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CHAPTER I

Introduction

1.1 The Big Picture

For thousands of years ever since the days of Hippocrates, doctors had to face the

daunting task of diagnosing and treating all sorts of medical ailments without the

ability to view the “insides” of their patients. It was not until the last one-hundred

twenty years that great advances were made in the field of medical imaging. In the

mid 1890’s, x-rays were first used to image two-dimensional projections of bones and

other objects within the human body. While this in itself was a remarkable discovery

that aided doctors tremendously, these projections did not paint an entire three-

dimensional picture and training was required to accurately interpret these images.

The more modern imaging modalities such as CT scans (computer tomography) and

MRI (magnetic resonance imaging) were developed in the 1970’s in order to generate

cross-sectional images of slices of the human body. These slices can be assembled

together to paint an overall picture of a person, inside and out. These images are

generally much more powerful in terms of revealing anatomical structures, such as

tumors or arterial blockages, that may otherwise not be visible in a poorly produced

x-ray image.

Physically speaking, CT and MRI work based on two different principles. CT

1
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scanners generate images by shooting x-rays through a patient from all angles and

interpolating between the resulting projections to obtain a final cross-sectional image.

This work will consider only the simple case of parallel-beam CT where the paths

of the x-rays are parallel and the projections are formed on “flat screens”. More

modernized fan-beam CT systems where x-rays are shot from a motorized source

traversing a circle and forming projections onto an arc will not be considered here.

On the other hand, MRI works by subjecting a patient’s body to varying (gradient)

magnetic fields in order to force protons within the subject to precess magnetically

at different frequencies depending on their position. These precessing protons will

induce a signal through a receiver coil, which can be interpreted to generate an image.

A more thorough discussion regarding the operation of these devices is presented in

Section 1.3.

While these scientific principles are somewhat different, parallel-beam CT and

MRI share one important mathematical property: they both obtain an image by

measuring its Fourier spectrum. Since an image is spatially limited, an imaging ma-

chine must sample the frequencies in Fourier Space at a rate greater than the Nyquist

rate, i.e. the minimum sampling rate that will guarantee no aliasing effects [47]. Now,

assuming it is possible to sample at the Nyquist rate, then it is a trivial matter to

reconstruct the image by utilizing an Inverse Fast Fourier Transform (IFFT). Un-

fortunately, obtaining all these samples isn’t always very practical: CT scanners and

MRI devices tend to be slow, loud, claustrophobic, and generally uncomfortable for

patients. Thus, it behooves the medical community to find ways of obtaining high

quality medical images utilizing the fewest Fourier Transform coefficients as possible.

Luckily, the images of interest tend to enjoy the property of being sparse in gradient.

In other words, they consist of large, nearly constant-valued regions separated by
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edge-discontinuities. The redundancies in these images suggest a possible dimen-

sionality reduction that should allow for Fourier sampling at sub-Nyquist rates. An

example of a sparse-gradient image along with an image of its edges is shown below

in Figure 1.1.

Figure 1.1: The famous Shepp-Logan Phantom image: a classical example of a sparse gradient
image.

Mathematically speaking, one has some sparse-gradient image X and some subset

Ω of all possible frequency pairs. The objective is to reconstruct X with knowledge

only of Ω and

(1.1) y := FΩX

where FΩ is a 2D Fourier Transform operator restricted to the frequencies specified

by Ω. When performing this reconstruction, it is important to keep the following

three goals in mind:

1. Make the size of Ω as small as possible to minimize the data that must be

collected. In MRI, this translates into faster scan times.

2. Convert the raw Fourier data into a final image using a fast, efficient algorithm

so that patients do not need to wait long for their results.
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3. Ensure that the final image is an accurate representation of the original image

to avoid misdiagnoses.

As a side note, the reason that fan-beam CT is not considered in this work is

because a high angular sampling rate is required to adequately interpolate the raw

data into parallel-beam coordinates over which a Fourier Transform of the image can

be computed. This means that for this particular imaging modality, it is detrimental

to reduce the size of Ω.

To reach the above objectives, this work will appeal to the theory of sparse ap-

proximation, an area mathematics which has enjoyed significant progress during the

last decade or so. In this field, there are several results that state that if some signal

(or image) is sparse, say in the Euclidean sense, then it can be recovered exactly

with exponentially fewer linear (e.g. Fourier) measurements than the dimension of

the actual signal. It should be noted that sparse approximation is closely related to

the relatively new field of compressive sensing (see [9]). The basic linear problem

from both fields can be modeled by the simple-looking equation:

(1.2) y = Φx

where in this particular case (which happens to be a compressive sensing application),

x is a sparse signal/image, Φ is a measurement matrix, and y is a set of linear

measurements of x. The objective is to recover x with knowledge of only Φ and y.

Observe the similarity between this equation and Equation 1.1. For the purposes of

this overview, the technical difference between sparse approximation and compressive

sensing is not terribly important, and therefore, a discussion of this issue is deferred

to Section 1.2

Several algorithms utilizing convex optimization and/or greedy basis selection



5

techniques have been developed mainly for this purpose. Basis Pursuit (BP), dis-

cussed in detail by Candes et. al in [5], Donoho in [13], and others, is an example

of an optimization principle that, given Fourier observations of a sparse signal, will

attempt to seek the sparsest signal (in the `1 sense) that satisfies the imposed Fourier

constraints. In general, Basis Pursuit signal reconstructions are of very high qual-

ity; however, algorithms that implement Basis Pursuit are typically very slow. As a

result, this methodology may not be appropriate for large signals or time-sensitive

procedures. Fortunately, there are faster alternatives. A simpler optimization prob-

lem would be to find the signal with the least energy that satisfies the Fourier con-

straints. While this turns out to be mathematically equivalent to an inverse Fourier

Transform with all unknown Fourier coefficients set to zero, reconstruction quality is

often very poor. However, this procedure, also known as Fourier Back-Projection, is

excellent at identifying the few Euclidean basis elements that contribute the most to

the representation of the signal. The most simple compressive sensing algorithm of

all, Thresholding (see [52]), works entirely based on this principle. Based on previous

results in statistical theory, Mallat (see [41] and [42]) introduces an algorithm known

as Matching Pursuit (MP) which attempts to use the Fourier data to iteratively

identify the few Euclidean basis elements that make up a sparse signal. While every

iteration is extremely fast, there is no known bound on the number of iterations

required for convergence. To address this problem, one can use a slightly augmented

version of the algorithm known as Orthogonal Matching Pursuit (OMP) (see [58]

and [61]), which uses an orthogonalization step to ensure that no single basis element

gets selected more than once in subsequent iterations. Thus, the number of itera-

tions must be bounded. However, this comes at the expense of a quadratic runtime

with respect to the signal sparsity thanks to the least squares procedure that must
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now be carried out. One can make OMP faster by allowing more than one basis

element to be selected at any given iteration. This is the primary motivation of the

K-fold Orthogonal Matching Pursuit (KOMP) and Stagewise Orthogonal Matching

Pursuit (StOMP) procedures described in [22] and [15] respectively. By selecting

more than one item per iteration, one typically reduces the number of total iterations

needed for recovery, and therefore, the total number of least squares problems that

must be solved.

Up until now, these algorithms have not been known to satisfy any sort of perfor-

mance guarantees based on restricted isometry conditions. In contrast, Basis Pursuit

has been shown to possess such properties (e.g. [7] and [6]). A significant contribu-

tion of this work is the development of restricted-isometry-property-based sufficient

conditions that guarantee the correctness of Orthogonal Matching Pursuit as well as

several of its variants. While the restricted isometry conditions pertaining to OMP

are not as powerful as its Basis Pursuit counterpart, it will be shown that as one

increases the number of elements that may be selected per iteration, one will obtain

results that approach the Basis Pursuit golden standard. This analysis will provide

some intuition as to why more recently developed algorithms, such as Regularized

Orthogonal Matching Pursuit (ROMP), Compressive Sampling Matching Pursuit

(CoSAMP), and Iterative Thresholding (IT) (see [46], [45], and [3] respectively),

do satisfy these conditions. These three algorithms share the property that they all

attempt to simultaneously select all the correct basis elements during every iteration.

It is possible to generalize the theory of sparse signal recovery to cover the case of

reproducing sparse-gradient images from a small number of Fourier measurements.

In works such as [5], [33], and others, convex optimization methods similar to Basis

Pursuit are used to recover such images. These methods seeks the image of smallest
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total variation (TV) that satisfies (or approximates) the given Fourier constraints

produced by the imaging device. While such constrained TV-minimization proce-

dures greatly reduce the number of Fourier coefficients that must be sampled and

are highly effective at producing high quality results, they are extremely slow. One

approach to making them faster would be to relax the setup into an unconstrained

optimization problem where deviations from the Fourier constraints are penalized

[10, 64]. Such methods are faster; however, their theoretical convergence rates can

be slow.

This work presents an entirely different approach: It is possible to embed any

one of the various orthogonalized matching pursuit algorithms as a black box de-

vice within an encompassing algorithm, called Gradient Matching Pursuit (Gradi-

entMP), that works specifically to solve the same sparse-gradient image reconstruc-

tion problem as shown in (1.1). From a high level point of view, GradientMP has

three basic steps.

1. It first modifies the original Fourier measurements to obtain Fourier measure-

ments of the corresponding vertical and horizontal edge images.

2. It then utilizes some algorithm from the suite of matching pursuit routines (e.g.

OMP, KOMP, CoSAMP, etc.) to recover the edge images.

3. Finally, it recovers the original image from the estimates of its edges using one

of several specialized integration techniques.

This procedure will be discussed in much more detail later.

The layout of this work is as follows: The remainder of this chapter will be devoted

to presenting background material related to sparse approximation and compressive

sensing theory as well as a mathematical description of computer tomography and
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magnetic resonance imaging. This is followed by a detailed discussion of the sparse

gradient image approximation problem and a survey of previous work. After this

thorough introduction, the main contributions of this work are presented:

1.1.1 Contributions of this Work

Chapter II features a detailed theoretical analysis of orthogonal matching pursuit

and its variants. Several performance guarantees based on restricted isometry con-

ditions will be proven for these algorithms. This analysis will theoretically justify

the use of OMP-like algorithms for use in applications. In other words, this chapter

will explain why orthogonal matching pursuit should not be thought of as a mere

heuristic.

Chapter III introduces the Gradient Matching Pursuit algorithm and proves per-

formance guarantees pertaining to the various edge integration schemes. These guar-

antees, combined with the results of Chapter II, establish the theoretical correctness

of Gradient Matching Pursuit under certain conditions. However, even in cases where

these conditions are not met (such as in natural images), it will be shown that the

output of Gradient Matching Pursuit compares well with that of Total Variation Min-

imization in term of accuracy; however, with respect to runtime, Gradient Matching

Pursuit is much faster.

Chapter IV takes on a new direction by attempting to solve the MRI excitation

problem: In MRIs with non-ideal RF transmission coils, the strength of a transmit-

ted pulse is not uniform over the imaging region of interest. The result of this is

unwanted contrast in the final image reconstruction. Regardless of whether an MRI

machine consists of a single coil or multiple transmission coils, this lack of homogene-

ity can be corrected by transmitting a “short” sequence of weighted RF subpulses

modulated by specially selected two-dimensional waveforms induced by linear gra-
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dient magnetic coils (see [69], [27], and [68]). The word “short” provides a hint as

to where sparsity arises in this setup. In a single coil MRI, selecting this sequence

of subpulses translates into a sparse approximation problem easily solvable by either

convex optimization or a greedy algorithm like OMP. The parallel coil case is harder.

To address this scenario, this chapter will provide an introduction to parallel sparse

approximation and compressive sensing theory, which has appeared in the literature

in various mathematically equivalent forms (see [54] and [67]). This is followed by

a presentation of this work’s contribution to the world of parallel approximation

which is the development of an efficient generalization of Orthogonal Matching Pur-

suit known as Parallel Orthogonal Matching Pursuit (POMP). POMP is effectively

an interpolation between OMP and its relative Simultaneous Orthogonal Matching

Pursuit (SOMP) [62]. This chapter proves several compressive sensing and sparse

approximation related theoretical results pertaining the performance of POMP and

its many variations. Then it will be shown how POMP can be used effectively to

solve the MRI Parallel Excitation (i.e. many transmission coils) problem as accu-

rately as conventional convex optimization techniques, but in much less time.

After presenting three major contributions to the fields of sparse approximation

theory, compressive sensing, and medical imaging, this work will conclude by outlin-

ing several related questions that are still open for investigation.

1.2 Sparse Approximation and Compressive Sensing Background

To get an understanding of how compressive sensing can be used to recover med-

ical images from Fourier data, it is important to understand the basics of this field.

For the purposes of this chapter, it will be assumed that x ∈ CN is a one-dimensional

signal of length N . All results presented here are easily adaptable to the two-
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dimensional case. The signal (or vector) x is said to be T -sparse if the number

of non-zero entries in x is at most T . The matrix Φ ∈ CM×N denotes a measurement

matrix and

(1.3) y = Φx ∈ CM

is a set of M linear measurements of x where M is assumed to be significantly smaller

than N . A graphical schematic of this problem is shown in Figure 1.2.

Figure 1.2: A schematic of the basic compressive sensing problem

As a notational convention, let φi, 1 ≤ i ≤ N denote the columns of Φ. Also,

given A ⊆ {1, · · · , N}, ΦA denotes the M × |A| sub-matrix of Φ corresponding to

the indices in A. The basic compressive sensing problem is to solve for x having

knowledge of only y and Φ.

This problem is superficially equivalent to the basic linear sparse approximation

problem where we are given a signal y ∈ CM , an over-complete dictionary Φ, and

the task of trying to represent y as a sparse linear combination of the φis. In both

sparse approximation and compressive sensing, the columns φi are often referred to



11

as “atoms.”

To the outsider and occasionally to even the most seasoned mathematician, the

difference between compressive sensing and sparse approximation can be confusing

and seem somewhat insignificant. After all, they both involve solving the same

underdetermined problem Φx = y. In addition, the same algorithms can be used in

both situations. So what exactly is the difference and why is it a big deal? In simple

terms, the main difference between compressive sensing and sparse approximation is

that x is the signal of interest in compressive sensing whereas y is the signal of interest

in sparse approximation theory. The important distinction lies in the theoretical

analyses of compressive sensing and sparse approximation algorithms. Suppose one

has an algorithm A that solves both problems. In compressive sensing, one would

like to know if A satisfies a performance guarantee of the form ||x− x̃|| ≤ C||x−xopt||

where x is some given signal (not necessarily sparse), x̃ is the T -term approximation

of x returned by A, xopt is the optimal T -term representation of x, and || · || is

some suitably selected norm. On the other hand, in sparse approximation theory,

one wants to know if A will return an approximation ỹ of y satisfying ||y − ỹ|| ≤

C||y − yopt||. The methods of proof for both styles of guarantees as well as the

utilized norms can be different. Thus, to a theorist, compressive sensing and sparse

approximation are far from being one and the same.

One frequently runs into application of both compressive sensing and sparse ap-

proximation in medical imaging and therefore this work will consider results pertain-

ing to both situations.

1.2.1 Convex Optimization Approaches

Regardless of whether one is working in the realm of compressive sensing or sparse

approximation, solving y = Φx is a highly under-determined problem and several
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solutions may exist. However, if a sparsity constraint is enforced on x, the problem

becomes more interesting. For example, if it is known that x is significantly sparse,

one could attempt to solve (1.3) by attempting to find the sparsest signal z ∈ CN that

satisfies Φx = Φz. This equates to solving the non-convex optimization problem:

(P0) x̃ = argmin
z
||z||0 s.t. Φz = Φx.

Here, || · ||0 denote the `0 “norm”, which does nothing but count the number of non-

zero entries in its argument. Unless P = NP , there is no polynomial-time algorithm

that will, in general, solve (P0). As a result, mathematicians typically relax (P0)

into the convex optimization problem shown below:

(P1) x̃ = argmin
z
||z||1 s.t. Φz = Φx.

Now ||·||p for p > 0 denotes the usual `p norm, i.e. ||x||p = (
∑

i |xi|p)
1/p for 0 < p <∞

and ||x||∞ = maxi |xi|. There are several algorithms that can solve (P1) in runtime

polynomial in N . These include simplex methods, interior point methods, and second

order cone programs for complex-valued signals and measurements. These algorithms

can be collectively thought of as a generalized algorithmic entity known as Basis

Pursuit (BP) [11].

The next logical question to consider is for what types of signals x and measure-

ment matrices Φ is it possible solve (1.3) using (P0) or (P1)? To answer this question,

it is essential to introduce the notion of a restricted isometry property (RIP) [4].

Definition I.1. It is said that an M×N measurement matrix Φ satisfies a restricted

isometry property if there exists some number δT ∈ [0, 1) such that for every T -sparse

signal x, it is the case that

(1− δT )||x||22 ≤ ||Φx||22 ≤ (1 + δT )||x||22.
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The number δT is called a restricted isometry number and is a function of the sparsity

level T .

Based on the kind of restricted isometry property that a certain measurement

matrix Φ enjoys, one can determine a sparsity level T such that all T -sparse signals

are recoverable by (P0) or (P1). This is illustrated by the following two propositions.

Proposition I.2. Suppose one is given a measurement matrix Φ with restricted

isometry numbers δ2T < 1. Then the non-convex optimization problem (P0) will

recover uniquely any T -sparse signal x given only Φ and Φx.

Proof. Suppose not. Assume there are two different T -sparse (or less) signals x1 and

x2 such that Φx1 = Φx2. Let h = x1 − x2. Then Φh = 0 by linearity. But by the

RIP, (1 − δ2T )||h||2 ≤ ||Φh||2 = 0. Since δ2T < 1, it follows that h = 0, which is a

contradiction.

In regards to (P1), one can also prove:

Proposition I.3. Suppose one is given a measurement matrix Φ with restricted

isometry numbers satisfying δT + δ2T + δ3T < 1, then the convex problem (P1) will

recover uniquely any T -sparse signal x given only Φ and Φx.

The proof of the latter proposition is significantly more involved and can be found

in [8]. Candes et. al [6] improve this result to only require that δ2T <
√

2 − 1. Of

course, most interesting signals are not truly T -sparse, but only T -sparse up to some

additive noise. In addition, there may be some additional measurement noise. To

that end, suppose that x is any signal and xT is the best T -term representation

of x, i.e., the largest T terms of x in magnitude. Furthermore, suppose that the

given measurements are noisy and take the form y = Φx+ e where e represents the
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measurement noise. Then one may attempt to recover x by solving the following

optimization problem:

(PN) x̃ = argmin
z
||z||1 s.t. ||Φz − y||2 ≤ ||e||2,

which yields the mixed-norm recovery guarantee shown in the following result:

Proposition I.4. If Φ is a measurement matrix such that the restricted isometry

numbers satisfy

(1.4) δ3T + 3δ4T < 2,

then the solution of (PN) satisfies:

(1.5) ‖x̃− x‖2 ≤ O (‖e‖2) +O

(
1√
T
‖x− xT‖1

)
.

The proof of this result can also be found in [6]. In addition, one can show that

the T -term truncation x̃T of x̃ satisfies:

(1.6) ‖x̃T − x‖2 ≤ O (‖x− xT‖2) +O

(
1√
T
‖x− xT‖1

)
+O (‖e‖2) .

An important question to the compressive sensing community how to construct

measurement matrices that satisfy the restricted isometry property (1.4). Certainly,

if Φ is a square matrix with orthonormal vectors, then the RIP is trivially satis-

fied. Of course, this case is not very interesting. In an attempt to construct useful

examples, mathematicians began experimenting with random matrices consisting of

appropriately normalized Gaussian measurements (see [8], [7], and [49]). By selecting

an M ×N matrix Φ with Gaussian measurements where M is large enough, i.e.

(1.7) M = Ω

(
T log

(
N

T

))
,
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then Φ will satisfy restricted isometry properties such as (1.4) with high probability.

This result was extended to measurement matrices whose entries follow any Sub-

Gaussian distribution [44]. A special case of these distributions is the Bernoulli (0

or 1) distribution which arises in digital compressive sensing applications such as the

Rice University Single-Pixel Camera project [28].

This work’s primary concern is partial Fourier measurements. In other words, it

is of great importance to be able to recover a sparse signal x from a small subset

of its Fourier coefficients. To do this, one can define a special measurement matrix

ΦF that is generated by selecting M rows of an N ×N Discrete Fourier Transform

(DFT) matrix uniformly at random. The question is: given a sparsity level T and

signal size N , how many Fourier measurements M are needed so that Φ satisfies

the restricted isometry property in (1.4). This question was answered in 2008 by

Rudelson and Vershynin [50]. They prove the following proposition:

Proposition I.5. If M = O(T log(N) log2(N) log(T log(N)), then ΦF will have re-

stricted isometry numbers that satisfy δ3T + 3δ4T < 2 with exponentially high proba-

bility.

By combining this result with Proposition I.4 and using the fact that T ≤ N , one

obtains the following corollary.

Corollary I.6. If

M = Ω(T log4(N)),

then, with high probability, solving (PN) will yield a solution x̃ that satisfies the

condition in Equation 1.5. In particular, if x is precisely T -sparse and there is no

measurement noise, then (PN) will reconstruct x from its measurements exactly.

The quantity Ω(T log4(N))� N for sufficiently large N and small enough T . This
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means that it is possible to recover a sparse signal x from far fewer Fourier coefficients

than the signal size. In many cases, one can recover x from fewer measurements

than what would otherwise be dictated by the Nyquist rate. As an additional note,

many mathematicians conjecture that one only really needs Ω(T log(N)) Fourier

measurements to guarantee the RIP condition shown in Proposition I.4. As an

illustration of the benefit one would obtain from proving such a conjecture, assume

x is a 10-sparse signal of length 220. The established result M = Ω(T log4(N))

implies that on the order of 1,600,000 Fourier measurements would be required to

recover the signal. The conjecture reduces this number to something on the order of

200.

1.2.2 Orthogonal Matching Pursuit

As seen in the previous section, `1 minimization is a tractable method of solving

compressive sensing problems. Unfortunately, algorithms that utilize this methodol-

ogy to solve this problem tend to be extremely slow. To overcome this issue, other

“greedy” techniques have been designed to solve the same problems but with more

rapid localized iterative schemes. The most classical of these are Matching Pursuit

(MP) (see [42]) and its more powerful brother Orthogonal Matching Pursuit (OMP)

(see [22] and [60]). A pseudocode listing of the Orthogonal Matching Pursuit algo-

rithm is shown in Figure 1.3:

OMP works by taking the measurement vector y and expressing it as a sparse

linear combination of the φis, i.e. the columns of Φ. In every iteration, the al-

gorithm selects the column that most closely resembles the current residual in the

representation of y. An orthogonalization step is used to ensure that no column is

selected more than once. Ideally, by iterating this procedure T times, it should be

possible to express y as the exact linear combination of T columns of Φ which form
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Algorithm: Orthogonal Matching Pursuit

Inputs: Φ, y = Φ, Sparsity T
Outputs: T term approximation x̃ to x
Initialize r0 = y, Λ = ∅
For t from 1 to T {

Set
λt = argmax

i
|(Φ∗rt−1)i|

Set Λt = Λt−1 ∪ {λt}
Set

at = argmin
a
‖ΦΛta− y‖2 .

rt = y − ΦΛt
at

}
Set the entries of x̃ corresponding to indices ΛT equal to aT . Set all
other entries equal to zero.

Figure 1.3: Pseudocode for OMP

its representation. If y is reconstructed exactly, then x will be recovered exactly as

well.

Previously derived sufficient conditions that guarantee the correctness of the

OMP algorithm utilize some additional machinery different from the restricted isom-

etry property presented earlier. To that end, it is necessary to define an alternate

notion of how close the columns of Φ resemble each other.

Definition I.7. Given a dictionary Φ with atoms φi, 1 ≤ i ≤ N , the cumulative

coherence µ(T ) is defined, as a function of the sparsity parameter T , to be:

µ(T ) = max
i

max
|Λ|=T
i/∈Λ

∑
j∈Λ

|φ∗iφj| .

The special case µ(1) is simply referred to as the coherence of the dictionary.

In [58], Tropp proves a sufficient condition that guarantees that OMP will recover

x from Φ and Φx.

Proposition I.8. Suppose that Φ is a dictionary and T is a sparsity parameter such
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that

(1.8) µ(T ) + µ(T − 1) < 1,

Then OMP will correctly recover any T -sparse signal x from its measurements.

With respect to sparse approximation, Tropp also proves an `2-`2 performance

guarantee pertaining to OMP’s ability to reconstruct some signal y as a T -linear

combination of atoms of Φ.

Proposition I.9. Suppose that Φ is a dictionary and T is a sparsity parameter such

that µ(T ) < 0.5. Then, OMP will produce a T -term approximation ỹ of some signal

y such that

(1.9) ‖ỹ − y‖2 ≤

√
1 +

T (1− µ(T ))

(1− 2µ(T ))2
‖y − yT‖2

where yT is the optimal T -term representation of y in Φ.

1.2.3 Iterative Thresholding and Compressive Sampling Matching Pursuit

While Basis Pursuit is slow, its performance is governed by powerful restricted

isometry conditions. On the other hand, OMP works very well in practice, is easily

implementable, and runs much faster than convex optimization routines. However,

its performance guarantees, including those based on the restricted isometry condi-

tions that will be presented in Chapter II, are not as powerful as its slower counter-

part. As a result, one may wonder if there is some happy medium, i.e. an algorithm

that is as fast and easily implementable as OMP, but also satisfies RIP-based per-

formance guarantees similar to those of convex optimization. The answer turns out

to be yes. The first such algorithm is called Iterative Thresholding (IT) [3].

