projection can be used in the process of estimating kinetic parameters

from a dynamic MR image sequence. Section 6.2 discusses the process of estimating

the tissue concentration of contrast agent from a such a sequence, and the current

section will discuss the subsequent step of estimating the kinetic parameters Ktrans

and kep from tissue concentrations, thereby completing the discussion on estimating

kinetic parameters from a dynamic image sequence.

Our current goal is to estimate the kinetic parameters Ktrans and kep from com-

puted estimates of the tissue concentration, Ct(t). The tissue concentration depends

on a variety of physiological factors, which we represent using kinetic parameters,

and also depends on the plasma concentration of the contrast agent. The mathemat-

ical relationship between plasma and tissue concentrations is given in Eq. (6.4) and

rewritten here for convenience:

Ct(t) = KtransCp(t) ∗ e(−kept).

Recall that for simulations, Cp(t) is known, and for real images, the value of Cp(t)

can be determined from image pixels corresponding to arterial blood vessels.

Looking at this convolution relationship, we see that the tissue concentration is

a function of a single linear parameter, Ktrans, and a single nonlinear parameter, kep.

That is, Eq. (6.4) is simply an instantiation of Eq. (6.11) where n = 1, and

yi = Ct(ti),

x = Ktrans,

θ = kep,

a(θ; ti) = Cp(ti) ∗ exp(−kepti).

Again, we can stack the m measurements into a vector, Ct = [Ct(t1), . . . , Ct(tm)]T ,

and rewrite the model in vector form as:

Ct = a(kep)K
trans, (6.18)
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where a(kep) = [a(kep, t1), . . . , a(kep, tm)]T . Note that because we have only a single

basis function, the matrix A from Eq. (6.12) has been reduced in dimension and is

now simply a vector, a(·).

Continuing to follow the VP formulation, we know that if we knew the nonlinear

parameter, kep, we could quickly find an estimate for the linear parameter, K̂trans, by

using Eq. (6.15). Note that because of the reduced dimensionality of our problem,

we need not compute a pseudoinverse, but rather can rewrite Eq. (6.15) as:

K̂trans =
a(kep)

T

a(kep)T a(kep)
Ct. (6.19)

Finally, plugging our parameters into Eq. (6.16), we can write:

k̂ep = argmin
kep

1

2

∥

∥

∥

∥

Ct − a(kep)
a(kep)

T

a(kep)T a(kep)
Ct

∥

∥

∥

∥

2

2

. (6.20)

Some simplification yields

k̂ep = argmin
kep
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∥Ct

∥

∥

2

2
−
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a(kep)
T Ct

)2

a(kep)T a(kep)
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∣

∣

2

,

the last line of which indicates how we find our estimate k̂ep based on the contrast

agent concentration in a tissue of interest. An estimate of kep can be found by search-

ing in sufficiently fine increments over the range of physiologically feasible rate con-

stants (kep’s), and choosing as the estimate the kep that maximizes the inner product

with the measurements, Ct, as indicated in Eq. (6.21). Finally, Ktrans is calculated

from this estimate of kep, according to the relationship established in Eq. (6.19), and

ve is simply the ratio Ktrans/kep.

This completes our discussion on estimating the kinetic parameters, Ktrans, kep,

and ve from a dynamic image sequence. Chapter VII presents simulation results

comparing kinetic parameter estimates computed from conventional and TRUIR re-

constructions.
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CHAPTER VII

Simulation Study and Results

We performed a simulation study to examine the effects of phase encode acquisi-

tion trajectory and regularization parameter selection on TRUIR reconstructed image

sequences of a dynamic digital breast phantom. This chapter provides the details of

our experiment and presents our findings.

7.1 Experiment Setup

We simulated DCE-MR breast imaging with a dynamic, bilateral 2D digital phan-

tom, representing a slice through the breast in the sagittal plane. In our simulations,

this is the y-z plane at a single x coordinate. The phase encode directions are ky and

kz, and we ignore the readout direction, kx.

7.1.1 Modeling the Dynamic Object

We modeled our dynamic object after breast tissue containing multiple lesions.

We included 6 circular lesions of various sizes and kinetic properties. Three of the

simulated lesions are quite large, with a radius of 10 pixels (pixel size ≈ 1 mm2), and

three are much smaller with a radius of 2 pixels. Within each size category, one lesion

has slowly enhancing kinetics, one exhibits moderate enhancement, and one enhances

rapidly, in order to model a range of tumor types. Figure 7.1 shows the true dynamic

object at 1 minute, when the lesions are beginning to show enhancement. At this point

in time, the two slowly enhancing lesions are just starting to become visible, the two

moderately enhancing lesions show more contrast, while the two rapidly enhancing

lesions are near their peak enhancement.

To compute the true dynamics of each lesion, we begin by assigning true kinetic

parameter values to each lesion. Choosing appropriate values for Ktrans, kep, and ve
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Figure 7.1: True dynamic object used in our simulations, shown at a single point in
time (1 minute).

proved somewhat challenging, as reported kinetic parameter values for breast lesions

vary quite a bit throughout the literature [21–23, 25, 26, 71]. For example, a 2008

study by Veltman et al. of 102 breast lesions found an average Ktrans of 1.2 min−1 for

benign lesions and 2.4 min−1 for malignant lesions, with corresponding average kep

values of 3 min−1 for benign lesions and 3.8 min−1 for malignant ones [21]. However

in 2004, Eliat et al.’s study of 100 patients found a mean Ktrans of 0.14 min−1 and

0.35 min−1, and a mean kep of 0.27 min−1 and 0.9 min−1 for benign and malignant

lesions, respectively [22]. And, a 2005 study of 68 patients undergoing neoadjuvant

chemotherapy found Ktrans values as high as 10.6 min−1 in lesion hot spots [23]. We

speculate that limitations in time/space resolution may have hampered consistent

quantification of these parameters.

Our chosen true kinetic parameter values fall within the (wide) range of those

reported in the literature, and correspond with values used by a previous PhD student

to simulate enhancement of breast lesions [50]. The slowly enhancing lesion has

Ktrans = 0.2 min−1, kep = 1.3 min−1, and ve = 0.15. The moderately enhancing lesion

has Ktrans = 0.6 min−1, kep = 2.0 min−1, and ve = 0.3, while the rapidly enhancing

lesion has Ktrans = 3.0 min−1, kep = 6.0 min−1, and ve = 0.5. The “healthy” tissue

in our simulations does not exhibit any enhancement. Image size is based on the size

of the real sensitivity maps (384 x 166 pixels), and the entire simulated object was

chosen to fit within areas of good coil sensitivity.

We used Yang’s population averaged AIF to simulate the arterial concentration of

injected Gd-DTPA with bolus arrival time, t0, of 0.5 min [67]. The series of relation-
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Figure 7.2: True enhancement curves for the slow, moderate, and rapidly enhancing
lesions in our simulated object.

ships detailed in Chapter VI, Section 6.1, determine the true object enhancement at

each TR (TR = 4.6 msec), based on the true kinetic parameters. Figure 7.2 shows

the true enhancement curves for the slow, moderate, and rapidly enhancing lesions.

