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ABSTRACT

MOTION ASPECTS IN JOINT IMAGE RECONSTRUCTION AND
NONRIGID MOTION ESTIMATION

by
Se Young Chun

Chair: Jeffrey A. Fessler

Many medical imaging applications often require relagvking image acquisition
times to form high-SNR images. However, long scan times ead to motion artifacts.
Conventional acquisition and reconstruction methods sagtfice enough measurements
for less motion artifacts or vice versa.

Motion-compensated image reconstruction (MCIR) methasks ail collected mea-
surements, but reduce motion artifacts by incorporatingenanformation into the image
reconstruction framework. Several motion incorporatiohesmes in MCIR have showed
superior performance over image reconstruction methodsowt motion information.
However, there has been little research that emphasizesdtien aspects of MCIR. This
dissertation addresses a few issues of MCIR methods in masipects.

First of all, we investigated methods for motion regulati@a. The usual choice for a
motion regularizer in MCIR has been an elastic regulariRecently, there has been much

research on regularizing nonrigid deformations with twibedent motion priors. Conven-

Xiv



tional methods that enforce deformations to be locally iitibke require high computa-
tional complexity and large memory. We developed a sufficoemdition that guarantees
the local invertibility and proposed a simple regularizeised on that sufficient condi-
tion. Using both motion invertibility and rigid motion pie may cause conflicts near the
diaphragm and the rib cage. We relaxed our motion inveityhiégularizer to reduce un-
desirable bone warping yet better match the image intesdietween deformed and target
images and permits discontinuous deformations near tmglarea.

Secondly, we studied the statistical properties of MCIRyghg that all MCIR meth-
ods are closely related to one another. This study also sthhéwer motion affects the
spatial resolution and noise properties of MCIR. We degigsymatial regularizers to pro-
vide approximately uniform spatial resolution for MCIR. d3e regularizers enabled dif-
ferent MCIR methods to approximately have the same reswiufNoise properties were
compared based on these regularizers.

Lastly, we investigated joint image reconstruction andrigpd motion estimation with
different spatial and motion regularizers and regular@maparameters. We performed a
4D PET simulation with lesions. Most MCIR methods producettdy-quality images
with better SNR and less motion blur. The proposed motioeritibility regularizer al-
lowed more flexibility of deformation estimates compared twnventional quadratic mo-

tion regularizer.

XV



CHAPTER 1

Introduction

1.1 Spatial/temporal tradeoff in image acquisition

When we take a picture of people we usually ask them not to m@ieealso try not
to move when we push the shutter button of a camera. Howewedoanot worry about
being completely still - whether we take photos or pose fenih because we can adjust
the shutter speed of the camera. By using a fast shutter speethn reduce motion blur
and get clearer pictures, as illustrated in Figure 1.1.

However, there are situations that require slower shufteeds. Figure 1.2 shows
photos taken at night. Since there are fewer photons thatereacan collect, longer
exposures are needed for better quality photos.

These two examples illustrate the spatial/temporal tafti@r image acquisition. A
faster shutter speed is essential to avoid motion blur (tegtporal resolution), but it may
not collect enough photons (low SNR). On the other hand, @esishutter speed allows
enough time to collect photons (or measurements) for atbgttality of images (high

SNR) but is prone to motion artifacts (low temporal resauoji Figures 1.1 and 1.2 show

l“Shutter Speed - Everything You Wanted to Know but ThoughtViis Uncool to Ask” at
http://www.idigitalphoto.com/shutter-speed-explalhe

2«Shutter speed in Greenwich” taken by Aram Dulyan.



1/8 sec 1/30 sec

(a) 1/8 sec (b) 1/30 sec

1/60 sec 1/500 sec

(c) 1/60 sec (d) 1/500 sec

Figure 1.1: Photos with different shutter speeds, illustcamotion artifacts.

fortunate cases since there are ways to overcome the liamain these situations: one
has plenty of photons while there is motion, and the othemlzasiotion while there are
not many available photons. However the worst situation hagpeni.e., not only having

the motion of subjects but also insufficient measurementdortunately, many medical

imaging applications fall into this category.
1.2 Limitations in medical imaging modalities

Many medical imaging modalities have been used in clinietirsys successfully to
improve patient care. However, there are also many appitareas where medical imag-
ing modalities cannot capture good quality images due to theate characteristics of

image acquisition speed and patient motion.



1.3 sec 2.5 sec

(a) 1.3 sec (b) 2.5 sec

4 sec 8 sec

(c) 4 sec (d) 8 sec

Figure 1.2: Photos with different shutter speed to overcorsefficient measurements

The gantry speed of X-ray computed tomography (CT) is uga@0-400 milliseconds
(ms) per rotation [98]. This is enough to acquire a thoragéaben image without motion
blur as patients hold their breath (usually no more than 20rs@s). However, for cardiac
studies, heart-beat rates are usually as fast as 90 or 1@§-peraminute (bpm), but it
usually takes 5-10 seconds to cover the entire heart. Téverefardiac CT must deal with
heart motion. Another issue related to CT image qualitydsation dose. It is desirable to
use a low dose in CT for the safety of patients. However, inesoardiac CT scans, only
part of the dose (measurements) is used for imaging. To eedase, CT should collect
fewer measurements and avoid motion blur.

Positron emission tomography (PET) collects gamma rays fiaddioactive materials

that were administered to patients and uses them for imagihgwever, PET usually



requires 3-7 minutes to acquire images per bed position roedch field of view [64].
Since the human breathing cycle is usually about 5 secortglB,ifRages can have heart
motion artifacts as well as respiratory motion artifacts.

Magnetic Resonance Imaging (MRI) collects k-space dataedch k-space readout
in short TR scans usually takes a few milliseconds (ms) [3jce it can take seconds to
scan the full k-space for a 2D slice, cardiac and abdominaging may contain blurring
and ghosting artifacts. This innate limitation of a MR imageuisition restricts the spatial
and temporal resolution of MR imaging [91].

There are many medical applications with different imagmgdalities that require
long image acquisition times for better-quality images levlpiatient motion is inevitable
during the scan. Therefore, a proper strategy to deal wittiands crucial for these

applications.

1.3 Strategies for motion in medical imaging

There are several ways to treat motion in medical imaging. [6he way is to ignore
motion and reconstruct an image from all measured data [B&jure 1.3 (c) shows an
example of penalized weighted least square (PWLS) PET imagnstruction with all
1 million (M) counts from 8 motion phases, without motion quensation. In comparison
to the true image in Figure 1.3 (a), it exhibits blur near treptiragm and heart areas due
to motion. This ‘ungated’ image reconstruction method scuequently in clinical PET
imaging.

For periodic motion, one can “gate” measurements accorttingotion,i.e., to col-
lect partial data at the same phase of heart or respiratotyomoFigure 1.4 illustrates
respiratory gating with 8 gates. A gating method aggregateasurements at the same

phase of motion to reduce motion artifacts. However, gatagices SNR since it discards



TRUE PWLS: 125K counts wfo motion
- - - 10 — — - 10
40 40 -
30 [) 1 30
20 20
10 10
M M 0 | } 3 By M 0
50 100 150 50 100 150
(a) TRUE (b) PWLS w/ 125K counts
PWLS: 1M counts w/ motion PWLS: 1M counts w/o motion
- - - 10 - - - 10
40 , 40
%0 | ! %0 '
20 1 20
10 ﬁ 10
M M 0 M M
50 100 150 50 100 150

(c) PWLS w/ 1M counts and w/ motion (d) PWLS w/ 1M counts and w/o motion

Figure 1.3: PWLS reconstructed PET images with differenasneement counts and
with/without motion (Coronal views of 3D images).

data (7/8 of the total measurements in Figure 1.4). Figudgld). shows an example of
the reconstructed image with 1/8 of measuremards,125 thousand (K) counts, out of
1 million (M) counts. Gating reduces the blur near the diagim, but it also produces a
low SNR image. This ‘gated’ image reconstruction has begastigated for many dif-
ferent medical imaging modalities such as PET [40, 62, 1G9],[10, 77], SPECT [71],
and MRI [3]. Gating is based on signals such as an electragaaim (ECG) [3], video-
camera based motion detectors [62], pneumatic respirdtelipws [45], and collected
data itself [39].

Temporal relationships between image frames can be egdltmtimprove image qual-

ity by using 4D models for image sequences and temporal aggats [49, 67]. Note that
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Figure 1.4: An example of a respiratory gating. A gating noetlonly collects measure-
ments at the same phase of motion (shaded areas).

these methods may not use any explicit motion deformations.

Motion-compensated image reconstruction (MCIR) is a metba@xploit all measure-
ments with motion information so that one may achieve bottebsignal-to-noise ratio
(SNR) and less motion-blurring [5, 6, 14, 19, 29, 35, 46, 25,69, 75, 100, 103]. In this
way, we can obtain the advantages of both gated and ungatidwbase Figure 1.3 (d)
shows an ‘oracle’ reconstructed image that uses all meamuns (1M counts) and elim-
inates motion artifacts by using a perfect model. This figeltews the ‘gold standard’
of a reconstructed image and illustrates that using motwnpensation can improve the

image quality. MCIR methods are the focus of this dissenati

1.4 Contributions of this dissertation

MCIR methods have been investigated to improve the reaactstl image qualitgnd
to reduce motion artifacts. Many medical imaging applmagi with different imaging
modalities can benefit from them. Since most medical imagnaglalities in some ap-

plications have suffered from insufficient measurementsrantion artifacts due to their



long image acquisition time, MCIR may aid in improving thesastructed image quality
in terms of SNR and motion blur [14, 35, 52,53, 57, 75]. MCIRtnoels can also im-
prove patient care as they can reduce an unnecessary sgainméor a harmful radiation
dose [100].

Recently many different MCIR models have been proposed mvekiigated [25, 34,
35, 46,57, 114] not only in medical imaging research, bub &s super resolution (SR)
research. They improved the quality of reconstructed irmaggnificantly compared to un-
gated and gated image reconstruction methods. Howeveg, éine also many unanswered
guestions about MCIR methods.

First of all, how can we obtain reasonable nonrigid motiotinegtes? Many medi-
cal imaging applications require nonrigid motion informatsince human organ is non-
rigid [50]. However, estimating nonrigid motion il-posed [18] and usually requires
motion priors to regularize. Even though nonrigid imageisggtion methods have been
investigated extensively [18], not many have been used iilRVI@ethods. The usual
choice for motion regularization in MCIR has been a quadratian elastic penalty [35,
52,53,57,75]. This dissertation proposes two kinds of orotegularizers. One is a mo-
tion regularizer that encourages local invertibility offdienations [13—15]. This method
is fast and memory-efficient, so it is suitable for MCIR meathpwhich usually involve
more than two image frames. Some medical imaging modabtiet as CT provide in-
direct information about tissue rigidity that can be use@ asotion prior since we know
that rigid tissues such as bone can only move rigidly. Howemech rigid motion pri-
ors may sometimes cause conflicts with priors on the smoethmethe local invertibility
of deformations. This dissertation proposed a method @xreur proposed motion in-
vertibility regularizer so that it can be used with a rigid tieo regularizer without such

conflicts [17].



Secondly, among many MCIR models which ones should we cfobBelR models
differ in terms of how they incorporate motion informatiarto the image reconstruction
framework. Even though they have been well-studied seglgrdhere has been less at-
tention to comparing different MCIR methods. Asetaal. compared two different MCIR
models, but the analysis used a conventional kappa appatixim24] for the noise com-
parison so it was limited [5]. This dissertation compareagehdifferent MCIR models
for the regularizedcase. Since MCIR methods experience resolution changesofor
rigid motion [96], it is important to match the spatial restcbn of MCIR methods. For
given motion, we extend a regularization design for unif@patial resolution [24] to
three different MCIR models. Based on the spatial regudéion designs, we compare the
statistical properties of MCIR methods [14, 16].

Lastly, what would happen to joint MCIR methods with diffetenotion regularizers?
Our theoretical comparison of different MCIR methods irsttlissertation is limited since
we assume given nonrigid motion. Analysis based on knownamas still useful since
there are many multimodal imaging applications where weatdain motion information
separately such as PET/CT [53, 75] and PET/MR. Howeverethe also many appli-
cations with unknown nonrigid motion so joint MCIR methode aecessary to estimate
motion information simultaneously. In SR problems, thess heen some research on the
performance analysis with unknown global translation {78, 79]. Even though it
would be very beneficial to analyze the theoretical perforoesof MCIR, it is very chal-
lenging to deal with nonrigid motion in this analysis. As aitial step, this dissertation

reports a simulation comparison of MCIR methods with défgrmotion regularizers [14].

1.5 Outline of the dissertation

This dissertation investigates the motion aspects of MCtrlers.



Chapter 2 describes a mathematical framework for incotpayanotion models in
medical imaging. Three existing MCIR models are considepabt-reconstruction mo-
tion correction (PMC) [34, 46], motion-compensated tenapoegularization (MTR) [57,
114], and a parametric motion model (PMM) [25, 35],

Chapter 3 investigates sufficient conditions for ensurimglocal invertibility of esti-
mated deformations and proposes a fast and memory-effitietibn regularizer based on
them [13, 15]. We compare this proposed method to a convaadtitacobian penalty [41,
47).

Chapter 4 elaborates on resolving conflicts between a pespo®tion invertibility
regularizer [15] and a rigid motion regularizer of rigiddiges [56, 84, 93] near the sliding
area of the diaphragm. This chapter proposes to relax a motertibility regularizer by
using a Geman-type function [17, 26].

Chapter 5 compares the statistical properties of diffekd@GtR methods with known,
but possibly nonrigid, motion. Spatial regularizers foffeient MCIR methods are pro-
posed to approximately provide uniform spatial resolufitl, extending [24].

Lastly, Chapter 6 shows preliminary simulation resultsamhj MCIR methods with
XCAT 4D phantom images and lesions [88]. We compared MCIRhoeis with the pro-
posed motion invertibility regularizer and with a convemal quadratic motion regular-

izer [14].



CHAPTER 2

Motion-compensated image reconstruction models

In the previous chapter, we reviewed strategies for deakitg motion artifacts in
medical imaging. This chapter provides mathematical fdamdor these strategies, that
will be used for the rest of this dissertation. Ungated artddjanage reconstruction mod-
els and their cost functions will be presented. Three exgsi1CIR models and their cost
functions will also be listed. The models of this chapter geeeral enough to represent
different medical imaging modalities, but more specifiaumsptions will be made in other

chapters when necessary.