The main idea behind iterative thresholding is quite simple. Given measurements

y = Φx of some T -sparse signal x, then assuming Φ is nearly unitary, then x1 =
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(Φ∗y)T = (Φ∗Φx)T , where (·)T is the non-linear operator that prunes its argument to

the top T entries, should be a somewhat good approximation to x. Recall that the

restricted isometry property provides a measure of how close a measurement matrix

Φ is to being unitary. Now to improve upon this estimate, one may write x = x1 +e1

where e1 is the error in the initial estimate. Of course, it is impossible to have a

priori knowledge of e1; however, since Φ is nearly unitary, it follows that

e1 ≈ Φ∗Φe1 = Φ∗Φ(x− x1) = Φ∗y − Φ∗Φx1.

With this in mind, it is possible to form a second better approximation of x as

x2 = (x1+Φ∗Φ(x−x1))T . This procedure can now be iterated to obtain the recurrence

relation

xt =
(
xt−1 + Φ∗Φ(x− xt−1)

)
T
.

This is the basis of the iterative thresholding (IT) algorithm, which is shown in

Figure 1.4.

Algorithm: Iterative Thresholding

Inputs: Φ, y = Φx+ e where e is noise, T
Outputs: T term approximation x̃ to x
Initialize x0 = 0, t = 0
While (stop condition not true) {

xt = (xt−1 + Φ∗y − Φ∗Φxt−1)T }

Figure 1.4: Pseudocode for Iterative Thresholding

Blumensath et. al. (see [3]) prove the following proposition regarding iterative

thresholding.

Proposition I.10. Let Φ be a matrix satisfying an RIP property with δ3T < 1/
√

32.

Let y = Φx+ e be a set of noisy measurements. Let

εT := 5||x− xT ||2 +
1√
T
||x− xT ||1 + ||e||2
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where xT is the best T -term approximation of x. Then, after t iterations, xt will

satisfy

||x− xt||2 ≤ 2−t||xT ||2 + εT .

Furthermore, after t∗ = dlog(||xT ||2/εT )e iterations, one gets that

||x− xt∗||2 ≤ O

[
||x− xT ||2 +

1√
T
||x− xT ||1 + ||e||2

]
.

In particular, if there is no measurement noise and x is exactly T -sparse, then xt

will converge exactly to x.

In many cases, if the Iterative Thresholding algorithm is directly applied as shown

above, then algorithm may not converge. In these situations, this can be corrected

by using a smaller step-size µ, i.e. at every iteration, set

xt = (xt−1 + µ(Φ∗y − Φ∗Φxt−1))T

This will yield better results at the expense of runtime. Blumensath offers a well-

written MATLAB implementation of this algorithm that will automatically deter-

mine an optimal step-size and number of iterations [2].

Along the same lines, Needell and Vershynin [46] developed an algorithm known

as Regularized Orthogonal Matching Pursuit ROMP that also allows for the selec-

tion of “good” atoms and the removal of “bad” atoms at every iteration. Due to

a rather involved combinatorial step (which does actually have a somewhat compli-

cated polynomial time solution with respect to the sparsity level), Needell and Tropp

[45] introduced a simpler version of this algorithm known as Compressive Sampling

Matching Pursuit (CoSAMP). Pseudocode for this algorithm can be found in Figure

1.5.

It is possible to generalize CoSAMP by allowing it to select αT new atoms

instead of 2T atoms shown above, i.e. let Λ = supp(zαT ). This will be denoted as
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Algorithm: Compressive Sampling Matching Pursuit

Inputs: Φ, y = Φx+ e, Sparsity T
Outputs: T term approximation x̃ to x
Initialize a0 = 0, r0 = y, t = 0
While (stopping condition not met) {

Set t = t+ 1. Set z = Φ∗rt−1,
Set Λ = supp(z2T ), i.e., identify entries of largest 2T entries

of z in magnitude.
Set Λ = Λ ∪ supp(at−1).
Set b|Ω = (Φ∗ΩΦΩ)−1Φ∗Ωy.
Set b|ΩC = 0.
Set at = bT , i.e., prune b to the top T entries.
Set rt = y − Φat.
}

Figure 1.5: Pseudocode for CoSAMP

CoSAMPα. With this in mind, the algorithm shown above is actually CoSAMP2.

Later in this work, we will also consider CoSAMP1 and show empirically that it

performs better than CoSAMP2 in terms of stability.

On close inspection, CoSAMP is very similar to iterative thresholding. The main

difference is that at every iteration, the algorithm selects αT new atoms and combines

those with the T atoms representing the signal estimate from the previous iteration.

Then after performing a least squares projection of the residual onto these (at most

(α+ 1)T ) atoms, it prunes the projection coefficients down to the top T entries over

which another least squares projection is performed in order obtain a new signal

estimate. Needell and Tropp [45] prove a mixed `2-`1 performance guarantee (i.e.,

a bound on the `2 error that depends on the `1 norm of the optimal representation

error) similar to that of iterative thresholding.

Proposition I.11. Suppose that Φ is a measurement matrix satisfying δT < c for

some constant c. Let y = Φx + e be measurements of x contaminated with noise

given by e. For a given precision parameter η, CoSAMP2 will produce a T -sparse
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approximation x̃ of x that satisfies

‖x̃− x‖2 ≤ O

(
max

{
η,

1√
T

∥∥x− xT/2∥∥1
+ ‖e‖2

∥∥∥∥) .
where xT/2 is the optimal (T/2)-sparse representation of x.

Up to this point, very little motivation has been provided as to why iterative

thresholding and CoSAMP closely resemble OMP but possess the theoretical guar-

antees of Basis Pursuit. The “non-technical” explanation is that much like convex

optimization, both Iterative Thresholding and CoSAMP work globablly by attempt-

ing to select all the correct non-zero entires of a signal during each iteration. Chapter

II will bridge the gap between OMP and these two hybrid algorithms by exploring

what happens when OMP is allowed to select more than one item per iteration with

the possibility of some of these items being chosen erroneously. It will turn out that

this relaxation will actually allow OMP to enjoy stronger performance guarantees

based on restricted isometry conditions that more closely resemble those of convex

optimization.

1.2.4 Simultaneous Signal Recovery

Another useful extension of the orthogonal matching pursuit concept is the simul-

taneous recovery of jointly sparse signals. Suppose that x1, · · · , xK are K T -sparse

signals with a common support set of size T . As before, Φ is a measurement matrix

and y1, · · · , yK are measurement vectors where yi = Φxi. For convenience, x will

denote the N×K matrix whose columns are the xis. y is defined similarly. The goal

is to recover all K signals x1, · · · , xK or their common support set. A schematic of

this simultaneous compressive sensing problem is shown in Figure 1.6

One way to solve this problem is to utilize an algorithm such as OMP indepen-

dently K times to recover each xi from its respective yi and Φ. This method has two
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Figure 1.6: A schematic of the basic simultaneous compressive sensing problem

problems associated with it: First, it is not time-efficient as one is required to solve

essentially the same problem K times. Secondly, this method is not powerful because

it does not exploit the fact that the xis have a common support set. To address both

problems, one may attempt to recover the xis simultaneously. This can be done with

an algorithm known as Simultaneous Orthogonal Matching Pursuit (SOMPp)) (see

[60]) whose pseudocode listing is shown in Figure 1.7:

Observe that the parameter p is used to specify which norm to use in the atom

selection criterion. Since this problem setup involves the processing of multiple sig-

nals, a norm is required to tie them together. In [60], Tropp proves that Equation 1.8

is also a sufficient condition to ensure that SOMP1 will recover any jointly T -sparse

signals x from Φ and Φx.

By refocusing our interest onto y instead of x, this setup can also be thought of

as a sparse approximation problem. In that light, Tropp also proves the following

result regarding signals y ∈ CM×K that are jointly T -sparse in Φ.

Proposition I.12. Let Φ be a dictionary and T be a sparsity parameter such that
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Algorithm: Simultaneous Orthogonal Matching Pursuit (p)

Inputs: Φ, y = Φx, Sparsity T
Outputs: T term approximations x̃is to the xis
Initialize r0 = y, Λ = ∅
For t from 1 to T {

Set

λt = argmax
i

K∑
k=1

|(Φ∗rt−1)i,k|p

Set Λt = Λt−1 ∪ {λt}
Set

at = argmin
a
‖ΦΛt

a− y‖F , (Frobenius Norm)

rt = y − ΦΛt
at

}
Set the rows of x̃ corresponding to indices ΛT equal to aT . Set all
other entries equal to zero.

Figure 1.7: Pseudocode for SOMP(p)

µ(T ) < 1/2. Let y be any set of K jointly T -sparse signals in Φ. Then SOMP1 will

return an approximation ỹ satisfying:

(1.10) ‖ỹ − y‖F ≤
[
1 +KT

1− µ(T )

[1− 2µ(T )]2

]1/2

‖y − yT‖F

where yT is the optimal set of K jointly T -sparse signals in Φ approximating y and

|| · ||F represents the Frobenius norm.

Observe that this result is actually very similar to the one presented earlier for

regular OMP. Gribonval et. al. later generalized Tropp’s work to cover other values

of p (see [26]). It is also possible to prove restricted isometry properties that will

generate performance guarantees for SOMP; however, that will not be discussed

here.

Simultaneous Orthogonal Matching Pursuit has many applications. It can be

used in instances where one has several noisy measurements of a single signal. It is

also a powerful tool when processing multi-spectral signals like colored images and
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hyperspectral data [53]. In all these examples, one is given each of the measurements

yi = Φxi individually. However, there are more complicated situations where one

only has access to the sum of a collection of measurements and not the individual

yis. This will be the subject of Chapter IV.

1.3 A Mathematical Description of Medical Imaging Devices

1.3.1 Parallel-beam Computer Tomography (CT)

The main idea behind parallel-beam computer tomography is as follows: The

technique involves shooting x-rays through an object of interest at different angles

to generate projections of its cross-section. Then using Fourier Transforms, these

projections can be pieced together to generate an image of this cross-section. The

basic setup is shown in Figure 1.8.

Figure 1.8: Basic Parallel-beam CT Setup: x-rays are shot at an angle in order to generate a
projection

Suppose that f : R2 → R is an attenuation function representing the cross-section

of some object or person that is being imaged. If one shoots an x-ray through an

object in a straight line denoted C, then the initial x-ray intensity I0 will partially
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be attenuated by the object of interest and the resulting weaker intensity exiting the

object I is given by the following line integral:

I = I0 exp

{
−
∫
C

f(x, y)d`

}
Based on this result, it is apparent that if x-rays are shot in the direction of the

t-axis, then the projection pθ(r) of f(x, y) onto the r-axis takes the following form:

pθ(r) = − ln(I/I0) =

∫
Cθ,r

f(x, y)d`

where Cθ,r is the line parallel to the t-axis that passes through the point (r cos(θ), r sin(θ)).

This line-integral can be parameterized using the change of variables x = −t sin(θ)+

r cos(θ) and y = t cos(θ) + r sin(θ). This yields:

(1.11) pθ(r) =

∫ ∞
−∞

f(−t sin(θ) + r cos(θ), t cos(θ) + r sin(θ))dt.

Now going in a different direction, observe that the 2D-Fourier Transform of f(x, y)

is given by

F2D{f}(ωx, ωy) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−i(ωxx+ωyy)dxdy.

Now let sθ(ωr) be the projection of this Fourier Transform onto the same r-axis (but

in frequency space). Then ωx = ωr cos(θ), ωy = ωr sin(θ), and

sθ(ωr) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−iωr(x cos(θ)+y sin(θ))dxdy

Now one can perform the same change of variables as before and do some simple

algebra to obtain

sθ(ωr) =

∫ ∞
−∞

∫ ∞
−∞

f(−t sin(θ) + r cos(θ), t cos(θ) + r sin(θ))e−iωrrdtdr

The next step is to exchange the order of integration and recognize from Equation

1.11 the resulting inner integral as pθ(r). This yields

sθ(ωr) =

∫ ∞
−∞

pθ(r)e
−iωrrdr = F1D{pθ}(ωr)
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where F1D represents the continuous one-dimensional Fourier Transform operator.

This observation is the key to understanding parallel-beam computer tomography.

By shooting x-rays at an object through different angles, one obtains projections

whose Fourier Transforms are equivalent to the two-dimensional Fourier Transform

of the cross-sectional image f(x, y) restricted to radial lines. By spacing these angles

equally and sampling sufficiently according to the Nyquist criterion, it is possible to

recover f from its projections. Let Ω represent a set of two-dimensional frequencies

representing the evenly spaced radial lines in frequency described above . Then Ω

can be visualized as shown in Figure 1.9.

Figure 1.9: Visualization of frequencies over which one can obtain the Fourier Transform of an
image via computer tomography.

1.3.2 Magnetic Resonance Imaging (MRI)

MRIs work based on principles somewhat different than that of CT. They form

images by measuring the proton (H+) density inside an object on interest via mag-

netization and then they return raw data in the form of Fourier Transforms. Suppose

one wishes to scan an object with a proton density function given by ρ(x, y, z) and

to obtain either a 3D image of ρ or a 2D image of a “slice” of ρ. Let M(x, y, z, t)
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denote the magnetization experienced by protons at position (x, y, z) at time t. In

a non-time-varying external magnetic field B0, it is true that M ∝ ρB0. In other

situations, one can calculate M from a time-varying magnetic field B by solving the

Bloch equation (see [1]) which, assuming any relaxation terms are negligible, is given

by

(1.12)
d

dt
M(x, y, z, t) = γM(x, y, z, t)×B(x, y, z, t)

where γ is the gyro-magnetic ratio. This is the physical framework that can be used

describe the inner workings of MRI.

The core of any MRI machine is a strong magnet producing a constant uniform

magnetic field B0 in the direction of the z-axis. The strength of this magnetic field

is typically on the order of 1.5-7 Teslas (T). The first step of the MRI process is

called RF-excitation. This involves using current inside a transmission coil to induce

a spatially-independent magnetic field B1 orthogonal to B0. This will cause M

to point away from the direction of B0 and have its transverse component precess

around the z-axis at the Larmor frequency given by ω0 = γ|B0| as shown in Figure

1.10.

Figure 1.10: Using an RF-pulse to introduce a magnetic field orthogonal to B0 results in the pre-
cession of M around the z-axis at frequency ω0 = γ|B0|.
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If the RF pulse is designed correctly (see [18] for more details), it is possible to

“excite” only the protons within a thin slice (assumed here to be parallel to the x-y

plane) to precess as described above. The angle at which M is projected out of

the longitudinal direction is referred to as the “tip angle”. After transmitting the

RF pulse, the Bloch equation dictates that the proton magnetization will behave

according to the following equation:

(1.13) M(x, y, z, t) ∝ ρ(x, y, z)
[
sin(θ)e−t/T2ei(ω0t+φ), cos(θ)(1− e−t/T1)

]
where θ is the tip angle, T1 and T2 are decay parameters (possibly depending on

spatial position (x, y, z) that dictate how fast it takes M to realign with B0, and t

is the time since the RF pulse was turned off. For convenience, the term in brackets

is written in the form [Mx + iMy,Mz]. Outside the thin slice, M is aligned with B0.

After the RF pulse is transmitted, there is often a delay te before the image acqui-

sition takes place known as the “echo time.” This delay allows for the development

of image contrast that will distinguish matter of similar proton density but different

relaxation rates. However, for the purposes of this discussion, it will be assumed that

only an image reflecting proton density ρ is desired; thus, te = 0. The precession of

the transverse component of M will induce an electrical current through strategically

placed coils. From Maxwell’s equations, one can derive that the measured signal in

this coil satisfies the following proportionality.

S0(t) ∝ ei(ω0t+φ)

∫
slice

e−t/T2ρ(x, y, z)dxdydz

Observe that if T2 is assumed to be a constant, then this quantity is proportional to

the Fourier Transform of ρ at the DC frequency (0, 0). Of course, this equation as-

sumes that the receiver coil is perfect and not subject to any non-uniform sensitivity.

Otherwise, a weighting function would need to be introduced into the integrand.
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Now suppose, on the other hand, that one introduces a new spatially-dependent

magnetic field of the form

G = (0, 0, kxx+ kyy)

in addition to B0 after the RF pulse is done being transmitted. Observe that this

new field defines a linear gradient in terms of magnetization. This will ensure that

the frequency of precession of the protons now depends on their positions. It is this

observation that will allow for the extraction of Fourier Coefficients of our desired

image ρ(x, y, z) in the plane z = z0. More specifically, at position (x, y, z), the

protons’ net magnetization will be precessing at an angular velocity given by ω =

ω0 + γ(kxx + kyy). But this therefore implies that the measured signal S(t) must

now take the form

S0(t) ∝ ei(ω0+φ)

∫
slice

ρ(x, y, z0)e−t/T2eitγ(kxx+kyy)dxdy.

Observe that for some fixed t, this is proportional to the 2D Fourier Transform of

ρ(x, y, z0) at the frequency (ωx, ωy) = (γtkx, γtky). If kx and ky are allowed to be

time varying functions of t, then they can parameterize any trajectory in the Fourier

spectrum. It is possible to sample an entire discrete grid of Fourier coefficients by

selecting t, kx(t), and ky(t) appropriately. However, as will be shown in this work,

one can get away with far fewer frequencies.

1.4 Sparse Gradient Images and Total Variation Minimization Tech-
niques

1.4.1 Notation and Problem Statement

When dealing with images, this work will utilize the following notational conven-

tions. Let X ∈ CN×N denote an image. Any particular pixel of X will be written

as Xn,m or X(n,m) depending on whichever is more convenient in any given setting.
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X(K) is defined to be the image consisting of only the top K largest pixels of X in

magnitude and takes the following form:

(1.14)

X(K)
n,m =

 Xn,m if (n,m) corresponds to one of the largest K pixels of X in magnitude

0 otherwise

As a convention, any ties in selecting the largest K pixels will be broken lexicograph-

ically.

When dealing with individual pixels, it may be convenient to use the delta function

image δn0,m0 , which is given by

(1.15) δn0,m0(n,m) =

 1 if (n,m) = (n0,m0)

0 otherwise

The discrete directional derivative operators ∂x and ∂y on X pixelwise are defined

pixel-wise as

(∂xX)n,m = Xn,m −Xn−1,m(1.16)

(∂yX)n,m = Xn,m −Xn,m−1(1.17)

Based on these, the discrete gradient operator ∇ where ∇X ∈ CN×N×2 is defined as

(1.18) (∇X)n,m = ((∂xX)n,m, (∂yX)n,m).

From these operators, one can define the discrete total-variational operator TV or

|∇| on X as

(1.19) (TV [X])n,m = (|∇|(X))n,m =
√
|(∂xX)n,m|2 + |(∂yX)n,m|2,

from which one can also define the total-variation seminorm of X as

(1.20) ||X||TV = ||TV [X]||1,
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where || · ||p for 0 < p <∞ is the `p norm defined as

(1.21) ||X||p =

(
N∑
n=1

N∑
m=1

|Xn,m|p
) 1

p

.

For p = 0, we have the quasi-norm

(1.22) ||X||0 = {#(n,m) : Xn,m 6= 0},

i.e., ||X||0 is the number of non-zero pixels in X. It is said that an image X is

T -sparse if ||X||0 = T . It is also said that X is T -sparse in gradient (or in the

total-variational sense) if ‖|∇|(X)‖0 = T .

As discussed earlier, the goal is to recover an image X that is T -sparse in gradient

from a set of M � N2 Fourier measurements. To that end, define a set Ω of M two-

dimensional frequencies ωk = (ωx,k, ωy,k), 1 ≤ k ≤ M chosen uniformly at random

from {0, 1, · · · , N − 1}2. Let F denote the two-dimensional DFT of X and F−1 its

inverse. Next define the operator FΩ : CN×N → CM as

(1.23) (FΩX)k = (FX)ωk .

F∗Ω will represent its conjugate adjoint.

Equipped with the above notation, the main problem can be stated formally as

follows:

Problem I.13. Given a set Ω of M � N2 frequencies and Fourier observations of

a T -sparse in gradient image X given by FΩX, how can one recover X accurately

and efficiently?

This work will consider two techniques: total variation minimization which is

summarized in this chapter and the proposed algorithm Gradient Matching Pursuit

(GradientMP), which will be shown in Chapter III to be a much faster alternative.
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1.4.2 Total Variation Minimization

The most popular method of attacking this problem, which will accurately, but not

necessarily efficiently, solve it (provided M is sufficiently large) is to find the image

of least total variation that satisfies the given Fourier constraints. This corresponds

to solving the following convex optimization problem

(TV) X̃ = argmin
Y
||Y ||TV s.t. FΩY = FΩX

In [5], the following proposition is proven:

Proposition I.14. Let X be a real-valued T -sparse in gradient image. If M =

O(T log4N), then the solution X̃ of (TV) is unique and equal to X with probability

at least 1−O(N−M).

In the case of an image corrupted by noise, the measurements take the form

(1.24) b = FΩX + wm

where wm is the measurement noise.

This problem can be solved by a similar convex optimization problem, which can

be written as:

(TVN) X̃ = argmin
Y
||Y ||TV s.t. ||FΩY − b||22 ≤ ||wm||22

It is possible to use interior point methods to solve both (TV) and (TVN). However,

such algorithms run in time asymptotically polynomial in N2. For moderate sized

images (e.g. 256 by 256), this performance is very slow, especially if any reasonable

amount of accuracy is desired.

Fortunately for the proponents of TV minimization, it is possible to speed things

up by rewriting (TV) and (TVN) both as an unconstrained optimization problem of
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the form

(TVUC) X̃ = argmin
Y
||Y ||TV + λ||FΩY − b||22

where λ is a penalty parameter. If Y is strictly T -sparse in gradient, then one can

pick λ to be very large. In the case of a noisy image or noisy measurements, one can

reduce the value of λ to ensure an optimal reconstruction. (TVUC) can be solved

by deriving the corresponding Euler-Lagrange equation and then using an iterative

artificial time marching PDE scheme or a fixed point algorithm to solve it [10]. Both

of these methods have a run time of O(N2 log(N)) per iteration. The PDE based

approach takes too many iterations to achieve sufficient accuracy due to the required

CFL condition necessary for numerical stability. While preconditioning techniques

have been proposed (see [43]) to relax this CFL condition, the fixed point solvers

alleviate this problem altogether.

A new and exciting approach to TV-minimization known as Fast Total Variation

Deconvolution, or FTVd for short, was introduced by Wang, Yin, and Zhang in [64].

This procedure works using the principle of alternating minimization. It sets X̃ to

be the image Y that minimizes (over all Y ∈ CN×N and W ∈ CN×N×2) the following

expression:

(TVd) ‖|W |‖1 + λ||FΩY − b||2 + β ‖|W −∇Y |‖2

Here, λ is the penalty parameter as described before and β is a parameter that

controls how much ∇Y must look like W . The procedure works by solving two

easy optimization problems in every iteration: First, it assumes that Y is fixed and

finds a W that minimizes the above expression. Then it fixes this W and minimizes

again to find a new Y . Both minimization subproblems can be solved in closed

form: the first one in linear time and the second one in time O(N2 log(N)) thanks
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to a few required FFT computations. Thus, the overall runtime per iteration is

O(N2 log(N)). It can be proven that this procedure does converge (see [63]). If β is

small, the convergence is fast; however, the reconstruction error will be large since

W , the variable over which the TV minimization is being performed, will not closely

resemble the gradient of the reconstructed image Y . On the other hand, if β is large,

one will obtain more accuracy at the expense of an increased number of iterations

required for convergence. One solution to this tradeoff issue is to begin with a small

value of β and then increment it to obtain more accuracy. Figure 1.11 below shows

a sketch of the overall FTVd algorithm:

Algorithm: FTVd

Inputs: -Set Ω of M frequencies
-Fourier observations b = FΩX over Ω
-Penalty parameter λ
-Tolerance δ
-Set of increasing β values: β1, β2, . . . βL

Outputs: -Estimate X̃ of X

Set Y = F∗Ωb, Yp = 0
For each ` = 1, · · · , L {

Set β = β`
While ||Y − Yp||2 ≥ δ||Yp||2 {

Set Yp = Y .
Obtain W by minimizing (TVd) with Y fixed.
Now fix W and minimize (TVd) to obtain a new Y .

}
}
Set X̃ = Y .

Figure 1.11: Algorithmic sketch of Fast Total Variation Deconvolution.

The default values for β presented in [64] range from β = 4 to β = 220 where

the parameter is incremented by powers of 2. These were also the values that were

employed in the implementation of the algorithm used in this work. As will be seen,

FTVd is indeed much faster than TV-Minimization with strict Fourier constraints.

Also, interestingly enough, the number of iterations required for FTVd to converge

does not depend on the image size, making the overall asymptotics with respect
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to N seem incredible: only O(N2 log(N)). However, there is a drawback. Given

an error parameter ε and assuming that the iterates of FTVd will converge to X,

experiments show that O(1/ε2) iterations are required so that ||X̃ −X||2 < ε. This

is rather expensive and makes the overall runtime O(N2 log(N)/ε2). In Chapter III,

this work will improve upon this result by presenting the Gradient Matching Pursuit

algorithm. This algorithm takes a greedy approach to solving the sparse-gradient

image reconstruction problem and requires only O(T ) iterations, each of which takes

time O(N2 log(N)), resulting in an overall runtime of O(TN2 log(N)).