For simplicity, we disregarded any blood volume component when generating our en-

hancement curves. Tables 7.1 and 7.2 contain a summary of the variable values used

in our simulations.

We use the object’s true enhancement at each TR to generate the k-space data,

one PE location at a time. As in an actual MR scan of a dynamic object, each PE

sample in our simulations represents the dynamic object at a different point in time.

As discussed in Chapters I and IV, in order to reconstruct a single image frame,

it is necessary to group PE samples from a range in time, and we assign a single

time point to this image frame (e.g., the midpoint of the group of PE sample times).

This indicates a model mismatch between acquisition and reconstruction, and our

simulations accurately represent that mismatch.
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Variable Value Units Long name

T10 1444.83 msec inherent T1 for glandular breast tissue
r1 4.5 mMol−1 sec−1 relaxivity induced by Gd at 3T

TR 4.6 msec repetition time for acquisition
θ 10 degrees flip angle
t0 0.5 min bolus arrival time

Table 7.1: Values used in simulations.

Enhancement Type Ktrans min−1 kep min−1 ve

Slow 0.2 1.3 0.15
Moderate 0.6 2.0 0.3
Rapid 3.0 6.0 0.5

Table 7.2: Kinetic Parameter values for simulated lesions.

7.1.2 Coil sensitivity

We used real sensitivity maps in our simulations. We computed these sensitivity

maps from fully sampled (phantom) data collected using a 7-coil breast array on a

Philps 3T scanner at the U of M hospital. We first reconstruct a (noisy) image for each

coil using a standard IFFT of the fully sampled data, and then use a regularized esti-

mation routine to compute the sensitivity map for each coil (mri sensemap denoise.m

in [72]) [73].

A standard method to estimate coil sensitivities is to divide each fully sampled

coil image by a fully sampled body coil image. Assuming the body coil has uniform

spatial sensitivity, this image division will yield the sensitivity map for each coil.

Sensitivity maps computed using this method, however, tend to be quite noisy and

are also prone to gross inaccuracies in areas where there is very little signal in the

body coil image, due to the classic divide by zero problem. We expect true sensitivity

maps to vary smoothly in space, and the estimation routine that we use incorporates

this expectation via a regularization term that encourages spatial smoothness.

The regularized estimation routine begins by estimating the coil sensitivities as

the individual coil images divided by the body coil image, with an added feature that

mitigates the divide by zero problem. Fully sampled data from the body coil was not

available in this study, so we estimate the body coil image as the square root of the

sum-of-squares of the 7 individual coil images, multiplied by the phase of the first coil

image.

After the initial image division, pixel values in the resulting sensitivity map esti-

mate are modified (or not) according to the corresponding pixel value in the body coil
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Figure 7.3: Sensitivity maps used in simulations.

image. Sensitivity estimates at pixels corresponding to locations that have low signal

in the body coil image are likely inaccurate, and therefore computed sensitivities at

these locations are assigned a new value. Pixels that correspond to areas of decent

signal in the body coil image are left unchanged. We use a minimum threshold for

the acceptable body coil image value that is 5% of the maximum body coil image

magnitude. Sensitivity values at locations that fall below this threshold are replaced

with the median of the good sensitivity values. This is now the initial sensitivity esti-

mate for the iterative regularized sensemap estimation routine. We used a smoothing

parameter of β = 26 to compute our sensitivity maps, which are shown in Figure 7.3,

for all 7 coils.

7.1.3 Acquired PE Trajectories

We generated three sets of k-space data, according to the three Phase Encode Tra-

jectories discussed in Chapter IV. These three trajectories are showing in Figure 7.4

for reference. Each full trajectory samples the same 4766 PE locations, but the the

order in which the samples are collected varies between trajectory. The Original Tra-
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Figure 7.4: Three phase encode trajectories used in our simulations.

jectory is one that is currently used in breast MRI studies performed at the U of M

hospital, and collects samples starting at low frequency locations and then moves to

higher frequency locations as the acquisition continues. Reordered Trajectory 1 and

Reordered Trajectory 2 both attempt to spread out the frequencies of sampled PE

locations more evenly throughout the acquisition. Collection of 4766 PE locations

per “fully-sampled” frame with our TR of 4.6 msec puts the nominal frame-rate for

standard reconstruction at 21.9 seconds/frame. We generated a total of 12 full frames

of data (for each PE trajectory), which corresponds to a total scan time of 4 mins

and 23 seconds.

Note that, unlike the Keyhole method (and similar methods), our trajectories

do not include a pre-injection reference frame that is fully sampled according to the

Nyquist criteria. Nor do we acquire a fully-sampled reference frame at the end of the

scan. Inclusion of initial and/or final reference frames can lead to desirable artifacts in

the reconstructed image sequence if there is any motion between the reference frame(s)

and the dynamic frames. Because our trajectories include no reference frames, we

avoid any potential issues associated with motion relative to the reference frame(s).

7.1.4 Reconstruction Methods

We reconstructed dynamic image sequences from the simulated data using our

proposed TRUIR method, as well as with a more traditional Homodyne+SENSE

(HS) reconstruction for comparison [47]. We refer to the HS reconstruction method

as such because it incorporates homodyning (to deal with the Partial Fourier acqui-

sition) with SENSE (to deal with the 2x undersampling in ky). A diagram of the HS

reconstruction method is shown in Figure 7.5. Essentially the HS reconstruction is a

homodyne reconstruction with SENSE unaliasing applied to the low resolution and

full resolution images before the phase extraction and demodulation steps, respec-

82



Figure 7.5: Flow Chart of the Homodyne+SENSE reconstruction method. Steps cor-
responding to a traditional homodyne reconstructed are shown in blue,
with the SENSE step shown in red.

tively.

For each PE trajectory, we reconstructed a 12-frame image sequence as well as

a 24-frame image sequence using both TRUIR and HS reconstructions. The 12 and

24-frame image sequences are reconstructed from the exact same data set, i.e., there

is no additional data available for the 24-frame reconstructions. Therefore the 24-

frame image sequence represents the dynamic object over the same time range as

the 12-frame image sequence. In doubling the number of dynamic frames, we are

also doubling frame rate, which allows us to explore the flexibility of our TRUIR

reconstruction method (as well as the HS method), and to evaluate the flexibility of

each PE sample trajectory.

The TRUIR method naturally includes a flexible definition of frame, therefore

reconstructing 12 vs 24 frames from a particular data set does not require any changes

to the algorithm. To determine the number of data samples associated with each

image frame, i.e., which samples comprise ym in the ym −Amxm data-fit term of the

cost function, TRUIR simply divides the total number of available samples by the

desired number of reconstructed image frames. Therefore increasing the number of

reconstructed frames from 12 to 24 simply means that the TRUIR method reduces

the number of measurements associated with each frame by half, and relies on the

regularization terms to counteract the otherwise expected reduction in image quality

at each frame.
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With HS reconstruction, it is quite a different story, as the HS method does not

have this built-in flexibility. HS is a frame-by-frame reconstruction method, meaning

that each frame is reconstructed independently from the other frames. If we halve

the data available per frame by going to a 24-frame reconstruction, the standard HS

method results in a dynamic image sequence with significant artifacts in each frame.