2.1 Mathematical models

2.1.1 Measurement model

Let ¢, denote the time of thenth “scan,” i.e., the mth frame in a gated study or
in a video sequence. We assume that the measurements aeel teldhe objectf,, =

{f(-,tm)} linearly as follows:
Yn = Apfm+€n, m=1,...M (2.1)

wherey,,, denotes the measurements for thin frame,A,, denotes the system model for

the mth frame ,¢,, denotes noise, antll is the number of gates or frames. We assume

10
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that the objectf,, and measuremeny,, are motion-freej.e., the object does not move
during themth scan (gate or frame). We allow the system madglto possibly differ for
each frame to accommodate systems that rotate such as qaE€eiTSor CT or that can
otherwise change sampling properties dynamically suchiRs Me can also assume that

A,, = Ay, VYm for cases such as an attenuation corrected PET scan or asedeence.
2.1.2 Deformation model

In this thesis, we useth-order B-spline based deformations for our theoretieautts
in Chapter 3 and 4. We use cubic B-spline based motion forimllilgtions involving
motion estimation in Chapter 3, 4 and 6.

A 3D nonrigid transformatiod” : R* — R? can be written
I(r)=r+d(r), (2.2)

wherer = (z,y, z) andd(r) is the deformation. We model the 3D deformation (or dis-
placement)l = (d*, d¥, d*) using a tensor product efth-order B-splines as follows:
Uy ) — ] Yy c
P(ri0) Z_Xjkjawkﬁ(mx Do(L-d)s(=-1). e
whereq € {z,y, z}, m, is knot spacing in the direction ands is anth-order B-spline

basis.
2.1.3 Image interpolation model

We parametrize the objedt,(r) £ f(r,t,), for r € R?, with a basis function as

follows:
K
() = cosw(r — 1) (2.4)
k=1

where K is the number of basis functions and € R? is the center of théith basis

function.
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Then, for awarp — r + d(r; «) that is parameterized hy, a warped version of the

imagef,, can be represented as

K
fu(r +d(r; ) =Y conw(r + d(r;0) = 1) (2.5)

k=1
For convenience, we rewrite (2.5) in matrix-vector notatibete,, = (¢;1, - - ., Cmx ) de-
note a vector of the image coefficients for théh frame, andf,, = (f..(ry), ..., fim(ry))

denote a vector of a discretization ¢f,(r) with N samples at location§r, }. Then a

warped image vectoff,,(r, + d(r,; «))} can be represented in the matrix form
T(a)cn, (2.6)
where theN x K warping matrixT'(«) has elements
[T ()i = w(r, +d(r,;0) — 1) (2.7)

In our simulation, we used a tensor-product of cubic B-spiimage bases fav, with
Ly = 1

We assume that(r,,; o) is defined by the B-spline deformation model (2.3) in some
chapters. However, the analysis in Chapter 5 does not asanoyneotion model for the
given nonrigid motion information. For simplicity, the meld2.5) ignores any intensity

changes due to local volume changes.
2.1.4 Warp model

For notational convenience, we define a vvi‘yp from the coefficients of imagg; to

the imagef; based on the vector-matrix notation (2.6) as follows:

szii_'j,lcw 7’7.]:177M (28)

For applications with periodic motion, we can additionaéfinef,; ., £ f andTMH,M =

11 ,s. We also denote that

9

O:j;i,i) Z:177M (29)
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For some parts of our analysis, we use the image to image Wargefined such that
fi=T:f, tj=1,---,M (2.10)
This matrix can be approximated by
T ~ T;T; " (2.11)

where usingI}; ! suffices to choose, = I, andT; ' with B-spline bases, are well-
defined [105, 106].
For some parts of the analysis, we assume that the given Wgrpare invertible,

symmetric and transitive,e.,

T' = T, VYij (2.12)

]7Z

T, = T;;-1Tj_1-2- - Tiy1,, Vj>i. (2.13)
We let|VT; ;| denote the determinant of the Jacobian matrix for the toansdtionr +

d;;(r; ) in (2.7) for notational convenience.

2.2 Motion-compensated image reconstruction
2.2.1 Cost function and optimization
Cost functions for MCIR methods usually contain measurdsmgf, unknown images

fm, and known or unknown motion parameterized dy. A typical form of the cost

functions for MCIR methods is

\Il(ylu'”7y1\/[|f17'”7f1\/[7g17”'7@]\/])' (214)

In this thesis, we use the Conjugate Gradient (CG) optingramethod to mini-
mize (2.14) with respect t¢,, ..., fu, oy, ..., a,,. We use an alternating minimization

method that minimizes (2.14) with respect fo,. .., fiy anday, ..., «,, alternatively,
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start loop

(Qh"' aQM) = argmin\If(yl,--- >’yM|f17"' c I o, ,QM)
Q%

A

(fb”' 7-fM) :?I'gl’ﬂfil’l\;[/(yl,“' 7yM‘f17”' 7.fM7Q17”' 7QM)
1,5 Fm

end loop.

The loop is repeated until the estimates “converges, change less than some small
threshold between subsequent iterations. The step sike @& method is determined by

the first step of Newton’s method. See Appendix A for details.
2.2.2 Motion-compensated image reconstruction models

We investigated three different types of MCIR methods irs thissertation: post-
reconstruction motion correction (PMC) [34, 46], parantetnotion model (PMM) [14,
25,35,52,53, 75, 100] and motion-compensated temporalaggation (MTR) [57, 114].
Here we explain how each MCIR method alters (2.14).

PMC decouples images and motion in (2.14) as follows:

M

> U (Y| ) (2.15)
m=1
\IIQ(fAlv"' 7fM|Q17"' 7Q1\/[)‘ (216)

We assume that measurementsare independent from each othar, is a cost function
that estimates an image for each g#itefrom each measuremept,. The gated image
reconstruction estimatof,, will be applied to the cost functiof, that estimates warps
711, from mth frame tolst frame. We chose frame 1 for PMC image reconstruction

without loss of generality and a waffi ,,, depends on some parametets. Therefore,
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the PMC estimator becomes an average of the warped estimaages from all frames:

1 M

fPMC = M Iji,mfm

m=1
where7; ,, depends of,,.
PMM substitutesf,,, with 7,, ; f; in (2.14) where7,, , depends ow,,,. Therefore, the

PMM cost function becomes

\Il(yluu' 7y1\/[|f17Q17“' 7@]\/])' (217)

The cost function (2.15) does not depend on motign We could estimate images and
then motion sequentially. In contrast, the estimator ofraagef; in (2.17) depends on
the estimator of motios,, - - - , &,, and vice versa. Therefore, images and motion have
to be estimated simultaneously.

Lastly, MTR decouples motion parameters and measuremerttsei cost function

(2.14) as follows:

M

Z \Ijl(ym|fm) + \IIQ(flv e 7f]\/17Q17 e 7Q1\/l)‘ (218)

m=1
SinceV, in the MTR cost function couples images and motion, imagesnaotion have

to be estimated simultaneously just like the PMM case. Adgigihoice ford, is

M
CZ ”fm-i—l - Tm-l-l,mme%
m=1

where7,, . ,,, depends om,,,.

A MCIR cost function (2.14) can be simplified according tole&CIR method. Chap-
ter 5 studies the relationship between different MCIR eators with given motion. Chap-
ter 6 compares different MCIR methods in joint image recarttion and nonrigid motion
estimation by simulations. The analyses in Chapter 5 aidititkerstanding of the results

with more complicated joint MCIR models.
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2.2.3 Regularizers

Estimatingfi, ..., fu,aq,...,a, fromy,, ..., yy based on a cost function (2.14)
is usually highlyill-posed One of the typical ways to resolve this issue is to introduce

regularizers for images and motion:

Ulys, - symlfr, o Fusaq, o) +nrRe(fr s ) + iRy, - o)
(2.19)

A motion regularizerR,, is usually based on motion priors such as smoothness of
warps, motion invertibility, tissue rigidity and so on. Gher 3 and 4 describe two mo-
tion regularizersk ,; based on two different motion priors: motion invertibileyd tissue
rigidity/sliding. They can also be used for general imaggstation problems.

A typical spatial regularizer is a quadratic regularizesd@ on the assumption (or
image prior) that the image is smooth. Nonquadratic spatigiilarizers are also fre-
guently used to preserve edges. The spatial resolutiorepiep of an image reconstruc-
tion method depend on the relationship betw&eandR z, not onR ;z alone. There has
been several efforts to design spatial regularization odsthat approximately provide

uniform spatial resolution. This regularization desigipeleds on measuremenis,,

RR(fb'" 7.fM|y17”' 7y1\/f)'

Chapter 5 extends such methods to consider motion estimates

RR(.fla“'7.fM|y17"'7yM7Q17”'7QM) (220)

to improve spatial resolution uniformity.

With the knowledge of simplified MCIR cost functions and ewttors, motion regular-
izer R, and spatial regularizeR i in (2.20), Chapter 6 reports the results of simulations
for joint image reconstruction and nonrigid motion estimatbased on (2.19) with the

proposed motion regularizer of Chapter 3.



CHAPTER 3

Regularization for nonrigid motions: invertibility *

One of the important issues in motion-compensated imagmstiction is the mo-
tion estimation problem. Image registration has been a tawsknot only in motion-
compensated image reconstruction, but also in many medieaing applications. Image
fusion of structural and functional images requires imaggamng from one to another.
Several image reconstruction schemes for MR, PET and CTrpocate motion correc-
tion or joint estimation of motion into the reconstructioropess to improve image qual-
ity [34,51,52,57,75, 76]. Radiation treatments may be éblearget cancer cells more
accurately through motion correction [111, 112]. Rigid ime transformations can pro-
vide fast and reliable image registration for relativelyadihchanges. However, most of the
human body does not conform to a rigid or affine approximafi@). Lamareet al. [51]
used affine image registration for respiratory motion octios, but reported that it was
sufficient only for a single organ and associated lesionfechi¥e motion correction usu-
ally requires nonrigid image registration, which enablezrenflexible matching of local
details between two images than rigid registration.

There are many methods for nonrigid image registration 38§, Since Szelisket

al. [95], B-spline bases have been used frequently for noniigialge registration be-

1This chapter is based on [13, 15].

17



18

cause locally supported basis function expansions arerdassolve computationally than

PDEs and B-splines have the properties of smoothness, @sygaport, fast interpolation

schemes and hierarchical structure for multi-resoluti@®, #8, 104]. However deforma-

tions with high degrees of freedom can lead to unrealistingformation results such as
folding in the absence of appropriate constraints [18].

There have been some efforts to regularize nonrigid imagsstration based on B-
splines by making certain reasonable assumptions. Rueekell. [86] penalized the
bending energy of the deformation directly, assuming thatlocal deformation of tis-
sues should be smooth. Sorzaetal. [92] proposed a regularizer based on the gradients
of the divergence and the curl of the displacement field. fRahkt al. [81] used an in-
compressibility constraint: the Jacobian determinant waasformation should be unity,
assuming that local deformations are volume preservingy&pplied this method after
making an initial affine transformation. See [33] for otheethrods for constraining the
transformation.

Another reasonable constraint is to impose local invditybof the nonrigid transfor-
mation to ensure that image registration is topology-pxesg or diffeomorphic.

One way to ensure local invertibility is to require the Jaeobdeterminant of the
transformation to be positive everywhere, either as a hawbtraint or by a penalty
method [47]. However most such approaches constrain thebizat determinant of a
transformation only at each discrete voxel grid point, stalanvertibility is not strictly
guaranteed on the whole continuous domain. Recently, $8ifadescribed a condition
involving thegradientof the Jacobian determinant that encourages the localtibiiy
to be achieved everywhere even though that condition iskestamnly at each discrete
grid point. However, compared to unregularized image tegfion, calculating the Jaco-

bian determinant or its gradient significantly increasesgotation time due to additional
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B-spline interpolations of the partial derivatives of aatefation.

Ensuring invertibility is somewhat easier when usirsg-order B-spline bases for de-
formations. Musseet al. [61] derived elegant linear constraints that provide nsags
and sufficient conditions to ensure that the Jacobian datamhvalues of such transfor-
mations are positive everywhere. However, that 2D approehrestricted td st-order
B-spline deformations. Karacadt al. [38] proposed a method to regularize 2D and 3D
deformations to ensure thigt-order B-splines are topology-preserving. Noleliedl. [68]
generalized [61] for 3D B-spline deformations and illustchtheir method with st-order
B-splines, but enforcing the constraints requires mucthéigomputation than regular-
ization based on bending energy.

Lastly, one can ensure local invertibility by imposing stiffint conditions that are
simpler than the necessary conditions. Céibal.[11] suggested box constraints for cu-
bic B-spline deformation coefficients that ensure invditih but those sufficient condi-
tions preclude large deformations. Rueclatral.[85] concatenated many transformations
based on those box constraints to achieve large defornsatwhdeet al. [80] suggested
a sufficient condition for local invertibility, derived ugy Neuman series for a transfor-
mation model that uses a sum of deformations. Motivated B, [Rim et al. [41-43]
suggested similar sufficient conditions for 3D transforiorag based on cubic B-splines
and implemented a constrained minimization algorithm gi€dykstra’s cyclic projection
method. We recently extended Kim’s sufficient conditionsléaal invertibility of defor-
mations so that we can usg¢h-order B-spline bases and so we can also assign the upper
bound on the Jacobian determinant value independentlythertower bound choice. We
implemented it with a simple and fast quadratic-like pgnalhction [13, 15].

This chapter elaborates on the method based on the propofieieat condition for

the local invertibility of deformations [13, 15] and and cparmes it empirically with other
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regularization methods based on existing sufficient camatfor the local invertibility of
deformations as well as with the traditional Jacobian pgmakthod that uses a discrete

grid [41,47].

3.1 Background

3.1.1 Mathematical model for nonrigid registration

The goal in image registration is to estimate the deformmatimefficientsy = {oz;{j’k}

in (2.3) by maximizing a similarity metri&:
a = argmax Wig(-), f(Z(-;a))] (3.1)

whereg(r) and f(r) denote two 3D images.