CHAPTER II

Restricted Isometry Conditions For Orthogonal Matching
Pursuit

2.1 The Basic Orthogonal Matching Pursuit Algorithm

One of the major contributions of this work is the introduction of a restricted

isometry condition that results in a mixed `2-`1 norm (e.g., Equation 1.6) compres-

sive sensing performance guarantee for Orthogonal Matching Pursuit. While not

as powerful as the result proven for `1-minimization, this result does provides evi-

dence that the heuristic power of OMP can be analytically verified under certain

conditions. Now one may question the importance of this analysis given the fact

that other similar algorithms such as Iterative Thresholding and CoSAMP already

enjoy such guarantees. The problem with these latter two methods is that they

sometimes process too much data too quickly: at every iteration, they attempt to

select all T correct entries of a signal at once. Further iterations only try to fine-

tune this selection. As will be seen later in this chapter, both of these algorithms

become highly unstable if the sparsity parameter T is chosen to be too large. On

the other hand, OMP sequentially builds a list of entries without any provision for

deletion. Ultimately, there may be a point where this list becomes too long for stable

signal recovery; however, one can simply choose to stop running any further itera-

tions when this point is believed to have been reached. With Iterative Thresholding

37
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and CoSAMP, one is doomed in the first iteration. As a result, it is important to

consider the development of RIP-based performance guarantees for OMP and its

variations discussed in Section 2.2.

This chapter begins with a few important lemmas, the first two of which are

proven in [45].

Lemma II.1. Let x be a T -sparse signal with support set Λ. Let A be any subset

of {1, · · · , N} such that A ∩ Λ = ∅. Let Φ be a measurement matrix with restricted

isometry numbers δ`. Then the following two properties are true:

‖Φ∗ΛΦx‖2 ≥ (1− δT ) ‖x‖2

‖Φ∗AΦx‖2 ≤ δT+|A| ‖x‖2 .

The following lemma describes how Φ blows up the energy contained in a general

signal x that does not enjoy any sparsity.

Lemma II.2. Let Φ be a measurement matrix with restricted isometry number δT .

Let x be any general signal. Then

(2.1) ‖Φx‖2 ≤
√

1 + δT

(
‖x‖2 +

1√
T
‖x‖1

)
.

It is now possible to use Lemma II.1 and the fact that the restricted isometry

numbers δT form an increasing sequence in T to prove the following regarding OMP’s

ability to recover exactly T -sparse signals from their measurements.

Lemma II.3. Suppose Φ is a dictionary whose RIP constant satisfies

(2.2) δT+1 <
1

1 +
√
T
.
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Then OMP will recover any T sparse signal x from Φx.

Proof. Let x be any T -sparse signal supported on a set Λ. At iteration t, suppose

that OMP has only selected correct atoms. Let rt be the current residual. Then

rt = Φct where ct is also supported on Λ. Now observe that, by the last lemma,

‖Φ∗ΛΦct‖2 ≥ (1− δT ) ‖ct‖2 ≥ (1− δT+1) ‖ct‖2 .

This implies that

‖Φ∗ΛΦct‖∞ ≥
(1− δT+1)√

T
‖ct‖2 .

Now let i be any element not in Λ. Then observe that for each such i,

∥∥Φ∗{i}Φct
∥∥
∞

=
∥∥Φ∗{i}ΦΛct

∥∥
2
≤ δT+1 ‖ct‖2 .

This implies that

‖Φ∗ΛCΦct‖∞ = max
i∈ΛC

∥∥Φ∗{i}Φct
∥∥
∞
≤ δT+1 ‖ct‖2 .

OMP will recover the next atom correctly provided that

||Φ∗ΛΦct||∞ ≥ ||Φ∗ΛCΦct||∞.

This will happen if

(1− δT+1)√
T

‖ct‖2 ≥ δT+1 ‖ct‖2 ,

which is equivalent to Condition 2.2.

Observe that this result is very similar in nature to that of Proposition I.8. In

order to derive a performance guarantee for other less trivial signals that are not

exactly T -sparse, one needs to investigate the conditions under which OMP will

recover a correct atom at a particular iteration given such a signal. This is done in

the next proposition.
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Proposition II.4. Φ be a measurement matrix that satisfies an RIP of the form

shown in Condition 2.2. Let x ∈ CN be any signal and let xT be its best T -term

approximation. Let Λ = supp(xT ) and let xTC = x − xT . Suppose OMP has noisy

measurements of the form y = Φx+ w = ΦxT + e where e = ΦxTC + w. Then after

T iterations, OMP will recover an estimate x̃ of x that satisfies:

‖x− x̃‖2 ≤ (1 + C1(T )) ‖x− xT‖2 +
C1(T )√

T
‖x− xT‖1 + C1(T ) ‖w‖2

where, for reasonable restricted isometry numbers, C1(T ) grows asymptotically like

√
T .

Proof. First suppose that at iteration t, OMP has selected only correct atoms in-

dexed within Λ. At iteration t+ 1, OMP will select another correct atom provided

the greedy selection condition below is satisfied:

(2.3)

∥∥Φ∗ΛCrt
∥∥
∞

‖Φ∗Λrt‖∞
< 1

Now rewrite the residual as rt = ΦΛ (xT − at) + e. Here, at is the coefficient vector

of the projection of y onto the currently selected atoms. Then one can bound the

numerator of (2.3) by:

‖Φ∗ΛCrt‖∞ ≤ ‖Φ
∗
ΛCΦΛ (xT − at) + Φ∗ΛCe‖∞

≤ ‖Φ∗ΛCΦΛ (xT − at)‖∞ + ‖Φ∗ΛCe‖∞

≤ δT+1 ‖xT − at‖2 + ‖e‖2 .



41

On the other hand, the denominator can be bounded from below by:

‖Φ∗Λrt‖∞ ≥
1√
T
‖Φ∗Λrt‖2

=
1√
T
‖Φ∗ΛΦΛ (xT − at) + Φ∗Λe‖2

≥
‖Φ∗ΛΦΛ (xT − at)‖2 − ‖Φ∗Λe‖2√

T

≥ (1− δT+1)√
T

‖xT − at‖2 −
√

1 + δT+1

T
‖e‖2 .

A sufficient condition for the next atom to be selected correctly is that the numerator

is less than the denominator. This is guaranteed if

δT+1 ‖xT − at‖2 + ‖e‖2 <
(1− δT+1)√

T
‖xT − at‖2 −

√
1 + δT + 1

T
‖e‖2 .

Rearrange terms to obtain:

‖xT − at‖2 >

√
T +

√
1 + δT+1

1− δT+1(1 +
√
T )
‖e‖2 .

Let t∗ denote the first iteration where

‖xT − at∗‖2 ≤
√
T +

√
1 + δT+1

1− δT+1(1 +
√
T )
‖e‖2 .

Now observe that, by the definition of OMP, x̃ = aT . Then

‖x− x̃‖2 = ‖xT − x̃+ xTC‖2 ≤ ‖xT − x̃‖2 + ‖xTC‖2

≤ 1√
1− δ2T

‖ΦΛ′ (xT − x̃)‖2 + ‖xTC‖2

where Λ′ = Λ ∪ supp(x̃) which has cardinality at most 2T . It is further possible to

bound the left hand side by:

‖x− x̃‖2 ≤
1√

1− δ2T

(‖ΦΛ′ (xT − x̃) + e‖2 + ‖e‖2) + ‖xTC‖2

≤ 1√
1− δ2T

(‖ΦΛ (xT − at∗) + e‖2 + ‖e‖2) + ‖xTC‖2

≤ 1√
1− δ2T

(‖ΦΛ (xT − at∗)‖2 + 2 ‖e‖2) + ‖xTC‖2

≤
√

1 + δT√
1− δ2T

‖xT − at∗‖2 +
2

1− δ2T

‖e‖2 + ‖xTC‖2
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where the second inequality comes from the fact that in OMP, the residual is always

decreasing in magnitude regardless whether correct atoms are being chosen or not.

Now combining this with the bound on ||xT − at∗||2 yields:

‖x− x̃‖2 ≤

[( √
1 + δT√
1− δ2T

)(√
T +

√
1 + δT+1

1− δT+1(1 +
√
T )

)
+

2

1− δ2T

]
‖e‖2 + ‖xTC‖2 .

For convenience, let C ′1(T ) denote the expression within the brackets. Now, one can

bound ||e||2 as follows:

‖e‖2 = ‖ΦxTC + w‖2

≤ ‖ΦxTC‖2 + ‖w‖2

≤
√

1 + δT

(
‖xTC‖2 +

1√
T
‖xTC‖1

)
+ ‖w‖2 .

Finally, let C1(T ) =
√

1 + δTC
′
1(T ) to obtain that

‖x− x̃‖2 ≤ (1 + C1(T )) ‖xTC‖2 +
C1(T )√

T
‖xTC‖1 + C1(T ) ‖w‖2

= (1 + C1(T )) ‖x− xT‖2 +
C1(T )√

T
‖x− xT‖1 + C1(T ) ‖w‖2

as was to be shown.

This is the first known mixed `2-`1 performance guarantee proven for OMP. While

not a near-optimal guarantee, it does bound by how much worse than the optimal

T -term approximation error that the reconstruction error can be. In addition, it

shows the OMP is fairly robust with respect to measurement noise. Unfortunately,

this result is not as strong as that provable for Basis Pursuit because of the
√
T term

in C1. In addition, because of the
√
T factor in the denominator of the required

RIP, designing typical Gaussian or Fourier measurement matrices that satisfy (2.2)

becomes more expensive in terms of the number of rows required. It can be shown

that:
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Proposition II.5. Suppose Φ is an M × N Gaussian (or Sub-Gaussian) measure-

ment matrix. If

M = Ω

(
T 2 log

(
N

T

))
,

then (2.2) will be satisfied with high probability. On the other hand, if Φ is an M×N

partial Fourier measurement matrix with

M = Ω
(
T 2 log4(N)

)
,

then (2.2) will be satisfied.

The proof simply follows from the fact that the constants specified by the big-O

terms are proportional to 1/ε2 where ε is related to the probability that a measure-

ment matrix of size M ×N will satisfy a RIP.

As an example, for the same T sparse signal x, one would need Ω(T 2 log(N/T ))

Gaussian measurements to guarantee that OMP will recover x whereas convex opti-

mization would only need Ω(T log(N/T )). While these are asymptotically equivalent

in N , there is still an extra factor of T that should otherwise not be needed. Fortu-

nately, there is a way around this problem. In the next section, it will be shown that

by modifying the basic OMP algorithm so that it can select more than one atom

per iteration and allowing for the possibility of a controlled number of incorrectly

chosen atoms, one can improve upon these theoretical performance bounds. In fact,

it will be demonstrated that by selecting a sufficiently large number (say αT for some

fraction 0 < α ≤ 1) of atoms per iteration, one can obtain results similar to those of

Basis Pursuit.

2.2 Variations of Orthogonal Matching Pursuit

This section will explore the result if Orthogonal Matching Pursuit is allowed to

select more than one atom per iteration. First, we discuss variations of OMP that
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have such a provision. Then the focus will be narrowed upon one of these algorithms,

namely 2-Orthogonal Matching Pursuit, where exactly two atoms are selected per

iteration. We prove a performance guarantee for this algorithm based on a restricted

isometry property. Unfortunately, this guarantee depends upon the iteration at

which a certain condition fails to hold. Assuming the restricted isometry numbers

of a measurement matrix do not grow too quickly, the performance guarantee can

be uniformly bounded with respect to iteration numbers. This new bound will be

used to show that 2-OMP performs slightly better than regular OMP in terms of

reconstruction error. This will lay the framework that will be used to justify how the

Hybrid Orthogonal Matching Pursuit algorithm of the next section possesses error

bounds asymptotically equivalent to that enjoyed by Basis Pursuit.

There is a multitude of variations of the basic OMP algorithm. For now, this

work will concern itself with three of these: K-fold Orthogonal Matching Pursuit

(KOMP), Stagewise Orthogonal Matching Pursuit (StOMP) (see [15]), and Or-

thogonal Matching Pursuit with Thresholding (OMP-thresh). The only difference

between OMP, KOMP, StOMP, and OMP-thresh is the number of atoms se-

lected at each iteration and the criteria used for selecting these atoms. All other steps

in the algorithm remain the same. These different criteria are outlined in Figure 2.1.

OMP Select the one i that maximizes |(Φ∗rt)i|
KOMP Select the is corresponding to the K largest values of |(Φ∗rt)i|
StOMP Select the is such that |φ∗i rt| ≥ τt||Φ∗rt||∞ for some {τ1, · · · , τT } ⊆ [0, 1]
OMP-thresh Select the is such that |φ∗i rt| ≥ τ ||Φ∗rt||∞ for some 0 < τ < 1.

Figure 2.1: Atom selection critera for OMP, KOMP, StOMP, and OMP-thresh.

As a side note, observe that OMP-thresh is a special case of StOMP with

all thresholds being set as a constant value τt = τ . Since these three modified

algorithms can select more than one atom per iteration, these algorithms typically
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converge faster than regular OMP.

In many cases, the three modified algorithms actually perform more accurately

than ordinary OMP. This typically occurs in cases where one is given a measurement

or dictionary matrix that is not extremely incoherent, i.e. has columns that are highly

correlated. As an example of this, consider Figure 2.2.

Figure 2.2: Graphical illustration of when thresholding is useful.

Suppose one has a signal (or measurement vector) y ∈ R3 that is a linear com-

bination of two highly coherent dictionary vectors φ1 and φ2. Let φ3 be a third

dictionary vector that sits slightly outside of the plane spanned by φ1 and φ2. If one

ran ordinary OMP on this problem setup, then OMP would select φ1 during the

first iteration. Then OMP would project y onto φ1 and then subtract this projection

from r0 = y to form the next residual r1. Since φ2 is highly correlated to φ1, it follows

that a large portion of the contribution of φ2 would be subtracted from the initial

residual, which would result in r1 being more correlated to φ3. Thus, OMP would

select an incorrect atom in the second and final iteration. If, on the other hand, one
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ran StOMP or OMP-thresh with an appropriately chosen threshold τ , then the

algorithm would correctly select both φ1 and φ2 in the first iteration and stop. This

would yield a more accurate reconstruction than regular OMP in approximately half

the time.

The above analysis provides an intuitive idea of why one actually gains more

accuracy by allowing a matching pursuit algorithm to select more than one atom

per iteration. However, in the case of StOMP and OMP-thresh, selecting an

appropriate threshold is a highly non-trivial issue. If a threshold is set too low, these

is a good chance that these algorithms will select too many incorrect atoms, which

will significantly affect the quality of the final signal reconstruction. However, if a

threshold is set too high, then it may not be possible to realize the full benefit of

utilizing a threshold-based atom selection scheme. Along these lines, [15] introduces

two threshold selection schemes based on the ideas of false alarm and false discovery

control from statistical decision theory. This work, on the the hand, will present an

RIP-based result that will determine how to appropriately select the thresholds τt

in order to guarantee that StOMP will perform correctly. It will be shown that

given a set of good thresholds and any T -sparse signal x, StOMP will choose all the

correct non-zero entries of x and will keep the number of incorrectly chosen entries

under control (so that one can still obtain an exact reconstruction of x).

Proposition II.6. Let x be any T -sparse signal and let Φ be a measurement matrix

whose restricted isometry numbers satisfy:

(2.4) δT+t+1 ≤
1

1 + 2−1/4
√
T − t+ 1

for each t = 1, · · · , T . Suppose at each iteration we set the threshold τt as follows:

(2.5) τt ∈
(
δT+t+1

√
T − t+ 1√

2 (1− δT+t+1)
,

1− δT+t+1

δT+t+1

√
T − t+ 1

)
.
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Then, at every iteration, StOMP will select at least one correct non-zero entry x

and no more than one incorrect entry. In particular, after T iterations, StOMP

will have identified all T non-zero entries of x and no more than T incorrect entries.

Proof. Proceed by induction. Suppose that after t iterations, StOMP has selected

at least t correct atoms indexed by the set At and no more than t incorrect atoms

indexed by Bt. Let rt denote the current residual and ct be the corresponding coef-

ficient vector, i.e. rt = Φct. First, make the observation that

∥∥Φ∗Λ∪BtΦct
∥∥

2
≥ (1− δT+t+1) ‖ct‖2

since ct is supported on Λ ∪ Bt and |Λ ∪ Bt| ≤ T + t + 1. By orthogonality, it is

known that Φ∗Λ∪BtΦct is zero on At and Bt. Therefore,

‖Φ∗ΛΦct‖∞ ≥
(1− δT+t+1)√
T − t+ 1

‖ct‖2 .

The next step is to show that only one entry of Φ∗ΛCΦct can be greater than δT+t+1||ct||2/
√

2

in magnitude. To do this, suppose the contrary. Let i and j be two indices in ΛC

such that |(Φ∗Φct)i| > δT+t+1||ct||2/
√

2 and |(Φ∗Φct)j| > δT+t+1||ct||2/
√

2. Then it

would follow that ∥∥Φ∗{i,j}Φct
∥∥

2
> δT+t+1 ‖ct‖2 ,

which would violate the restricted isometry condition that is being enforced. Now,

it must be shown that StOMP will select at least one correct atom. Well, certainly

if the maximum value of |(Φ∗Φct)i| takes place for some i ∈ Λ, then the result is

trivial. So suppose i /∈ Λ. Then for a correct atom to be selected, it must be the

case that ∥∥Φ∗Λ∪BtΦct
∥∥
∞ ≥ τ ‖Φ∗ΛCΦct‖∞ ,
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which will definitely occur if

τδT+t+1 ‖ct‖2 ≤
(1− δT+t+1)√
T − t+ 1

‖ct‖2 .

One can rearrange terms to obtain that τ ≤ (1− δT+t+1)/(δT+t+1

√
T − t+ 1), which

is equivalent to the right end-point constraint in Expression 2.5. The final step is to

show that no more than one incorrect atom will be chosen. Because there can only

be one index i /∈ Λ such that |(Φ∗Φct)i| > (δT+t+1/
√

2)||ct||2, it follows that no more

than one incorrect atom will be chosen if

τ
(1− δT+t+1)√
T − t+ 1

‖ct‖2 ≥
δT+t+1√

2
‖ct‖2 .

Rearranging terms shows that this is equivalent to the left end point of Expression

2.5. Finally observe that for iteration t, Expression 2.5 defines a non-empty interval

if, and only if, Condition 2.4 holds.

From this proof, one can draw an immediate corollary.

Corollary II.7. Let (at, bt) be the intervals defined by (2.5) for t = 1, · · · , T . If

T⋂
t=1

(at, bt) 6= ∅,

then there exists some threshold τ so that for any T -sparse signal x, after T iterations,

OMP-thresh will correctly recover all T non-zero entires of x and no more than T

incorrect entries.

Now using essentially a very similar (and somewhat easier) argument as before,

one can prove the following proposition regarding the KOMP algorithm with K = 2.

Proposition II.8. Suppose that Φ is a measurement matrix with RIP constants that,

for each t = 1, · · ·T , satisfy

(2.6) δT+t+1 <
1

1 +
√

T−t+1
2

,
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then, after T iterations, KOMP with K = 2 will recover all the correct entries of

any T -sparse signal x as well as no more than T incorrect entries.

The last three results provide sufficient condition that guarantee that StOMP,

OMP-thresh, and 2-OMP will recover the correct non-zero entries of any T -sparse

signal x along with no more than T incorrect entries. A consequence of this is that,

if δ2T < 1, then performing a least squares projection of y = Φx onto the at-most-2T

selected atoms will result in a coefficient vector x̃ that is exactly equal to x.

It is possible to also prove a more general result about 2-OMP’s ability to recover

signals x that do not necessarily enjoy any sparsity properties. To do this, it is

necessary to define the following special norm:

Definition II.9. Let x be a signal with sorted entries x(1), x(2), · · · , x(N) where

|x(1)| ≥ |x(2)| ≥ · · · ≥ |x(N)|. Then the top-K norm is defined to be

‖x‖TopK :=
∥∥(x(1), x(2), · · · , x(K))

∥∥
2

=

√√√√ K∑
k=1

|x(k)|2.

It is easy to verify that || · ||TopK does indeed satisfy the three fundamental norm

properties. As special cases, observe that ||x||Top1 = ||x||∞ and ||x||TopN = ||x||2.

In this particular setting, the top-2 norm will be useful for producing a “greedy

selection ratio” that can be used to determine if, at any given iteration, 2-OMP

will select at least one correct atom. The following proposition’s proof parallels that

of Proposition II.4; however, it is presented in full detail because of the additional

intricacies required to handle the processing of incorrectly chosen atoms.

Proposition II.10. Let Φ be a measurement matrix that satisfies the RIP shown

in Equation 2.6. Let x ∈ CN be any signal with best T -term approximation xT , the

latter being supported on the set Λ. Suppose, as before, that 2-OMP is given noisy
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measurements of the form y = Φx + w = ΦxT + e where e = ΦxTC + w. Then

2-OMP will recover a 2T -sparse approximation x̃ of x that satisfies:

‖x− x̃‖2 ≤ (1 + C2(T, t∗)) ‖x− xT‖2 +
C2(T, t∗)√

T
‖x− xT‖1 + C2(T, t∗) ‖w‖2

where t∗ is the stopping time of “good iterations,” i.e. the first iteration in which no

correct entries from Λ will be selected in iteration t∗ + 1 and C2 grows roughly like√
T/2.

Proof. Suppose that at every iteration up to iteration t, 2-OMP has selected at

least one correct atom and at most one incorrect atom. Let Bt represent the set of

incorrectly selected atoms and let Λt = Λ ∪ Bt. Observe that, by assumption, the

cardinality of Λt does not exceed T + t. Now at iteration t + 1, 2-OMP will select

at least one more correct atom if the greedy selection ratio satisfies:∥∥∥Φ∗
ΛCt
rt

∥∥∥
Top2∥∥Φ∗Λtrt
∥∥

Top2

.

Now the numerator of this expression can be bounded from above as follows:

∥∥∥Φ∗Λctrt

∥∥∥
Top2
≤
∥∥∥Φ∗ΛCt

ΦΛt (xT − at) + Φ∗ΛCt
e
∥∥∥

Top2

≤ δT+t+1 ‖xT − at‖2 +
√

1 + δ2 ‖e‖2 .

Using similar arguments, the denominator can be bounded from below via:

∥∥Φ∗Λtrt
∥∥

Top2
≥

∥∥Φ∗Λtrt
∥∥

2√
(T − t+ 1)/2

≥
∥∥Φ∗ΛtΦΛt (xT − at) + Φ∗Λte

∥∥
2√

(T − t+ 1)/2

≥
∥∥Φ∗ΛtΦΛt (xT − at)

∥∥
2√

(T − t+ 1)/2
−

∥∥Φ∗Λte
∥∥

2√
(T − t+ 1)/2

≥

(
1− δT+t+1√
(T − t+ 1)/2

)
‖xT − at‖2 −

√
1 + δT+t+1√

(T − t+ 1)/2
‖e‖2
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The T − t+ 1 factor in the square root term comes from the fact that Φ∗Λtrt will be

zero on the entries within Λ that have already been selected. A sufficient condition

for 2-OMP to chose at least one correct atom in iteration t+ 1 is that the numerator

is less than the denominator. Using the same argument as before, this is guaranteed

if:

‖xT − at‖2 >

√
1 + δ2

√
(T − t+ 1)/2 +

√
1 + δT+t+1

1− δT+t+1(1 +
√

(T − t+ 1)/2)
‖e‖2 .

Again let t∗ be the first iteration at which the above inequality does not occur. In

other words, one has:

‖xT − at∗‖2 ≤
√

1 + δ2

√
(T − t∗ + 1)/2 +

√
1 + δT+t∗+1

1− δT+t∗+1(1 +
√

(T − t∗ + 1)/2)
‖e‖2 .

The next step is to obtain a bound on ||x− x̃|| as follows:

‖x− x̃‖2 = ‖xT − x̃+ xTC‖2 ≤ ‖xt − x̃‖2 + ‖xTC‖2

≤ 1√
1− δ3T

(‖ΦΛ′ (xT − x̃) + e‖2 + ‖e‖2) + ‖xTC‖2

where the last inequality comes from the fact that the support Λ′ of xT = x̃ is at

most 3T . Now recognizing ΦΛ′(xT − x̃) + e as the final residual and using the fact

that the residual in 2-OMP is non-increasing to bound this by:

‖x− x̃‖2 ≤
1√

1− δ3T

(‖ΦΛt∗ (xT − at∗) + e‖2 + ‖e‖2) + ‖xTC‖2

≤ 1√
1− δ3T

(‖ΦΛt∗ (xT − at∗)‖2 + 2 ‖e‖2) + ‖xTC‖2

≤
√

1 + δT+t∗+1√
1− δ3T

‖xT − at∗‖2 +
2√

1− δ3T

‖e‖2 + ‖xTC‖2 .

Putting the two big pieces together yields:

‖x− x̃‖2

≤

(√1 + δT+t∗+1√
1− δ3T

)√1 + δ2

√
T−t∗+1

2
+
√

1 + δT+t∗+1

1− δT+t∗+1

(√
T−t∗+1

2
+ 1
)

+
2√

1− δ3T

 ‖e‖2 .
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For convenience, let C ′2(T, t∗) denote the expression within the brackets. Bounding

||e||2 as before by

‖e‖2 ≤
√

1 + δT

(
‖xTC‖2 +

1√
T
‖xTC‖1

)
+ ‖w‖2

and setting C2(T, t∗) =
√

1 + δTC
′
2(T, t∗) gives the final result

‖x− x̃‖2 ≤ (1 + C2(T, t∗)) ‖xTC‖2 +
C2(T, t∗)√

T
‖xTC‖1 + C2(T, t∗) ‖w‖2

= (1 + C2(T, t∗)) ‖x− xT‖2 +
C2(T, t∗)√

T
‖x− xT‖1 + C2(T, t∗) ‖w‖2 .

which was to be shown.