Therefore, for 24-frame HS reconstructions we used a sliding window that divides

the data into 24 overlapping groups, each containing a full frame’s worth of k-space

samples, so that each HS image frame can be reconstructed from a “full” set of k-space

samples.

Figure 7.6 illustrates how data is grouped into frames for both TRUIR and HS

when reconstructing twice the number of frames as were acquired. The figure shows

the case where a fully-sampled frame is comprised of 6 samples, and we have acquired

12 total samples, which is enough to reconstruct 2 fully-sampled (non-overlapping)

image frames. If we want to reconstruct twice the number of frames, i.e., 4 image

frames, from these 12 samples, TRUIR breaks the 12 samples into 4 even, non-

overlapping groups, and thus associates 3 samples with each frame. The TRUIR

grouping for the doubled number of image frames is shown in Figure 7.6 with the

blue dashed lines. Despite the increase in frame rate, HS still needs a full frame’s

worth of samples (here, 6 samples) to reconstruct each image frame. To reconstruct

at the higher frame rate, HS uses a sliding window to divide the 12 total samples into

4 equally-spaced, overlapping groups, each containing 6 samples. Figure 7.6 shows

the HS sliding window groupings with red dotted lines.

7.1.5 Assigning Frame Times

When we group multiple samples to reconstruct a single image frame, we are im-

plicitly assuming that the grouped samples represent the same object. In particular,

grouping samples for reconstruction in dynamic sequences assumes that the object

is static over the time during which that group of samples is collected. Clearly this

is not the case for dynamic objects; nonetheless it is necessary. The result is a re-

constructed image frame that is an approximation of the dynamic object over the

period of time during which the contributing k-space samples were collected. For our

12-frame reconstructions, that is a 22 second window.

In order to plot realistic enhancement curves, extract kinetic parameters, as well

as to do any numerical comparison with the true object, we must assign the image

frame to a single time point in that 22 second window. For most of our reconstructed

image sequences, we use the mid-frame timepoint as the assigned frame time, with
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Figure 7.6: Example of how TRUIR and HS group the available data when recon-
structing at an increased frame rate. Here, 6 measurements comprise a
fully-sampled frame, and we have collected two full frames of data (black
lines). To reconstruct twice the number of image frames (four frames in-
stead of two), TRUIR groups the data into four non-overlapping groups
(blue dashed lines), while HS groups the data into four equally spaced,
overlapping groups using a sliding window (red dotted lines).

the exception of reconstructions of samples from the Original Trajectory. Because the

Original Trajectory samples all of the low frequencies first, and these samples contain

most of the information about the object, we thought it would be more accurate to

assign reconstructed frames based on the Original Trajectory to the beginning of each

frame’s sample time window. The Original Trajectory’s low-frequency first sampling

does not hold for a 24-frame sliding window, therefore 24-frame HS reconstructions

use the mid-frame timepoint.

To summarize, we use the midframe timepoint for 12 and 24 frame TRUIR and

HS reconstructions of samples from Reordered Trajectories 1 and 2, as well as for

24-frame HS reconstructions of the Original Trajectory. We use the beginning of

the frame timepoint for 12 and 24 frame TRUIR reconstructions of the Original

Trajectory, and for 12 frame HS reconstructions of the Original Trajectory. Note

that the midframe times for 24-frame HS reconstructions differ from midframe times

for 24-frame TRUIR reconstructions, due to the sliding window.

7.1.6 Regularization Parameters

As detailed in Chapter V, the spatial and temporal regularization parameters

we use greatly affect the resulting TRUIR image sequences. Because no analytical

method currently exists for choosing these regularization parameters for multi-coil

imaging, we tested a range of values for both the spatial regularization parameter,
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β, and the temporal regularization parameter α, and evaluated the resulting image

sequences. We tested 3 values for β, with log2 β = [−8, 0, 6], and 11 values for α, with

log2 α = [0 : 2 : 20], which yields a total of 33 combinations of regularization param-

eters, and therefore a total of 66 dynamic TRUIR reconstructed image sequences of

each data set (33 12-frame reconstructions + 33 24-frame reconstructions).

7.2 Results

We generated 3 sets of simulated data according to 3 different PE trajecto-

ries. Each data set was reconstructed using 12 and 24-frame HS, and 12 and 24-

frame TRUIR, and 33 combinations of regularization parameters were tested for each

TRUIR reconstruction. This means that we have a total of 204 reconstructed im-

age sequences, each of which is comprised of 12 or 24 frames. In terms of temporal

evaluation, we have six lesions of interest present in each of our 204 reconstructed

image sequences, which yields 1,224 enhancement curves. In terms of spatial eval-

uation, with 12 or 24 frames per reconstructed sequence, we have a total of 7,344

different image frames we could evaluate. With 6 lesions per frame, that’s 44,064 re-

gions of interest. Clearly we have too many results to present them all, so we instead

present a representative subset, along with observations on overall trends for each

reconstruction approach, and phase encode sampling scheme.

To establish a visual picture of our reconstructed image sequences, which will be

helpful to have in mind when examining various results, Figure 7.7 shows a subset

of frames from three of the 24-frame reconstructions. Frames 3-6 are shown, during

which the lesions are exhibiting dynamic uptake of the contrast agent. Frames from

the 24-frame HS reconstruction of samples from Reordered Trajectory 1 are shown on

the left. Frames from 24-frame TRUIR reconstructions of the Original Trajectory are

shown in the middle, and 24-frame TRUIR reconstructions of Reordered Trajectory 1

are shown on the right. The pictured Original Trajectory TRUIR was reconstructed

with log2 α = 0, which clearly does not provide enough temporal regularization. The

TRUIR reconstruction of Reordered Trajectory 1 used log2 α = 6. In evaluating the

results of this study, we did not observe much dependence of the TRUIR reconstruc-

tions on the value of β. Therefore all presented TRUIR results use log2 β = 6, unless

otherwise noted.

86



HS 24 Reord 1

1 384

1

166

TRUIR 24 Orig

1 384

1

166

TRUIR 24 Reord 1

1 384

1

166

Figure 7.7: Frames from 3 reconstructed dynamic image sequences. Frames 3-6 are
shown. Left: 24-frame HS reconstruction of samples from Reordered Tra-
jectory 1. Middle: 24-frame TRUIR reconstruction of samples from the
Original Trajectory, with log2 α = 0. Right: 24-frame TRUIR reconstruc-
tion of samples from Reordered Trajectory 1, with log2 α = 6.

7.2.1 Small Rapidly Enhancing Lesion

We first present some detailed results based on reconstructions of the small, rapidly

enhancing lesion. We chose to present results for this lesion over the others because

it presents the most challenging case for reconstruction: its small size requires high

spatial resolution, and its fast kinetics require high temporal resolution.