To help stabilize the estimation, and to have physicallygilale deformations, often
we would like to ensure that the estimated coefficiénta (2.2) correspond to a diffeo-
morphic transformatiorf’. The methods in this chapter are applicable to any simylarit
metric; for a survey of such metrics, see [32]. Section IMiges on thé, similarity met-
ric for registering thorax CT images at different inhalasofor the purpose of radiation

therapy planning and monitoring.
3.1.2 Invertibility and diffeomorphic transformations

Invertibility of a nonrigid transformatior” is a necessary condition for it to be dif-
feomorphic.T is diffeomorphic if bothT” and7~! are continuously differentiable. If we
use a B-spline basis with > 2 in (2.2), therl" is continuously differentiable. ( Muss#
al. [61] addressed the case where= 1. ) By the implicit function theorem, if the Jaco-
bian matrix ofT’, denotedv'T, is invertible everywhere, then near every point theretexis

a unique continuously differentiable local inverse. Theedainant of the Jacobian far,
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denoted V|, must be non-zero for diffeomorphic nonrigid image regigan. Also for
T to be orientation preserving, we waiMtZ’| > 0.

Unfortunately, the conditiofVZ'| > 0 everywhere does not by itself ensure ttat
is globally one-to-one. One way to ensure tiiats invertible globally is to ensure that
transformation maps the boundary of the domain onto it€dlf$8]. However, we do not
enforce such boundary conditions in here because the fieltewffor thorax inhale and
exhale CT images does not contain the whole body and thesualy missing anatomy

in the superior-inferior directions.
3.1.3 Related work

The goal of diffeomorphic nonrigid image registration wilie parametric representa-

tion of deformation (2.3) is to maximize the similarity met{3.1) subject to the constraint
a€Cy2{a:|VL(r;a)| >0, vr € R*}. (3.2)

In general this is an impractical constraint except whemgisinear deformation mod-
els [38, 61, 68] because € R? so there are uncountably many conditions. One way to

simplify (3.2) is to replace theVr” requirement with a set of voxel grid points [47,87]:
Cy 2 {a:|VT(r;a)| >0, r € grid points. (3.3)

However, becaus€, C (', this does not guarantee local invertibiligtweergrid points.
Nevertheless the smoothness of B-spline bases helps regula so using the constraint
C often provides fairly good results [47]. However, compgtiV T (r; «)| at all the grid
points is computationally expensive.

Simplifying the condition VZ(r; )| > 0 over R? always involves smaller sets than

Cy. Choiet al.[11] found box constraints for cubic B-spline deformatiaefficients that
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ensure invertibility:

Cy & {a: ol | <my/K, Vi,j k}, (3.4)

Z7j7k

whereK =~ 2.05in 2D andK =~ 2.48 in 3D. The set’; provides a sufficient condition for
local invertibility becaus&€’s C C,. However,C5 is a very restrictive constraint set that
allows only very small deformations. To achieve large defations, Ruecket al. [85]
composed several transformations that each satisfiedahditeon.

Kim et al. [41-43] suggested a sufficient condition for ensuring itilsdity of cubic
B-spline deformations that allows a larger family of defations. Instead of restricting
the absolute values of the coefficients as in (3.4), this itimmdlimits the differencesof
adjacent B-spline coefficients:

Cy £ m {a: |ag+1,j,k - a?,j,k| < mgky, |a;'1,j+1,k - ag,j,k| < mgkyg,
q€{z,y,2}

‘agyj7k+1 - O‘Zij‘ < mqklp Vivja k}a (35)

wherek, + k, + k. < 1. AlthoughCs C C,, this sufficient condition only allows large
deformations with fairly small Jacobian determinant valui particular, one can show
thatl — (k, + ky + k) < |VL(r;a)| < (14 k)1 + ky)(1 + k) + (1 + ky)kyk. +
ky(1 + ky)k, + k. k(1 + k,) Va € C5 [41-43]. This means that; does not allow acute
volume changes locally. This is because the upper boundeodatobian determinant is
determined by the lower bound design. For example, if we shép = 1/3 so that the
lower bound for the Jacobian determin&it is O, then the upper bound for the Jacobian
determinant value would be automatically determine@@®7 ~ 2.8148 which is fairly

small [41]. The section 3.2 provides new broader sets ofcefft conditions.
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3.2 Localinvertibility condition

3.2.1 Lemmas

We first extend Kim'’s sufficient conditions for local invdaility to overcome two lim-
itations [13, 15]. Firstly, auth-order B-spline basisi(> 1) can be used instead of cubic
B-spline basis for deformation modeling. Secondly, theargimund of Jacobian determi-

nant can be designed independently from the lower boundoofian determinant.

Lemma 3.1. For concise notation, denote the Jacobiin= VT of a 3D transformation

as

Ty T2 T3
J=1+1 24 25 w4

Tr g Tg

Then the corresponding determinant is given by

I = (I +z)(1+ 25)(1 + 29) + Tow677 + T37478 — (1 4 71) 2678

—(1+ x5)x3x7 — (1 4 29)T224. (3.6)

Suppose that the elements of the 3D Jacobian determinasfysat € 1;,i = 1,...,9
wherel; C R are compactintervals. Thed| achieves its global maximum and minimum
values oveld = I, x --- x Iy and those maximum and minimum values are achieved for

a pointz; for whichz} € {max [;, min [;} forVi =1,....9.

The Appendices have the proofs of these Lemmas. This Lemipkesrthat we can
determine the global minimum and maximum|&f over the compact set“simply” by
calculating the2? possible values ofJ| at the vertices of. (It is trivial to apply this
Lemmato 2D cases.)

Kim et al. provided a specific formula for the ‘possible’ maximum anahimium of|J |

for given ranges of each; value using Karush-Kuhn-Tucker conditions [41]. We sugges



24

next a generalization using Lemma 3.1.

Lemma 3.2. Suppose thaltr;| < k,, < 1 whereq;, =z fori =2,3,¢; = yfori =4,6
andq; = z fori = 7,8. Also suppose thatk, < z; < K, wherep;, = z fori = 1,
pi = yfori =5andp, = zfori = 9. Thenmin|J| = 1 — (k, + k, + k.) and
max [J| = (1 + K,)(1 + K))(1 + K.) + (1 + Ky)kyk, + k(1 4+ Kk, + koky (1 + K).

In other words,

1—(ky+ky+ k) <|J <1+ K,)(1+ K,)
14+ K,)+ (1 + K,)kyk, + k. (1 + Kk,

gk, (1+ K.). (3.7)

Kim’s proposition was restricted to the case whére= k., K, = k,, andK, = k..
To ensure local invertibilityk,, + k&, + k. should be less thah where eaclt, is positive,
so that the lower bound in (3.7) is positive.

Kim et al. showed a second proposition about the relationship betthesefirst partial
derivative of deformation and adjacent deformation coieiffits for the cubic B-spline ba-
sis case [41]. We show next that this relation is also validgfeneralnth-order B-spline

bases/{ > 1). We also generalize the bounds used by kimal. with Lemma 3.2 [13, 15].

ioa bm 9 b
Lemma 3.3.1If b, < ag+1,j,k — ag’M < by for Vi, j, k, thenm_, < 2air) < b for
Vr whereq € {z,y, 2} Similarly, ifb,, < of ;. —af,, < by for Vi, j, k, thenzl—“; <

(2

Vr respectively.

This Lemma limits the range of values of the first derivati¥ei@) over R? by re-
stricting the differences of adjacent deformation coedfits. Combined, Lemmas 3.2 and

3.3 show that one can obtain a transformatiothat is everywhere locally invertible by
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maximizing a similarity metric subject to constraints oe thfferencedetween adjacent

deformation coefficients, as summarized in the followingdiem.
Theorem 3.4.Suppos® < k, < 3 for ¢ € {x,y, z}. Define:

A . T x
C(4 = {Q - mxk:c < Q156 — Yk < mexv

_ y y
myk, < o i, <my,K,,

i,j+1L,E %4
z z
—mzk, < —af i S MK,
q q _
|ai+1,j,k - ai,j,k| <mgk, forq =y, z,

q q —
|ai7j+1,k - ai,j,k| <mgk,forqg=uz,z,

|a?7j,k+1 - a?,j,k| S mqkq for q= xay7Vi7j> k}

In (2.3), ifa € C, then|J| satisfies the bounds in (3.7} € R*. Moreover, ifk, + k, +

k. < 1, then the transformation (2.3) is locally invertible evehere.

This theorem applies to deformations based onvaghyorder B-spline basis. We set the

lower and upper bounds fod| by setting appropriatgé, and i, values forg € {z,y, z}.
3.2.2 Restrictions

Theorem 3.4 establishes that C, is a simple sufficient condition for local invertibil-
ity. However,C, does not allow all possible locally invertible deformatsone., C;, C Cj.
Then one can ask how restrictive this sufficient condition is

Although C, allows for acute volume expansion, it precludes acute velshrinkage.
Figure 3.1 illustrates this limitation for a 1D transforrnmat. The desired transformation
maps|0.0 0.6] to [0.3 0.6], i.e., T'(z) = = + d(x) whered(z) = 0.3 — z/2 (acute volume

shrinkage). This deformation belongsd because-1 < 242 < 0. However if we

impose the sufficient conditior0.33 < acgj), then Figure 3.1 shows that acute volume

shrinkage is precluded because the minimum derivativeeofrinsformation i9.67. The
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constrained transformation mafts0.6] to [0.3 0.7] instead of{0.3 0.6]. More generally,
when we choosé,, k, and k., subject tok, + k, + k, < 1 to ensure invertibility,C,

imposes restrictions for acute volume changes in eachtadirec

0.9

0.8}
0.7' //
0.6}

0.5¢ ST

T(x)

0.4 L

0.3f

0.2¢ - no deformation

01l |- -ideal deformation
‘ constrained deformation

0 0.2 0.4 0.6 0.8
X

Figure 3.1: lllustration of limitation of’y. The constrained transformation m&gp$.6| to
(0.3 0.7] instead 0f|0.3 0.6].

The 2D case illustrates the solution spac€9in terms of Lemma 3.2. Lemma 3.2 is

a b
trivial for a 2D Jacobian determinafit| = (1 + a)(1 + d) — bc whereJ = A

c d
deformation having a positive Jacobian determinant mustfg&1 + a)(1 + d) > bc. We

can introduce a free parametesuch thatJ| is always positive if1 +a)(1+d) > k and
bc < k for any k. Figure 3.2 visualizes the solution space for 2D invertid#éormations
in terms ofa, b, ¢, d, andk. For fixedk, any values ofd, d) that lie above the upper line
or below the lower line yield a positive Jacobian determtrn&(b, c) lies between these
lines. Lines vary ag varies. To allow acute volume shrinkage, we nédd be close t®)
as observed in Figure 3.1. However smakleralues imply more restrictive sets fQf, c).

Lemma 3.2 corresponds to fixirlg= £k, such that, + k, < 1 andk, > 0, k, > 0.
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— (1+a)(1+d)=112
,  (L+a)(1+d)=1/4
1 v (1+a)(1+d)=1/9 .

R 0 1 2
a
@ (1+a)(l+d) =k

Figure 3.2: Solution space for 2D positive Jacobian deteamti. Smalle values admit
smallera, d values but preclude more valuesiot:.

This yields the rectangular areas fam, ¢, d shown in Figure 3.3 (fok, = k, = 1/2 and
k = 1/4). Thus Theorem 3.4 not only uses a fixed valuekfdout also imposes restrictive
box constraints on the deformation derivatives. Howevstilithas a larger solution space
than traditional box constraints on the B-spline coeffitsesuch as [11]. Becaugeis

fairly small, relaxing this sufficient condition may alloarger volume shrinkage [13, 15].
3.2.3 Concatenating transformations

Since(, is a restrictive sufficient condition, it may not contain edhl deformations
of interest. To allow larger deformations, we can concaenaultiple elemental transfor-
mations that belong t@'y, i.e., letT'(r) = T (- -- (Ly(T(r)))) where eacll’, satisfies
C,. Since eacll’, is diffeomorphic,I is also diffeomorphic.

Rueckertet al. [85] used a box constrairtts [11] to guarantee that each elemental
transformation is diffeomorphic. We ugg; for our elemental transformations. This

should require fewer elemental transformations becausalows a larger solution space
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Figure 3.3: Local invertibility sufficient condition spage2D, fork = 1/4, k, = k, =
1/2and K, = K, = oco. (4 corresponds to using a fixddvalue. (a)a > —1/2 and
d>—1/2. (b)|b| < 1/2and|c| < 1/2.

thanCs, as illustrated in the section 3.2.4.

3.2.4 2D simulation: warping a disk to a “C” shape

We applied several constrained nonrigid image registnati@thods to the challeng-
ing registration problem shown in Figure 3.4. We placed defdion knot points every
4th pixel,i.e, m, = m, = 4. The data fit term used sum of squared differences. For
optimization we used augmented Lagrangian multiplier$ y@th the conjugate gradient
method. Line search step size was determined by one stepiibNe method. We used
fast B-spline interpolation [105-107] with a 4-level mrgsolution scheme [108].

Figures 3.5 and 3.6 show the unconstrained registrationr@swlts of using”y, Cs
andC;. The unconstrained result in Figure 3.5(a) shows some listieavarping such
as folding. Figure 3.5(b) shows the regularized deformeaiges with a Jacobian penalty
based onC;. This shows a more regular warp than Figure 3.5(a). Howeveallows a

larger solution space than the ideal solution spage
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Source Target

(a) 2D source image (b) 2D target image

Figure 3.4: Images for illustrating 2D nonrigid registaati

Figures 3.6(a) and (b) show the limitation of using a singlembased orC; and
(', respectively. The sufficient conditiods, andC,; do not contain the complicated dif-
feomorphic transformation needed to map the source imagdieetdarget image in Fig-
ure 3.4. However, this warp can be achieved satisfactoyilgdimposing just 3 warps that
each belong ta@’;, as shown in Figure 3.8. In contrast, to achieve a satisfastarp
by composing transformations that lie in the box constréinfl1, 85] required about 30
concatenations, as shown in Figure 3.7. For larger and nmwrlicated deformations,
our proposed constrairdt, can be used as a simple elemental transformation to provide

diffeomorphic composite transformations.
3.2.5 Larger sufficient condition: Lemma

Section 3.2.2 showed thét, is a restrictive solution space mainly because it uses a
fixed £ globally and allows a rectangular instead of curved areathis section, we show
that Lemma 3.3 can be used to find another sufficient conditinthe local invertibility

that has flexiblé: values locally and allows curved covered areas.
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No constraint No constraint
1

(a) No constraint.

Jacobian constraint

(b) Jacobian constrairdt; .

Figure 3.5: Deformed images (left) and their warped gricgh()
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Box constraint Box constraint

(a) Box constraints.

Proposed constraint

(b) Proposed constrait,.