The drawback of the last several propositions is that they all require a “per iter-

ation” restriction on the RIP numbers. Ideally, one would have an all-encompassing

result such as that in Propositions II.3 or II.4 that do not depend on t or t∗. Cer-

tainly, it is possible to naively define one by nelecting to use the fact that at iteration

t, Φ∗rt is zero on all t correct indices already identified by the algorithm. In addition,

one could use the monotonicity of restricted isometry numbers to apply constant-

valued upper bounds, e.g., bound δT+t+1 by δ2T+1. In the case of 2-OMP, this would

convert Equation 2.6 into

δ2T <
1

1 +
√

T
2

.

Unfortunately, this simplification will actually makes regular OMP appear to be

better, i.e., require a less-stringent RIP property, than the three variations. Instead,

this work will take a different route. A consequence of one of the results in [45] is that

the restricted isometry numbers of a dictionary matrix satisfy a sublinear constraint

of the form δ` ≤ `δ2. In other words, the growth of the RIP numbers cannot be

faster than linear. For the sake of this analysis, it will be assumed that the restricted
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isometry numbers take the form

δ` ≤ Cδ2`
β

where C is a constant β ∈ [0, 1] is a power growth parameter. With that in mind, it

can be shown that that the sufficient condition for 2-OMP, i.e. (2.6), is satisfied if

(2.7) δ2 <
1

(T + t+ 1)β
· 1

1 +
√

(T − t+ 1) /2

where it is assumed without loss of generality that C = 1. As a side note, for a given

measurement matrix, δ2 can be determined by simply computing the N(N−1) inner

products of its columns. Calculating δT exactly for larger T is a problem that is not

known to have a polynomial time solution. Thus, restricted isometry conditions on δ2

can be argued to be useful in practice. Figure 2.2 shows plots of the above expression

as a function of the iteration number t for different values of β when T = 50.

Figure 2.3: Restricted isometry bounds for 2-OMP with sparsity parameter T = 50.

These curves looks very similar if one varies the value of T . Based on the plots,
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it is clear that the first few iterations of 2-OMP have a harder sufficient restricted

isometry condition to satisfy than the final few iterations. In fact, if β is small

enough, the very first iteration is the toughest of all. And, for larger values of β, the

restricted isometry constraint on δ2 for the first iteration is still a very good approx-

imation of the restricted isometry condition required for all iterations to successfully

identify at least one correct atom and no more than one incorrect atom. For the sake

of mathematical rigor, it will be shown that the expression in (2.11) is monotone

increasing with respect to t if β < 0.5.

Proposition II.11. Suppose that T ≥ 2. Then the expression

(2.8)
1

(T + t+ 1)β
(

1 +
√

T−t+1
2

)
is a monotone increasing function of t on the interval (0, T ]. In particular, this

quantity will attain its minimum value at the first iteration, i.e. t = 1.

Proof. The result will be proved by deriving a condition on β so that

f(t) := (T + t+ 1)β

(
1 +

√
T − t+ 1

2

)

will be monotone decreasing with respect to t. First differentiate f to obtain

f ′(t) = β (T + t+ 1)β−1

(
1 +

√
T − t+ 1

2

)
− 1

4
√

T−t+1
2

(T + t+ 1)β.

Since only the sign of f ′ is important for this particular application, it suffices to

work with the simpler equation

g(t) := 4β

√
T − t+ 1

2

(
1 +

√
T − t+ 1

2

)
− (T + t+ 1)

= 4β

√
T − t+ 1

2

(
1 +

√
T − t+ 1

2

)
− (T − t+ 1)− 2t
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which carries the same sign as f ′ for all values of t ∈ (0, T ]. Now make the substitu-

tion u =
√
T − t+ 1 to obtain the quadratic expression

g(t, u(t)) = (2β − 1)u2 +
4β√

2
u− 2t.

Now observe that for any value of β < 1,

g(T, u(T )) = (2β − 1) + 2
√

2β − 2T

≤ 1 + 2
√

2− 2T

since β < 1. If T ≥ 2, then this quantity must be less than zero. In other words, f is

decreasing at t = T and therefore (2.8) is increasing at this point. Now if it can be

shown that g does not obtain any zeros on (0, T ], then it will be possible to deduce

that f is decreasing everywhere on this interval. Since g is quadratic in u, its roots

can be expressed as

u =

−4β√
2
±
√

8β2 + 8(2β − 1)t

2(2β − 1)

=
−
√

2β ±
√

2
√
β2 + (2β − 1)t

(2β − 1)
.

Observe that there will be a positive root in (0, T ] if
√
β2 + (2β − 1)t > β. But this

is equivalent to the statement β > 0.5. Thus, (2.8) will be an increasing function

when β < 0.5.

The same phenomenon occurs for StOMP, and utilizing the same method, the

required condition can also be shown to be β < 1/2.

To see if it is possible to gain any improvement over regular OMP, one can

convert (2.2), (2.4), and (2.6) into restrictions on δ2. Assuming β is sufficiently small

(β < 0.5) so that the RIP property on the first iteration is the hardest to satisfy, it

is possible to show the following:
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Proposition II.12. Suppose Φ is a dictionary matrix whose RIP numbers obey the

growth restriction δ` < δ2`
β for 0 ≤ β < 0.5. Also suppose that δ2T < 1. Then the

following statements are true after T iterations:

1. OMP will recover any T -sparse signal x exactly if

(2.9) δ2 <

(
1

T + 1

)β
· 1

1 +
√
T
.

2. StOMP with the thresholds outlined earlier can recover any T -sparse signal x

exactly if

(2.10) δ2 <

(
1

T + 2

)β
· 1

1 +
√
T/21/4

.

3. 2-OMP will recover any T -sparse signal x exactly if

(2.11) δ2 <

(
1

T + 2

)β
· 1

1 +
√
T/2

.

This result provides a clue as to why in many cases, StOMP and 2-OMP will

outperform OMP. To see this, consider the following table of sufficient δ2 condi-

tions for all three algorithms that will guarantee exact T -sparse reconstructions.

For StOMP and 2-OMP, the percent improvement in the sufficient condition over

ordinary OMP is presented as well.

Sparsity T 101 102 103 104 105

OMP .1319 .0287 .0055 .0010 .0002
StOMP .1468 (11%) .0334 (17%) .0064 (18%) .0012 (19%) .00021 (19%)
2-OMP .1660 (26%) .0390 (36%) .0076 (40%) .0014 (41%) .0003 (41%)

Figure 2.4: Advantage of StOMP and 2-OMP over OMP for sparse signal recovery in terms of a
restricted isometry condition on δ2.

The percentages reflect the improvement of StOMP and 2-OMP over OMP.

In practice, it can also be observed that StOMP and 2-OMP do perform better

than OMP if all three algorithms are run for T iterations. In addition, the runtimes



57

of StOMP and 2-OMP are typically much faster than that of OMP because, on

average, one requires much fewer than T iterations for the residual to converge to

zero. The stipulation of having T iterations in the above propositions is simply in

place to cover worst case anomalies where a single incorrect atom is chosen at each

iteration.

At this point, attention will be shifted to the case of general signal recovery.

When initially discussing 2-OMP’s ability to recover an arbitrary signal, a mixed

`2-`1 performance guarantee was derived that depends on the stopping time t∗ of

2-OMP’s good iterations (where at least one correct atom is selected per iteration).

Unfortunately, given a signal x and measurement matrix Φ, it is hard to calculate

the value of t∗ a priori. The result is that it is a challenge compare directly the

performance of OMP against that of 2-OMP. This is the objective of what now

follows: The general signal recovery results for OMP and 2-OMP can effectively

by compared by simply comparing the expressions C ′1(T ) and C ′2(T, t∗) respectively.

In order to address the stopping time issue, assume again that the given restricted

isometry numbers obey the growth restriction δ` ≤ δ2`
β for some value 0 ≤ β ≤ 1.

Using this assumption, it is possible to find the following upper bounds on both of

these quantities:

(2.12) C1(T ) ≤

( √
1 + δ2T β√

1− δ2(2T )β

)(√
T +

√
1 + δ2(T + 1)β

1− δ2(T + 1)β(1 +
√
T )

)
+

2

1− δ2(2T )β

and

C2(T, t∗) ≤

(√
1 + δ2(T + t∗ + 1)β√

1− δ2(3T )β

)√1 + δ2

√
T−t∗+1

2
+
√

1 + δ2(T + t∗ + 1)β

1− δ2(T + t∗ + 1)β
(

1 +
√

T−t∗+1
2

)


+
2√

1− δ2(3T )β

In order to obviate the need for calculating the stopping time, it will help to find an
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upper bound on the function:

f(t) =
1

1− δ2(T + t+ 1)β
(

1 +
√

T−t+1
2

)√T − t+ 1

2

which occurs in C ′2(T, t∗). This can be accomplished by finding a lower bound on the

reciprocal function

g(t) =

[
1− δ2(T + t+ 1)β

(
1 +

√
T − t+ 1

2

)]√
2

T − t+ 1
.

Now by Proposition II.11, the bracketed term in the above expression is minimized

at iteration t = 1 assuming β < 0.5. Furthermore, the second term is also minimized

at t = 1. Now both instances of
√

1 + δ2(T + t+ 1)β can be simply bounded by√
1 + δ2(2T )β. The result of applying these bounds is that:

C2(T, t∗) ≤

(√
1 + δ2(2T )β√
1− δ2(3T )β

)√1 + δ2

√
T
2

+
√

1 + δ2(2T )β

1− δ2(T + 2)β
(

1 +
√

T
2

)


+
2√

1− δ2(3T )β

Let C̃2(T ) denote the above expression and C̃1(T ) refer to bound in (2.12). Then

it is possible to derive the following performance guarantees related to the general

performance of OMP and 2-OMP.

Proposition II.13. Let x be any signal and Φ be a measurement matrix with re-

stricted isometry numbers δ` that satisfy δ` ≤ `β for some β < 0.5. If Condition 2.9

is met, then OMP will generate a T -term approximation x̃1 that satisfies:

(2.13) ‖x− x̃1‖2 ≤
(

1 + C̃1(T )
)
‖x− xT‖2 +

C̃1(T )√
T
‖x− xT‖1 + C̃1(T ) ‖w‖2 .

Furthermore, if Condition 2.11 is met, then 2-OMP will generate a 2T term ap-

proximation x̃2 that satisfies:

(2.14) ‖x− x̃1‖2 ≤
(

1 + C̃2(T )
)
‖x− xT‖2 +

C̃2(T )√
T
‖x− xT‖1 + C̃2(T ) ‖w‖2 .
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where in both expression, xT represents the optimal T -term representation of x.

By carefully examining both error bounds, it is apparent that as long as the

restricted isometry numbers do not grow too fast, then the result for 2-OMP is

significantly stronger than that for OMP. Now one may argue that this is an unfair

comparison because 2-OMP is allowed to select up to 2T atoms (with up to T

of them being incorrect) whereas OMP is only allowed to choose T . However, if

runtime is considered as the primary criterion for generating an approximation of x,

2-OMP is the real winner because T iterations of 2-OMP does not take significantly

more time to compute than T iterations of OMP. Thus, one can obtain less error

in roughly an equivalent amount of time. In addition, one can also truncate the 2T -

term approximation x̃ into a T -term representation x̃T without significantly affecting

the error. Indeed, one can show that

(2.15) ‖x− x̃T‖2 ≤ 2 ‖x− x̃‖2 + ‖x− xT‖2 .

As an illustration of the comparison performance of OMP and 2-OMP, Figure

2.5 shows a tabulation of the constant C̃1(T ) and C̃2(T ) for different sparsity levels

T and fixed values of δ2 = .00001 and β = 0.4. The percent reduction error afforded

by 2-OMP compared to OMP is also shown.

Sparsity T 101 102 103 104 105

C̃1(T ) (OMP) 6.163 13.01 34.80 107.3 467.2

C̃2(T ) (2-OMP) 5.237 (15%) 10.08 (23%) 25.45 (27%) 75.86 (29%) 292.1 (37%)

Figure 2.5: Advantage of 2-OMP over OMP for general signal recovery in terms of a restricted
isometry condition on δ2.

The objective of this section was to demonstrate that by allowing an orthogo-

nalized matching pursuit algorithm to select two or more items per iteration, more

favorable performance guarantees could be obtained. Of course, this cannot be done
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in a sloppy fashion. We first relaxed the greedy selection criterion in 2-OMP by

only insisting that, at every iteration, at least one correct atom and no more than

one incorrect atom are chosen. Then we carefully bounded the resulting performance

guarantees so that they no longer depend on any iteration numbers. In the following

section, we perform a similar analysis, but for the case where a significantly larger

number of atoms are selected at a time.

2.3 Increasing The Number of Atoms Per Iteration Even Further

This section addresses the question of what would happen if the number of atoms

selected per iteration is increased further. The short answer is that one is more likely

to select all the correct atoms; however, many incorrect atoms will be selected as well.

If too many incorrect atoms are chosen, then it may not be possible to recover a T -

sparse signal x even if all the correct atoms are chosen. If S represents the number of

incorrectly chosen atoms by the algorithm, then it would be required that δT+S < 1

to guarantee that a least squares procedure will be successful in reconstructing x.

The above question will now be more precisely answered by introducing another

algorithm which will be referred to as Hybrid Orthogonal Matching Pursuit (Hybrid

α-OMP). It is basically the same as regular OMP except for the fact that at iteration

t, it will select α(T − t + 1) atoms. Assuming that one correct atom is selected per

iteration, then this is equivalent to selecting the fraction α of all remaining correct

atoms in the next iteration. The pseudocode for this algorithm is shown below in

Figure 2.6.

This algorithm is similar to the other OMP variations in that all the algorithms

maintain a growing list of atoms that they believe are correct. If α is very large, Hy-

brid α-OMP begins to resemble the more globalized algorithms Iteration Thresh-
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Algorithm: Hybrid Orthogonal Matching Pursuit

Inputs: Φ, y = Φ, Sparsity T, Fraction α
Outputs: αT (T + 1)/2 +O(1) term approximation x̃ to x
Initialize r0 = y, Λ = ∅
For t from 1 to T {

Set

At = {Top α(T − t+ 1) values of i that maximize |(Φ∗rt−1)i|}

Set Λt = Λt−1 ∪At
Set

at = argmin
a
‖ΦΛta− y‖2 .

rt = y − ΦΛtat
}

Set the entries of x̃ corresponding to indices ΛT equal to aT . Set all
other entries equal to zero.

Figure 2.6: Pseudocode for Hybrid α-OMP

olding and CoSAMP except for the fact that it does not allow selected atoms to be

deleted from the list.

Now consider the following proposition related to Hybrid α-OMP’s ability to

recover exactly T -sparse signals.

Proposition II.14. Let Φ be a measurement matrix and let α be any positive real

number. Then, given any T -sparse signal x, Hybrid α-OMP will recover at least

one correct atom per iteration (and therefore recover the signal) provided that

(2.16) δT+(αT−1)t+1 <
1

1 +
√

T−t+1
α(T−t+1)

=
1

1 +
√

1/α
.

Proof. The proof uses the same methods as before.

At first glance, this result seems spectacular because it eliminates the
√
T factor

in the denominator of the RIP. In plain English, this means that the algorithm is

much more likely to recover all the correct atoms representing a signal x. However,

the downside is that it come at the expense of a restricted isometry condition (that
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guarantees the correctness of the least squares procedure) given by

δαT (T+1)/2 < 1

Thus, for a typical dictionary Φ, it seems that one must tradeoff the ability of a

matching pursuit algorithm to select the correct non-zero entries of a signal with its

ability to recover the signal by projecting its measurements onto the selected atoms.

A similar tradeoff occurs if one attempts to use the Hybrid α-OMP algorithm

for general signal recovery. Using the same methods as for 2-OMP, the following

can be proved:

Proposition II.15. Let x be a general signal and let Φ be a dictionary matrix whose

RIP numbers satisfy (2.16). Given noisy measurements of the form y = Φx + w =

ΦxT + e, Hybrid α-OMP will recover a (T̂ = αT (T + 1)/2 + O(1))-term approxi-

mation x̃ satisfying

‖x− x̃‖2 ≤ (1 + Cα) ‖x− xT‖2 +
Cα√
T
‖x− xT‖1 + Cα ‖w‖2 ,

where Cα =
√

1 + δTC
′
α and

Cα =

( √
1 + δT ′√

1− δT̂+T

)
√

1 + δαT

√
1
α

+
√

1 + δT ′

1− δT ′
(

1 +
√

1
α

)
+

2√
1− δT̂+T

.

Here T ′ = T + (αT − 1)t and x̃ is the best T -term approximation of x.

This version of orthogonal matching pursuit finally possesses the benchmark per-

formance guarantee of the form ||x − x̃|| ≤ O(||x − xT ||2 + (1/
√
T )||x − xT ||1) that

one typically enjoys with the convex optimization approaches discussed in Chapter

I. In addition, as stated in the previous section, x̃ can be truncated to a T -term

approximation without affecting the above guarantee by any more than a constant

factor (see Equation 2.15).
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The drawback to this method is that the processing of so many atoms may lead

to instability. This is a problem that is also shared by Iterative Thresholding and

CoSAMP. In the following section, we empirically compare the accuracy, efficiency,

and stability of all the compressive sensing algorithm discussed in this work.

2.4 Empirical Evaluation of Algorithms

An observation that one will quickly make when running experiments utilizing

compressive sensing algorithms is that they all work better than predicted by their

respective theoretical guarantees. In other words, the restricted isometry properties

of Chapter I Section 1.2 and this chapter provide very weak sufficient conditions

regarding when some algorithm can exactly recover any signal with a given number

T of non-zero entries. The reason for this is that RIPs provide worse case scenarios

that may not appear often in practice.

In order to address this issue, much work has been done in performing “average-

case” analyses on compressive sensing algorithms (see [59], [17], etc.). In these works,

theoretical results are obtained regarding the various algorithms’ performance in

recovering commonplace sparse signals, e.g. with Gaussian or Bernoulli coefficients.

For our purposes, we will empirically perform a similar analysis by designing several

experiments which are shown below.

In the first experiment, for every sparsity level T from 4 to 52 in increments of 4,

the following test was repeated 100 times: A T -sparse Gaussian signal of length 256

was generated and measurements of the form Φx were collected where Φ is a 100×256

Gaussian random matrix (selected differently each time). Then the algorithms OMP,

2-OMP, Hybrid 0.2-OMP, CoSAMP2, CoSAMP1, Iterative Thresholding, and

Basis Pursuit were all used to attempt to recover x. Both versions of CoSAMP were
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run using 10 iterations. For Iterative Thresholding, the Hard Thresholding routine

in the Sparsify MATLAB package [2] was used with all parameters being selected

optimally by the program. We used the L1-Magic package [48] for Basis Pursuit with

the default settings which have been found to work well in our experiments. The two

performance criteria evaluated were the probability of exact reconstruction (within

a 1% tolerance for relative error) and the runtime. Plots of the results are shown

below in Figures 2.7 and 2.8.
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Figure 2.7: Probability of exact reconstruction of T -sparse signals using various compressive sensing
algorithms.

In terms of exact reconstruction probability, Basis Pursuit did slightly better than

OMP. However, the modifications proposed in Section 2.2 came in quite handy be-

cause 2-OMP and Hybrid 0.2-OMP both outperformed Basis Pursuit. Thus, the
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Figure 2.8: Runtimes of various compressive sensing algorithms when recovering T -sparse signals.

suggestion of allowing multiple atoms to be selected per iteration was exactly what

was needed to give OMP the extra boost to put them on top. CoSAMP1 performed

better than CoSAMP2 and Iterative Thresholding fell roughly in between in this

particular experimental setup. When comparing the four algorithms possessing RIP

sufficient conditions of the form δO(T ) < c, Hybrid 0.2-OMP was the clear winner

with respect to accurately recovering exactly sparse signals.

With respect to runtime, all of the algorithms were very fast with the exception

of convex optimization. These algorithms took no more than a tenth of a second to
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run whereas `1 minimization took about a half of a second. The overall conclusion

of this experiment is that the 2-OMP and Hybrid 0.2-OMP algorithms were the

best overall performers.

Of course, this experiment only compared the various compressive sensing algo-

rithms in terms of their accuracy in recovering exactly sparse signals. In the following

experiment, the objective signals will not strictly possess this “nice” property. Here,

20 versions of a length 256 signal were generated with exponentially decaying coeffi-

cients in random locations that follow the decay rate |x(n)| ≤ .9n. These 20 signals

were reconstructed using the same algorithms as before with sparsity parameters

varying from T = 4 to T = 52 in steps of four. Figure 2.9 below shows the various

average `2 reconstruction errors produced by these algorithms for the various sparsity

parameters T .

The astute reader will immediately notice that for smaller values of T , 2-OMP,

Hybrid 0.2-OMP, and `1 Minimization all produce errors that are smaller than the

optimal T -term error. This is not any sort of bug: the reason for this phenomenon is

because these three algorithms produce reconstructions that are more than T -sparse

for a particular sparsity parameter T . For those interested in comparing only strictly

T -sparse approximations, we reproduce the same plot, except with all reconstructions

truncated to T -terms, in Figure 2.10.

In terms of strictly T -sparse representations, observe that all the algorithms

hugged the optimal error curve for T < 24. The interesting variations in performance

seem to happen after this point. OMP’s accuracy is not the greatest; however, it is

the most stable. Both variations of CoSAMP, Iterative Thresholding, and Hybrid

.2-OMP all perform similarly and experience a breakdown in performance in the

T = 24 to T = 28 range. Out of these four, Hybrid .2-OMP was the most accu-
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Figure 2.9: Average reconstruction errors in recovering signals with exponentially decaying coef-
ficient generated by the various compressive sensing algorithms as a function of the
sparsity parameter T .

rate. Basis Pursuit was very stable; however, it did not converge to the optimal error

curve. Selecting a smaller primal-dual tolerance value within the L1-Magic routine

may slightly reduce this error; however, this will come at the expense of increased

runtime. 2-OMP was the best overall performer in this experiment because it was

stable until T = 48 and returned T -term reconstructions whose average errors sat

very close to the optimal T -term error curve. Thus, 2-OMP is capable of performing

very accurately while being very forgiving in terms of how one selects the parameter

T .

The final experiment tests the asymptotic runtimes of all the algorithms. For every
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Figure 2.10: Average T -term reconstruction errors in recovering signals with exponentially decaying
coefficient generated by the various compressive sensing algorithms as a function of
the sparsity parameter T .

signal size N =round(2n) with n ∈ {8, 8.5, 9, · · · , 12}, we let T =round(N/100) and

M =ceil(4T log(N)). For each setting of n, repeat the following five times: Let Φ be

an M ×N Gaussian matrix and x be a T sparse signal with Gaussian entries. The 7

algorithms mentioned above were used to recover x from Φx and the runtimes were

measured. It was ensured that every single reconstruction in this experiment was

exact. The log-log plot of the average runtimes as a function of the signal length N

are shown below in Figure 2.11.

To make sense of this data, we perform a linear regression on this log-log plot

in order to obtain a power law of the form O(N b) describing the runtime of each
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Figure 2.11: Log-log plot of the average runtimes of compressive sensing algorithms as a function
of the signal length.

algorithm. The results are shown below in Figure 2.12

Algorithm b 95% Confidence Interval
OMP 1.95 (1.84, 2.06)

2-OMP 1.97 (1.87, 2.06)
Hybrid .2-OMP 1.93 (1.77, 2.09)

CoSAMP2 1.39 (1.29, 1.49)
CoSAMP1 1.39 (1.28, 1.49)

Iterative Thresholding 1.33 (1.23, 1.43)
`1 Minimization 2.24 (2.19, 2.28)

Figure 2.12: Power law asymptotical analysis of compressive sensing algorithms.

The data suggests that `1 Minimization performed the worst asymptotically.

OMP, 2-OMP, and Hybrid .2-OMP were slightly better, but not by much. The

best performers in this particular setup were CoSAMP and Iterative Thresholding.
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This is because these algorithms can converge in only a few iterations whereas OMP

required O(T ) = O(.01N) = O(N) iterations. If T was fixed and did not depend

on N , then it would be expected that OMP and its variants would perform asymp-

totically as well as CoSAMP and Iterative Thresholding. In all cases, this analysis

provides empirical evidence that greedy algorithms perform asymptotically better

than convex optimization methods in compressive sensing.

In summary, this chapter demonstrated that Orthogonal Matching Pursuit and its

many variants enjoy performance guarantees based on restricted isometry properties.

While the error bound for regular OMP is somewhat large and grows like
√
T , this

growth can be stunted by allowing OMP to select more than one atom per iteration.

In fact, if one selects a large fraction α of all atoms during every iteration, then these

error bounds begin to look like the ideal Basis Pursuit standard. The downside is

that selecting too many atoms will eventually lead to instability in the underlying

least squares solver within the orthogonalized matching pursuit algorithm. This was

seen empirically with a sudden, rapid rise in reconstruction error when the sparsity

parameter T crossed a certain threshold. Pruning incorrect atoms, as is done in

algorithms such as Iterative Thresholding and CoSAMP reduces the severity of the

problem, but does not remove it entirely. Fortunately, as long as care is taken to

make sure that T is not selected to be too large, orthogonal matching pursuit and

its variants are fast and accurate tools for compressive sensing applications.