Figure 7.8 shows enhancement curves for the small, rapid lesion from TRUIR

reconstructions with a range of values of α. The figure includes 12 and 24-frame

reconstructions of the Original Trajectory (top row), and 12 and 24-frame recon-

structions of Reordered Trajectory 1 (bottom row). The true enhancement curve

as well as the HS reconstructed enhancement curve also appear in each plot. The

enhancement curves in Figure 7.8 provide a nice visualization of the effect of the

temporal regularization parameter, α, on the temporal dynamics of the reconstructed

image sequence.

For the 12-frame reconstructions, log2 α values less than 12 all result in reasonably

good enhancement curves, while using larger values of α on the 12-frame reconstruc-

tions (log2 α = 16 and 20) results in oversmoothing and loss of the temporal dynamics.

So, for 12-frame reconstructions, the enhancement curves indicate an upper limit for

87



0 1 2 3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
12 frames, Original Trajectory

time (min)

In
te

ns
ity

 

 
true
HS
α = 0
α = 4
α = 8
α = 12
α = 16
α = 20

0 1 2 3
−0.2

0

0.2

0.4

0.6

0.8
24 frames, Original Trajectory

time (min)

In
te

ns
ity

0 1 2 3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
12 frames, Reordered Trajectory 1

time (min)

In
te

ns
ity

0 1 2 3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
24 frames, Reordered Trajectory 1

time (min)

In
te

ns
ity

Figure 7.8: Effect of α on enhancement curves of the small, rapid lesion for different
PE orderings.
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our choice of α, but not a lower one (within the range of values we tested).

For the 24-frame TRUIR reconstructions, each image frame is associated with

undersampled data, and we rely on the temporal regularizer to provide a degree of

connectivity between adjacent image frames. The enhancement curves for the 24-

frame TRUIR reconstructions of the Original Trajectory (top right, Figure 7.8) high-

light the importance of choosing an appropriate α in this case. As with the 12-frame

reconstructions, using a too large α (log2 α = 16 and 20) results in oversmoothing

and loss of temporal dynamics. However, for 24-frame reconstructions of the Original

Trajectory, we also clearly see the negative effect of choosing an α that is too small,

i.e., undersmoothing in time. For log2 α = 0, which was the smallest value in our test

range, the enhancement curve looks terrible, with wild oscillations between one frame

and the next. The disjoint distribution of sample locations for even and odd frames

in the 24-frame TRUIR reconstruction of the Original Trajectory means we have to

more heavily enforce the sharing of information between image frames, i.e., we need

to use a sufficiently large value for α. So, for 24-frame reconstructions of the Original

Trajectory, we see both an upper and lower bound on effective values for the temporal

regularization parameter, with good values in the range 4 < log2 α < 16. Based on

the results of further investigation of the temporal behavior of TRUIR reconstructed

image sequences, some of which will be presented later, we concluded that log2 α

= 6 works well in most cases, and therefore many of the presented results use this

value. Note that in the 24-frame reconstructions based on Reordered Trajectory 1,

which has more uniformly distributed sample locations for even and odd frames, the

enhancement curves shown in the bottom right plot of Figure 7.8 do not indicate a

minimum required value for α.

Figure 7.9 shows reconstructed enhancement curves for the small, rapidly enhanc-

ing lesion from HS reconstructions of each of the PE sample trajectories, along with

the true enhancement of the lesion. Figure 7.10 shows corresponding enhancement

curves for TRUIR reconstructions (with α = 6 and β = 6). Enhancement curves for

all six HS and TRUIR reconstructed image sequences are shown: 12 and 24-frame

reconstructions of the Original, Reordered 1, and Reordered 2 Trajectories. We see

immediately that all of the TRUIR enhancement curves for the small lesion more

closely match the truth than any of the HS enhancement curves. All of the HS

reconstructed enhancement curves overshoot the true enhancement. The 24-frame

HS enhancement curves (dashed lines) show slightly better representation of the true

curve (black line) than their corresponding 12-frame reconstructions (solid lines). The

same frame rate observation holds for the TRUIR enhancement curves: the 24-frame

89



0 0.5 1 1.5 2 2.5 3
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time (min)

In
te

ns
ity

Enhancement using HS of small, rapid lesion

 

 
true
HS 12 orig
HS 12 reord 1
HS 12 reord 2
HS 24 orig
HS 24 reord 1
HS 24 reord 2

Figure 7.9: Enhancement curves of HS reconstructions of the small, rapidly enhancing
lesion. Reconstructions using the Original Trajectory, Reordered Trajec-
tory 1, Reordered Trajectory 2, and 12 or 24 frames are shown.

reconstructed curves are closer to the true enhancement than the 12-frame curves.

The reconstructed enhancement curves for both HS and TRUIR reconstructions

in Figures 7.9 and 7.10 all show bias, most clearly seen in the plateau region of the

enhancement curves. This bias is a result of the overshoot of the image estimate at

the center of the lesion (from which the enhancement curves are derived), which can

be seen in the profiles through the lesion in Figure 7.16. We see that the bias is

present in both HS and TRUIR reconstructions of the small rapidly enhancing lesion,

but is more pronounced in HS reconstructions. The bias in the enhancement curves

is consistent across the small lesions (slow, moderate and rapidly enhancing), but is

significantly reduced or eliminated altogether in reconstructions of the large lesions

(not shown).

For both HS and TRUIR reconstructions, the enhancement curve correspond-

ing to 12-frame reconstruction of the Original Trajectory shows a much poorer fit

than the others. Remember that we assign reconstructed image frames to different

timepoints, depending on the acquisition and reconstruction schemes. For 12-frame

reconstructions of the Original Trajectory, we assign each frame to the time at which
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Figure 7.10: Enhancement curves of TRUIR reconstructions of the small, rapidly en-
hancing lesion, using log2 α = 6 and log2 β = 6. Reconstructions using
the Original Trajectory, Reordered Trajectory 1, Reordered Trajectory
2, and 12 or 24 frames are shown.
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we begin to acquire that frame’s samples (since we sample all the low frequencies

first). The poor fit of the 12-frame Original Trajectory enhancement curves shown

in Figures 7.9 and 7.10 suggests that using the midframe timepoint may be a bet-

ter choice. However, for larger lesions the enhancement fit is quite good using the

assigned beginning frame times (not shown), and changing the assigned frame times

would negatively affect the fit of those curves. Additionally, we use the same “low-

frequency first” logic in assigning beginning frame times to the 24-frame TRUIR

reconstructions of the Original Trajectory, and, as Figure 7.10 shows, this results in

a good fit for the resulting enhancement curve. Therefore, we kept the originally

assigned beginning frame times for the 12-frame reconstructions of the Original Tra-

jectory. Exploring the effect of using different assigned frame times for this trajectory

(e.g. mid-frame times, or quarter-frame times) may be a subject of future work.

We have established that for all tested trajectories and reconstructed frame rates,

TRUIR reconstructions show superior temporal dynamics to the corresponding HS

reconstructions. Next we look at spatial resolution properties for both reconstruction

methods.