Figure 3.6: Deformed images (left) and their warped gricgh()
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Box constraint Box constraint

Box constraint Box constraint

Figure 3.7: 10, 20, 30 compositions of box constraintand a warped grid of 30 compo-
sitions.
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Proposed constraint Proposed constraint

Proposed constraint Proposed constraint

Figure 3.8: 1, 2, 3 compositions of proposed constrainand a warped grid of 3 com-
positions. Proposed constraint requires much less tramsftons to achieve a satisfiable
deformation than the box constraint.
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Lemma 3.5. For 2D deformation, if

memymy < det Hy ;i 50 < mgmy,M;

forv(i,j),i =i—n+1,..,i+nandjy =j—n,..,j+n—1where

xT T xT xT
Mg+ iy = Q5 Qe — Qi
Hijuj = ;
Yy ) ) Y
Qipr; — Xy My + 0 g — O g

thenm,; < |J| (r) < M, for Vr.

Similarly, for 3D deformation, if
Mg My M g < det Ki,j,k,i’,j’,k’,i”,j”,k” < mxmyszJ

forv(i,j, k), =i—n+1,.,i4+n,j =j—n,.,j+n—-1,kK =k—n,...k+n,

"=i—-n+1,..;i+n,j"=j—n,..,j+nandk” =k —n,...k+n—1where

A
Kbt gt b o ke = (3.8)
xT xT x xT x x
mx + al+17j,k - O‘z}j,k ai’,j’—‘rl,k’ - ai,,j,,k, ai”,j”,k”"‘l - ai”,j”,k”
] Y ] Y ] Y
ai—‘rl,j,k ai,j,k my + ai’,j’—i—l,k’ ai’,j/,k’ ai”,j”,k”—i—l ai”,j”,k”

z z z z z z
O{Z-‘rl,],k’ - ai,j7k ai/’j/_;’_Lk/ - ai/,j/,k/ mz + ai//7j//,k//+l - ai//7j//,k//

, thenm; < |J| < M, for Vr.

This sufficient condition has much larger solution space tii@ solution space The-
orem 3.4 has. However, the number of constraints(arg* for 2D deformation and
(2n)*(2n + 1)? for 3D deformation for each voxel. For 3D deformation and icu®-
spline basis, we would have 63504 conditions for each vokeis seems prohibitive for
practical use such as penalty methods or constrained @atiion methods because there
are too many constraints. This optimization is very challag and it is not addresses in

this thesis.
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3.3 Simple regularizer based on local invertibility condi-
tion

3.3.1 Proposed simple regularizer

If we want to strictly ensure local invertibility, then we xienize a similarity metric
subject to the linear constraints € C,. However, to simplify the computation, we can
relax the invertibility condition by using a penalty metHd@®,15,47]. In a penalty method
we maximize an objective function that is the similarity nmetminus a penalty function
that encourages the invertibility condition, but does ndbece it strictly.

We propose to construct a penalty function based on thedoilppiecewise quadratic

function: )

%(t_C1)27 t<C1

p(t: 1, G2) = 4 0, G <t<G

\%(t —()?, (<t

which is illustrated in Figure 3.9. The argumerdenotes a difference between two adja-
cent deformation coefficients. This function does not #riconstrain such differences,
but its first and second derivatives are simple and convéfoense in optimization algo-

rithms such as conjugate gradient. The final new penaltytiomes

Rl@) = > >

q€{z,y,2} 0.4,k

q P RS KR
[p(ai+1,j,k Qi ik 61 562 )

+p(af o —af i ¢ GY)
_'_p(a?,j,k—i—l o a?,j,k; i]’zv 372)}7 (39)
where(?" = —myk, for Vr € {z,y, 2}, (§" = myk, for r # g and(J" = m, K, for

r = ¢. Note that choosing, = ¢, = 0 would correspond to a quadratic roughness penalty

over B-spline coefficients, which is akin to encouraging\bkime preserving condition
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|J| =1, Vr.

Being based on the somewhat restrictive solution spg¢cthe new penalty method can
encourage the local invertibility on the whole continuoosnain with a fast and memory
efficient implementation. This implementation is possii#eausé’,; does not require ad-
ditional B-spline interpolations beyond the interpolasameeded for the data fitting term.
It also encourages the smoothness of deformations intetestause it constrains the dif-
ferences between adjacent deformation coefficients. Itrastp usingC, or C; is much

more expensive for one transformation.

0.04

0.03}

0.02}

penalty value

0.01}

-0.5 0 0.5
difference of adjacent coefficients

Figure 3.9: A variant of quadratic penalty function (solat)d real constraints (dashed)
used with constraint sé&t;.

3.3.2 Incorporating apriori knowledge of motions

For diffeomorphic transformations using Theorem 3.4, thgalichoice would bg, =
k, = k, = 1/3 — e for some smalk. However, if we havea priori knowledge about
the deformation, then we can assign eaghaccordingly. For instance, for registering
thorax inhale and exhale images, we can assige- k, = 1/4 —eandk, = 1/2 — ¢
because the deformation in thedirection is larger due to diaphragm motion, whereas

the deformations in the andy directions are smaller. With this desigfi; allows50%
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local shrinkage along and75% local shrinkage along andy instead of allowings7%
shrinkage in each direction. We can use this sufficient dardfor the proposed simple

regularizer to encourage local invertibility of the defation.
3.3.3 2D simulation: expansion and shrinkage

We applied nonrigid image registration to thg6 x 256 images in Figure 3.10 us-
ing no constraint, a Jacobian penalty based’pna quadratic roughness penalty [112],
a regularizer based on Kim’s constraifif, and our proposed penalty method based on
C,. Figure 3.10 has an expanding circle and a shrinking ellipskustrate the difference
betweenC; andC,. Since we hava priori knowledge about vertical motion, we investi-
gated two sets of parameters@i: a symmetric way wittk, = k, = 1/2—0.01 x 1/2 as
well as an asymmetric way with, = 0.35 — 0.01 x 0.35 < k, = 0.65 — 0.65 x 0.01.

We placed deformation knot points every 4th pixel. The datéefm used sum of
squared differences. For optimization we used the congugiatdient method. Line search
step size was determined by one step of Newton’s method. A fast B-spline interpo-
lation and the 4-level multiresolution scheme as in 111-De V&n200 iterations for each
level or ran until thé, norm of the gradient is less than the machine accuracy. Wekelde
the local invertibility by computing Jacobian determina&atues on a grid 10 times finer
than the image resolution.

Figure 3.11 quantifies the tradeoff between image simylanitd local invertibility for
the 5 different registration methods for a range of regaktion parameters. The horizon-
tal axis is the root mean square (RMS) difference betweerdd#fiermed image and the
target image (log scale) and the vertical axis is the numbéneofiner (10 times) voxel
grid points having a non-positive Jacobian determinarg foale). We took a log after

addingl1 for the number of non-positive Jacobian determinant siheddwest number of
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itis 0.

For the unconstrained case, the RMS difference Wwas)9 and the number of neg-
ative Jacobian determinants w#&7644. As the regularization parameters decrease, the
RMS differences and the number of negative Jacobian detants of all other methods
approached closely to these values. This is expected betarisinconstrained case is the

same as any other penalty method with regularization paee

Source Target
— — 10
50 50 8
100 100 6

150 150

200 200

250 250

50 100 150 200 250 50 100 150 200 250

(a) 2D source image (b) 2D target image

Figure 3.10: Images for illustrating expansion and shriygka

As we increased the regularization parameters, the nunfoeegative Jacobian de-
terminants “generally” decreases, eventually towards,zathough not always monoton-
ically. The RMS differences also “generally” increase as thgularization parameters
increase for most methods except Jacobian penalty. Thisdause the Jacobian con-
straintC'; contains the original constraiidf, and it does not restrict the deformation so
that it can achieve low RMS difference for strong penaltyapaeters. For properly chosen
regularization parameters, symmetric/asymmetric pregagmple penalties show fairly
good performance compared to Kim’'s or quadratic penaltyhodst based on more re-

strictive sufficient conditions (Kim'sk, = k,, K, = k, and quadratick, = k, = 0,
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Figure 3.11: RMS difference and negative Jacobian determitrade-off for different
regularization parameters. (log scale)

Table 3.1: The best RMS difference for each method with zegative Jabocian determi-
nant in 2D simulation.
Jacobian New (asym) New (sym) Kim Quadratic
0.0373 0.0360 0.0454  0.2026 0.6091

Table 3.1 shows the best RMS difference of image for each adet¥ith zero non-
positive Jabocian determinant values over the 10 times §ridr The proposed simple
penalty witha priori motion information performed well compared to Jacobiangttyn
However, as the regularization method depends on mordatésrcondition, the RMS
difference is larger. It clearly shows that a quadratic figrnaversmoothes the deforma-
tions.

Our proposed asymmetric penalty performed a little betiantJacobian penalty in
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these experiments. However, our proposed penalty may matyal perform better. It
depends on the convergence, regularization parametegeirstaucture and so on. Since
the data fitting term is non-convex, local minima may afféet tesult, too. However, for
simpler cases like in Figure 3.10 our proposed regulanrathethod may perform close
to the Jacobian penalty method. In the section 3.3.4, weydgmoh methods to the 3D real

CT images of a patient.
3.3.4 3Dreal CT images

We applied our proposed regularization method (3.9) to thelpm of registering 3D
breath-hold X-ray CT images of a real oncology patient sedrat inhale and at exhale.
These images are useful for radiation treatment plannihg.ifage size wa%)6 x 256 x
128 as shown in Figures 3.12 and 3.13. We chése= k, = 1/4 — 0.01 x 1/4 and
k., =1/2 —0.01 x 1/2 because we expect the deformation in thdirection to be larger
than the deformations in theandy directions due to diaphragm motion.

We used the same methods as in Section IV-C except for theresalution scheme.
For the first 3 levels of multiresolution, the knot spacingveaery 8 pixels for downsam-
pled images, and for the last level of multiresolution thetkspacing was every 4 pixels.
We ran120 iterations at each level to see the convergence propeifies.regularization
parameter that multiplies (3.9) was chosen experimentalgchieve the minimum value
of data fitting term such that all Jacobian values on the inggigbwere positive.

Figure 3.14 shows the difference images between the targege and the deformed
images. As expected, the difference image for unconsuaegistration in Figure 3.14(a)
has smaller values than the constrained difference imagegures 3.14(b) and (c). The
RMS difference for unconstrained registration was the &sglwhich wad9.9 HU. The

RMS errors of the Jacobian penal5(9 HU) and the proposed penaltyy(2 HU) were
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Source: Coronal Source: Sagittal

Source: Axial

Figure 3.12: 3D source (exhale) X-ray CT image.
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Target: Coronal Target: Sagittal

Target: Axial

I P
-
= b/

Figure 3.13: 3D target (inhale) X-ray CT image.
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Table 3.2: Computational cost at the finest level

Method CPU time per iteration (sec)
Unconstrained 25.7
Jacobian penalty 81.1
Proposed method 27.4

somewhat higher. However, Figure 3.15(a) shows that unined registration yields
an unrealistic warped grid. The number of negative Jacodeterminant voxels was
316914 out 0f 12582912 voxels. Figure 3.15(c) shows a smoother warp than Figuig(B)1
because our proposed penalty method is based,omhich is a smaller set thafi;. Our
proposed method has smoothness property implicitly becausstricts the range of the
differences between adjacent B-spline coefficients.

The proposed penalty method was much faster and more meifficigre than the tra-
ditional Jacobian penalty method per iteration. If one ukesum of squared error as the
data fitting term and penalizes negative Jacobian detenhiradues on each image grid
point in 3D with cubic B-splines, then the interpolationgded to compute the gradients
of the direct Jacobian penalty function require about In8&# more operations than the
interpolations needed for the gradient of the data fittinghteTable 3.2 shows the com-
putational cost for one iteration at the last (finest) leviedhe multiresolution procedure.
Our proposed method requires only slightly more time paatien than unconstrained
registration, and much less time than using a Jacobian tyefalrthermore, in this sim-
ulation, the traditional Jacobian penalty method requabdut twice as much memory
as our proposed method because it must store the inteiquolagsults for the Jacobian
gradient. Figure 3.16 shows the convergence of each method.

We could compose a coarse resolution warp based on (3.9)omighfull sequence
of coarse-to-fine warp based on (3.9) to reduce RMS diffexeffigrther with only slight

increase in computation.
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3.4 Discussion

We proposed a new condition (Theorem 3.4) that is sufficeatsure the local invert-
ibility of transformations based on B-splines. Its limitat can be overcome by using com-
posite transformations. This proposed sufficient conditan be used with constrained
optimization such as augmented Lagrangian multiplier w@{87] or Dykstra’s cyclic
projection method [41].

We showed that the proposed sufficient condition is more igélean other simple
sufficient conditions that ensure local invertibility eyethere such as box constraint [11].
When used in composite transformations, it requires mangféransformations to achieve
comparable deformations [85].

We also relaxed our local invertibility condition by a sirepdjuadratic-like penalty.
This approach achieves more flexible image matching condp@ar®ther penalty meth-
ods based on more restrictive local invertibility conditso For practical use in a thorax
image registration, we used a single transformation witihmgpke quadratic-like penalty
that encouragea € (. This gave a fairly good deformation with no negative Jaanbi
determinant values on image voxel grid points. This apgraaecnuch simpler and faster
than the traditional Jacobian determinant penalty and iem@mory efficient.

Some application areas require not only local invertiildut also require comput-
ing the inverse transformation. One approach is to estitbatle forward and backward
image registration parameters with consistency regudalfiz2]. Using both consistency
regularizer and our proposed regularizer can be interg$étiture work.

Another interesting future work is implementing Lemma 3t3will allow much larger
sufficient condition compared to the proposed sufficientdoonm C,, but the optimization

is challenging.
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(a) No constraint
Jacobian penalty: Coronal Jacobian penalty: Sagittal
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(b) Jacobian penalty
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Figure 3.14: Differences between 3D target and deformeg@sa
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CHAPTER 4

Regularization for nonrigid motions: rigidity and sliding 2

Nonrigid image registration is a key tool in medical imagittgprovides more flexible
image matching than rigid transformation, but suffers kyilltposedness, often resulting
in unrealistic deformations [18]. There has been a lot oéaesh on regularizing or con-
straining deformations with reasonable motion priors sascbmoothness of deformations,
the invertibility of deformations [13, 15, 38,41, 68, 80]&nd the rigid deformations of
rigid objects (or tissues) [55, 56,60, 84,93]. Many papergehnvestigated each constraint
separately.