CHAPTER III

Medical Image Recovery using Gradient Orthogonal
Matching Pursuit

3.1 Overview

In Chapter I, Section 1.4, the problem of recovering a sparse gradient image from

a small set of Fourier measurements was briefly discussed. The primary motivation

of this problem is to reduce the scanning time required in computer tomography or

magnetic resonance imaging by allowing a reconstruction to be feasible with sub-

Nyquist sampling rates. Constrained total variation minimization was the method

initially suggested for solving this problem. Unfortunately, the savings in scanning

time allotted by using fewer Fourier measurements do not necessarily justify the

large runtime requirements of such convex optimization routines. While faster un-

constrained solvers, such as FTVd (see [64]), can be adapted to solve this problem

more efficiently, this chapter presents a completely different, novel approach based

on the orthogonal matching pursuit paradigm. Now that theoretical compressive

sensing performance guarantees have been proven for OMP and its variants (see

Chapter II), its use in medical imaging can now be justified. While medical images

are not inherently sparse, their edges are. Thus, this chapter will explore the use

of orthogonalized matching pursuit algorithms for the purpose of edge recovery and

answer questions regarding how to convert between the image domain and edge do-

71
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main and vice versa. The various pieces of this puzzle can be put together to create

an overall algorithm that is known as Gradient Matching Pursuit (GradientMP).

The previous works [39] and [37] chronicle the development of this algorithm from

its initial conception; but here, this work will present a highly optimized version of

the algorithm that competes very well with total variation minimization techniques

in both CT- and MRI-based applications.

To begin, an overall outline of the Gradient Orthogonal Matching Pursuit algo-

rithm is shown in Figure 3.1. The rest of this section will be devoted to explaining

each step in much greater detail. As a note to the reader, the term xMP will refer

to any greedy matching pursuit algorithm, e.g. OMP, K-OMP, CoSAMP, etc.

Algorithm: GradientMP

Inputs: -Set Ω of M frequencies containing the DC frequency (0, 0)
-Fourier observations FΩX over Ω
-Total variational sparsity T of X
-Any other necessary parameters for xMP

Output: -An approximation X̃ of X

-Obtain Fourier observations of the vertical and horizontal edges of X
via

(FΩ∂xX)k = (1− e−2πiωx,k/N )(FΩX)k
and

(FΩ∂yX)k = (1− e−2πiωy,k/N )(FΩX)k.

-Use xMP to obtain estimates ∂̃xX and ∂̃yX from FΩ∂xX and FΩ∂yX.
-Use some inverse filter to obtain a final reconstruction X̃ of X from

∂̃xX and ∂̃yX.

Figure 3.1: Outline of the GradientMP algorithm.

3.2 Edges From Fourier Measurements

To motivate the technique behind GradientMP, observe that the edge image

of a T -sparse in gradient image is O(T )-sparse. Now suppose one has some operator
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Ψ that acts as an edge detector. Then in theory, it should be possible to recover the

edges ΨX using a fast greedy matching pursuit type algorithm. However, selecting

such an appropriate edge detector and taking this approach poses some challenges.

1. It must be possible to obtain Fourier observations of the edges FΩΨX from

FΩX.

2. Once one recovers Ψ̃X from FΩΨX, it must be possible to “invert” Ψ to obtain

an estimate X̃ = Ψ−1Ψ̃X?

3. It must be true that ||ΨX||0 = O(||TV (X)||0) in order to maintain the asymp-

totic runtime guarantees of the underlying greedy algorithm.

Certainly, if Ψ is the non-linear total-variational operator defined previously in

Equation 1.19, it will be a daunting task to overcome these challenges. On the other

hand, if Ψ is a directional derivative, e.g. (∂x+∂y)/
√

2, then all the above conditions

can be satisfied and one can obtain an algorithm known as Differential Matching

Pursuit (DiffMP), see [36].

Assuming that the matching pursuit algorithm correctly identifies the locations

of the edge pixels and estimates the directional derivative at these locations exactly,

then DiffMP will output an exact reconstruction of the original image. However, if

there is mistake in the edge detection step, such as an incorrectly chosen edge pixel,

then the error in the final reconstruction will look like a blur in the direction of the

derivative. This is because of the integration required to invert Ψ.

To alleviate this problem, instead of working with one directional derivative, one

can work with two derivatives in orthogonal directions. For convenience, these will

be the vertical and horizontal directions, which yield the derivative operators ∂x

and ∂y respectively. Before going any further, Figure 3.2 presents the famous 256×
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256 Shepp-Logan phantom image along with its reconstructions using one and two

directional derivatives from approximately 6.6% of its Fourier Transform.

Original Phantom DiffMP Reconstruction GradientMP Reconstrction

Figure 3.2: Comparison of DiffMP and GradientMP reconstructions of a Shepp-Logan phantom
from 6.6% of its Fourier coefficients.

Clearly one can benefit greatly by using two partial derivatives instead of one.

Now given Fourier observations FΩX over some set of frequencies Ω, one can

obtain the Fourier observations of ∂xX and ∂yX over Ω via the equations:

(FΩ∂xX)k = (1− e−2πiωx,k/N)(FΩX)k(3.1)

(FΩ∂yX)k = (1− e−2πiωy,k/N)(FΩX)k(3.2)

After this is done, any one of many greedy pursuit algorithms can be used to recover

∂xX and ∂yY from their respective Fourier observations. This work will primarily

consider the use of K-fold Orthogonal Matching Pursuit (KOMP), which was dis-

cussed in Chapter II. Given a T -sparse in gradient image X, running T iterations

of regular Orthogonal Matching Pursuit (OMP) can be somewhat time consuming

if T is fairly large. Running KOMP for only O(T/K) + O(1) iterations can pro-

duce almost identical results if K is not chosen too large. Choosing K too large will

result in the selection of many incorrect atoms. The use of iterative thresholding

and CoSAMP is avoided as these algorithms do not perform well in this particular

application. This issue will be discussed a bit further in Section 3.5.
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If the greedy algorithm utilized in GradientMP recovers all of the edges cor-

rectly, then all the other steps of the overall algorithm will return a perfect recon-

struction. Thus, the performance guarantees of these algorithms give us sufficient

conditions to ensure that GradientMP will perform accurately. What is more in-

teresting are the cases where the edge reconstruction is not perfect. Then it is the

inverse filter’s duty to do everything possible not to blow up the magnitude of the al-

ready existing error any further. Designing such a nearly stable filter is a non-trivial

task that will be discussed in the next section.

3.3 Integration of Edge Images

3.3.1 Naive Integration in the Vertical or Horizontal Direction

After obtaining estimates ∂̃xX and ∂̃yX of ∂xX and ∂yX respectively, some kind

of integration must be performed to recover an estimate X̃ of X. One way to do this

is to integrate against one image and to use the other image as a correction factor.

To this end, suppose one integrates ∂̃xX with respect to the vertical direction. This

yields:

(3.3) X̃ =

∫
∂̃xXdx+Hy

where Hy is an image that consists of constant valued vertical stripes. Hy can be

estimated very easily if one has a boundary value condition on the image X of the

form

(3.4) X1,m = hm

where h ∈ CN is a vector of pixels representing the top row of X. Then assuming

the integration is carried out starting from n = 1, one gets that (Hy)n,m = hm.

Thus, given the assumption of zero-valued boundary conditions, then Hy = 0 and

no column-wise discrepancy in contrast will be present.
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Unfortunately, it is often very impractical to assume that one has boundary con-

dition on an image. For example, in an MRI scanning application, it would be

impossible to determine X1,m a priori. To remedy this situation, one may assume

periodic boundary conditions and work in the Fourier Domain. In this case, instead

of requiring knowledge of X1,m for all m, it will be required that (0, ωy) ∈ Ω for

all possible values of ωy. In other words, this requirement states that the Fourier

Transform of X is known on all frequencies that make up the horizontal axis of

the frequency space. This yields the following (Fourier Domain) representation of

Equation 3.3:

(3.5) FX̃ =

 F ∂̃xX/(1− e
−2πiω1/N) if ω1 6= 0

(FΩX)ω1,ω2 if ω1 = 0

A similar formulation can be derived for integration in the horizontal direction. Un-

fortunately, this method only utilizes information from one set of the edge estimates

(vertical and horizontal), and therefore, produces poor results when the edge es-

timates are not exact. More sophisticated techniques of inverse filtering the edge

images are discussed in the next few sections.

3.3.2 Haar Wavelet Post Processing Technique

Of course, if ∂̃xX = ∂xX, then one will have that X̃ = X. However, because

integration is an unstable operation, any errors in the edge recovery step will blow

up in magnitude. This is why it is important to also utilize a horizontal estimate of

the edges and do something a bit more intelligent. From here on, X̃v will represent

the result of integrating ∂̃xX in the vertical direction and X̃h will be the analogue

reconstruction in the horizontal direction. Assuming each edge estimates are flawed

in some way, the both X̃v and X̃h will exhibit streakiness. Examples of such vertically

and horizontally streaked images are shown in Figure 3.3. A 256 × 256 Shepp-
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Logan phantom was recovered from a small subset of its Fourier Coefficients utilizing

the naive integration discussed in the previous section. The images with minor

streaking were generated from 4.5% of all available Fourier Coefficients while the

images with severe streaking utilized only 2.5% of all Fourier data. The edges were

recovered utilizing 22 iterations of KOMP with K = 100. In situations where the

Figure 3.3: Examples of minor and severe streakiness in both the vertical and horizontal directions.

streaking effect is not too severe, it is apparent that X̃v retains some sharpness in

the vertical direction whereas X̃h retains some sharpness in the horizontal direction.

This suggests that one should be able to combine these two estimates to form a better

overall estimate of the original image. To motivate a technique for doing this, consider

the Haar Wavelet Transforms of X̃v and X̃h (in the minor streakiness case) shown

in Figure 3.4 Every pixel in the representation of the full Haar Wavelet Transform

of an image is ultimately based on a difference taken in the vertical, horizontal,

or diagonal direction. In the case of the Haar Wavelet Transform of the vertically
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Figure 3.4: Haar Wavelet Transforms of Streaky Images.

streaked image, observe that only pixels corresponding to horizontal differences show

any streakiness. In other words, it is possible to isolate the streakiness in the wavelet

domain. The same principle applies to the horizontally streaked image. Thus, one

can form the Haar Wavelet Transform of a streak-less image by defining

(3.6)

(HX̃)n,m =


(HX̃v)n,m if (n,m) represents a vertical difference

(HX̃h)n,m if (n,m) represents a horizontal difference

((HX̃v)n,m + (HX̃h)n,m)/2 if (n,m) represents a diagonal difference.

where H represents the discrete Haar Wavelet Transform operator and (HX̃)1,1 is

simply taken to be the average of (HX̃v)1,1 and (HX̃h)1,1.

By applying this method to the first two streaky images in Figure 3.3, one obtains

the reconstruction shown in Figure 3.5. Clearly, there is a significant improvement.

The streakiness is gone. However, a little bit of blockiness is introduced.

It will be shown later in Section 3.4 that synthesizing the vertical and horizontal

integrals of the edge estimates using this Haar Wavelet method is very nearly stable

and only multiplies the edge reconstruction error by a small factor of O(
√
T logN).

This is one of two methods we utilized in the experiments that follow in this work.
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Figure 3.5: Shepp Logan phantom with streakiness corrected by the Haar Wavelet method vs. the
original phantom.

There is another similar method, however, which is also useful in situations where

an image is strictly and highly sparse in the total-variational sense. It is presented

here for completeness.

3.3.3 Cross-sectional Post Processing

Suppose that one runs GradientMPon a 256×256 Shepp-Logan phantom X and

obtains vertically and horizontally streaked reconstructions X̃v and X̃h respectively.

Consider the 90th horizontal cross-sections of X, X̃v, and X̃h, which are shown in

Figure 3.6: The cross-section of X̃v appears to be somewhat noisy, but on average,

the values seem to approximate the cross-section of X well. However, because of the

fluctuation, it is difficult to determine where the jump discontinuities occur in X just

by examining X̃v alone. On the other hand, X̃h approximates the values of X poorly,

but does a much better job identifying the jumps in X. Thus, for each cross-section,

one can ‘fix’ the horizontally streaked image by estimating the jumps in X from X̃h

and then estimating the value of X over each constant-valued interval by averaging

the values of X̃v on those intervals. The same process can be carried out for vertical

cross-sections. Results of this technique are shown in Figure 3.7; Clearly, this method
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Figure 3.6: Cross-sections of orginal phantom, vertically streaked phantom, horizontally streaked
phantom, and finally the reconstruction of the horizontally streaked image based on the
cross-section method.

has greatly reduced the streakiness that was seen in Figure 3.3. Unfortunately, as

suggested earlier at the end of Section 3.3.2, this method only works on images that

are very sparse in gradient. Otherwise, the distances between jump discontinuities

will be much smaller and so one would have fewer values over which to calculate an

average. This will result in a loss of accuracy. Furthermore, these short distances

will induce a lack of stationarity, which will cause the final reconstructed images to

look very blurry. As a result, this method will not be considered any further in this
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Figure 3.7: Reduction of streakiness using cross-section method.

work.

Both the Haar Wavelet and Cross-sectional methods perform post processing the

vertically and horizontally integrated edge images in order to eliminate or reduce

streakiness. The following section will illustrate a different technique that will elim-

inate the need to compute the integrated estimates X̃v and X̃h all together.

3.3.4 Least Squares Integration Method

The section will outline one more sophisticated way of generating a reconstruction

X̃ of X given approximations ∂̃xX and ∂̃yX of ∂xX and ∂yX respectively. As initially

motivated by [19], one can solve the convex optimization problem

(3.7) X̃ = argmin
Y

∥∥∥∂xY − ∂̃xX∥∥∥2

2
+
∥∥∥∂yY − ∂̃yX∥∥∥2

2
+ β ‖Y ‖TV + λ ‖FΩY −FΩX‖2

2

where β and λ are penalty parameters that determine the degrees to which the TV-

minimization and Fourier constraints are enforced. While this approach will yield

good results, solving optimization problems like (3.7) can be time consuming and

difficult. This methodology also defeats the purpose of GradientMP because the

primary motivation for the algorithm was to eliminate the need for non-least squares

optimization. To that end, one can replace the intrinsic `1 norm associated with the
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TV-norm in Equation 1.20 with an `2 norm. This changes (3.7) into the following

least squares optimization problem:

X̃ = argmin
Y

∥∥∥∂xY − ∂̃xX∥∥∥2

2
+
∥∥∥∂yY − ∂̃yX∥∥∥2

2

+ β ‖∂xY ‖2
2 + β ‖∂yY ‖2

2 + λ ‖FΩY −FΩX‖2
2 .(3.8)

While transitioning from an `1 norm to an `2 norm may seem to be a step backwards

to both the compressive sensing (e.g. [9] and [8]) and noise reduction (e.g. [51])

communities, it can be shown that the solution of this least squares problem is

typically better than pure integration in a single direction and at least empirically

better than utilizing the Haar Wavelet method. Now observe that if hats are used

to denote the Fourier Transform operator, it is possible to use Parseval’s Theorem

to rewrite (3.8) as the following equivalent problem in the Fourier domain:

ˆ̃X = argmin
Ŷ

∥∥∥∥(1− e−2πiω1/N
)
Ŷ − ̂̃∂xX∥∥∥∥2

2

+

∥∥∥∥(1− e−2πiω2/N
)
Ŷ − ̂̃∂yX∥∥∥∥2

2

+ β

(∥∥∥(1− e−2πiω1/N
)
Ŷ
∥∥∥2

2
+
∥∥∥(1− e−2πiω2/N

)
Ŷ
∥∥∥2

2

)
(3.9)

+ λ
∥∥∥(Ŷ − X̂)1Ω

∥∥∥2

2
.

Here 1Ω denotes an indicator function which is 1 on Ω and 0 otherwise. Based on

this convenient alternative formulation of the problem, one can derive the following

result:

Proposition III.1. The least squares problem (3.9) can be solved element-wise by

the following formula:

(3.10) ˆ̃Xω1,ω2 =

(
1− e2πiω1/N

) ̂̃
∂xXω1,ω2

+
(
1− e2πiω2/N

) ̂̃
∂yXω1,ω2

+ λX̂ω1,ω21Ω

(1 + β)
(
|1− e−2πiω1/N |2 + |1− e−2πiω2/N |2

)
+ λ1Ω

.
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Furthermore, if one lets λ→∞, then this solution will take the piecewise form

(3.11) ˆ̃Xω1,ω2 =


X̂ω1,ω2 if (ω1, ω2) ∈ Ω

(1−e2πiω1/N) ̂̃∂xXω1,ω2
+(1−e2πiω2/N) ̂̃∂yXω1,ω2

(1+β)
(
|1−e−2πiω1/N |2+|1−e−2πiω2/N |2

) otherwise
.

One can obtain X̃ by simply inverting the Fourier Transform. Now observe that

if λ → ∞, β = 0, and the edge approximations are exact, i.e. ∂̃xX = ∂xX and

∂̃yX = ∂yX, then it follows that X̃ = X. In general, selecting β > 0 will only

attenuate the magnitude of any Fourier coefficients outside the set Ω. If one lets

β → ∞ (with λ = ∞, then the solution becomes equivalent to that obtained by

naive Fourier back-projection, i.e. selecting X̃ = F∗ΩFΩX. This produces poor

results. As a result, it is prudent to simply leave β = 0.

The next section will show that asymptotically speaking, the least squares method

returns a reconstruction that is O(N/r) times worse than the maximum edge error.

Here, r is the radius of the largest circle centered at (0, 0) whose entire area is

contained within the frequency set Ω. While this is worse than the result that

will be derived for the Haar Wavelet Method; in practice, the least squares method

actually performs better.

Figure 3.8 compares a reconstruction of the Shepp Logan phantom generated using

the least squares method against the original image. This comparison uses the same

frequency set Ω (with approximately 4.5% of all possibly frequencies selected) that

was used previously to generate the streaky images and the Haar Wavelet corrected

reconstruction.

If one compares this reconstruction to that in (3.5), it is apparent that the least

squares generated image is better than the Haar Wavelet based image. In fact, the

`2 reconstruction error is 1.27 utilizing least squares versus the 1.70 obtained using

the wavelet method.
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Figure 3.8: Shepp Logan phantom reconstruction using the least squares integration technique vs.
the original phantom.

Of course, everything presented thus far is only empirical evidence regarding the

capabilities of these methods. The following section will analyze each method more

thoroughly and derive performance guarantees that will bound the factor by which

any edge detection error from xMP can blow up.

3.4 Theoretical Performance

Suppose one uses xMP to obtain estimates ∂̃xX and ∂̃yX of ∂xX and ∂yX re-

spectively utilizing some matching pursuit algorithm. Let X̃v and X̃h represent the

respective antiderivatives of ∂̃xX and ∂̃yX and let X̃ represent the final reconstruc-

tion by applying one of the methods described in Section 3.3. In this section, it

will be shown how the overall reconstruction error of GradientMP is related to

the edge reconstruction errors ||∂̃xX − ∂xX||2 and ||∂̃yX − ∂yX||2. More specifically,

this section will demonstrate how integration alone is highly unstable and will blow

up the edge error by a factor of O(N), i.e. the image size. However, it will also be

shown that by applying the proposed Haar wavelet post-processing technique, one

can reduce this ‘blow-up’ factor to O(
√
T logN). Furthermore, the Least squares

method will be shown not to increase the edge reconstruction error by more than



85

O(N/r) where r can be a large constant if Ω is chosen correctly. As a result, by using

either the Haar Wavelet method or the Least Squares method, the overall algorithm

becomes very nearly stable with respect to perturbations in the edge estimates.

Now to begin the analysis, the following proposition is related to the estimate X̃v.

Proposition III.2. The estimate X̃v possesses the following error guarantee:

(3.12) ||X̃v −X||2 ≤
N + 1√

2
||∂̃xX − ∂xX||2

Proof. First observe that

(3.13) ||X̃v −X||22 =
N∑
n=1

N∑
m=1

(
(X̃v)n,m −Xn,m

)2

.

Rewriting this as an ‘antiderivative’ gives:

(3.14) =
N∑
n=1

N∑
m=1

[
n∑
k=1

(
(∂̃xX)k,m − (∂xX)k,m

)]2

.

Expanding the square yields:

(3.15) =
N∑
n=1

N∑
m=1

n∑
k=1

n∑
`=1

(
(∂̃xX)k,m − (∂xX)k,m

)(
(∂̃xX)`,m − (∂xX)`,m

)
.

Now apply the Cauchy-Schwartz inequality to obtain:

||X̃v −X||22 ≤
N∑
n=1

N∑
m=1

n∑
k=1

n∑
`=1

(
(∂̃xX)k,m − (∂xX)k,m

)2

.

=
N∑
n=1

N∑
m=1

n∑
k=1

(
(∂̃xX)k,m − (∂xX)k,m

)2

n

=
N∑
m=1

N∑
k=1

N∑
n=k

(
(∂̃xX)k,m − (∂xX)k,m

)2

n

≤
N∑
m=1

N∑
k=1

N∑
n=1

(
(∂̃xX)k,m − (∂xX)k,m

)2

n

=
N∑
m=1

N∑
k=1

(
(∂̃xX)k,m − (∂xX)k,m

)2 N(N + 1)

2

≤ (N + 1)2

2
||∂̃xX − ∂xX||22,

which completes the proof.
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The same guarantee holds for X̃h and the proof is almost exactly the same.

Unfortunately, this is a rather weak result. Because of the integration carried out,

any error in the edge reconstruction gets smeared, resulting in an overall reconstruc-

tion error that is O(N) times worse than the edge recovery error. This is where a

post-processing step can be useful. By utilizing the Haar wavelet method, one can

significantly improve upon this error.

Proposition III.3. Let X̃ be the result of combining X̃v and X̃h by the Haar wavelet

post-processing technique. Assuming that ∂̃xX and ∂̃yX are each no more than T -

sparse, the error ||X̃ −X||2 satisfies the following two inequalities:

||X̃ −X||2 ≤

√
T

(
5

8
logN +

1

2

)(
||∂̃xX − ∂xX||2 + ||∂̃yX − ∂yX||2

)
||X̃ −X||2 ≤

√
T

(
5

2
logN + 2

)
max

(
||∂̃xX − ∂xX||2, ||∂̃yX − ∂yX||2

)
.

Proof. The first step is to introduce some specialized notation that will be needed to

present a rigorous proof. First observe that every entry (except the one in the first

row and first column) in the matrix representation of a full Haar Wavelet Transform

corresponds to some vertical, horizontal, or diagonal differencing operation conducted

on the original image. As an example, in the 8 × 8 case, one has the following

representation:



a v
h d

v v
v v

h h
h h

d d
d d

v v v v
v v v v
v v v v
v v v v

h h h h
h h h h
h h h h
h h h h

d d d d
d d d d
d d d d
d d d d



Figure 3.9: The directions of differences in an 8× 8 Haar Wavelet expansion.
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Here v, h, and d represent vertical, horizontal, and diagonal differences respec-

tively and a is the overall averaging term. The next step is to define notation to

represent the Haar wavelet transform restricted to certain types of differences. Su-

perscripts can be used to accomplish this. For example, Hd,v will represent the Haar

wavelet transform restricted to just diagonal and vertical differences. For some image

X, the image Hd,vX will equal HX at all v and d entries and zero otherwise. Based

on this notation, one can write X̃ as:

X̃ = H−1

[
HvX̃v +HhX̃h +

1

2
Ha,d

(
X̃v + X̃h

)]
(3.16)

= H−1

[(
Hv +

1

2
Ha,d

)
X̃v +

(
Hh +

1

2
Ha,d

)
X̃h

]
.(3.17)

Next define the atomic N ×N vertical ‘streak’ image Sva,b pixel-wise as

(3.18) Sva,b(n,m) =

 1 if n ≥ a and m = b

0 otherwise

In other words, this image is zero-valued except for a vertical line segment beginning

at coordinate (a, b) and extending downwards to (N, b). An example of such an

image is the left most image in Figure 3.10. Now examine the wavelet transform

of Sva,b restricted to vertical and diagonal differences. At any scale j > 0, at most

two pixels of magnitude no greater than 1/2 each will be introduced, one in the

diagonal difference region and one in the vertical difference region. This implies

that ||(Hv + (1/2)Hd)Sva,b||22 ≤ 5
16

logN . It is easy to see that the averaging term

|HaSva,b| ≤ 1, and so

(3.19)

∥∥∥∥(Hv +
1

2
Ha,d)Sva,b

∥∥∥∥2

2

≤ 5

16
logN +

1

4
.

The logN factor comes from the fact that there are logN scales in the full wavelet

decomposition.
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One can similarly define the horizontal streak image Shc,d. The same exact analysis

as before also yields

(3.20)

∥∥∥∥(Hh +
1

2
Ha,d)Shc,d

∥∥∥∥2

2

≤ 5

16
logN +

1

4
.