Figures 7.11 and 7.12 show a single frame of the true and reconstructed small,

rapidly enhancing lesion, from HS and TRUIR reconstructions, respectively. Within

each figure, the top plot shows the true lesion (A), 12-frame reconstructions of the

Original Trajectory, Reordered Trajectory 1, and Reordered Trajectory 2 (B-D), and

24-frame reconstructions of the same trajectories (F-H). The bottom half of the figure

shows the normalized absolute error of each reconstruction.

Within the HS reconstructions (Figure 7.11), the images reconstructed from the 3

different trajectories with 2 frame rates look largely similar. The plots of normalized

error show that the 12 and 24-frame HS reconstructions of the Original Trajectory

have larger structured error just outside the lesion, while the 12 and 24-frame recon-

structions of both reordered trajectories have more error distributed throughout the

background tissue. The TRUIR reconstructions in Figure 7.12 show similar behavior.

Close examination of the reconstructed lesions shows that TRUIR reconstructions

have worse spatial resolution, particularly in the y-direction (which is the x-axis in the

figures), than HS reconstructions. This can be better seen in the plots of the profiles

through the reconstructed lesions for HS and TRUIR reconstructions, which appear in

Figures 7.13 and 7.14, respectively. The profiles show that all of the reconstructions,

both HS and TRUIR, show some spatial blur in both y and z. This is not surprising

given the extreme undersampling of the elliptically-shuttered trajectories we use,

compared to full ny x nz sampling (see Figure 4.1). The HS reconstructions generally
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HS Reconstructions

 

 
A B C D

E F G

1 21

1

21

0

0.1

0.2

0.3

0.4

Normalized Error

 

 
A B C D

E F G

1 21

1

21

0

0.2

0.4

0.6

0.8

1

Figure 7.11: HS reconstructions of the small, rapidly enhancing lesion and the nor-
malized absolute error of each reconstruction. The frame with peak
intensity is shown, which was frame 3 in 12-frame reconstructions, and
frame 5 in 24-frame reconstructions. A: true, B: HS 12 orig, C: HS 12
reord 1, D: HS 12 reord 2, E: HS 24 orig, F: HS 24 reord 1, G: HS 24
reord 2.
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TRUIR Reconstructions
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Figure 7.12: TRUIR reconstructions of the small, rapidly enhancing lesion and the
normalized absolute error of each reconstruction. The frame with peak
intensity is shown, which was frame 3 in 12-frame reconstructions, and
frame 5 in 24-frame reconstructions. All shown TRUIR results use
log2 α = 6 and log2 β = 6 A: true, B: TRUIR 12 orig, C: TRUIR 12
reord 1, D: TRUIR 12 reord 2, E: TRUIR 24 orig, F: TRUIR 24 reord
1, G: TRUIR 24 reord 2.
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overshoot the intensity at the center of the lesion, while the TRUIR reconstructions

undershoot the lesion intensity, even at the lesion center in some cases.

Comparing the profiles in y from Figures 7.13 and 7.14, we see that the TRUIR

profiles are wider than the HS profiles, which matches our previous observation of

increased blur in the y-direction for TRUIR images in Figure 7.12. We hypothesized

that the increased spatial resolution of HS reconstructions can be attributed to the

homodyning part of the reconstruction process.

To test our hypothesis, we looked at images of the small, rapidly enhancing le-

sion from 12-frame reconstructions of the Original Trajectory, reconstructed using

SENSE only, HS, TRUIR with very small regularization parameters (log2 α = 0 and

log2 β = −8), and TRUIR with log2 α = 6 and log2 β = 6. We included a TRUIR

reconstruction with the small regularization parameters to verify that the increased

spatial blur seen in the TRUIR reconstructions of Figure 7.12 is not due to over-

smoothing, i.e., too large regularization parameters.

The 3rd frame of the SENSE-only, HS, and TRUIR reconstructed image sequences

appears in Figure 7.15, along with the normalized absolute error of each reconstruc-

tion. Profiles through the reconstructed lesions are shown in Figure 7.16. We see

that the shape, normalized error and profile through the SENSE-only reconstructed

lesion (B in Figure 7.15) closely match both of our TRUIR reconstructed lesions (D

and E in Figure 7.15). Comparing the two TRUIR reconstructions to each other,

we see essentially no difference. The TRUIR reconstruction in D uses the smallest

tested values for the regularization parameters (log2 α = 0 and log2 β = −8), while

the TRUIR reconstruction in E uses moderate values for the regularization parame-

ters (log2 α = 6 and log2 β = 6). The fact that these two reconstructed image frames

look almost identical confirms that the spatial blur we see in TRUIR is not a result

of using overly large regularization parameters.

In comparison to the SENSE only and TRUIR reconstructions, the HS recon-

structed lesion (C in Figure 7.15) shows less spatial blur in y and lower normalized

error. This confirms our hypothesis that the superior spatial resolution of HS recon-

structions is attributable to the homodyne part of the reconstruction algorithm (and

not the SENSE part). The shape of the HS y-profile in Figure 7.16 also reflects the

reduced spatial blur in y. The side lobes of the HS y-profile are closer in space to the

main lobe than are the side lobes of the TRUIR y-profiles. In other words, we see

tighter ripples in the y-direction for the HS reconstruction, which indicates that HS

reconstructions contain more high spatial frequencies than our TRUIR reconstruc-

tions.
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Figure 7.13: Profiles through HS reconstructions of the small, rapidly enhancing le-
sion shown in Fig. 7.11. Profile in the y-direction is shown in the top
plot and profile in the z-direction is shown in the bottom one.
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Figure 7.14: Profiles through TRUIR reconstructions of the small, rapidly enhancing
lesion shown in Fig. 7.12. Profile in the y-direction is shown in the top
plot and profile in the z-direction is shown in the bottom one.
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SENSE, HS and TRUIR Reconstructions

 

 
A B C

D E

1 21

1

21

0

0.1

0.2

0.3

0.4

Normalized Error

 

 
A B C

D E

1 21

1

21

0.2

0.4

0.6

0.8

1

1.2

Figure 7.15: SENSE-only, HS, and TRUIR 12-frame reconstructions of the small,
rapidly enhancing lesion. Reconstructions (top), and the normalized
absolute error of each reconstruction (bottom). Frame 3 is shown. A:
true, B: SENSE only, C: HS, D: TRUIR with log2 α = 0, log2 β = −8,
E: TRUIR with log2 α = 6, log2 β = 6, H: .
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Figure 7.16: Profiles through SENSE, HS, and TRUIR reconstructions of the small,
rapidly enhancing lesion shown in Fig. 7.15. Profile in the y-direction
is shown in the top plot and profile in the z-direction is shown in the
bottom one.
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Recall that all of our simulated trajectories are partial Fourier acquisitions, mean-

ing the number of high frequency measurements is reduced by half in comparison

to a traditional symmetric full Fourier acquisition. It is this reduction in high fre-

quency data that results in reduced spatial resolution for our TRUIR reconstructions,

in comparison to HS reconstructions. One of the first steps in homodyning (and HS

reconstruction) is to run the partial Fourier data through a high pass filter that

doubles the high frequencies, which sort of “makes up” for the other half of high fre-

quency measurements that are missing in a partial Fourier acquisition. Our current

TRUIR formulation includes nothing akin to this. Our data fidelity term fits the

image sequence to the measured data as is - there is no initial doubling of high fre-

quency components, despite the partial Fourier acquisition. Neither does our TRUIR

formulation enforce a smooth phase assumption, which is also a key feature of ho-

modyne reconstruction. Adjusting the TRUIR formulation to include some means

of accounting for the reduced high frequency data in partial Fourier acquisitions will

be an important area of future work. We believe that adding this adjustment will

enable TRUIR reconstructions to approach or match the spatial resolution seen in

HS reconstructions.