Both invertible deformations and rigid deformations ofidigissues are reasonable
constraints in respiratory motion estimation becausetbimeg motion is invertible and
some rigid structures such as bones are present. Since lsmesstmotion regularizer or
motion invertibility regularizer usually cause bone wagiin ribs, it is only natural to
use both motion priors together in the image registratiomwhan respiratory motion.
Combining both regularizers seems straight forward, bl mootion regularizers cause
conflicts in some areas near the interface between the ribaag the diaphragm. In these
areas, motion invertibility prior and tissue rigidity pripenalize deformations in opposite

ways.

2This chapter is based on [17].

48
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In chapter 3, we proposed a simple piecewise quadratic fyetiat encourages the
local invertibility of motions [13, 17]. In this chapter, w@opose to relax this motion
regularizer by using a Geman-type function [8, 26]. As we thgerigid motion constraint
for rigid tissues together [56, 84, 93], this allows for def@tions to be piecewise smooth
instead of globally smooth. With small sacrifice of regubarthis relaxed motion invert-
ibility regularizer allows the motion regularizer based tissue rigidity to improve the
bone rigistration [17]. This also permits better matchimgween deformed and target im-
ages and deformations to be discontinuous in the area aftbeace between the rib cage
and the diaphragm.

We applied this Geman-type penalty function only to the xd grdirection partial
derivatives of the z-direction deformation to address tltkrgg motion of the diaphragm.
192 x 128 x 128 3D CT inhale and exhale images of a real patient were wssbiv the

benefits of this new penalty method.

4.1 Background

Figure 4.1 shows zoomed coronal CT images of a real patieexlalation and in-
halation. The diaphragm slid down as the patient inhaledietfis/her rib bones stayed at
a similar position. Smoothness motion prior and motion itisdity prior encourage the
connectivity between rib bones and diaphragm to be maiatkibsually the ribs near the
diaphragm in an exhale image go down together with the daphras a patient inhales.
Since the ribs are relatively small structures, the image&hiag data fitting term is not
strong enough to allow the ribs to stay still.

The rigid motion prior of rigid structures such as bones camect the bone warps.
However, when we use both the motion invertibility prior at@ tissue rigidity prior

together, the motion invertibility prior encourages soritebbones to go down and the
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Figure 4.1: Coronal views of 3D exhale and inhale images ebhpatient. Connectivity
between diaphragm and rib bones is not preserved sincerdigqphis sliding down while
rib bones remain at the similar location.

tissue rigidity prior encourages the rib bones to stay initgms This causes conflicts.
Figure 4.2 shows the number of negative Jacobian detertalres when we apply both
motion regularizers together. As expected, most negatigelian determinant values are

near the interface between the diaphragm and the rib cage.

4.2 Method

4.2.1 A simple penalty that encourages local invertibility

We briefly review the motion invertibility regularizer in apter 3 [13, 15].

Theorem 4.1. Suppos® < k, < 1/2for g € {x,y, z}. Define:

Ci={a:—meke < ajy jp— i < MKy,
—myk, < O‘Zjﬂ,k - O‘Zj,k < my Ky,
—m;k, < aiz,j7k+1 - aiz,ch < m. K,
|ag+1,j7k - ag,j7k| < myk, forq =y, z,

q

q _
|az,j+17k — ai7j7k| < myk,forq=z,z,

q q _ . .
|ai,j7k+1 - ai,j7k| <mgk,forq=xz,y, Vi, j k}.
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# of (-) Jac. determinant: Coronal # of (-) Jac. determinant: Sagittal
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Figure 4.2: Coronal, sagittal and axial views of the numberemative Jacobian determi-
nant values when we use motion invertibility prior and tessigidity prior together.

In (2.3), ifa € C, then the Jacobian determinantffsatisfies the bounds

1= (ky + ky + k) <det VI(r) < (1+ K,) (14 K,)(1 + K.)

+ (14 Ky)kyk, + k(1 4+ Kk, + kky(1 + K,)

for vr € R3. Moreover, ifk, + k, + k. < 1, then the transformation (2.3) is locally

invertible everywhere.

Based on Theorem 4.1, we proposed the following simple penlaht encourages
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local invertibility:

Ri(a) = Z Z [p(ag-i-l,j,k _ag,j,k;gg@v 5")

qe{z,y,z} 4.5,k

+p(af i — o ¢ GY)
+p(ag,j,k+1 - ag,j,k? G, gz)] (4.1)
where({” = —myk, for Vs € {z,y,z}, (§° = myk, for s # g and(j* = m K, for

s = ¢. The functiorp is defined by

;

%(t - C1>27 < Cl

p(t; G, G) =S 0, G<t<G (4.2)

\ 1t — &), otherwise

All parameters:,, K, are determined based on Theorem 4.1 &nd £, + k. < 1 allows

(4.1) to be a penalty that encourages local invertibilityg,[15].

4.2.2 Atissue rigidity penalty

Staringet al.[93] and Modersitzki [60] defined a rigid transformation adws.

Definition 4.2. A transformatioril’(r) is rigid if itis linear,i.e., 9; ,,T = 0 forall 7;,1; €

{z,y, 2}, orthogonal,i.e, VI'VT = I, and orientation preserving fofrr € R?, i.e,

det VI = 1.

Using all three constraints requires high computationahgiexity for calculating the
first and second order derivatives of transformation. Simeeapply an invertibility con-
straint which encourageset VI' > 0, the orthogonal propert} 7'V = I implies
orientation preservindet VI' = 1. We do not also use linear prope@ivhz = 0 since

it is not a dominant term according to the simulation of Stget al.[93]. It is also not
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desirable to compute the second order partial derivatiresedst is computationally de-
manding. Thus, we only use the orthogonal property, folfmpioeckxxet al. [56] and

Ruanet al.[84]. So, our rigidity penalty function is

Zv NV () VT (r) — |2, (4.3)

where|| - || rrop IS @ Frobenius norm ang(z) = tanh((z — 1200)/10)/2 + 1/2.

Ruanet al. [84] calculates the Jacobian values on all image voxels dadn§ et
al. [93] suggests to calculate only on all knot points instea@lbfmage voxels. This
choice depends on the scale of images. If a lower resoluti@gé can capture the topol-
ogy of bone structure well, then we can calculate Jacobitueseaon all the knot points
only. However, if the original image has poor resolutioreritwe may have to calculate
all Jacobian values on all image voxels.

Since the number of voxels containing bone structure isllysoruch smaller than the
number of voxels for the whole body, we can save more comiputéitne by calculating
the tissue rigidity contraint only for voxels containingid tissues. We do not calculate

IVL(r)"VI(r) — Il|E,q T (f(1) < e
4.2.3 A proposed relaxed invertibility penalty

Since using both motion invertibility penalty (4.1) andstig rigidity penalty (4.3)
causes conflicts near the diaphragm and the rib cage, we ggdporelax the motion
invertibility penalty (4.1). However, since sliding of tidgaphragm in respiratory motion
occurs mainly in the z-direction deformation, we only rethe invertibility penalty for
the x- and y- differences of z-direction deformation by gstnGeman-type function [26].

We replace some of thg-) terms in (4.1) as follows:

p(cf+1,j,k Ci ks G 67 to Q(Cf+1,j,k — Gk GG o)
(4.4)
P — i 600G to gle i — i G0 G )
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where

(0 —G)?, < ap

N[

t—G)%  a<t<G

9(t; Ci. G2 0) = 9 0, G <t<G (4.5)

=G G<t<a

(a1 — (2)?, otherwise

N[

\

Therefore, the modified invertibility regularizé}f(g) is

Ria) = Y 3 [pladyy = al i )

q€{z,y} i.5.k
L CIY OV

q q
+p(ai,j+l,k — Qe 61562

q q .0z 0z
(g e — o G G27)

z 2 . fEZ,T 2,
+9(aii1jn — G056, ap)

+g(0‘z‘z,j+1,k - %Z,j,k% 7,67, ap)

+p(af jpy1 — 543 G0 G) (4.6)
Figure 4.2.3 depictg andg functions.
4.2.4 Graduated non-convexity (GNC) method

Our proposed penalties change the problem in (3.1) as fellow

Q = arg max Ulg(-), f(T(+a))] — BrRi(a) — BrRr(a). (4.7)

The proposed penalty function (4.5) is non-convex and it seyse local minima during
the optimization. Blakest al. describe a graduated non-convexity (GNC) method as an
optimization method with Geman-type function [8]. It chasghe shape of a functign
from an almost convex function to a Geman function as opttion proceeds. We used

a GNC method combined with a conjugate gradient method tionag# the cost function
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Figure 4.3: A quadratic-like penalty for invertibility cetraint and a Geman-like penalty
to relax invertibility constraint.

(4.7).

4.3 Simulation results

4.3.1 Experiment setup

We investigated 192 128 x 128 3D CT inhalation and exhalation images of a real pa-
tient shown in Figures 3.12 and 3.13. We used a 3rd-orderiBespasis for deformation
and deformation knots for every 4 voxels. The sum of the splidifference was used for
the data fitting term. We did not use a multi-resolution fas #sxperiment since the lower
resolution image seemed to lose detailed information atheutib cage and our rigidity

penalty did not seem to work well with poor resolution inf@ation. We performed 300
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Table 4.1: Negative Jacobian determinant values and dete fRMS error
Method # of (-) Jacobian determinant Data fitting RMS errodjH

No constraint 122597 30.59
Invertibility 0 36.26
Rigidity 0 38.13
Relaxed 341 38.11
Source 3145728 207.28

iterations of the conjugate gradient method with 4 cycle&NIC [8].

4.3.2 Local invertibility and image matching

Figures 4.4, 4.5, 4.6, and 4.7 show the deformed images fdr sethod. No con-
straint case is the best case in terms of matching the detbmmage to the target image.
The rest of the results of each method shows plausible defdimages.

Table 4.1 shows these image matchings in a quantitative Whg. data fitting RMS
error of and between source and target images is 207.28 Hd@ndnstraint case results
in 30.59 HU after 300 iterations. However, this also resintd22597 voxel points of
negative Jacobian determinant values among 3145728 voikgjares 4.8 and 4.9 show
projection views of these negative Jacobian determinants.

Applying invertibility penalty [13, 15] (Invertibility) &one and both invertibility and
rigidity penalties (Rigidity) achieved 0 negative Jacobgeterminant values. However,
due to the constraints applied, the data fidelity RMS errbresare higher than a case with
no constraints. Our proposed method (Relaxed) has 341inegdatcobian determinant
values among 3145728 voxels. This is natural because wedniteallow discontinuities
near the interface between the diaphragm and the rib cagguré-4.9 shows that the
discontinuities appear near the area we expected for makeafases. This method also
achieved a better data fidelity RMS error value (38.11 HUn tih& Rigidity method (38.13

HU) since we relaxed an invertibility penalty.
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No constraint: Coronal No constraint: Sagittal

No constraint: Axial

Figure 4.4: Coronal, sagittal and axial views of 3D defornmdges with no constraint.
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Invertibility: Coronal Invertibility: Sagittal

Invertibility: Axial

Figure 4.5: Coronal, sagittal and axial views of 3D deforrraelges with and the invert-
ibility penalty
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Ridigity: Coronal Ridigity: Sagittal

Ridigity: Axial

Figure 4.6: Coronal, sagittal and axial views of 3D defornmadges with the invertibility
and rigidity penalties.
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Relaxed: Coronal Relaxed: Sagittal

Relaxed: Axial

Figure 4.7: Coronal, sagittal and axial views of 3D defornmadges with the proposed
relaxed invertibility and rigidity penalties.
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Figure 4.8: Projected coronal, sagittal and axial view$efriumber of non-positive Jaco-
bian determinant values in no constraint.
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# of (—) Jac. determinant: Coronal # of (-) Jac. determinant: Sagittal
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# of () Jac. determinant: Axial
6
- 0
Figure 4.9: Projected coronal, sagittal and axial viewsheftumber of non-positive Ja-

cobian determinant values in the proposed method. Mostgdtie values in proposed
method are near inbetween the rib cage and the diaphragm.
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4.3.3 Improved bone registration

Figure 4.4 shows a deformed image very close to an origingétamage. Bones near
the diaphragm in the Invertibility case and the Rigidityeatow clear bone warps due
to the sliding motion of the diaphragm. In the Rigidity cagm strong rigidity penalty
parameter causes the image intensity mismatch betweeretbered image and the tar-
get image. Whereas too weak rigidity penalty parameterdtegumore bone warpings.
The right rib bone in coronal views went downward in both sased the spinal bones are
stretched due to a sliding effect. However, Figure 4.7 shtbatsthe bone moving / stretch-
ing is corrected. Figure 4.10 shows 3D bone structures fon @@ethod and shows that
our proposed method corrects bone warps significantly mamgpared to the invertibility

method or the rigidity method.
4.3.4 Sliding effect

Figures 4.12 and 4.13 show quiver plots of deformations &mhemethod in coronal
and sagittal views. The no constraint case shows very edideformations. However,
in the case of invertibility penalty, the nearby deformatiteld is affected by a major
downward motion of the diaphragm and we can even observagtoows outside the
body and inside the spine. However, our proposed methodceslthe magnitude of
arrows outside the body (and on rib bones) and inside theesfiiseems more realistic to

have discontinuous motions near these areas.

4.4 Discussion

This chapter introduces a new relaxed invertibility pepatiethod as an extension of
our previous work [13, 15]. We applied it to a 3D respiratamyaige registration problem

with a rigidity penalty which reduced bone warps signifidgmtith a small sacrifice of lo-
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cal invertibility and data fidelity. Estimated deformatinear the diaphragm seems more
realistic in terms of its discontinuity. However, the deténation of parameters for a Ge-
man function may depend on individual patients and invasitig this with more patients
will be an interesting future study.

Due to the width of the support of cubic B-splines, cubic Brspbased image reg-
istration might not be the best way to implement tissue igigenalty. Rigid constraint
near the support of this basis seems to lead to less flexibdfittang in the area of tissues
near bones. More general settings in rigidity penalty [6@] & sliding treatment [83]

seem to be another promising future study.
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No constraint

Figure 4.10: 3D bone structures of deformed images for Netamt and Invertibility.
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Figure 4.11: 3D bone structures of deformed images for kiiéry / Rigidity and Pro-
posed method.
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No constraint No constraint

(a) No conatraint

Invertibility Invertibility

(b) Invertibility

Rigidity Rigidity

(c) Invertibility / Rigidity

Relaxed Relaxed

(d) Proposed method

Figure 4.12: Zoomed coronal views of deformed images (LByT)Sing no constraint,
invertibility penalty (Invertibility), invertibility / rigidity penalty (Rigidity), and relaxed
invertibility / rigidity penalty (Relaxed) and their quivelots (RIGHT).
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No constraint No constraint

(a) No constraint

Invertibility

(b) Invertibility

Rigidity Rigidity

(c) Invertibility / Rigidity

Relaxed Relaxed

(d) Proposed method

Figure 4.13: Zoomed sagittal views of deformed images (LEFTuUSIng no constraint,
invertibility penalty (Invertibility), invertibility / rigidity penalty (Rigidity), and relaxed
invertibility / rigidity penalty (Relaxed) and their quivelots (RIGHT).