A graphical illustration of this analysis can be seen below in Figure 3.10. Notice how

the image energy is reduced from O(N) in the original atomic streak to O(
√

logN)

in the partial wavelet expansion shown on the right. The next major observation

Sv20,28 HSv20,28 (Hv + 0.5Ha,d)Sv20,28

Figure 3.10: Single streak image along with its full Haar Wavelet Transform as well as its Haar
Wavelet Transform restricted to vertical and diagonal differences only.

is that the errors X̃v − X and X̃h − X can be written as the following two linear

combinations:

X̃v −X =
Tv∑
k=1

αkS
v
ak,bk

(3.21)

X̃h −X =

Th∑
k=1

βkS
h
ck,dk

.(3.22)

where Tv ≤ 2T and Th ≤ 2T represent the respective sparsities of ∂̃xX − ∂xX and

∂̃yX − ∂yX. The αk’s and βk’s represent the magnitudes of the nonzero positions of

these errors, which occur at positions (ak, bk) and (ck, dk) respectively.
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Now observe that

H
(
X̃ −X

)
=

(
Hv +

1

2
Ha,d

)(
X̃v −X

)
+

(
Hh +

1

2
Ha,d

)(
X̃h −X

)
=

Tv∑
k=1

αk

(
Hv +

1

2
Ha,d

)
Svak,bk +

Th∑
k=1

βk

(
Hh +

1

2
Ha,d

)
Shck,dk

Now by combining this last equation with Inequalities 3.19 and 3.20, the triangle

inequality, and the fact that H is unitary, one obtains that

∥∥∥X̃ −X∥∥∥
2
≤

√(
5

16
logN +

1

4

)[ Tv∑
k=1

|αk|+
Th∑
k=1

|βk|

]

=

√(
5

16
logN +

1

4

)(
||∂̃xX − ∂xX||1 + ||∂̃yX − ∂yX||1

)
≤

√
2T

(
5

16
logN +

1

4

)(
||∂̃xX − ∂xX||2 + ||∂̃yX − ∂yX||2

)
where the extra 2T factor comes from the fact that both edge error images are no

more than 2T -sparse. This completes the proof.

This is a significant improvement. In a nutshell, it states that the overall recon-

struction error is only O(
√
T logN) times worse than the edge recovery error intro-

duced by the various orthogonal matching pursuit algorithms. This is asymptotically

much better than O(N). Additional noise can also be removed with soft-thresholding

techniques such as wavelet shrinkage, which was introduced my Donoho et. al. in

the mid 1990’s (see [12, 14]). However, this topic will not be studied any further in

this work.

The next objective is to prove a result with respect to the capabilities of the Least

Squares integration method. With the choice of λ =∞ and β = 0, one can show that

the solution to (3.11) satisfies the following reconstruction performance guarantee.

Proposition III.4. Given approximations ∂̃xX and ∂̃yX of ∂xX and ∂yY , then the
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solution X̃ of Equation 3.11 will satisfy:∥∥∥X̃ −X∥∥∥
2
≤ O

(
N√
k2

1 + k2
2

)
max

(∥∥∥∂̃xX − ∂xX∥∥∥
2
,
∥∥∥∂̃yX − ∂yX∥∥∥

2

)
.

where

(k1, k2) = argmin
(ω1,ω2)/∈Ω

ω2
1 + ω2

2.

Proof. Observe that for each (ω1, ω2) ∈ Ω, | ˆ̃Xω1,ω2 − X̂ω1,ω2|2 = 0 by definition.

Outside of Ω,

| ˆ̃Xω1,ω2 − X̂ω1,ω2|2 =

∣∣∣∣∣∣
(
1− e2πiω1/N

) ̂̃
∂xXω1,ω2

+
(
1− e2πiω2/N

) ̂̃
∂yXω1,ω2

|1− e−2πiω1/N |2 + |1− e−2πiω2/N |2

−
(
1− e2πiω1/N

)
∂̂xXω1,ω2

+
(
1− e2πiω2/N

)
∂̂yXω1,ω2

|1− e−2πiω1/N |2 + |1− e−2πiω2/N |2

∣∣∣∣∣
2

=

∣∣∣∣∣
(
1− e2πiω1/N

)
|1− e−2πiω1/N |2 + |1− e−2πiω2/N |2

(̂̃
∂xXω1,ω2

− ∂̂xXω1,ω2

)

+

(
1− e2πiω2/N

)
|1− e−2πiω1/N |2 + |1− e−2πiω2/N |2

(̂̃
∂yXω1,ω2

− ∂̂yXω1,ω2

)∣∣∣∣∣
2

.

Now utilize the fact that for any a, b ∈ C, |a + b|2 = |a|2 + |b|2 + 2Re(ab) ≤

4max(|a|2, |b|2) and assume without loss of generality (so it isn’t necessary to keep

on writing out maximums) that

|1−e2πik1/N |
|1−e−2πik1/N |2+|1−e−2πik2/N |2

∣∣∣∣ ̂̃∂xXω1,ω2
− ∂̂xXω1,ω2

∣∣∣∣
≥ |1−e2πik2/N |
|1−e−2πik1/N |2+|1−e−2πik2/N |2

∣∣∣∣ ̂̃∂yXω1,ω2
− ∂̂yXω1,ω2

∣∣∣∣
to obtain that:

| ˆ̃Xω1,ω2 − X̂ω1,ω2|2 ≤
4
∣∣1− e−2πik1/N

∣∣2(
|1− e−2πik1/N |2 + |1− e−2πik2/N |2

)2

∣∣∣∣ ̂̃∂xXω1,ω2
− ∂̂xXω1,ω2

∣∣∣∣2

≤ 4

|1− e−2πik1/N |2 + |1− e−2πik2/N |2

∣∣∣∣ ̂̃∂xXω1,ω2
− ∂̂xXω1,ω2

∣∣∣∣2 .
Now simply use the Taylor expansion of the denominator and Parseval’s Theorem to

get the desired result.
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As can be seen, the performance of this method depends on the selection of

Ω. If Ω contains all the low frequencies within some radius r = k2
1 + k2

2, then

the final reconstruction error will be O(N/r) times worse than the maximum edge

reconstruction error. This is much better than the O(N/
√

2) factor obtained with

straight-forward integration. In general, if Ω contains mostly low frequencies, then

this method will generate better results than if Ω contained mostly high frequencies.

As a result, this “integration” is very appropriate in applications such as CT where

Ω will consist of radial lines that congregate near the DC frequency. For the same

reason, it may also be useful in MRI applications where the Fourier Space is sampled

according to a spiral trajectory (see [32] and [57]).

The following corollary illustrates the stability that this method exhibits if all

low frequencies below a certain threshold are included within the Fourier sampling

frequencies Ω.

Corollary III.5. Suppose that {(ω1, ω2)| − N
6
≤ ω1 ≤ N

6
and − N

6
≤ ω2 ≤ N

6
} ⊆ Ω

where all frequencies are given modulo N . Then the least squares method of integra-

tion will return a reconstruction such that

∥∥∥X̃ −X∥∥∥
2
≤ 2 ·max

(∥∥∥∂̃xX − ∂xX∥∥∥
2
,
∥∥∥∂̃yX − ∂yX∥∥∥

2

)
.

Now if {(ω1, ω2)| − N
4
≤ ω1 ≤ N

4
and − N

4
≤ ω2 ≤ N

4
} ⊆ Ω, then the Least Squares

method will return a reconstruction such that

∥∥∥X̃ −X∥∥∥
2
≤
√

2 ·max
(∥∥∥∂̃xX − ∂xX∥∥∥

2
,
∥∥∥∂̃yX − ∂yX∥∥∥

2

)
.

In general if {(ω1, ω2)|− εN ≤ ω1 ≤ εN and − εN ≤ ω2 ≤ −εN} ⊆ Ω, then the final

reconstruction error will satisfy:

∥∥∥X̃ −X∥∥∥
2
≤ O

(
1

πε

)
max

(∥∥∥∂̃xX − ∂xX∥∥∥
2
,
∥∥∥∂̃yX − ∂yX∥∥∥

2

)
.
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.

Figure 3.11 illustrates the first two results of this corollary. If Ω contains the

larger square which contains all frequencies whose magnitudes (modulo N) are less

than N/4, then the final reconstruction error will only be at most
√

2 times worse

than the maximum edge reconstruction error. Similarly, if Ω contains all frequencies

with magnitudes less than N/6, then the final error will be multiplied by at most

a factor of two. Interestingly enough, even though the Haar Wavelet method gives

Figure 3.11: Sets of low frequencies that, when included in Ω, will yield stable edge integration
performance guarantees.

the best asymptotical performance guarantee (e.g. O(
√
T logN)), in practice, the

Least Squares approach typically yields `2 reconstruction errors of the same order. In

fact, the Least Squares integration technique may be considered superior to the Haar

wavelet method because it does an excellent job concealing errors produced during

the edge reconstruction step. In the wavelet-based method, these errors will typically

manifest themselves as blockiness, which is highly unappealing to the eye. Thus, with

respect to the human “eye-ball norm”, the Least Squares method performs better.

The following section will consider the empirical performance of GradientMP with

both Haar Wavelet integration and least-squares integration schemes, as well as other

techniques (e.g. TV minimization), in more detail.
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3.5 Empirical Performance

This section compares the actual performance of GradientMP, with the various

methods of integration, against that of total-variation minimization. For the latter

case, this work utilized both the L1-Magic suite of TV-optimization algorithms (with

strict Fourier constraints) (see [48]) as well as a home-brewed implementation of the

FTVd algorithm (see [64]).

The first step of this analysis is to show reconstructions of a 256 × 256 Shepp-

Logan phantom from 10% of its Fourier coefficients. Figure 3.12 shows the original

image, its full Fourier Transform, and it’s partial Fourier Transform over Ω.

Original Phantom Full Fourier Transform Fourier Transform over Ω

Figure 3.12: Original Shepp-Logan Phantom along with its full and partial Fourier Transforms.

The reconstructions of this phantom using GradientMP with four different

matching pursuit algorithms and the Haar Wavelet integration method, L1-Magic,

and FTVd are shown below in Figure 3.13.

In this experiment, KOMP was performed using 22 iterations and K = 100.

All of the reconstructions were of good quality except for CoSAMP. The reason

for CoSAMPs failure is that at every iteration, it must perform a least squares

iteration on 3T ≈ 6000 atoms. This is a very poorly conditioned problem if only ten

percent of the Fourier coefficient are given. As a result, CoSAMP was working well

within its “break-down” zone.



94

GradientMP (OMP)
MSE = .022

Runtime ≈ 4 min.

GradientMP (KOMP)
MSE = .117

Runtime ≈ 24 sec.

GradientMP (CoSAMP)
MSE = 36.1

Runtime ≈ 28 sec.

GradientMP (CoSAMP)
MSE = .070

Runtime ≈ 9.5 hours

GradientMP (CoSAMP)
MSE = 3.10

Runtime ≈ 4.5 minutes

Figure 3.13: Various reconstruction of the Shepp-Logan phantom from 10% of its Fourier Coeffi-
cients.

The L1-Magic reconstruction was of very high quality, but took over 9 hours to

run. The runtime of FTVd was not extremely fast, but is comparable to that of

GradientMP with plain OMP. The reconstruction with FTVd was not perfect,

but definitely was of very high quality. The point to remember with TV minimiza-

tion routines is that one can often tradeoff reconstruction accuracy with runtime.

Thus, FTVd might be able to return a better reconstruction, but then its runtime

would become too large.

In terms of the greedy algorithms, GradientMP with OMP returned the best

result. However, its runtime was a bit slow. GradientMP with KOMP and

CoSAMP were much faster; however, only GradientMP with KOMP returned
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an image with a mean square error comparable to that of GradientMP with OMP.

This experiment utilized a set Ω of randomly selected frequencies. Such sam-

pling grids can be approximated fairly well in MRI using cleverly designed k-space

trajectories (see [34] for example). However, with the traditional setup of a CT ma-

chine, such a grid may not be possible. With CT, one can only obtain estimates

of Fourier coefficients along radial lines such as those shown in Figure 1.9. This

presents a challenge for Gradient Matching Pursuit because of its inherent differenc-

ing schemes: Generating Fourier observations of edges is a high pass operation that

attenuates low frequencies that are emphasized by radial frequency grids. However,

despite this issue, it will be seen that utilizing the Least Squares method of edge

integration produces satisfactory results mainly because of the low frequency region

of concentration in Ω.

In the following experiement, the usual 256 by 256 Shepp Logan phantom is

recovered from Fourier measurements given along 22 equally spaced radial lines as

shown in Figure 1.9. The following algorithms were used: GradientMP with

the Haar Wavelet Method, GradientMP with the Least Squares Method, TV-

Minimization (L1-Magic), FTVd, and naive Fourier Back Projection. Both instances

of GradientMP utilized KOMP with K = 100. The resulting reconstructions are

shown in Figure 3.14.

Of course, the back projected reconstruction is terrible and inappropriate for

any sort of medical imaging application. The best reconstruction was returned by

L1-Magic. Even though the original image was recovered exactly, the use of this

algorithm is also inappropriate in a medical setting because the image processing

time was several hours. FTVd significantly cut down on this time; however, the

final result is blurrier than the reconstructions produced by both instances of Gra-
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Original GradientMP (Haar Wavelets) GradientMP (Least Squares)
MSE = 3.11 MSE = 2.44

TV-Min. (L1-Magic) TV-Min. (FTVd) Back Projection
MSE = 0 MSE = 5.58 MSE = 33.8

Figure 3.14: Various reconstruction of the Shepp-Logan phantom from Fourier Coefficients along
radial lines.

dientMP. With respect to only the Gradient Matching Pursuit generated images,

the one utilizing the Least Squares integration method is slightly better both visually

and in terms of mean square error. The Haar Wavelet based reconstruction suffers

from minor blockiness.

In the next experiment, a 64 × 64 version of the Shepp-Logan phantom was re-

covered using GradientMP (KOMP with K = 25 and 21 iterations) with both

the Haar Wavelet and Least Squares methods, L1-Magic, and FTVd utilizing the

following setup: For every value of p between .04 and .4 in increments of .04, 10

different random frequency masks Ω were produced consisting of fraction p of all

possible 2D frequencies. Then the four algorithms were used to recover the phantom

and for each p, the average normalized mean square error (NRMSE) and runtime
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was computed. The results of this experiment are shown below in Figure 3.15

Runtime
(seconds)

GradientMP
(Haar Wavelets) .372
GradientMP
(Least Squares) .335

L1-Magic 137

FTVd 10.1

Figure 3.15: Reconstruction NRMSEs and Runtimes of GradientMP and TV-Minimization with
respect to recovering a 64× 64 Shepp-Logan phantom.

In terms of the NRMSE, TV-minimization takes an early lead. But as one passes

the point where at least 25% of all possible Fourier coefficients are provided, both

variations of GradientMP become the better performers. Of course, this latter

region of p values is the more interesting case because all the algorithms do rather

poorly when p < .25. Thus, in terms of accuracy, GradientMP performs better

than both L1-Magic and FTVd. In terms of GradientMP alone, the Least Squares

method returns results that are slightly more accurate than those produced by the

Haar Wavelet method. Now in terms of runtime, both variations of GradientMP

were extremely fast and ran in approximately one-third of a second. FTVd was

roughly 30 times slower than this and L1-Magic was about 400 times slower. Thus,

in this ideal setting, GradientMP is the all-around best choice for reconstructing

the phantom.

The next experiment is very similar in nature except that this time, a signifi-
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cant amount of Gaussian white noise will be added to each 64 ×64 phantom. This

time, the proportion of frequencies was fixed with p = .65 over a symmetric Fourier

sampling grid. The noise standard deviation was varied from σ = .01 to σ = .1 in

increments of .01. GradientMP was used before except with an increased number

of iterations (30) for the purposes of noise-induced error reduction. L1-Magic was

used with an inequality constraint on Fourier deviations from the given data. Fi-

nally, FTVd was used without modification. A plot of the resulting reconstruction

normalized errors and runtimes is shown below in Figure 3.16.

Runtime
(seconds)

GradientMP
(Haar Wavelets) .510
GradientMP
(Least Squares) .481

L1-Magic 49.2

FTVd 6.86

Figure 3.16: Reconstruction NRMSEs and Runtimes of GradientMP and TV-Minimization with
respect to recovering 64 × 64 Shepp-Logan phantoms corrupted with a significant
amount of white Gaussian noise.

This is where FTVd had the chance to shine. It outperformed all the other algo-

rithms in terms of reconstruction error. Both variations of GradientMP followed

closely behind. L1 Magic was behind the others because of sensitivity issues with

the parameters associated with its underlying algorithm. These parameters can be

extremely difficult to select appropriately given a noisy signal. As shall be seen later

in this section, just because FTVd had slightly NRMSEs, this does not necessarily



99

mean that the FTVd reconstructions look better. FTVd tends to perform the best

in this situation because of its ability to smooth noisy data. This may result in the

smoothing of important texture as well. In terms of runtime, GradientMP was

again by far the fastest algorithm.

Of course, one of the most important performance criteria that has not been

discussed thus far is GradientMP’s ability to handle natural images. To this

end, the following is an attempt to recover the famous image ‘Peppers’ from 40%

of all possible Fourier Coefficients (over a symmetric grid) using two techniques:

GradientMP (Least Squares) with KOMP(K = 200, 30 iterations) and total-

variation minimimzation (FTVd). The original image, its Fourier back-projection,

and the two reconstructions are shown below in Figure 3.5.

Original Back Projection (Raw Data)
MSE = 35.1

GradientMP
MSE = 31.7

TV-Minimization (FTVd)
MSE = 27.8

Figure 3.17: Original peppers image and reconstructions using Fourier Back Projection, Gradi-
entMP, and FTVd.
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In this particular example, the two reconstructions are very similar. In terms of

mean square error, the TV-minimization reconstruction was slightly better. However,

it took FTVd approximately one minute to run whereas GradientMP only took

20 seconds.

The next experiment tests the same two algorithms on a real-life medical image.

This time, a more conservative frequency selection consisting of 50% of all available

frequencies randomly chosen over a symmetric grid was employed. The original image

as well as its reconstructions are shown in Figure 3.5.

Original Back Projection (Raw Data)
MSE = 54.5

GradientMP
MSE = 31.8

TV-Minimization (FTVd)
MSE = 28.7

Figure 3.18: Original medical image and reconstructions using Fourier Back Projection, Gradi-
entMP, and FTVd.

Again, both reconstructions are very similar in quality and all major anatomical

objects can be seen in each. In terms of `2 error, TV-minimization performed slightly

better, but the difference is most certainly not significant. GradientMPdid a better
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job in terms of retaining the texture in the original image. The TV-minimization

reconstruction is somewhat blurry. For that reason, one may argue that with respect

to the “eyeball” norm, GradientMPactually performs better. The runtime of

GradientMPwas 20 seconds whereas the runtime of FTVd was a bit over a minute.

To summarize, this chapter introduced Gradient Matching Pursuit, a novel algo-

rithm to recover sparse gradient images from small sets of Fourier Data. It works by

using greedy orthogonalized matching pursuit algorithms to recover an image in the

edge (or gradient) domain and then utilizes one of several inverse filtering methods to

form a final estimate of the original image. It was shown that given a set of Fourier

samples, Gradient Matching Pursuit will produce an image that is of similar quality

to those produced by existing total variation minimization routines, but in much

less time. Unfortunately, these methods are somewhat controversial in that many

discriminating radiologists would be unsatisfied with image reconstructions gener-

ated from both GradientMP and total variation minimization, even for modest

size frequency sampling sets. Both exhibit some degree of overall cloudiness and

blurring of very fine details in their output. However, this does not mean that the

application of compressive sensing to medical imaging is a useless endeavor. Modern

motion-based MRI, an application in which a lot of data must be collected over a

short time period, may benefit greatly from such techniques. In such situations, high

resolution scans may be unrealistic with current technology and the reconstructions

shown in the above figures are more likely to resemble the quality that one would

obtain in practice. Of course, this is an area of future work that will not be discussed

any further here. Instead, the focus will be shifted in the next chapter to an appli-

cation of sparse approximation theory in medical imaging, which is the correction of

non-homogeneous sensitivity patterns of MRI RF transmission coils.



CHAPTER IV

Parallel Approximation Theory and MRI Excitation

4.1 MRI Parallel Excitation

In Chapter I Section 1.3, a mathematical description of MRI in an ideal setting was

presented. This section will relax the assumption of ideality and consider situations

in which one is presented with an imperfect RF transmitter coil with a sensitivity

pattern given by Sspace(x, y, z). This function is a measure of the gain of the RF

pulse in various regions of the scanning area. Over a thin slice, it may be assumed

that this sensitivity pattern is constant valued in the longitudinal direction (z-axis)

and therefore the sensitivity pattern can be written as

Sspace(x, y, z) = Sin-plane(x, y)Slong(z).

Without loss of generality, Slong can be considered to be identically equal to unity.

For convenience, the subscript on Sin-plane will be dropped, i.e. let S = Sin-plane. By

utilizing a single RF pulse, then the MRI machine will recover Fourier Transform

coefficients of an image (over a thin slice) proportional to ρ(x, y)S(x, y). Figure 4.1

shows a typical sensitivity pattern for an MRI machine with a single transmission

coil.

If the sensitivity pattern is highly non-uniform, then unwanted image artifacts are

guaranteed to be present. To correct this issue, some more advanced MRI systems

102
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Figure 4.1: Typical single coil sensitivity pattern

Figure 4.2: Typical sensitivity patterns for an 8-coil MRI machine.

possess multiple transmission coils. Assume that there are K such coils and that for

each k, coil k has a thin-slice sensitivity pattern given by Sk(x, y). Typical sensitivity

patterns for an 8-coil MRI setup are shown below in Figure 4.2.

A sensitivity pattern is not a fixed property of the MRI scanner; rather, it depends

on the subject that is sitting inside it. The double angle method (see [55] and [29])

can be used to efficiently calculate the sensitivity pattern of a given transmission

coil. The first step is to generate two quick images of the desired slice. The first one

is produced by transmitting an RF pulse inducing a tip angle of θ and the second

image is produced using a tip angle of 2θ, hence the name “double-angle.” Observe

that based on Equation 1.13, the following proportionality is approximately satisfied:

I1(x, y)

I2(x, y)
=

sin(θ(x, y)

sin(2θ(x, y))
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where I1 and I2 are the intensities of the images corresponding to tip angles θ and

2θ respectively. It is the value of θ(x, y) that determines the sensitivity pattern

because in areas of poor sensitivity, the net proton magnetization vector will not tip

as much as desired. By utilizing the trigonometric identity sin(2θ) = 2 sin θ cos θ and

performing some basic algebra, one can see that

S(x, y) ∝ θ(x, y) = cos−1

(
I2(x, y)

2I1(x, y)

)
.

Assuming again that only one RF pulse is transmitted by each coil, then the final

reconstructed image will be proportional to ρ(x, y)[S1(x, y) + · · ·+ SK(x, y)]. While

this may improve the overall reconstruction quality, designing transmission coils that

closely approximate a partition of unity over the scanning region is a highly non-

trivial hardware problem. A clever way to address this issue is to allow each coil

to transmit a short sequence of T RF pulses with each pulse being modulated by a

two-dimensional waveform induced by the gradient magnet coils. The 2D frequen-

cies associated with these waveforms are often referred to in the literature as phase

encoding locations. The recovered image will now take the form ρ(x, y)d(x, y) where

(4.1) d(x, y) =
K∑
k=1

Sk(x, y)
T∑
j=1

bk,je
itγ(kx,jx+ky,jy).

Here, d(x, y) is called the in-plane excitation profile and the bk,js are complex-valued

weights associated with the phase encoding locations that will be selected in order

to make d as close to being constant-valued as possible over the imaging region of

interest. Over other regions, the value of d is unimportant. An example of a typical

idealized excitation pattern is shown below in Figure 4.3.

In [69], Equation 4.1 is discretized as follows:

(4.2) d = S1Fb1 + S2Fb2 + · · ·+ SKFbK
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Figure 4.3: An idealized in-plane excitation profile that is identically one over the region of interest.

where Sk is a diagonal matrix representing the discrete sensitivity pattern of the

kth coil, F is a two-dimensional Fourier encoding matrix, and bk is a vector of the

complex-valued weights for the RF pulses transmitted by the coil. The objective is

to find a jointly T -sparse set of coefficient vectors b = [b1, · · · , bK ] that will induce a

uniform excitation pattern (e.g. d = 1) over the region of interest. The T non-zero

entries of each bk will correspond to the amplification of the T RF pulses that will

be transmitted by the kth coil. Figure 4.4 graphically illustrates this pulse sequence.

Figure 4.4: An illustration of a pulse sequence in MRI parallel excitation.
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The time period between the transmission of subsequent pulses is very short. As a

result, for simple single slice scans requiring only a small number of pulse segments,

the order in which the pulses are transmitted is not important. In more complicated

situations, such as 3D excitation or dynamic imaging applications, which will not be

addressed here, this assumption is not valid.

The discrete version of the MRI Parallel Excitation problem motivates the more

general Parallel Sparse Approximation Problem, which is described in the next sec-

tion.

4.2 Parallel Sparse Approximation Theory and Parallel Orthogonal Match-
ing Pursuit

There are two predominant paradigms for sparse approximation, both of which

were discussed in Chapter I. In the first setting, y ∈ CM is a signal vector that is

to be synthesized as y = Φx, Φ is a dictionary matrix whose columns correspond

to elementary signal vectors, and x ∈ CN is a coefficient vector. The goal is to

create an approximation of y using only a few columns of Φ, enforcing sparsity on

x. Frequently in applications, such as hyperspectral imaging [65], sparse-gradient

image recovery [37], etc., one is required to solve a related sequence of K sparse

approximation problems of the form yk = Φxk with k = 1, · · · , K. If the xks have a

common support set, then these K problems can be coupled leading to the second

setting known as simultaneous sparse approximation theory. As before, one can refer

to these two settings as compressive sensing and simultaneous compressive sensing

if roles of the x’s and y’s are interchanged.