Figure 7.17 summarizes our results for the small, rapid lesion. The top plot shows

the normalized enhancement error for each PE ordering and reconstructed frame rate,

for both HS and TRUIR reconstructions. The values shown are the mean normalized

absolute enhancement error, averaged over all 12 or 24 time frames of the specified

reconstructed sequence. Again, the TRUIR results in this figure are for log2 α = 6,

log2 β = 6. This bar graph summarizes and quantifies the behavior of the HS and

TRUIR enhancement curves from Figures 7.9 and 7.10. TRUIR reconstructions had

significantly smaller enhancement error than HS reconstructions for all PE trajecto-

ries and reconstructed frame rates. For each trajectory, using TRUIR reconstruction

reduces the normalized enhancement error about 5%, compared to HS reconstruction,

sometimes more. For both HS and TRUIR reconstructions, we found that going to a

24-frame reconstruction reduced the enhancement error compared to the correspond-

ing 12-frame reconstruction of the same PE trajectory. The improvement is slight for

HS reconstructions, but quite pronounced for the 24-frame TRUIR reconstructions of

both reordered trajectories.

The bottom plot in Figure 7.17 shows the normalized error within the 21 x 21

pixel ROI surrounding the lesion, for each PE ordering, reconstructed frame rate, and

reconstruction method. The error shown is from a single frame of the reconstructed

image sequence (the frame that exhibited peak enhancement), and is the mean of the
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Figure 7.17: Top: Mean normalized absolute enhancement error for HS and TRUIR
reconstructions (with log2 α = 6, log2 β = 6), averaged over all 12 or 24
frames. Bottom: Mean normalized absolute error for an ROI surround-
ing the small, rapidly enhancing lesion.
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normalized absolute error over all pixels within the ROI. We have already seen that

the HS reconstructions have superior spatial resolution to our TRUIR reconstructions,

and therefore it is no surprise that the normalized ROI error for HS reconstructions

is lower than for TRUIR reconstructions, for all trajectories and frame rates. HS

reconstructions reduce the normalized ROI error about 2.5%, compared to TRUIR

reconstructions.

In summary, for the small, rapidly enhancing lesion, our TRUIR reconstructions

offer reduced enhancement error (which suggests better temporal resolution), com-

pared to HS reconstructions, but have increased ROI error (reduced spatial resolu-

tion). The increase in ROI error is smaller than the decrease in enhancement error,

and, as previously discussed, we believe modification of the TRUIR formulation to

better account for partial Fourier imaging would improve spatial resolution and reduce

the ROI error for TRUIR reconstructions.

7.2.2 General Results

Now we look at more general results comparing HS and TRUIR for different PE

trajectories and reconstructed frame rates. Figure 7.18 summarizes the temporal

performance for HS reconstructions of each acquired PE trajectory. The figure shows

the mean normalized enhancement error for each lesion within each reconstruction,

as well as the mean error over all 6 lesions for each reconstruction (dark red). The

mean normalized error for each lesion is the normalized absolute error at the lesion

center, averaged over all frames. Not surprisingly, the 3 small lesions have significantly

higher enhancement error than the 3 large lesions, for all PE orderings, with the small,

rapidly enhancing lesion showing the worst enhancement error. For the large lesions,

the 12-frame HS reconstruction of the Original Trajectory resulted in the lowest

enhancement error, but the same reconstruction resulted for the highest enhancement

error in the small lesions. Using either of the reordered trajectories reduced the mean

enhancement error compared to the Original Trajectory, for both 12 and 24-frame

HS reconstructions. The 24-frame HS reconstruction of Reordered Trajectory 1 had

the lowest mean enhancement error over all HS reconstructions, although the mean

error for all four reordered HS reconstructions is quite close.

Figure 7.19 shows the TRUIR enhancement error as a function of the temporal

regularization parameter, α. All TRUIR reconstructions represented in this figure

use log2 β = 6. The enhancement value shown for each reconstruction is the mean

normalized absolute enhancement error, averaged over all 6 lesions and all frames.

The enhancement for each lesion is measured at the center pixel of the lesion. The
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Figure 7.18: Mean normalized absolute enhancement error for HS reconstructions.
Normalized absolute error was calculated at the center of each lesion,
and then averaged over all time frames to yield the values shown in the
figure.
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Figure 7.19: Enhancement error as a function of temporal regularization parameter,
α. The x-axis shows the values of log2 α (‘l2a’).
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mean enhancement error of a traditional 12-frame HS reconstruction of the Original

Trajectory is included for reference, as is the enhancement error of the best HS recon-

struction, which was a 24-frame reconstruction of Reordered Trajectory 1. Figure 7.19

shows that all TRUIR reconstructions beat even the best HS reconstruction, for a

range of values of α. The 24-frame TRUIR reconstruction of the Original Trajectory

is the most sensitive to the choice of temporal regularization parameter, giving huge

errors for most values of α and only beating the best HS reconstruction for a single

value of α (log2 α = 8). TRUIR reconstructions based on the Reordered Trajectories

exhibit more robustness to the choice of temporal regularization parameter, showing

good performance for a large range of α values, as does the 12-frame TRUIR recon-

struction of the Original Trajectory. All 12-frame TRUIR reconstructions show fairly

constant enhancement error for log2 α = 0 to 8, regardless of trajectory.

The 24-frame TRUIR reconstructions of the reordered trajectories show the over-

all best performance in terms of enhancement error, with the error minimized with

a temporal regularization parameter in the range of log2 α = 6 to 8. Somewhat sur-

prisingly, we found that reconstructions of samples from Reordered Trajectory 1 had

lower error than reconstructions of Reordered Trajectory 2, even though Reordered

Trajectory 1 has more structure to the PE sample pattern, and the samples in Re-

ordered Trajectory 2 look more uniformly distributed (see Figures4.3, 4.5 and 4.8

in Chapter IV). The improvement in enhancement error for Reordered Trajectory 1

over Reordered Trajectory 2 is slight, but is consistent across reconstruction methods

and frame rates. That is, Reordered Trajectory 1 had lower enhancement error than

Reordered Trajectory 2 for 12 and 24-frame TRUIR reconstructions as well as for 12

and 24-frame HS reconstructions (see Figure 7.18). The lowest enhancement error

over all methods was achieved with a 24-frame TRUIR reconstruction of Reordered

Trajectory 1 using a temporal regularization parameter of log2 α = 6.