CHAPTER 5

Spatial resolution and noise properties in regularized
motion-compensated image reconstruction methods

MCIR methods have great potential to improve image quatitthe presence of sub-
ject motion. Unlike gated image reconstruction methods 763, MCIR methods use
all collected data and unlike an ungated image reconstmu¢&9], it uses motion infor-
mation to avoid motion artifacts. There has been a lot ofarteon MCIR models for
different medical imaging modalities to compensate maimhcardiac or respiratory mo-
tion [14, 35,52,53,57,69, 75, 100].

MCIR methods differ in terms of how they incorporate motiaformation into image
reconstruction frameworks. Many MCIR models have been gged and investigated:
post-reconstruction motion correction (PMC) [6,19, 4@l énotion-compensated tempo-
ral regularization (MTR) [9, 27,29, 31, 57], and the paramsanotion model (PMM) [14,
35,52,53,69,75,100]. Even though each MCIR method hasWwelystudied separately,
there has been less research on the comparison of differ€hR vhethods. Manjeshwar
et al. [58] and Thielemanst al. [102] compared PMC and PMM in terms of lesion de-
tectibility. Asmaet al. also compared PMC and PMM theoretically in terms of the bias

and covariance of them [5]. However, the analysis used assdional kappa approxima-

3This chapter is based on [16].

69
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tion [24] for the noise comparison so it was limited. Zibettial. compared MTR and
PMM empirically in the super-resolution (SR) applicatidi, 115].

The spatial resolution and noise analyses for different Ri@lodels may be the first
step for thefair comparison of them. Only after we approximately match tregiapreso-
lutions of different MCIR methods, it is meaningful to conn@aheir noise performance.
The spatial resolution and noise properties have beensigllied for for static image
reconstruction [1, 23, 24, 74, 89, 94] and dynamic imagenstraction [4]. This chapter
investigates the spatial resolution and noise propertidéaMC, PMM, and MTR care-
fully, extending [24] to MCIR methods [16]. For known nondgnmotion, we analyse the
statistical properties of different MCIR models and congpirem. This analysis can be
an initial step to the performance analysis of joint MCIR hwets. This analysis may be
still useful since known motion may be reasonably realigiicome multi-modal medical
imaging applications such as PET/CT [2,53] and PET/MR.

This chapter is organized as follows. Section 5.1 studiettifferent MCIR models
and estimators [25, 35, 46,57, 115]. It shows how one estimatrelated to another es-
timator. Section 5.2 investigates the spatial resoluti@mperties of each MCIR estimator
and discusses the spatial regularizer designs that prapgdeoximately uniform spatial
resolution and resolution matching. Section 5.3 derivesnbise properties with given
uniform spatial resolution and compares them. Section Botvs some 2D tomography

(PET) simulations with known nonrigid motion to illustrates theory.

5.1 Motion-compensated image reconstructions

We consider three different types of MCIR methods: postnstruction motion cor-
rection (PMC) [6,19, 34,46, 103], parametric motion mod®¥M) [7, 14, 20, 25, 35, 52—

54,65, 66,69, 75,79, 100] and motion-compensated tempegalarization (MTR) [9, 27,
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57,113, 115]. Here we treat the nonrigid motion informataenpredetermined (known).
One can determine the motion information from the measunésng, or from other mea-

surementse.g, from CT in PET/CT system or MR in PET/MR system.
5.1.1 Post-reconstruction motion correction (PMC)

Often one can reconstruct each imafje from the corresponding measuremeyt
based on (2.1) and some prior knowledgey( a smoothness prior). For simplicity, here
we focus on a penalized weighted least square (PWLS) estirf2] with a quadratic

penalty as follows:

Fon = argmin |y, — A Fnllty, + 0l Confin I3 (5.1)

whereW,, is a weight matrix that approximates the inverse of the dawae ofy,,, n
is a spatial regularization parameter, and typic#@lly is a finite-difference matrix. The
analysis is easily generalized to other noise models [24].

The estimatorg’,, in (5.1) can be expressed as:
fn = [Fo + 1R, A, Wy, m=1,--- M (5.2)

where

F, = A W,A, (5.3)

andR,, = C' C,,. Oncefl, ) ..fM are reconstructed, one way to improve the SNR
would be to average all of them. However, the resulting imagaeld be contaminated by
motion blur.

One way to reduce motion artifacts is to use the motion infdrom to map each image

fm to a single image. Without loss of generality, we chgseas our target image to
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reconstruct. Then, using (2.10) and (5.2), a natural degimibr the PMC approach is

M
fone & 52 Timfn (5.4)

F, + R, ' T, AL Wy (5.5)

S

I

Q

|
==
NE

whereF,, 2 T, ,'F, T, andR,, 2 T,,,' R, T).1.
5.1.2 Parametric motion model (PMM)

For PMM, we first need to choose a reference image frame amMiging - - , fi/}.

Without loss of generality, we assume thfatis our reference image frame. Then, com-

bining the measurement model (2.1) with (2.10) yields a nexasarement model that

depends only on the imagg instead of the all imageg,.:
Yn = ApTpif1+€n, m=1,... M
Stacking up these models yields the overall model
Yo = AdTef1 + €, (5.6)
where

/
Y

Yye = [Y Yl
Ad = diag{Al,---,AM},

T. = [T, . Tuil,
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The PWLS estimator for the measurement model (5.6) is

foam = argmin ||y — AqaTef1 |3, + nllCLf1 13

f1
= [T'FyT. +nR| 'T/A\Way., (5.7)
whereW, is a weight matrix that approximates the inverse of the danae ofy., i.e.,
Wy = diag {W,,--- , Wy} andF; & A,W4A4, which is a block-diagonal matrix of

F,, ie,diag{F,---, F)}. Note that
M M
F, & T'FT,=) T,,F,T,:=)» F,
m=1 m=1

Then, one can rewrite (5.7) as follows:
A M -1y
m=1

m=1

5.1.3 Motion-compensated temporal regularization (MTR)

The MTR method exploits the motion information that matctves adjacent images

as a penalty:
||fm+1 - Tm-i—l,mfm”%' (59)

wherem = 1,--- , M — 1. This penalty is added to the cost function in (5.1) to defiree t
MTR cost function.

Equations (5.1) and (5.9) can be represented in a simplévivetatrix notation. First,
rewrite (2.1) as follows:

Yo = Aafe + €, (5.10)

wheref. = [f1, -+, fi;|'- One can use (5.10) with any statistical image reconstrocti

objective function. We focus here on PWLS as follows:

~

fo = argmin|lye — Aafellsy, + 0l Cafellz + ¢ Teire fell2

c

= HyrpAiWaye, (5.11)
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whereCy = diag {C1, - -- , Cy}, ( is a temporal regularization parameter,

=Ty, I

>

Tcirc = e . s (512)

—Tap—1 1

andHyrr = Fy + nC,Cy + (T, Teire. Therefore,

circ

furr = [I 0 --- 0] f (5.13)

= [I 0 --- 0] HjigA\Way..

We may also modifyT;;,.. for periodic (or pseudo-periodic) image sequences by asgum

thatTy 1 £ Tiar andfaren = fi
5.1.4 Limits of MTR estimator for (

The temporal regularization term (5.9) in (5.11) will inas the correlation between
the estimatorg; and¢; for i # j as¢ increases. We investigate the limiting behavior of
the MTR estimator as — 0 and ag — oc.

It is easy to see the limit of. as¢ — 0 since
Hyrr — Fy +1CiCq = Fyry

whereFyrr, is block-diagonal. The inverse #hry is Fyrrr - = diag {(F,, + an)‘l}iZ:l )

Therefore, the MTR estimatgf. will be

fo— FtnAiWay. = | & |, (5.14)

and thereforefyrr — fi as¢ — 0. In other words, ag — 0, the MTR estimator for

each frame is the same as separate (single frame) imagestagdion in (5.1).
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fc has more interesting behavior as— oo. To see this, we need to treat the null

space ofR,. = T,

Circ

T.;.. carefully. SinceR,;,. is symmetric nonnegative definite, it has
an orthonormal eigen-decomposition of the form
1 0

Rcirc — [Ul UO] [Ul UO]/
0 O

whereU;, U, are unitary matrices anktl; > 0. The columns of the matrik/, span the
null space ofR;,.. From the definition ofl;,., it is easy to see that the null spacef®f,.
consists of images that satisfiy the following condition:

fo = Toofi (5.15)

.f3 = T3,2T2,1 .fl

fM = TM,]\/I—l T 'T2,1f17

for any imagef;. In other words, the\ N x M N matrix R, has a null space of at
least dimensionV. In contrast, the spatial regulariz€X; usually has a null space only of

dimensionl. A system of equations (5.15) becomes

T2,1
T3,2T2,1 ~
fc: .fl échl- (516)
I Tyri—1---Th, |
When we add a periodic condition
Hi=Tvufu (5.17)

to (5.12), we assume that (5.17) is linearly dependent db}5In this caseR,;,. still has

a null space of at least dimensidnh We can construct the matrl{, as follows:

U, = T. (TC’TC)_W LTS (5.18)
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whereT, T, - 0 becausdl. T, = I + "M (Tppm-1 - Ts1) Ty - - - Toy andI is
positive definite. ThusS is invertible.

Under the usual assumption th&t and R; have disjoint null spaces, one can verify
that

B2 UéFMTRUO > 0.
To proceed, we expreds,rr as follows:

N M’
U, U] FurrlU: Uy =
M B

Note that even though, is diagonal N and B are not diagonal in general. Thus,
-1
N+¢¥, M
[FMTR + CRCirc]_l =U U/
M B

whereU = [U; Uj]. By Schur complement [28], we have

[Futk + (Reie] ' =
A —~AM'B~!
U U’
—-B'MA B '4+B'MAM'B™!
whereA = [N + (X, — M'B~'M]~!. SinceX, is positive definite A — 0 as¢ — oo.
Thus,

Hyhy = [Futr + (Red] ' — Uy B™'U, (5.19)

Therefore, the MTR estimatgf. becomes

~

fc - Ci-'c [TC/FNITRTC]_ITC,AéWdyC (520)

as¢ — oo. In other words, the MTR estimatgt goes to

~

f. — T.[F, +nR] 'T. A\ Wy, (5.21)

M -1
= T [Z F,+nR,| > T, A, W,y,
m=1 m=1
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whereR, = T.'C/,C,T.
The dimension of the null space f#t.,.. is greater than or equal to the dimension of
fi. Therefore, (5.21) may always have the nonzero estimatadgemand is not biased due

to large(.
5.1.5 Comparison of different MCIR estimators

Observing the limit behavior of the MTR estimator shows tHatR estimator (5.14)
is equivalent to a separate PWLS estimator (5.2) as 0. For{ — oo case, we can show
the relationship between (5.20) and (5.8) as we assumd}hat transitive. In this case,
T, becomesT.. In practice, getting exactly transitive deformations lskenging [90].
Then, we can show that

fMTR - fPMM as (¢ — oo, (5.22)
whenn = 0. If the regularizersR, andz R are designed carefully, then (5.22) may
be true forn # 0. So, for known motion, the MTR estimatoys for all frames can be

obtained by simple warps ¢ff-yi as follows:
fo = Toforn (5.23)

when( — .

For PMC estimator (5.4), we used an unweighted average omibt®on corrected
estimators of all frames. The MTR estimator for~ oo (and the PMM estimator) can be
interpreted as aveightedaverage of all estimators from all frames as follows:

m=1

-1 M

Z mym

m(Fon + 1Ry AL WLy,

Mi I ME

| - (5.24)

m=1
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where the weighting matrices are given by

-1

(Fy, +nR,).

M
L, 2 [z Fnkt
=1

The PMM and MTR with large give more weight to estimatorg, depending on factors

such as high certainty (Fisher information matky,), motionT,, ; and regularization.

5.2 Spatial resolution properties

Spatial resolution depends on many factors in an imaginggsy,sso analyzing it usu-
ally requires system-specific information. In this sectime provide a way to match the
spatial resolutions of each MCIR method so that we can fawlypare the noise proper-
ties with the same (or similar) bias. Since it is hard to de#hwhe many different factors
that cause spatial resolution non-uniformity, we focus nmdeal tomography system for
our analysisi.e., no detector blur.

For the analysis in this section, we assushge = A, for all m, but we allow the warp
T, and the statistical weigh®/,,, to differ for eachm. Some PET and CT scans satisfy
these assumptions. We also assume that we are using therfiestelifference matrixC,,

as a spatial regularizer (penalizimgandy directions in 2D).
5.2.1 Separate image reconstruction

Since we will be providing methods to approximately matoh $patial resolution of
MCIR methods with the spatial resolution of a reconstrudtedge of each frame sep-
arately, we first briefly review the methods for providing fanm spatial resolution of a
separate image reconstruction [24].