This work presents a variant of the sparse approximation problem that interpolates

between these two paradigms, which shall be referred to as Parallel Approximation.

In this problem, assume that one has a set of sparse coefficient vectors{x1, · · · , xK} ⊂
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CN with a common support set which additively synthesize a single signal using

K highly incoherent dictionaries. In other words, one has K dictionary matrices

{Φ1, · · · ,ΦK} ⊂ CM×N and a vector to approximate y ∈ CM given by

(4.3) y = Φ1x1 + Φ2x2 + · · ·ΦKxK .

The objective is to efficiently compute the xks from y and the Φks while enforc-

ing simultaneous sparsity on the xks. A graphical depiction of the basic parallel

approximation problem is shown in Figure 4.5.

Figure 4.5: A graphical depiction of the multiple input single output structure of the basic parallel
compressed sensing / sparse approximation problem.

It is easy to see that the discretized form of the MRI Parallel Excitation prob-

lem is a special case of the Parallel Sparse Approximation Problem. While the

general Parallel Sparse Approximation setup is fairly new, it does appear in the

literature in its mathematically equivalent forms such as the multiple input single

output (MISO) forumulation in [67] and the block-sparse approximation problem in

[54]. Predictably, the benchmark algorithmic approach for solving such problems

is convex optimization. Letting x ∈ CNK be the concatenation of x1, · · · , xK and
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Φ = [Φ1, · · · ,ΦK ] ∈ CM×NK , these optimization problems typically take the form:

x̃ = argmin
x
‖x‖1,p s.t. Φx = y

in the case of a constrained problem or

x̃ = argmin
x
‖x‖1,p + λ ‖y − Φx‖2

in the case of an unconstrained problem. The norm || · ||p,q is calculated as follows:

If x is an N × K matrix whose columns are the xks, then compute the `q form of

each row and the find the `p norm of the resulting N -vector. For formally, the norm

is defined as follows. Let x′n = [x1(n), · · · , xK(n)] ∈ CK . Then

‖x‖p,q :=
∥∥∥‖x′1‖q , ‖x′2‖q , · · · , ‖x′N‖q∥∥∥

p
.

While convex optimization will produce high quality signal reconstructions, it

tends to be fairly slow. As a result, we introduce a faster greedy algorithm known

as Parallel Orthogonal Matching Pursuit (or POMP for short) to solve the same

problem. The POMP algorithm is a very natural generalization of standard OMP

and its pseudo-code representation is shown below in Figure 4.6.

In order to prove the correctness of POMP, it is necessary to introduce two

definitions. First, one defines the cumulative coherence function µk(T ) of dictionary

Φk the same way as presented in Chapter I Section 1.2. Next, one needs to define

a notion of coherence between atoms of different dictionaries. To that end, the

following is a definition for the cross-cumulative coherence between K dictionaries.
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Algorithm: Parallel Orthogonal Matching Pursuit

Inputs: A target signal to approximate : y
Dictionary matrices : Φk, k = 1, · · · ,K
Number of iterations T.

Outputs: T term approximations x̃ks of the xks
Residual rT .

Initialize residual r0 = y, index set Λ = ∅.
For t from 1 to T {

Let

(4.4) λt = argmax
i

K∑
k=1

∣∣(φik)∗rt)
∣∣ .

Set Λt = Λt−1 ∪ {λt}.
Let pk be the projection of the residual onto the selected

vectors {φik|1 ≤ k ≤ K, i ∈ Λt}.
Set rt = r0 − pt. }

Solve for the x̃k’s by using the coefficients of the φikss
determined when solving for pT .

Figure 4.6: Pseudocode for Parallel Orthogonal Matching Pursuit.

Definition IV.1. The cross-cumulative coherence function νk(T ) of a dictionary Φk

from a collection of K dictionaries Φ1, · · · ,ΦK is defined to be:

νk(T ) = max
i

max
|Λ|=T
`6=k

∑
j∈Λ

∣∣(φik)∗φj`∣∣ .
With the definitions of cumulative coherence and cross-cumulative coherence in

mind, one is prepared to state a sufficient condition that will ensure that POMP

will recover x1, · · · , xK from its measurements y.

Proposition IV.2. Suppose one has an ensemble of K dictionaries Φ = [Φ1, · · · ,ΦK ]

with cumulative coherences µk and cross cumulative coherences νk, k = 1, · · · , K that

satisfy

(4.5)
K∑
k=1

µk(T ) + µk(T − 1) + 2(K − 1)νk(T ) < 1.

Then POMP will select a correct common atom at every iteration and therefore

recover the xks exactly.
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Proof. Suppose that after t iterations, POMP has selected only correct atoms. Then

it follows that the residual rt in an element of the space
∑K

k=1 colspan(Φk,opt) where

Φk,opt is the M × T submatrix of Φk which consist of the T columns corresponding

to the correct atoms. Now write r as

r =
K∑
k=1

T∑
i=1

ck,tφ
i
k,opt

where φik,opt is the i-th column of Φk,opt. Now without loss of generality, assume that∑K
k=1 |ck,1| ≥

∑K
k=1 |ck,i| for each i. Otherwise, just reorder the columns of Φopt.

Then it is possible to derive the following useful inequalities based on cumulative

coherence and cross cumulative coherence estimates: For any φ1
k,opt from the first

column of some Φk,opt,

|(φ1
k,opt)

∗r| ≥ |ck,1| −

(
K∑
k=1

|ck,1|

)
(µk(T − 1) + (K − 1)νk(T )) .

Summing over k yields:

(4.6)
K∑
k=1

|(φ1
k,opt)

∗r| ≥

(
K∑
k=1

|ck,1|

)(
1−

K∑
k=1

[µk(T − 1) + (K − 1)νk(T )]

)
.

Similarly, for each k, define Ψk to be the M × (N − T ) submatrix of Φk consisting

of the incorrect atoms. Let ψik denote the ith column of Ψk. Then for a fixed k and

i, one can obtain the estimate

|(ψik)∗r| ≤

(
K∑
k=1

|ck,1|

)
(µ1(T ) + (K − 1)ν1(T )) .

Again, keep i fixed and sum over k to obtain:

(4.7)
K∑
k=1

|(ψik)∗r| ≤

(
K∑
k=1

|ck,1|

)(
K∑
k=1

[µ1(T ) + (K − 1)ν1(T )]

)
.

Now observe that P-OMP will definitely pick a correct atom if

K∑
k=1

|(φ1
k,opt)

∗r| ≥
K∑
k=1

|(ψik)∗r|.
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Combining Inequalities 4.6 and 4.7 gives a sufficient condition for this, which is:(
K∑
k=1

|ck,1|

)(
K∑
k=1

[µ1(T ) + (K − 1)ν1(T )]

)

≤

(
K∑
k=1

|ck,1|

)(
1−

K∑
k=1

[µk(T − 1) + (K − 1)νk(T )]

)
.

Rearranging terms now yields:

K∑
k=1

µk(T ) + µk(T − 1) + 2(K − 1)νk(T ) < 1,

which completes the proof.

An interesting observation is that by setting K = 1 in (4.5), then one gets Tropp’s

sufficient condition for OMP shown in (1.8). Indeed, by carefully examining the

Parallel Orthogonal Matching Pursuit procedure, it is apparent that it is equivalent

to ordinary Orthogonal Matching Pursuit when K = 1.

In terms of sparse approximation, one can obtain a result very similar to those

shown in Equations 1.9 and 1.10. For convenience, define the function ξ(T ) to be

ξ(T ) =
K∑
k=1

µk(T ) + µk(T − 1) + 2(K − 1)νk(T )

Let Λopt represent the column indices of the Φi that form the optimal T term repre-

sentation yT for some signal y. Now one can prove the following lemma:

Lemma IV.3. Let y ∈ CM be an arbitrary signal and let yT be it’s optimal T -term

representation of the form

yT =
K∑
k=1

Φkxk

where the xks are jointly T -sparse coefficient vectors. Suppose that ξ(T ) < 0.5 and

that at iterations 1, · · · , t−1, POMP has selected only atoms indexed by Λopt. Then

at iteration t, POMP will select another atom from Λopt if

(4.8) ‖y − yt‖2 >

√
1 +

K2T (1− ξ(T ))

(1− 2ξ(T ))2 ‖y − yT‖2 .
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Proof. This proof is another adaptation of Tropp’s work in [58, 60]. Observe that

POMP will select a correct atom from Λopt at iteration t if the “greedy-selection

ratio”

ρ(rt) ≡
‖Φ∗rt‖1,∞∥∥Ψ∗optrt

∥∥
1,∞

satisfies ρ(rt) < 1 where Ψ = [Ψ1, · · · ,ΨK ] are the non-optimal atoms as in the proof

of the previous proposition. Now one has that

ρ(rt) =
‖Ψ∗ (y − yt)‖1,∞

‖Φopt (y − yt)‖1,∞

≤
‖Ψ∗ (y − yT )‖1,∞ + ‖Ψ∗ (yT − yt)‖1,∞∥∥Φ∗opt (y − yT ) + Φ∗opt (yT − yt)

∥∥
1,∞

=
‖Ψ∗ (y − yT )‖1,∞∥∥Φ∗opt (yT − yt)

∥∥
1,∞

+
‖Ψ∗ (yT − yt)‖1,∞

‖Φopt (yT − yt)‖1,∞
.

The above expressions utilize the fact that yT is the orthogonal projection of y onto

the columns of Φopt, i.e. Φ∗opt(y− yT ) = 0. Now it’s easy to see that the second term

satisfies

‖Ψ∗ (yT − yt)‖1,∞

‖Φopt (yT − yt)‖1,∞
≤ ξ(T )

1− ξ(T )

based on arguments presented in the proof of the previous proposition. As for the

first term, one has that

‖Ψ∗ (y − yT )‖1,∞∥∥Φ∗opt (yT − yt)
∥∥

1,∞
=

maxi
∑K

k=1 |(ψik)∗ (y − yT )|∥∥Φ∗opt (yT − yt)
∥∥

1,∞

≤
maxi

∑K
k=1 ‖ψik‖2 ‖y − yT‖2∥∥Φ∗opt (yT − yt)

∥∥
1,∞

≤ K
√
T ‖y − yT‖2∥∥Φ∗opt (yT − yt)

∥∥
2,2

.

These follow from simple Cauchy-Schwartz inequality arguments. Next utilize the

properties of the `2 norm and the Gershgorin Disc Theorem (as shown in [58]) to
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show that

K
√
T ‖y − yT‖2∥∥Φ∗opt (yT − yt)

∥∥
2,2

≤ K
√
T ‖y − yT‖2

σmin

(
Φ∗opt

)
‖yT − yt‖2

≤ K
√
T ‖y − yT‖2√

1− ξ(T ) ‖yT − yt‖2

.

Putting the pieces together, one sees that a sufficient condition to ensure that a

correct atom is chosen is that

K
√
T ‖y − yT‖2√

1− ξ(T ) ‖yT − yt‖2

+
ξ(T )

1− ξ(T )
< 1.

Now rearrange the terms to obtain

‖yT − yt‖2 >
K
√
T (1− ξ(T ))

1− 2ξ(T )
‖y − yT‖2 .

Since y−yT is orthogonal to yT−yt (i.e. yT−yt ∈ span(Φopt) and y−yT ∈ span(Φ⊥opt),

it follows from the Pythagorean Theorem that

‖y − yt‖2 >

√
1 +

K2T (1− ξ(T ))

(1− 2ξ(T ))2 ‖y − yT‖ ,

which completes the proof.

From this lemma, the following useful result immediately follows:

Proposition IV.4. Let y ∈ CM be any signal and let yT be its best T -term represen-

tation in Φ1, · · ·ΦK, then assuming ξ(T ) < 0.5, POMP will return a reconstruction

ỹ of y that satisfies

(4.9) ‖y − ỹ‖2 ≤

√
1 +

K2T (1− ξ(T ))

(1− 2ξ(T ))2 ‖y − yT‖2 .

Thus, one sees that the reconstruction error generated by the output of POMP

is not too much worse than the optimal jointly T -sparse representation: the sub-

optimality constant does not depend on the signal size but rather only the sparsity
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of the signal, the number of dictionaries, and the respective coherences of these

dictionaries.

A common generalization of POMP is to replace the column index selection

criterion (4.4) with a p-norm to obtain the alternative expression

λt = argmax
i

K∑
k=1

∣∣(φik)∗rt)∣∣p .
This generalization will be denoted as POMPp. For the special case p = 2, it is

possible to modify the last proposition and obtain the following sparse approximation

guarantee for POMP2.

Proposition IV.5. Let y ∈ CM be any signal and let yT be its best T -term represen-

tation in Φ1, · · ·ΦK, then assuming ξ(T ) < 0.5, POMP2 will return a reconstruction

ỹ of y that satisfies

(4.10) ‖y − ỹ‖2 ≤
√√√√1 +

K3T (1− ξ(T ))(
1− ξ(T )(1 +

√
K)
)2 ‖y − yT‖2 .

Proof. In this situation, the greedy selection ratio takes the form:

ρt =
‖Ψrt‖2,∞

‖Φoptrt‖2,∞
≤
√
K ‖Ψrt‖1,∞

‖Φoptrt‖1,∞
.

The remainder of the proof is exactly the same as it was for the previous lemma and

proposition.

Observe again that for K = 1, this result is exactly equivalent to those obtainable

for OMP and POMP1. This is because all three algorithms are identical when

K = 1.

The last several results deal with the application of cumulative coherence and

cross-coherence functions to derive sparse approximation results pertaining to Par-

allel Orthogonal Matching Pursuit. In order to generate a more complete theory, we
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now shift our attention to POMP as a compressive sensing algorithm and prove ad-

ditional results. Proceeding in this direction, we describe the Parallel Approximation

analogue of restricted isometry numbers.

Suppose one has a set of signals x = [x1; · · · ;xK ] that are jointly T sparse and

a set of measurements of the form y = Φx = Φ1x1 + · · · + ΦKxK . It is possible to

derive sufficient conditions based on the restricted isometry numbers δ1,T , · · · , δK,T

of the measurement matrices Φ1, · · · ,ΦK and a new, but similar concept, which will

be defined as the restricted cross-isometry numbers:

Definition IV.6. For dictionaries Φk and Φ` where k 6= `, the restricted cross-

isometry numbers εk,`,T are defined, as a function of T , to be the smallest numbers

such that ∥∥Φ∗k,AΦ`x
∥∥

2
≤ εk,`,T ‖x‖2

for any signal x ∈ CN and any set A such that the sum of the cardinalities of supp(x)

and A do not exceed T .

For convenience, let εs,T := maxk,`εk,`,T and let δ′s,T := maxkδk,T . Now bound

everything by δs,T := max(δ′s,T , εs,T ). With all this in mind, one is ready to prove

the following lemma pertaining to the restricted isometry properties of the overall

measurement ensemble Φ = [Φ1, · · · ,ΦK ], which will allow one to generate a result

pertaining the performance of POMP2. Then this will be extended to encompass

the case p = 1.

Proposition IV.7. Let Φ1, · · · ,ΦK be K dictionaries with restricted isometry num-

bers δk,T and restricted cross-isometry numbers εk,T . Let x = [x1, · · · , xK ] be any

sequence of jointly T -sparse signals with common support Λ. Then the following
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property regarding Φ holds.

‖Φ∗ΛΦx‖2,2 =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



Φ∗1,ΛΦ1 Φ∗1,ΛΦ2 · · · Φ∗1,ΛΦK

Φ∗2,ΛΦ1 Φ∗2,ΛΦ2 · · · Φ∗2,ΛΦK

...
...

. . .
...

Φ∗K,ΛΦ1 Φ∗K,ΛΦ2 · · · Φ∗K,ΛΦK





x1

x2

...

xK



∥∥∥∥∥∥∥∥∥∥∥∥∥∥
2,2

≥
(
1− δ′s,T+1 −Kεs,T+1

)
‖x‖2,2

≥ (1− (K + 1)δs,T+1) ‖x‖2,2

In addition, for any singleton set A := {a} where a /∈ Λ,

‖Φ∗AΦx‖2,2 ≤
(
δ′s,T+1 +Kεs,T+1

)
‖x‖2,2

≤ (K + 1)δs,T+1 ‖x‖2,2 .

Proof. The proof is simply a matter of bookkeeping to keep track of the various

restricted isometry and cross-isometry numbers involved in the overall construction

of Φ.

Based on this overall restricted isometry condition of Φ,one can present a sufficient

condition that will guarantee that POMP2 will recover any jointly T -sparse ensemble

of signals from its single measurement vector.

Proposition IV.8. Let Φ1, · · · ,ΦK be K dictionaries whose restricted isometry and

cross-isometry numbers yield the following expression:

δs,T+1 <
1

(K + 1)
(

1 +
√
T
) .

Then POMP2 will recover any jointly T -sparse ensemble of signals x1, · · · , xK from

y = Φ1x1 + · · ·ΦKxK.
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Proof. Proceed by induction. Suppose that after t iterations, POMP2 has only

selected correct atoms from Λ. Let rt = Φ1ct,1 + · · ·ΦKct,K where the ct,ks are

coefficient vectors that realize the residual. Let ct be the concatenation of the ct,ks.

Consider the following two observations. First,

‖Φ∗ΛΦct‖∞,2 ≥
‖Φ∗ΛΦct‖2,2√

T
≥

(1− (K + 1)δs,T+1) ‖ct‖2,2√
T

.

Secondly, for any singleton set A = {a} where a /∈ Λ,

‖Φ∗AΦct‖∞,2 = ‖Φ∗AΦct‖2,2 ≤ (K + 1)δs,T+1 ‖ct‖2,2 .

Just like in the proof of Lemma II.3, POMP2 will correctly identify the next atom

if ||ΦAΦct||∞,2 ≤ ||ΦΛΦct||∞,2. This will be guaranteed if

(K + 1)δs,T+1 ‖ct‖2,2 ≤
(1− (K + 1)δs,T+1) ‖ct‖2,2√

T
.

Rearranging terms gives (IV.8).

This result can be extended for other values of p by slightly modifying the re-

stricted isometry condition above. For the case p = 1, one has:

Proposition IV.9. Let Φ1, · · · ,ΦK be K dictionaries whose restricted isometry and

cross-isometry numbers yield the following expression:

δs,T+1 <
1

(K + 1)
(

1 +
√
KT

) .
Then POMP1 will recover any jointly T -sparse ensemble of signals x1, · · · , xK from

its measurement vector.

Proof. The proof is exactly as before except for the utilization of the following in-

equalities:

‖Φ∗ΛΦx‖∞,1 ≥ ‖Φ∗ΛΦx‖∞,2

‖Φ∗AΦx‖∞,1 ≤
√
K ‖Φ∗AΦx‖∞,2 .
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All the subsequent steps remain unchanged.

For general signal recovery, the same methods used over and over again throughout

this work can be used to prove the following result:

Proposition IV.10. Let x = [x1, · · · , xK ] be a sequence of K arbitrary signals with

optimal jointly T -sparse approximation xT = [xT,1, · · · , xT,K ]. If a sequence of dic-

tionaries Φ1, · · · ,ΦK yield restricted isometry and cross-isometry numbers satisfying

(IV.8) and one has access to noisy measurements of the form

(4.11) y =
K∑
k=1

Φkxk + w =
K∑
k=1

ΦkxT,k + e

where e =
∑K

k=1 xTC ,k +w and xTC = x− xT , then POMP2 will obtain an estimate

x̃ = [x̃1, · · · , x̃K ] of x satisfying

‖x− x̃‖2,2 ≤
(

1 +
√
KD1,2

)
‖x− xT‖2,2 +

D1,2√
T
‖x− xT‖1 +D1,2 ‖w‖2 .

On the other hand, if Condition IV.9 is satisfied, then POMP1 will obtain an esti-

mate x̃ of x that satisfies:

‖x− x̃‖2,2 ≤
(

1 +
√
KD1,1

)
‖x− xT‖2,2 +

D1,1√
T
‖x− xT‖1 +D1,1 ‖w‖2 .

Here, D1,2 grows roughly like
√
T and D1,1 grows like

√
KT .

Proof. First begin with the POMP2 guarantee. Suppose that up until iteration t,

only correct column indices have been selected. Observe that

‖Φ∗ΛCrt‖∞,2 = ‖Φ∗ΛCΦΛ (xT − at) + Φ∗ΛCe‖∞,2

≤ ‖Φ∗ΛCΦΛ (xT − at)‖∞,2 + ‖Φ∗ΛCe‖∞,2

≤ (K + 1)δs,T+1 ‖xT − at‖2,2 +
√
K ‖e‖2 .
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Here at = [at,1, · · · , at,K ] are the coefficient vectors corresponding to the projection

of y onto all Kt currently chosen column vectors of the Φks. On the other hand, one

also has:

‖Φ∗Λrt‖∞,2 = ‖Φ∗ΛΦΛ (xT − at) + Φ∗Λe‖∞,2

≥ 1√
T

[
‖Φ∗ΛΦΛ (xT − at)‖2,2 − ‖Φ

∗
Λe‖2,2

]
≥ 1− (K + 1)δs,T+1√

T
‖xT − at‖2,2 −

√
K
√

1 + δs,T√
T

‖e‖2 .

Now putting the two pieces together, a sufficient condition for a correct index to be

chosen during iteration t+ 1 is that:

‖xT − at‖2,2 >

√
K
(√

T +
√

1 + δs,t

)
1− (K + 1)δs,T+1(1 +

√
T )
‖e‖2 .

As before, define the stopping time t∗ to be the first iteration where

‖xT − at∗‖2,2 ≤

√
K
(√

T +
√

1 + δs,T

)
1− (K + 1)δs,T+1(1 +

√
T )
‖e‖2 .

The next step is to derive a bound on ||x− x̃||2,2. Observe that:

‖x− x̃‖2,2 ≤ ‖xT − x̃‖2,2 + ‖xTC‖2,2

≤ 1√
1− (K + 1)δs,2T

‖ΦΛ′ (xT − x̃)‖2 + ‖xTC‖2,2 .

Here Λ′ = supp(x̃)∪Λ which has cardinality at most 2T . Now it is possible to further

bound ||x− x̃||2,2 by:

‖x− x̃‖2,2 ≤
1√

1− (K + 1)δs,2T
[‖ΦΛ′ (xT − x̃) + e‖2 + ‖e‖2] + ‖xTC‖2,2

≤ 1√
1− (K + 1)δs,2T

[‖ΦΛ′ (xT − at∗) + e‖2 + ‖e‖2] + ‖xTC‖2,2

≤ 1√
1− (K + 1)δs,2T

[‖ΦΛ′ (xT − at∗)‖2 + 2 ‖e‖2] + ‖xTC‖2,2

≤
√

1 + (K + 1)δs,T√
1− (K + 1)δs,2T

‖xT − at∗‖2,2 +
2√

1− (K + 1)δs,2T
‖e‖2 + ‖xTC‖2,2 .
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Now using the previously derived bound on ||xT − at∗||2,2 gives:

‖xT − at∗‖2,2

≤

( √1 + (K + 1)δs,T√
1− (K + 1)δs,2T

) √
K
(√

T +
√

1 + δs,T

)
1− (K + 1)δs,T+1(1 +

√
T )

+
2√

1− (K + 1)δs,2T


· ‖e‖2 + ‖xTC‖2,2 .

The bracketed expression will be referred to as D′1,2. The final step is to obtain a

bound on the vector e:

‖e‖2 ≤ ‖ΦxTC‖2 + ‖w‖2

≤
K∑
k=1

‖ΦkxTC ,k‖2 + ‖w‖2

≤
K∑
k=1

√
1 + δs,T

(
‖xTC ,k‖2 +

1√
T

∥∥xTC ,k∥∥1

)
+ ‖w‖2

≤
√

1 + δs,T

[√
K ‖xTC‖2,2 +

1√
T
‖xTC‖1,1

]
+ ‖w‖2 .

Set D1,2 =
√

1 + δs,TD
′
1,2 and then put everything together to get:

‖x− x̃‖2,2 ≤
(

1 +
√
KD1,2

)
‖x− xT‖2,2 +

D1,2√
T
‖x− xT‖1 +D1,2 ‖w‖2 .

which completes the proof with respect to POMP2. The analysis for POMP1 is

nearly identical. It isn’t difficult to show that D1,1 =
√

1 + δs,TD
′
1,1 where

D1,1 =

( √
1 + (K + 1)δs,T√
1− (K + 1)δs,2T

) √
K
(√

KT +
√

1 + δs,T

)
1− (K + 1)δs,T+1(1 +

√
KT )


+

2√
1− (K + 1)δs,2T

.

This completes the proof.

Of course, as suggested in Chapter II, these performance guarantees can be im-

proved if one imposes a multiple column index selection scheme (e.g. K-POMP or
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POMP with thresholding) and relax the restriction that only correct atoms must be

chosen. As an example, consider the case of 2-POMP. For exactly jointly T -sparse

signals, one can use the same sort of argument as in Propositions II.6 and II.8 in

order to show the following:

Proposition IV.11. Let Φ1, · · · ,ΦK be a set of dictionaries whose restricted isom-

etry and cross-isometry numbers satisfy:

(4.12) δs,T+t+1 <
1

(K + 1)
(

1 +
√

T−t+1
2

)
for each t = 1, 2, · · · , T . Then 2-POMP2 will recover any jointly T -sparse signal

from its measurements. Furthermore, if

(4.13) δs,T+t+1 <
1

(K + 1)

(
1 +

√
K(T−t+1)

2

)
for each iteration t, then 2-POMP1 will recover any jointly T sparse signal from its

measurements.