Figure 7.20 summarizes the enhancement error in TRUIR reconstructions for each

PE trajectory and each lesion. The presented results are for TRUIR reconstructions

with log2 α = 6 and log2 β = 6. As in Figure 7.18, the error shown is the mean

normalized absolute enhancement error seen at the center of each lesion, averaged over

all image frames. The mean enhancement error over all lesions is also shown for each

PE ordering (dark red). As we saw in Figure 7.19, 24-frame TRUIR reconstruction

of the Original Trajectory has the highest enhancement error, while 24-frame TRUIR

reconstruction of Reordered Trajectory 1 has the lowest enhancement error. For the

small lesions, 24-frame reconstruction of either Reordered Trajectory significantly

reduces the enhancement error, compared to 12-frame reconstructions of any PE
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Figure 7.20: Mean normalized absolute enhancement error for TRUIR reconstruc-
tions with log2 α = 6 and log2 β = 6. Normalized absolute error was
calculated at the center of each lesion, and then averaged over all time
frames to yield the values shown in the figure.

trajectory.

7.2.3 Kinetic Parameters

We computed the kinetic parameters Ktrans, kep, and ve for each lesion in each

reconstructed image sequence, and compared these estimated values to the true ki-

netic parameter values. Figures 7.21 - 7.23 show the error in the three estimated

kinetic parameters for TRUIR reconstructed image sequences as a function of α. All

represented TRUIR reconstructions used log2 β = 6. The figures also include kinetic

parameter estimates calculated from a traditional 12-frame HS reconstruction of the

Original Trajectory for reference. The best HS kinetic parameter estimates are in-

cluded as well. As with the enhancement error, the lowest error in kinetic parameter

estimation over all HS reconstructions was achieved with a 24-frame HS reconstruction
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Figure 7.21: Ktrans estimation error as a function of α. Error shown for each recon-
struction is the mean normalized absolute error of the Ktrans estimate
at the lesion centers, averaged over all lesions.

of Reordered Trajectory 1. In all three figures, represented results are from TRUIR

reconstructions unless otherwise indicated in the legend. Similarly, 24-frame recon-

structions are indicated in the legend, and all others are 12-frame reconstructions.

The legend entry ‘reord’ refers to Reordered Trajectory 1.

Kinetic parameters were estimated based on the measured enhancement curve at

the center of each lesion. The error shown in the figures is the mean normalized

absolute error of the specified kinetic parameter, averaged over the 6 lesions in each

reconstructed image sequence.

Figure 7.21 shows the Ktrans estimation error, Figure 7.22 shows the kep esti-

mation error, and Figure 7.23 shows the error in estimates of ve. In Figure 7.21

and Figure 7.22, we see that all of the presented TRUIR reconstructions result in

large improvements in Ktrans and kep estimates, compared to the traditional 12-frame

HS reconstruction of the Original Trajectory. Additionally, a variety of TRUIR re-

constructions outperform even the best HS reconstruction in estimating each of the
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Figure 7.22: kep estimation error as a function of α. Error shown for each reconstruc-
tion is the mean normalized absolute error of the kep estimate at the
lesion centers, averaged over all lesions.
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Figure 7.23: ve estimation error as a function of α. Error shown for each reconstruc-
tion is the mean normalized absolute error of the ve estimate at the lesion
centers, averaged over all lesions.
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three kinetic parameters. In Figure 7.21, 12 and 24-frame TRUIR reconstructions

from both Reordered Trajectory 1 and Reordered Trajectory 2 have lower Ktrans es-

timation error than the best HS reconstruction, for log2 α < 8. Figure 7.22 shows

that with log2 α < 6, 24-frame TRUIR reconstructions of both Reordered Trajecto-

ries reduce the error in the estimate of kep, compared to the best HS reconstruction,

although the difference is slight. In estimating ve, Figure 7.23 shows that all TRUIR

reconstructions (12 and 24 frames with all PE trajectories) with log2 α < 12 provided

better estimates than the best HS reconstruction, with the exception of the 24-frame

TRUIR reconstruction of the Original Trajectory, which offers improved ve estimates

only for log2 α between 6 and 12.

Looking at all three figures, we observe that reconstructions based on the Re-

ordered Trajectories generally provide better kinetic parameter estimates than recon-

structions of the Original Trajectory, and 24-frame reconstructions (solid lines) result

in better kinetic parameter estimates than their associated 12-frame reconstructions

(dashed lines). As with enhancement error, using a temporal regularization param-

eter of log2 α <= 8 generally provides the best estimates of the kinetic parameters.

Although Figure 7.19 shows that 24-frame TRUIR reconstructions of the Reordered

Trajectories have reduced enhancement error around log2 α of 6 to 8, we do not see the

same effect in the kinetic parameter estimates. For log2 α < 8, all 3 kinetic parameters

have fairly constant error within each Reordered Trajectory’s TRUIR reconstruction.

Using our proposed TRUIR method, reordered trajectories and higher frame-rate

reconstructions, we were able to reduce the estimation error for all three kinetic

parameters, compared to the traditional 12-frame HS reconstruction of the Original

Trajectory. We see the greatest improvement in estimates of Ktrans, and the smallest

improvement in estimates of ve. The smallest error for all three kinetic parameters

was achieved with 24-frame TRUIR reconstructions of the Reordered Trajectories.

7.2.4 Summary

The main results of our simulation study can be summarized as follows:

• Our proposed Reordered Trajectories 1 and 2 are more suitable for reconstruct-

ing dynamic image sequences with an increased frame rate, compared to the

Original Trajectory currently in use.

• Choosing the right value for the temporal regularization parameter, α, is very

important when reconstructing data from highly ordered, poorly distributed

sample trajectories, such as the Original Trajectory, at higher frame rates.
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• Our Reordered Trajectories are more robust to the choice of α than the Original

Trajectory. Both Reordered Trajectories produced TRUIR image sequences

with good temporal resolution and kinetic parameter estimates, over a wide

range of temporal regularization parameter values.

• TRUIR reconstructions offer better temporal dynamics than even the best HS

reconstruction. In particular, 24-frame TRUIR reconstructions of data acquired

according to Reordered Trajectory 1 or Reordered Trajectory 2 showed the best

overall temporal dynamics (for log2 α < 8), compared to all other reconstructed

image sequences, and also resulted in the best kinetic parameter estimates. We

would like to conclude from this that TRUIR offers better temporal resolution

than HS, but, as discussed in Chapter V, Section 5.3.3, temporal resolution is

somewhat of an elusive concept in this setting, since measuring a true impulse

response is a bit of a nonsensical affair. However, our results certainly show

that TRUIR reconstructions have better temporal dynamics than HS, which

suggests that TRUIR may offer improved temporal resolution.

• TRUIR reconstructions (with quadratic regularization in space) of the partial

Fourier data in this study exhibited poorer spatial resolution properties than HS

reconstructions. The HS reconstruction method is designed for reconstruction

of partial Fourier data, and includes measures that address the asymmetry

of the data, such as doubling of high frequency components and utilizing a

smooth phase assumption. Our current TRUIR formulation does not include

any such compensation measures for partial Fourier acquisitions. We believe

that modification of the TRUIR formulation to better accommodate partial

Fourier data will improve the spatial resolution of TRUIR reconstructed image

sequences, and this is an important area of future work. Additionally, use of

edge preserving regularization in space instead of quadratic regularization will

also improve spatial resolution of TRUIR images.