The expected value of (5.2) fat is

E{fu} = [Fn + nRu| " Fy fn. (5.25)



79

We are interested in the local impulse response (LIR)}fapixel and the corresponding

LIR /., can be obtained from the expected value of the estimatoilasvt
U, =[F,+nR,] "F,5. (5.26)

A continuous-space analogue to rewrite (5.26) as the loequiency response g pixel

is as follows [89]:
W@/l
win(®)/|p| + nlm(p, )

wl (@) is a weight fromW,,,, and R/ (p, ®) is from C,,. WhenC,, is the first-order

(5.27)

difference matrixCy, thenR? (p, ®) = (27p)*. Note that this local frequency response
(5.27) depends o/ (®), which is local shift variant.
To approximately provide uniform spatial resolution, webyspatial regularizers [24]

C,, such that

C,, 2 C,D(k,,) (5.28)
where
5l 2 \/[AGW,1)5/[Ap1];, (5.29)
andl =1 1 --- 1J. Note that we assumed,, = A, for all m. Since we can
approximate
(5.25) becomes
E{fn} = D(5,,) "' [Fo + nRo) " FoD(5,,) fm (5.31)

whereFy, = A{ A, andR, = C|C,. Note that (5.30) is a local approximation ngén
pixel where we are interested in and singevalues are smoothly varying, the approxima-
tion in (5.30) is reasonable. Then, one can cancel®,, )~ andD(x,,) in (5.31) since

one can approximateFy + nRy| "' F, as nearly diagonal. Therefore, using the modified
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regularizer in (5.28),

E{fn} ~ [Fy+ nRo) ' Fyf (5.32)

and the corresponding local frequency response of a canisygpace analogue for (5.32)
becomes

1/]p]
1/|p| +n(2mp)?’ (5:33)

which is now local shift invariant. We use this form below wiheonsidering the effects of

motion.
5.2.2 Post-reconstruction motion correction

The expected value of the PMC estimator (5.4) is the sum df eapected valug,,

since the expectation operator is linear. So, the expecter\of fpyc is

M
E{fosc) = 17 3 Tl B+ 1Ru] 7 Fu (5:34

m=1

sinceE{y,,} = A,.f.. Applying the modified spatial regularizé€r,, in (5.28) for each

frame of (5.34) and using (5.32) shows that

M
A 1
E{frmc} = i E T [Fo + nRo) ' FoTy1 i (5.35)
m=1

where we substitutg,, with T,,, ; f;.

Since the original system respond® + nRy|~'F, is sandwiched in betwe€f, ,,
andT,, ; operators in (5.35), the nature of the system response maygehdue to mo-
tion effects. We are interested in nonrigid motion and asstimat the motion is locally
affine. Since the original system response is space intafatihout loss of generality,
we assume the local linear transformation at ttiepixel. However, dealing with general
linear transformations poses a challenge that may reqesigding a regularizer with dif-
ferent weights according along different directions [89, 9Ve discuss this challenge in

Appendix C.2.
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The system response (5.33) with the modified spatial regelais space and rotation
invariant. However, the spatial resolution property wilbmge a lot for the scaling motion.
To see this effect clearly, we consider the scaling motigpalar coordinate.

When we assume that

(T f1)(r, &) = f1(1/5mj, &) (5.36)

wherer belongs to a small neighborhood of thith pixel, 7,,, is a continuous-space
analogue off}, ;, and f;(r, ¢) is a continuous-space analogueffin polar coordinate.
smj 1S @ scaling factor ajfith voxel, we can express the local frequency response of a

continuous-space analogue for (5.35) as follows:

1/1p/Smjl
1/1p/smjl +n(27p/sm;)*
1/]p]

L/lpl 4+ n/1sms13(2mp)%

(5.37)

Note that in practice, the measurement matfix, may contain a blur function and a
scaling factors,,; may alter that function. This may cause (5.37) to be incaorrecthis
paper, we neglect blur in the measurement ma#jx for simplicity.

Therefore, (5.37) suggests that each should include a factor df,,;|* to maintain

the uniform spatial resolution. When we set
C.,. & CoD([k,,)515m;*%), (5.38)
the system response (5.37) becomes (5.33). Therefore,
E{fruc} = [Fo + nRo) ' Fof1 ~ E{f1}. (5.39)

This example shows that a simple local scaling motion caer #ie spatial resolution
because it alters the regularization parametey 7/|s,,;|>. Therefore, the spatial reso-

lution in each frame may change after each goes thrdfijghoperator. Equation (5.38)
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suggests that we need an extra teky,|*/% to approximately provide uniform spatial

resolution for local expanding or shrinking,; .
5.2.3 Parametric motion model

From (5.8), the expected value $fy is given by

-1 M

M
E{fPMM} = [Z F, +nR, Z F,.fi. (5.40)
m=1 m=1

SinceT,,, ~ T1nD(|VT,|;) (see Appendix C.1) and(|VT,,,[;) = D(1/|sm;|?)

from (5.36), equation (5.40) becomes

M -1 wm
E{foan} = [Z D(|$mj ") E + nRy Z D(|$mj|*) 1 (5.41)
m=1 m=1

where F,, £ T\, F,T,.. Thus, the local frequency response of a continuous-space
analogue for (5.41) is
St [5ms 5 (2)/ 1/ 5
S [8mi| 2w (®) /9] $mjl + n(2mp)?

S [Pk (®)/ 1) c
S [SmslPwin(@) /o] + n(2mp)? (542)

This suggests that we can achieve uniform spatial resollgyousing

Cl = Codlag {Z} (543)
where
M
], £ Z |Smg |2 [T1mbin) - (5.44)
m=1

Using (5.43), the local frequency response (5.42) apprates(5.33). In other words, the

expected value of -y becomes approximately
E{foa} ~ [Fy + nRo) ' Fof1 ~ E{f1}, (5.45)

which is also the same & fpuic !
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5.2.4 Motion-compensated temporal regularization
The expected value of the MTR estimapfgrin (5.13) is as follows:

E{f.} = [Furr + (Reire) " Fuf.. (5.46)

Since it is not easy to see the spatial resolution propertf. f (5.46), we investigated
the spatial resolution properties@s— 0 and{ — oc.

The limiting behavior off, as¢ — 0 in (5.14) shows that

E{f1}
E{f.} — : . (5.47)

| E(fu}

This is the same as the expected value of the individuallgnstucted image,, from

each measuremeny,,. Therefore, E{furr} — E{fi} as¢ — 0. In this case, using

the regularizer (5.38) for each frame provides approxitgat@iform spatial resolution

effectively for frame 1,.e., a frame for fyrr. Then, what will happen for the spatial
resolution ag — oo?

The limit of the expected valug{ £, } is approximately
E{f} = T[F. + 1R F.fy (5.48)
as¢ — oo because of (5.20). So,
E{furr} — [F. + nR] 'F.fi. (5.49)

The local frequency response of (5.49) with the regular{ze38) is

1 9 (®)/10/ml
S @)/ 1/ Sms| + 1A (D) 8305327 5105)?

and it becomes

et [l (2)/1] Yl
S s | (@) /0] + sl (®@) (2mp)2 1/l + n(2mp)?

(5.50)
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which is the same as (5.33). Therefore, (5.50) shows that
E{furr} — [Fo +nRo| ' Fofi = E{f:} (5.51)

as( — oo. This is approximately the same local frequency respongbea®MC and
PMM estimators. However, the mean of other framesﬂimnay not converge tcE{fl}.

This shows that using?; in (5.8) has the equivalent effect of usidt} in (5.21).

5.3 Noise properties

Since noise properties of an estimator depend on the spasialution properties in-
duced by the regularizer, we focus on the modified regulesittet provide approximately
uniform spatial resolution as explained in the previougisacIn this section, we assume
thatW,,, = Cov{y,,} ! for all m since it is a usual choice for PWLS reconstruction [22].
We also assume that all measuremeyptsor all m are independenige., Cov{fm, fn} =0
for all m # n. (This does not hold in parallel MRI due to coil couples, lmuteasonable

in most often tomographic imaging systems.)
5.3.1 Post-reconstruction motion correction

The covariance of the PWLS estimator of a single frafnﬁis straightforward from

(5.2) as follows:
Cov{fm} = [Fon + R ' Fyu[Fy + R, (5.52)
When we apply the modified regularizer (5.28)Ry,, (5.52) becomes
Cov{fm} = D(x,,) " QD(x,)", (5.53)

where

Qo £ [Fy + nRo) ' Fy[Fy + nRy| .



85

By imposing uniform spatial resolution, we have non-umfaroise variance (WheW,,, is
nonuniform) due tdD(x,,) . D(k,,) depends on the measurement covaridbsg y,, }.
Because we assume that all measuremgptare independent, the covariance of the

PMC estimator (5.4) is

M

> T Cov{ fin} T (5.54)

m=1

1

COV{ f PMC } W

M
= Y D(VTi1|)*)T1CoV{ fi} Tt DV T |})

m=1

because of (C.2). In our examplB)(

VT,..l;) = D(1/s2,;). When we apply (5.38) to

R,,, equation (5.54) can be approximated
M
~ 1 ~_1 ~—1
Covifenct = 775 > D[]/ 5m) 2 D([E ]/ $ms), (5.55)
m=1
wherei ! & Ty .60
5.3.2 Parametric motion model
The covariance of the PMM estimator (5.7) is
Cov{fosm} = [F. + 7R F.[F. + nRy .. (5.56)

When we apply (5.43) td?; and re-writeF, + nR;, then

M
F.+nRy =Y D(s,;)D(Ti ) (Fo+ nRo), (5.57)

m=1
wherex?, is a vector of the elements, 3. Therefore, (5.56) becomes

Cov{ fouu} = D(2) ' QD(2)™" (5.58)

where

M
7]; = J > 82Tk, 2.
m=1
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5.3.3 Motion-compensated temporal regularization
The covariance matrix of the MTR estimatﬁris
Cov{f.} = Hytn FaHyby. (5.59)

We study the limits of (5.59) as — 0 and{ — oo.

For( — 0, sinceHyrr — Fyrr Which is block-diagonal, (5.59) goes to

COV{fl}

Cov{f.,} — . (5.60)
] Cov{ fu} |
Thus,Cov{ furr} — Cov{fi} as¢ — 0.
For( — oo, (5.59) becomes
Cov{f.} = Te[F. + nR]'F.[F, + nR] T}, (5.61)
i.e., the covariance ofyrr goes to
Cov{furr} = [Fe + R 'F[F. +nR] . (5.62)

Assuming that eacli,,, uses (5.38), it is easy to show that

Cov{ furr} — Cov{form}
sinceR. in (5.62) is equivalent td?, in (5.56) when (5.38) is applied tR..
5.3.4 Comparison of noise properties in MCIR methods

The covariance of PMM (5.58) is the same as the covarianceld® fbr { — oo, as
expected becausfyrr — frumu as¢ — oo. However, the covariance of PMC (5.55)
has a different form. These two forms lead to two main diffees in terms of noise

performance.
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First, the covariance of PMM (5.58) is smaller than the carare of PMC (5.55) when
there are frames with significantly different noise levels.illustrate this point, without
the loss of generality, consider the effects of various @slofx .

As k, — oo, frame 1 has significantly better SNR than other frames aisdiésirable
to emphasize the information from frame 1. However, in tlaise; the covariance of PMC
(5.55) shows that

. 1 U 1 1
Covifemc} = M? mzz:z D(Smj [Em]j) QOD(SmJ [Em]j)
ask, — oo. Therefore,Cov{ prC} may not have zero covariance. However, since

v — o0 ask; — 0o, the covariance of PMM (5.58) becomes

COV{fPMM} — 0.

This shows thaprM automatically emphasizes the information from the mogirmfa-
tive frames.fyrr has the same property for— oo.

As k, — 0, the information from frame 1 is contaminated by extremesaoiln this
case, (5.55) shows that

COV{prc} — OQ.

A simple average is not effective at rejecting outliers. dmitast, ag:;, — 0,

M M
2y = 4| D 2 Mimsn )2 = | D 525
m=2 m=2

and the covariance of PMM still has a finite value. This shdved prM is less easily
contaminated by frames with poor statisti€%v{ fMTR} also has the same property for
large( value.

Secondly, the variance of PMM is lower than the variance ofPMoth PMM and
PMC covariances consist &2, matrix and diagonal matrices. We compare the vari-

ances of PMM and PMC by comparing such diagonal elements. nWileehaveb,, =
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soi[T1.mb,,) 3, thejth diagonal element of the PMM covariance is

o
>t b

and thejth diagonal element of the PMC covariance is

[£20]55,

1 &
WZE[QO]jj'

m=1

By Cauchy-Schwartz inequality,
M 2 M M
M? = (Z \/bm/\/bm> <D bw Y 1/bm,
m=1 m=1 m=1
which shows that

Var{ fexni} < Var{ fpnc}- (5.63)

Asmaet al. [5] also showed (5.63), but only for the unregularized caSmce we have
spatial regularization designed to approximately prowidéorm spatial resolution, we
can show (5.63) even for regularized case. PMC also can\attie same level of noise
performance since PMM is a weighted version of PMC as we stdaowgs.24). For MTR

estimator, the variance of it becomés { fuirr} — Var{ feam} as¢ — co.

5.4 Simulation results

5.4.1 Simulation setting

Figure 5.1 shows four image frames of a 2D object with knownioma(scaling, rotat-
ing and translating). The original image has 26A60 samples witl3.4mm pixel width.
We forward-projected these original images using the CTl BET scanner geometry /
detector response with 160 detector samples, 3.375 mmmgpak92 angular views, and
3.375 mm strip width. We used 250K mean true coincidencesdch frame (1M total)
with 10% random coincidences. We ignored attenuation smghmulation to see the effect

of the theory clearly because attenuation depends on ahject



89

4 images with known motion

—110.1

160

1 160

Figure 5.1: Fourtrue image framgs, . .., f, with scaling, rotation and translation. Three
impulses are placed at marks.

5.4.2 Spatial resolution matching

We computed the local impulse response (LIR) of each metladdonstructing im-
ages from noiseless projection data as suggested in [24]loWdted three impulses at
frame 1 ¢+ marks in figure 5.1) and warped the original image into eaamé&. Our target
full width of half maximum (FWHM) was 1.9 pixels.

Figure 5.2 (a) shows the LIR of PWLS 1 (circle) from a singkfie (separate) image
reconstruction with a conventionalin (5.28) at the hot region. This is our target LIR
for all three MCIR methods. Figure 5.2 also shows the LIR of@GiVii.e., PMM with
a conventionak in (5.28). It shows that a conventionalmay cause spatial resolution

mismatch due to scaling motion. However, LIR of the PMC witin modifiedx in (5.38)
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LIR on hot region LIR on hot region

O PWLS 1 (FWHM: 2.05)
- %- PMMo FWHM: 2.02)

O PWLS 1 (FWHM: 2.05)

0.4 PMCo (FWHM: 1.81) ||

0.4

— PMC (FWHM: 2.01) A PMM (FWHM: 2.01)
03 ] 03 PMMe (FWHM: 2.00)
0.2 8 ] 0.2 &
1 ' . [’ )\‘
0.1 ® ® : 0.1 B &
o & ® @ @/@ Q\%-A%-% —R--® of-& & - B & @“iﬁt‘{:’é\» DR B
46 48 50 52 54 56 58 46 48 50 52 54 56 58
(a) LIRs of PMC (b) LIRs of PMM

Figure 5.2: Profiles of LIRs at hot region. For (a), PWLS 1 @fra single frame and it is
the target LIR. PMCo uses a conventional stati®MC uses a proposed regularizer. For
(b), PMMo uses a conventionalof frame 1 multiplied by the number of frames. PMM
uses a proposed PMMe uses an equivalent regulariz@; from MTR.

can compensate for the spatial resolution mismatch. LIRstladr areas show almost
identical results.