For a general recovery guarantee regarding 2-POMP2, one can appeal again to

the methods of Chapter II in order to obtain:

Proposition IV.12. Let Φ1, · · · ,ΦK be a set of dictionaries satisfying (4.12). Let

x = [x1, · · · , xK ] be a set of K general signals and xopt be its optimal jointly T -sparse

representation. Suppose one is given noisy measurements as shown in (4.11). Then

2-POMP2 will recover a jointly 2T sparse approximation x̃ of x satisfying:

‖x− x̃‖2,2 ≤ (1 +
√
KD2,2) ‖x− xT‖2,2 +

D2,2√
T
‖x− xT‖1,1 +D2,2 ‖w‖2
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where D2,2 =
√

1 + δs,TD
′
2,2 and

D′2,2 =

(√
1 + (K + 1)δs,2T√
1− (K + 1)δs,3T

)
√
K
[√

1 + δs,2

√
T−t∗+1

2
+
√

1 + δs,T

]
1− (K + 1)δs,T+t∗+1

(
1 +

√
T−t∗+1

2

)


+
2√

1− (K + 1)δs,3T

Now if Φ1, · · · ,ΦK satisfy (4.13), then POMP1 will recover a jointly 2T sparse

approximation x̃ of x satisfying:

‖x− x̃‖2,2 ≤ (1 +
√
KD2,1) ‖x− xT‖2,2 +

D2,1√
T
‖x− xT‖1,1 +D2,1 ‖w‖2

where D2,1 =
√

1 + δs,TD
′
2,1 and

D′2,1 =

(√
1 + (K + 1)δs,2T√
1− (K + 1)δs,3T

)
√
K

[√
1 + δs,2

√
K(T−t∗+1)

2
+
√

1 + δs,T

]
1− (K + 1)δs,T+t∗+1

(
1 +

√
K(T−t∗+1)

2

)


+
2√

1− (K + 1)δs,3T
.

As mentioned previously, performance guarantees based on a stopping times are

somewhat undesirable. As a result, it is once again important to appeal to the

rate at which the restricted isometry and cross-isometry numbers grow as a rate of

the sparsity parameter T . More specifically, suppose δs,T ≤ δs,2T
β. Consider the

following proposition, which again is simply an extension of the analysis in Chapter

II.

Proposition IV.13. Suppose that Φ1, · · · ,ΦK are a set of incoherent dictionaries

whose restricted isometry and cross-isometry numbers obey the growth restriction

δs,` < δs,2`
β for β < 0.5. Then the following statements are true: First, assuming

T ≥ 2 and that

δs,2 <
1

(K + 1)(T + 2)
(

1 +
√

T
2

) ,
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then for any set of K signals x = [x1, · · · , xK], 2-POMP2 can generate a jointly

2T -sparse approximation x̃ from the noisy measurements (4.11) satisfying:

‖x− x̃‖2,2 ≤ (1 +
√
KD̃2,2) ‖x− xT‖2,2 +

D̃2,2√
T
‖x− xT‖1,1 + D̃2,2 ‖w‖2

where D̃2,2 =
√

1 + δs,T D̃
′
2,2 and

D̃′2,2 =

(√
1 + (K + 1)δs,2(2T )β√
1− (K + 1)δs,2(3T )β

)
√
K
[√

1 + δs,2

√
T
2

+
√

1 + δs,2T β
]

1− (K + 1)δs,2T β
(

1 +
√

T
2

)


+
2√

1− (K + 1)δs,2(3T )β
.

Second, assuming T ≥ 2 and that

δs,2 <
1

(K + 1)(T + 2)
(

1 +
√

KT
2

) ,
then 2-POMP1 can generate a jointly 2T -sparse approximation x̃ satisfying:

‖x− x̃‖2,2 ≤ (1 +
√
KD̃2,1) ‖x− xT‖2,2 +

D̃2,1√
T
‖x− xT‖1,1 + D̃2,1 ‖w‖2

where D̃2,1 =
√

1 + δs,T D̃
′
2,1 and

D̃′2,1 =

(√
1 + (K + 1)δs,2(2T )β√
1− (K + 1)δs,2(3T )β

)
√
K
[√

1 + δs,2

√
KT

2
+
√

1 + δs,2T β
]

1− (K + 1)δs,2T β
(

1 +
√

KT
2

)


+
2√

1− (K + 1)δs,2(3T )β

For the sake of completeness, this work will present one more interesting varia-

tion of POMP whose name is Parallel Orthogonal Matching Pursuit with Projec-

tion (POMPproj). In this particular version, the column index selection criterion is

changed from

λt = argmax
i

∥∥(Φi
)∗
rt
∥∥
p
,
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as is the case in POMPp, into

λt = argmax
i

∥∥∥(Φi
) (

Φi
)†
rt

∥∥∥
2
.

Here, the dagger † refers to the pseudo-inverse operator, i.e. A† = (A∗A)−1A∗. In

words, for each column index i, calculate the projection of the residual rt onto the K

vectors in the ith position of all K dictionaries. Then choose λt to be the value of i

that yields the projection of greatest magnitude in the `2 sense. One might suspect

that the added computational complexity of these projection would yield better

results; however theoretical and empirical results thus far suggest otherwise. For

purely jointly T -sparse signal recovery, one can prove the following result pertaining

to POMPproj.

Proposition IV.14. Let Φ1, · · · ,ΦK be dictionaries whose restricted isometry and

cross-isometry numbers satisfy

(4.14) δs,T+1 <
γ3
min

γ3
max

1

(K + 1)(1 +
√
T )

where γmax and γmin are the largest and smallest singular values respectively that

occur in the set of all singular values of the matrices Φ1, · · ·ΦN . Then POMPproj

will recover any jointly T -sparse set of signals x1, · · · , xK from their measurements.

Proof. Proceed by induction on the iteration number t as usual. Observe that for

any correct column index i ∈ Λ = {λ1, · · · , λT},

∥∥(Φi
) (

Φi†)Φct
∥∥

2

=
∥∥∥Φi

(
Φi∗Φi

)−1
Φi∗ (Φλ1c′t,1 + · · ·+ ΦλT c′t,T

)∥∥∥
2
.

≥ γmin

γ2
max

∥∥Φi∗ (Φλ1c′t,1 + · · ·+ ΦλT c′t,T
)∥∥

2
.
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Here each c′t,` ∈ CK contains entries of ct corresponding to the columns vectors in

Φλ` . Now observe that

∥∥∥∥(Φλ1
) (

Φλ1†
)

Φct
∥∥

2
, · · · ,

∥∥(ΦλT
) (

ΦλT †
)

Φct
∥∥

2

∥∥
∞

≥ γmin

γ2
max

1√
T

∥∥∥∥∥Φλ1∗
(
Φλ1c′t,1 + · · ·ΦλT c′t,T

)∥∥
2
, · · · ,

∥∥ΦλT ∗
(
Φλ1c′t,1 + · · ·ΦλT c′t,T

)∥∥
2

∥∥∥
2

Because of the || · ||2,2 norm being used, one can rearrange terms to rewrite the last

statement as

γmin

γ2
max

1√
T
‖‖Φ∗1 (Φ1x1 + · · ·+ ΦKxK)‖2 , · · · , ‖Φ

∗
K (Φ1 + · · ·+ ΦKxK)‖2‖2 .

Proposition IV.7 gives a lower bound for this quantity, which yields the result:

∥∥∥∥(Φλ1
) (

Φλ1†
)

Φct
∥∥

2
, · · · ,

∥∥(ΦλT
) (

ΦλT †
)

Φct
∥∥

2

∥∥
∞

≥ γmin

γ2
max

1√
T

(1− (K + 1)δs,T+1) ‖ct‖2,2 .

Using a similar argument, it is easy to show that for any j /∈ Λ,

∥∥ΦjΦj†Φct
∥∥
∞,2 ≤

γmax

γ2
min

(K + 1)δs,T+1 ‖ct‖2,2 .

Combining the last two inequalities in the usual manner gives the final result.

This result is very similar to that of POMP2 except for the γ3
max/γ

3
min factor,

which is somewhat related to the condition number of the matrices Φi (1 ≤ i ≤ N).

If these matrices are well-conditioned, then the RIP for POMPproj is only slightly

weaker than that for POMP2. In terms of general signal recovery, the same usual

methods as before can be used to prove:

Proposition IV.15. Let Φ1, · · ·ΦK be K highly incoherent dictionaries whose re-

stricted isometry and cross-isometry numbers satisfy (4.14). Let x = x1, · · · , xK be a

set of any K signals with an optimal jointly T -sparse representation thereof denoted
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as xT . Then, given noisy measurements of the form (4.11), POMPproj will return a

jointly T -sparse approximation x̃ of x that satisfies the following error bound:

‖x− x̃‖2,2 ≤ (1 +
√
KDproj) ‖x− xT‖2,2 +

Dproj√
T
‖x− xT‖1,1 +Dproj ‖w‖2

where Dproj =
√

1 + δs,TD
′
proj and

D′proj =

( √
1 + (K + 1)δs,T√
1− (K + 1)δs,2T

) √
K
[
γmax

γmin

√
T +

√
1 + δs,T

]
1− (K + 1)δs,T+t∗+1

(
1 + γmax

γmin

√
T
)


+
2√

1− (K + 1)δs,2T
.

Again, this result is slightly weaker than that of POMP2; however, POMPproj will

nevertheless be utilized in the following section on MRI Parallel Excitation because

is was part of the machinery discussed (without proof) in [40].

4.3 Parallel Excitation Experiment

By setting Φk = SkF and xk = bk, it becomes clear that the discrete MRI Exci-

tation problem shown in Equation 4.2 is really nothing more than the basic parallel

approximation problem of the previous section. In [68], this problem is solved by the

following convex program:

(4.15) b̃ = argmin
b=[b1,···bk]

∥∥∥∥∥d−
K∑
k=1

SkFbk

∥∥∥∥∥
2

+ λ ‖b‖1,2 .

While this method produces high quality results, it will be shown that a special

version of Parallel Orthogonal Matching Pursuit can achieve similar results in far

less time. This, of course, is of high importance because the patient must be sitting

still throughout the pulse design processing because even the slightest movement can

throw off the calculation of sensitivity patterns.

In the spirit of Chapter II as well as that of the last section, one can adapt the

basic POMPp or proj as follows: First, select a threshold τ . For POMPp, modify the
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step involving the augmentation of the indexing set into:

Λt = Λt−1 ∪
{
i :
∥∥(Φi

)∗
rt
∥∥
p
≥ τ ‖Φ∗rt‖∞,2

}
.

For POMPproj, this modification becomes

Λt = Λt−1 ∪
{
i :
∥∥∥(Φi

) (
Φi
)†
rt

∥∥∥
2
≥ τ max

j

∥∥∥(Φj
) (

Φj
)†
rt

∥∥∥
2

}
.

Secondly, if at iteration t, only one element is selected for addition into the index-

ing set, then force the algorithm to select the “second place” candidate element as

well. Thus, at every iteration, at least two indices are chosen. Because appropriate

thresholds are functions of restricted isometry numbers that are hard to compute, this

modification effectively counteracts the negative consequence of selecting a threshold

that is too large.

To compare the performance of Parallel Orthogonal Matching Pursuit against

that of the convex optimization algorithms that solve (4.15), consider the following

experiment in which the goal is to excite a uniform circular pattern with radius

10.125 cm in a viewing area that is 24 cm × 24 cm. The entire problem setup is

discretized over a 64 × 64 uniformly spaced grid. This desired in-plane excitation

pattern is depicted in Figure 4.7.

Figure 4.7: A circular excitation pattern of radius 10.125 cm over a 24 cm by 24 cm viewing area

The convex optimization approach was implemented using the SeDuMi convex
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optimization package (see [56]). The POMP algorithms were implemented in MAT-

LAB by [66]. POMP1, POMP2, and POMPproj were all utilized for the purpose of

additional comparsion between these three variations of the original POMP concept.

The metrics used to compare the algorithms were runtime and the normalized

root mean square error (NRMSE) of the induced excitation pattern compared to the

ideal pattern shown above in Figure 4.7.

The above setup was first run utilizing an emulation of a single coil MRI setup

with the Gaussian sensitivity pattern shown in Figure 4.1. Figure 4.8 shows a plot of

the NRMSE of all four algorithms as a function of the number of RF pulses selected

for transmission.

Figure 4.8: The NRMSEs of the excitation patterns induced by convex optimization and the three
variations of POMP in the case of a single coil MRI setup

The results for the three variations of POMP are identical as expected. This is

because for the single coil case where K = 1, POMP1, POMP2, and POMPproj are
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all mathematically equivalent algorithms. In terms of convex optimization versus

POMP, POMP did a better job in inducing an excitation pattern that is approxi-

mately uniform in the region of interest. In terms of runtime, each version of POMP

ran in under five seconds whereas the convex optimization implementation took ap-

proximately 16 minutes to run.

Next, the same experiment was run utilizing an emulation of an eight-coil MRI

setup with the sensitivity patterns shown in Figure 4.2. This time, convex optimiza-

tion fared much better as shown in Figure 4.9.

Figure 4.9: The NRMSEs of the excitation patterns induced by convex optimization and the three
variations of POMP in the case of an 8-coil MRI setup

While convex optimization did technically win the NRMSE contest, POMP’s

performance was only a hair behind. In fact, the difference in performance can

be considered almost negligible. In terms of the comparison of the three flavors of

POMP, POMP1 did slightly better than POMP2 in the region of high quality
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excitation pattern generations, i.e. when the number of selected phase encoding

locations was greater than six. POMPproj lagged behind all the other algorithms;

however, it too was not that far in the rear. In all three cases, POMP ran in under

25 seconds whereas convex optimization had a runtime of approximately 48 minutes.

The results of the above experiment are significant. They show that without any

significant loss of quality, it is possible to use POMP to quickly determine a nearly

optimal set of phase-encoding locations and weights for RF excitation in far less time

than traditional convex optimization approaches.

To summarize, this chapter introduces Parallel Orthogonal Matching Pursuit as

a fast and powerful tool for solving parallel sparse approximation and compressive

sensing problems. One such important problem is that of Parallel Excitation in MRI.

It was shown that by designing an appropriate RF pulse sequence, one can correct

inhomogeneous sensitivity patterns in MRI transmission coils. POMP has been

shown to produce such a sequence as accurately as a conventional convex program,

but in significantly less time. Since the calculation of a good RF pulse sequence must

be done while the patient lies inside the MRI machine, it is clear than POMP is far

more suitable for in vivo medical imaging than convex optimization.



CHAPTER V

Conclusion and Future Work

Although CT and MRI are relatively modern imaging modalities that are highly

utilized by the medical community to generate highly informative cross-sectional

images of patients, they still suffer from their inability to run quickly. For example,

a typical MRI scan may take anywhere from a few minutes for a simple localized

scan to an hour or more for a complete exam. One primary reason for this issue

is that a large amount of Fourier data must be obtained in order to run an inverse

Fast Fourier Transform to recover an image. By taking advantage of sparsity in some

domain (e.g. gradient or wavelet), it is possible to sub-sample the entire Fourier space

below the Nyquist rate and still obtain enough information for a high-quality image

reconstruction. Conventional methods that transform these smaller data sets into

“good images” consist of slow convex optimization routines. While unconstrained

total variation minimization routines such as FTVd (see [64]) significantly speed

things up, these algorithms often suffer poor convergence results which may leave

unwanted artifacts such as blurriness in their final reconstructions. The net result is

a tradeoff. Either one of two things can happen:

1. One may place a patient inside a CT or MRI machine for a long period of time

in order to generate the large amount of Fourier data required to run an efficient

131
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FFT routine effectively.

2. One may exploit sparsity to reduce the scan time; however, the patient might

possibly have to wait a long period of time before a high quality image can be

produced.

Either way, a significant amount of unnecessary waiting occurs. In an emergency

room setting, neither case scenario is acceptable. This work attempts to change that

by introducing the Gradient Matching Pursuit algorithm. This novel algorithm takes

advantage of the fact that many medical images are nearly sparse in gradient. By

converting raw Fourier data into Fourier observations of the vertical and horizontal

edge images, the algorithm is able to enlist the help of fast greedy algorithms such

as Orthogonal Matching Pursuit and its many variations in order to recover these

edges. After the edges are approximated, a cleverly designed inverse filter is used

to reconstruct the final image. In the process of developing the GradientMP

algorithm, several related contributions have been made.

First, it was shown that Orthogonal Matching Pursuit is a strong compressive

sensing algorithm that possesses performance guarantees based on restricted isometry

conditions. While these guarantees are not as strong as those previously derived for

convex optimization, it was shown that by modifying OMP so that it acts less locally

and selects multiple atoms per iteration, new performance guarantees can be derived

that look more and more like the benchmark standard set by Basis Pursuit.

Secondly, this work proposed two methods to recover an image from approxima-

tions of its vertical and horizontal derivatives. Both approaches were discussed in

great detail and were shown to perform much better than the naive solution consist-

ing of integration in a single direction.
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The first method involves integrating both edge approximations in their respective

directions and then using post processing in the Haar Wavelet domain in order to

eliminate the streakiness that results from summing over erroneous pixels in the edge

estimates. The important observation is that in the vertically integrated image, only

Haar wavelets corresponding to horizontal differences reflect any streakiness. On the

other hand, in the horizontally integrated image, only Haar wavelets corresponding

to vertical differences show streakiness. The result of this observation is that one may

mix and match uncorrupted wavelet coefficients from both expansions to produce a

high quality image reconstruction. The advantage of this approach is that it performs

well asymptotically, i.e. the final error is only O(
√
T log(N)) times worse than the

maximum edge error. However, the downside is that the original errors in the edge

images will manifest themselves as blockiness in the final image reconstruction.

The second method involves modifying a convex optimization procedure first sug-

gested by [19] so that it effectively becomes an `2 minimization problem that is

pointwise closed-form solvable in the Fourier Domain. Asymptotically, the perfor-

mance of this method is not wonderful: the final error is O(N/r) times worse than

the maximum edge error where r is the radius of the maximum filled circle inscribable

in the 2D frequency set Ω. This is not much better than the O(N/
√

2) attainable for

naive integration. However, in practice, this method does seem to perform the best.

In addition, it works especially well in situations, e.g. parallel-beam CT, where the

frequencies in Ω are heavily distributed in low frequency regions. By utilizing this

method, it is possible to generate final reconstructions that are of the same quality

as those generated by total variation minimization or, in some cases, even slightly

better. Thus, utilizing this approach demonstrates that is possible to match the

accuracy of convex optimization in much less time.
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Another major contribution of this work was the theoretical and practical de-

velopment of the Parallel Orthogonal Matching Pursuit algorithm and its many

variants. Performance guarantees based on restricted isometry and cross-isometry

numbers were developed. While [67] independently derived an algorithm equivalent

to POMP2 for the purposes of solving inverse problems with multiple inputs and a

single output, it does not prove any theoretical results pertaining thereto nor does it

present any of the other variations discussed here. The POMP algorithm was moti-

vated by the necessity for fast algorithms that can design a short RF pulse sequence

for MRI Parallel Excitation. Previous approaches ([69], [27], [68], and others) either

did not take advantage of sparsity or used slow computational methods, e.g. convex

optimization, in order to determine a pulse design. It was shown empirically that

while both convex optimization and POMP perform similarly in terms of accuracy,

POMP takes a few seconds to run whereas its counterpart has a runtime on the order

of approximately a half hour. Because the excitation process must take place while

a patient sits inside the MRI scanning tube, it makes sense to be able to compute a

good pulse quickly. POMP accomplishes this objective.

While much progress was made through this work, there are some remaining open

questions that remain to be answered. What follows is an outline of just a few of

these.

The Gradient Matching Pursuit algorithm was not developed overnight. It slowly

improved over the last several years as more sophisticated techniques were developed

to improve the quality of the edge detection and inverse filtering steps. While the

algorithm currently performs very well and produces results as accurate as those

produced by Total Variation Minimization routines. What remains to be answered

is whether GradientMP can be optimized any further so that it can develop even
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better scans? This may involve noise reduction, post-processing, or some other

operation not considered here. As an even deeper question, what is the best that

one can do? From an information theoretic point of view, given a small set of Fourier

coefficients, how much information does one actually have about a sparse Gradient

image? Answering this question provides a measure of the optimality of both the

Gradient Matching Pursuit algorithm and total variation minimization techniques.

What poses a great challenge to Gradient Matching Pursuit and the underly-

ing greedy edge recovery algorithm (e.g. OMP, KOMP, etc.) is the fact that

most useful medical images are not extremely sparse in gradient. While super-linear

time algorithms such as OMP and its variants can still handle this lack of sparsity

reasonably well, there are other sub-linear time combinatorial compressive sensing

algorithms that can’t yet. Examples of these include Chaining Pursuit [24], HHS

Pursuit [25], sublinear wavelet methods ([21] and [38]), Fourier methods ([20], [23],

[31]), and others. The underlying principles behind all of these algorithms are those

of isolation and group testing which are discussed thoroughly in [16]. The sublinear

Fourier methods were designed to recover a sparse spectrum signal using a small set

of structured samples in the Euclidean domain. The imaging problem of Chapter III

is exactly the dual of this problem and therefore the same algorithm can be used to

solve it. Theoretically, given an N × N image X that is T -sparse in gradient, the

Ann Arbor Fast Fourier Transform (AAFFT) [31], is able to recover a list of the

non-zero pixels of the edge images and their values using O(T polylog(N)) Fourier

measurements in runtime O(T polylog(N)). Unfortunately, due to the nature of real-

life medical images, no known isolation schemes effectively single out edge locations

for group testing purposes. Instead, research related to this algorithm has taken a

different direction: More stringent isolation schemes that require significantly more
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measurements have been designed in order to construct deterministic (versus “with

high probability”) performance guarantees [30]. While this is a significant advance

for those interested in processing extremely sparse signals, it does not help the med-

ical imaging community much. Thus, one may ask: how can better isolation and

group testing schemes be designed that work well with data that is not “that” sparse?

The researchers of tomorrow need to derive better strategies in order for the various

combinatorial compressive sensing algorithms to be effective in medical imaging.

In Chapter III, Gradient Matching Pursuit was developed as a tool for obtain-

ing a reconstruction of a single slice of the cross-section of a patient from Fourier

measurements. In practice, doctors often need to image several slices of the human

body. Now one may wonder if there is any way to exploit the high correlation be-

tween two consecutive slices (or two consecutive frames in a dynamic scan) in order

to perform simultaneous processing utilizing some variation of GradientMP. The

work [37] presents several applications of Simultaneous Orthogonal Matching Pur-

suit (SOMP) within the basic GradientMP framework. Unfortunately, attempts

to apply SOMP to this particular problem have not been very successful. To com-

plicate matters worse, one may consider the case of an MRI setup with multiple

imperfect receiver coils. Lustig et. al. recently presented some promising work

that utilizes an iterative procedure tag-teamed with convex optimization known as

SPIR-iT [35]. Perhaps this convex optimization can be replaced with some sort

of greedy algorithm to speed things up. However, even if successful, this does not

address the multiple slice processing issue. It would behoove the medical community

to find some efficient way of simultaneously processing data pertaining to multiple

slices that were generated from multiple receiver coils. This may require a unifica-

tion of Gradient Matching Pursuit, Simultaneous Orthogonal Matching Pursuit, and
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Parallel Orthogonal Matching Pursuit.

The fourth and final question offered for future research pertains to the Parallel

Excitation application of Sparse Approximation theory. In Chapter IV Section 4.3,

it was stated as an assumption that when designing an optimal RF pulse sequence,

one can consider the time-delay between transmitted pulse segments to be negligible.

The result of this assumption is that the order in which the pulses are transmitted

is unimportant and therefore, POMP becomes an appropriate tool for solving the

Parallel Excitation problem. Unfortunately, even though the time delay between

pulses is relatively small, the gap is still large enough to induce some decay in the

tip angle of the magnetization which will effectively modify the weight of each pulse.

This by itself is not a huge problem; rather, it is the phase distortion induced by

these delays that is detrimental to the final image quality [66]. In the case of a single

coil MRI setup, this problem can be modeled by

b = DT−1φλ1 +DT−2φλ2 + · · ·D1φλT−1
+ · · ·+ φλT

where φλk is the kth transmitted RF pulse and D is a time-delay operator that

incorporates a tip angle decay and phase distortion. While this can be recast into

a traditional sparse approximation problem, the high coherence between the slightly

time-delayed atoms will make algorithms such as POMP ineffective without any

additional work. Two suggestions for solving this problem are as follows: The first

approach would be to attempt to design a new sparse approximation setup that

reconciles the high coherences that otherwise arise from the time gaps. The second

approach involves solving the parallel excitation problem assuming no delays and

then optimizing the order in which the pulses are transmitted. In either case, many

unknowns still exist, and therefore, this is definitely an area for significant future

research.
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Even though much work still remains to be done, this work hopes to make a

significant impact on the medical imaging community in terms of demonstrating the

applicability of sparse approximation methods to this field. This may not have been

possible in the past given the fact that most sparse approximation algorithms of the

past relied on slow convex programming techniques. However, with the introduction

of the faster greedy algorithms introduced here, this goal may soon become a reality.
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