• In this study, the spatial resolution of our TRUIR reconstructions was dom-

inated by the undersampled k-space as opposed to the spatial regularization.

Figure 7.15 shows TRUIR reconstructions of the small lesion using two differ-

ent sets of regularization parameters. Subfigure (D) is a TRUIR reconstruction

using log2 α = 0 and log2 β = −8, which are the smallest values within the

tested range for the temporal and spatial regularization parameters. Subfigure

(E) is a TRUIR reconstruction using log2 α = 6 and log2 β = 6, which generally

resulted in good quality reconstructions. Because the spatial resolutions seen
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in (D) and (E) are not visibly different, this tells us that the dominant factor

contributing to TRUIR’s poor spatial resolution is the undersampled k-space

trajectory, rather than oversmoothing in space. Therefore, it would definitely

be worth exploring the effect of using an extended PE trajectory that samples

locations farther out in k-space. This should be an area of future work.
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CHAPTER VIII

Conclusions and Future Work

8.1 Summary

This dissertation presents an object-domain model for image reconstruction in

dynamic MRI, which we refer to as TRUIR: Temporal Regularization Use in Image

Reconstruction. Our reconstruction model is formulated as penalized likelihood es-

timator that explicitly includes a temporal smoothness assumption in object space.

TRUIR is therefore well-suited for MR imaging of dynamic objects that vary smoothly

in time, such as the objects of interest in dynamic contrast-enhanced MRI. We

extended our TRUIR model to incorporate parallel imaging, and also accelerated

TRUIR reconstructions by utilizing Toeplitz matrices.

This work explores various aspects of the proposed TRUIR method including

selection of spatial and temporal regularization parameters, flexibility for increased

frame rate reconstruction, and the effect of different phase encode acquisition patterns

on TRUIR reconstructions.

Chapter V explores TRUIR’s resolution properties through evaluation of a local

impulse response, and presents an accelerated method we developed to compute the

local impulse response. Our DCE-MRI simulation results Chapter VII also included

analysis of spatial and temporal resolution properties, and resolution effects of regu-

larization parameter choice.

We presented 2 new phase encode sampling trajectories that are based on re-

ordering of sample locations from a current clinical sampling scheme. Our Reordered

Trajectories are designed to distribute sampling of low and high frequency locations

more uniformly in time. These trajectories offer significantly more flexibility for re-

constructing at higher frame rates, and reconstructions of our Reordered Trajectories

were also relatively robust to regularization parameter choice, especially when com-

pared to the current clinical trajectory.
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In evaluating our proposed TRUIR method, we focused on the application of

DCE-MRI in the characterization and assessment of breast cancer. We designed a

multi-coil simulation study that models dynamic contrast agent uptake in the breast

with 6 representative lesions. We compared TRUIR reconstructions to a more tradi-

tional frame-by-frame Homodyne + SENSE reconstruction, for a variety of acquired

trajectories and reconstructed frame rates. We found that TRUIR provides improved

temporal resolution dynamics in the reconstructed dynamic image sequence, com-

pared to the traditional frame-by-frame reconstruction, and that TRUIR achieved

the best temporal dynamics when using samples from the Reordered Trajectories and

reconstructing at an increased frame rate. TRUIR reconstructions showed improved

lesion enhancement curves, and resulted in better estimates of the kinetic parameters

Ktrans, kep, and ve. Our DCE-MRI simulation confirmed our earlier assessment that

the Reordered Trajectories are more robust to reconstructing at higher frame rates

than the current clinical trajectory, and are also more robust to the choice of the

temporal regularization parameter.

Our simulation results also showed the negative result that TRUIR reconstruc-

tions with quadratic spatial regularization exhibited worse spatial resolution than the

frame-by-frame Homodyne+SENSE method for the tested PE sampling patterns. We

attribute this reduction in spatial resolution to the partial Fourier nature of the PE

sampling schemes in this study. Unlike HS reconstruction, our current TRUIR for-

mulation does not include any compensation measures for partial Fourier data. We

believe that modification of the TRUIR formulation to better accommodate partial

Fourier acquisitions will improve spatial resolution and is an important area of future

work.

8.2 Future Work

There are plenty of directions for interesting future work with TRUIR:

• Modification to accommodate Partial Fourier data: TRUIR reconstruc-

tions of partial Fourier data (with quadratic regularization) exhibited poorer

spatial resolution than HS reconstructions, because homodyne reconstruction

includes measures to address the asymmetry of partial Fourier data, while our

current TRUIR formulation does not. Modification of the TRUIR formulation

to include some means of accounting for the reduced high frequency data in

partial Fourier acquisitions should be investigated.
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• Alternate temporal basis function: In parameterizing the dynamic object,

the measurement model we employ currently uses a rect basis function in time.

However, because we assume the object varies smoothly in time, rect functions

are likely not the best temporal basis functions. Future work could explore

using smoother temporal basis functions, e.g., b-splines, in our measurement

model. This would change the structure of the system matrix B. The matrix

would no longer be block diagonal, but would also have off-diagonal components,

which correspond to overlapping portions of the temporal basis functions. The

presence of these off-diagonal components may also be desirable in terms of the

mixing of k-space data between frames.

• Edge preserving penalty: Our current TRUIR formulation uses a quadratic

penalty in space. Using instead an edge preserving penalty in space may increase

spatial resolution, and is certainly an area worth exploring.

• Extended PE trajectory: The phase encode trajectories studied so far are

severely limited in their kspace coverage compared to full Nyquist sampling

(see Figure 4.1), which results in reduced spatial resolution in our reconstructed

image sequences, even when we reconstruct using a full trajectory’s worth of

samples for each image frame. We are interested in implementing one or more

‘extended’ trajectories that sample frequencies farther out in kspace. The ex-

tended trajectory could also re-visit low frequencies more often than the current

PE trajectories. Collection of higher frequency sample locations provides the

potential for increased spatial resolution in the reconstructed images, but may

come at the cost of reduced temporal resolution or other image artifacts. Future

work will include evaluating TRUIR reconstructions of data from an extended

trajectory, and, in particular, assessing the ability of these reconstructions to

provide both high spatial and high temporal resolution (with the right regular-

ization parameters).

• Regularization parameter selection: Although TRUIR reconstructions of

well-distributed data sets (e.g. Reordered Trajectories 1 and 2) have been shown

here to be relatively robust to the choice of the temporal regularization param-

eter, we have not established an analytical method for choosing the spatial and

temporal regularization parameters. An analytical method is certainly desir-

able, but may not be feasible.

• Motion Correction: Because our TRUIR approach is formulated in the object
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domain, it easily lends itself to incorporation of motion correction, which is also

in the object domain.

• Phantom and human studies: Future validation of TRUIR with a dynamic

phantom study is necessary, as is eventual validation with a human studies.
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