Figure 5.2 (b) shows LIRs of PMM with three different regudars. All regularizers
show close matching with PWLS 1 within1 pixel error. PMMo performs very well
compared to other proposed regularizers. It seems that#dimg factor compensates for
the effect ofxs from other frames in (5.43), but PMMo only used a converaierof frame
1 multiplied by 4. However, with noise, PMMo may perform plyagince it estimates
from one frame, not from all frames as seen in (5.43).

Lastly, figure 5.3 (a) and (b) shows LIRs of MTR with differargtlues of(. MTRo
with a conventionak in (5.28) shows that there would be resolution mismatch due t
scaling ag increases. However, MTR with the proposed regularizer iBg§bshows that
LIRs are matching well withird).1 pixel error for different( values. It seems thgt= 1
is large enough to see the effectof~ co. We can also notice that PMMe in figure 5.2
(b) and MTR with¢ = 1 have the same FWHM (1.84 pixels). This result explains (.21

well.
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LIR on hot region

O PWLS 1 (FWHM: 2.05) O PWLS 1 (FWHM: 2.05)
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-/~ MTRo w/ 0.3 (FWHM: 2.00) -4 MTR w/ 0.3 (FWHM: 2.03)
0.3 MTRo w/ 1 (FWHM: 1.95) 0.3 MTR w/ 1 (FWHM: 2.03)
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0.2 ///%\\ 0.2 /ﬁ?i
//// A fl \l\.
0.1 B 8 0.1 $ 8
/ / \
/ \ / \
o8 2 % -8- @{ @’\\T& —R- R R (0] o 2 m\‘ﬁ\ R~ R —
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(2) MTR with (5.28)

46 48 50 52 54 56 58

(b) MTR with (5.38)

Figure 5.3: Profiles of LIRs at hot region. MTRo is with a contienal . MTR is with
the proposed regularizer (5.38).

5.4.3 Reconstructed images and variances

Figure 5.4 (a) shows an image that is reconstructed by (Eof) & single realization.
Since the measurement of one frame has a low photon courkj2B®as a poor quality.
Figure 5.4 (b) shows the result when we use all photon codmds, (but without motion
correction. Motion artifacts are observed in the resuligures 5.4 (c) and (d) show re-
constructed images of PMC and PMM. Compared to (a) and (i, @ and (d) show
improved image quality in terms of noise and reduction ofioroartifacts.

Figures 5.5 (a), (b) and (c) show reconstructed images of MitR different( values
(0.01, 0.3, 1). (a) looks similar to figure 5.4 (a), but a ditHetter becaus¢is not com-
pletely 0. As( increses, reconstructed images is getting closer to thdtresPMM in
figure 5.4 (c). Figure 5.5 (d) shows a reconstructed imageM¥IRvith R.. This looks
very close to reconstructed images of PMM wiiy and MTR for large(. In practice,(
does not have to bso, but{ = 1 is large enough relative to other terms in (5.11).

Lastly, figure 5.6 shows that the standard deviation of MCI&huds are lower than

the standard deviation of PWLS single frame reconstruction
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PWLS 1 SUM

12 1 12

0 160
1 160 1 160

(a) PWLS 1 (b) No motion correction
PMC PMM
| 1. Hu
0 160 0
1 160 1 160

(c) PMC (d) PMM

160

Figure 5.4: Reconstructed images from a single realizatjaphis a PWLS reconstructed
image from frame 1. (b) is a reconstructed image from all #arwithout motion correc-
tion. (c) is a PMC reconstructed image. (d) is a PMM recomsédiimage.

5.5 Discussion

We investigated three different MCIR methods and theirigpagsolution and noise
properties. Analyses show that MTR is equivalent to PMM as oo with given motion
and is also equivalentto PWLS 1 as- 0.

When we use MTR with given periodic motions, it is importaotrhake sure that
warps are transitive. Otherwise, we may have an additiooatlition for null space of
Ri.c, f1 = T, fm, which may not depend on (5.15).

This analysis can help to understand the joint estimatioblpm of image and motion
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MTR 0.01 MTR 0.3
| 1. Hu
0 160 0
1 160 1 160
(@) MTR with¢ = 0.01 (b) MTR with( = 0.3
MTR w/ 1 PMMe
1 | l. le
160 0 160 0
1 160 1 160
(c) MTRwith¢ =1 (d) PMM with R,

Figure 5.5: MTR reconstructed images from a single reabpatvith different(. As ¢
increases, it approached to a PMM reconstructed image webw@darizerR...

in each MCIR model. For example, since the Jacobian detamhivalues of estimated
deformations may change the spatial resolution propeities very important to have a
good motion prior in the joint estimation with MCIR methods.

We also showed that PMM and MTR (for largiare equivalent to PMC with special
weights for sum. It is important to be rigorous in terms oftistecal principle when we
model the reality to achieve better statistical propert®fdC can be a natural choice when
we have multiple reconstructed images, but PMM and MTR vathgé( shows that PMC
needs specific weights to achieve better noise propertytivtlsame resolution.

Lastly, spatial resolution analysis for MCIR methods isyvelnallenging in practice.
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Figure 5.6: Standard deviation (SD) of PWLS vs. SD of MCIR moefs. All MCIR
methods reduce SD compared to PWLS from a single frame.

There are many factors to consider, such as different measmnt matricesA,,,, blurring
kernel in each4,,,, different detector response for different size of objeatd so on. It is
also very challenging to deal with different motions, sustsealing with different rate in
each direction or shear motion. However, maintaining simvels of spatial resolution
for each frame, such as (5.38), and then applying post fijasiould be reasonable to use
in practice.

There can be many future directions for research in this.a®asigning a spatial
regularizer for uniform spatial resolution with shear nootiand with different regulariz-
ers other than quadratic penalty will be a challenging tdsktending this analysis with

unknown motion will be another interesting future work.



CHAPTER 6

Joint image reconstruction and nonrigid motion
estimation with motion invertibility regularizer 4

Medical imaging modalities such as PET, SPECT, CT and MRIigdeuseful patient
image information for diagnosis, treatment planning, artdrvention in clinical settings.
However, due to the innate limitation of medical imaging ralites in terms of acquisition
time and patient motion, there are some trade-offs betwpatias resolution and motion
artifacts. Gating methods based on breathing signals or Ei@als [63] can reduce
motion artifacts significantly, but can also reduce SNR Igcdiding potentially useful
data.

MCIR methods have been investigated to exploit all coliéctata and motion infor-
mation to improve the quality of reconstructed images witletter SNR and less motion
artifacts. Most of the methods incorporate nonrigid mofigto their image reconstruc-
tion models since human organ motion is nonrigid [50]. Motean be given from other
sources [30,44,52,53, 75] or be estimated from the coltedétea [35,57,99].

MCIR methods with given nonrigid motion are very useful amddrbeen researched
frequently. Many multi-modal imaging systems such as PHTdGd PET/MR provide low

resolution functional imaging and high resolution struatimaging. MCIR methods can

4This chapter is based on [14].
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be used to improve the quality of low resolution imaging aration can be estimated from
high resolution imaging such as CT or MR. Based on this sdnatmany researchers have
investigated MCIR methods with given motion mainly for PET/[52,53, 75]. However,
since PET/CT does not acquire PET and CT measurements amealisly, there can be
discrepancies between PET and CT motion [21, 59].

Joint MCIR methods have broad potential applications. Tiubie three MCIR meth-
ods described in Chapter 5, namely PMM and MTR, have beeustigated previously for
joint reconstruction/registration problems. Joint PMMsleeen investigated for PET [34—
37], CT [97-99], and MRI [69, 70]. Joint MTR has been also ddor SPECT perfu-
sion imaging [29-31] and emission computed tomography (HS,127,57]. However,
there has been little research on the performance analysipit MCIR methods. In
SR research, there are some efforts to seek the fundameniisl bf PMM [7, 54, 101].
Robinsonet al. used the Cramer-Rao (CR) bound to analyze the performanjenof
PMM, but it was limited to global translation motion [78, 79Ruan also used the CR
bound for the performance analysis of global translatiortiomoestimation and treated
images as nuisance parameters [82].

It may be beneficial to explore the estimates of joint MCIR moels with different
spatial and motion regularization parameters. Better tgtdeding of the joint MCIR
models may be helpful to attack the performance analysisiof MCIR methods. This
chapter provides some preliminary results for differemij®CIR methods with various
spatial and motion regularization parameter values. k aisestigates the joint MCIR
methods with different motion regularizers: a proposediaminvertibility regularizer in
Chapter 3 and a conventional quadratic motion regulariz4}. [These preliminary results
help reveal how different motion regularizers can affecagm estimates. We simulated

4D gated PET imaging with the 4D XCAT phantom [88]. The XCATaptom provides a
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tool to add lesions and we placed 4 lesions in different areas

6.1 Motion treatment in model-based image reconstruc-
tion

In this section, we briefly review different strategies focorporating motion in model-
based image reconstruction. We also review different MCtiRlels with unknown motion

and add motion regularizers to MCIR models.
6.1.1 Ungated image reconstruction

One possible approach to motion in model-based image recatisn is to ignore it

altogether. In this case, the measurement model is as fallow
Y. = Acfl + €

whereA, = [A] ... A),]'. Then, the PWLS estimator fgf; is

Fsom = argmin ||ly. — A fi |3, + ngzl|C1 A3 (6.1)

fi

Note that there is no motion estimation in this case.

6.1.2 Separate frame-by-frame image reconstruction

As the opposite extreme from section 6.1.1, one can reagisin image from each

frame that is motion-free:

The measuremeny,, can be collected over a short period of time or can be coliecte
during the same phase of periodic motion such as cardiacempiratory motion [62, 77,

109]. The estimateg,,, will have lower SNR tharnfsyy becausef,, uses less data.
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6.1.3 Post-reconstruction motion correction

The estimate (6.1) contains motion artifacts whereas (%a8) poor SNR due to in-
sufficient measurements. Using motion information in meuded image reconstruction
may improve the reconstructed image quality in terms of SNRmotion artifacts. Post-
reconstruction motion correction (PMC) is a straightforsvenethod that implements this
idea.

We denote a warp fronf,, to f,, asT,,, and assume thdk,, ,, is parametrized by

a,,, In (2.6). Then, the warp can be represented as
TmW = T(Qm,n)TO_lv

whereT}, £ T'(0). The PMC method estimates the motion parameter vector from
the reconstructed images:
&, ,, = argmin d(fy, T(glmﬂu}]—lfm) +nuRu(Qy,,), m=2,---, M
Qim
whered(-, ) is any metric to measure the distance between one image fierother.
We used the sum of squared differendg @orm), but other metrics such as correlation
coefficient [41] or mutual information [72,110] can also ksed. R, (-) can be an elastic
motion regularizer or one of the regularizers we proposechapter 3 and 4.
Then, the PMC estimator is the average of motion-correctéichators for individual

frames:

. 1 (. . L

Jevc = i <f1 + W;T(%,m)To_lfm) : (6.3)

Unfortunately, the motion estimatés, . . ., &,, are based on image estimayés. o fu

that may have poor image quality due to insufficient measargm
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6.1.4 Motion-compensated temporal regularization

By adding a motion regularizer to the cost function of MTR%n1(1), we have a joint

MTR estimate for image and motion as follows:

M
(frooo o Qgpse oo G y) = argmin Z Hym_Amme%Vm
17"'7f1V1792,17"'7Q]M,]M—1 m=1
M-1
Rl Con il + ¢ D | Fnr = T VT3 fonll3 + marRoaa )
MR mdJdml|2 m+1 Qm—i—l,m 0 ml|2 Ny em gm—i—l,m :
m=1

For periodic motion, we can modify the temporal regulai@atterm by adding| f; —
T(QLM)To_lfMH%-

This cost function combines image reconstruction costtions and image registra-
tion cost functions with a weighit We usually optimize this cost function by the alternat-
ing optimization scheme in section 2.2.1 for images and omotMotion estimates affect
the quality of image reconstruction via the motion-compged temporal regularization
term, which may improve the quality of reconstructed imaggsliscussed in chapter 5.
Image estimates also affect motion estimation performascgoint MTR improves the

estimates of image and motion in a joint fashion.
6.1.5 Parametric motion model

Joint PMM is simply the combination of the PMM approach in7§5and a motion

regularizer as follows:

M
(f1, 85, , Q1) = argmin Z lym — AmT(Qm,l)TO_lfln%Vm

flvg2,17"' YN 1 m=1

M
1l Cufills + e Y Rar(@)-

m=2

Unlike other MCIR methods in this thesis, the joint PMM penfig nonrigid image
registration using raw data,e., sinogram data in tomography. PMM uses a weighted

least square metric that measures the difference betweasumaments and the projection
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of warped images. A negative log likelihood can be used whart PMM uses maxi-
mum likelihood estimation instead of PWLS. Joint PMM usesdhernating optimization
scheme in section 2.2.1 and aims to improve the quality dfi baage and motion esti-

mates in a joint fashion.

6.2 Simulation results

We simulated 4D gated PET imaging with the 4D XCAT phanton].[88e spatial
sampling of images was 160 160 x 48 with 3.3 x 3.3 x 3.4 mm? voxel size. Original
images covered diaphragm and lung area. We genefdted8 images at equally-divided
respiratory phases during a 5 second breathing period. Weveed that there is no heart
motion to focus on respiratory motion correction. Figurg shows sagittal and coronal

views of exhale and inhale states for the XCAT phantom.

frame 1, sagittal x=65 frame 4, sagittal x=65
. . y 10 y . y 10
40 40
30 1 30
20 20 a
10 10 .
0 0
50 100 150 50 100 150
frame 1, coronal y=80 frame 4, coronal y=80
. . y 10 . . y 10
40 40
] ']
30 J:) 30
20 20
10 10 .
0 . . 0
50 100 150 50 100 150

Figure 6.1: Sagittal (TOP) and coronal (BOTTOM) views of XCphantom, frame 1
(exhale, LEFT) and frame 4 (inhale, RIGHT)

We placed lesions at 4 different areas (2 in right lung, 1 fhlleng, and 1 in liver)
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at frame 1. Each spherical lesion had a 10 mm diameter. Tlessens were moved
and stored by the XCAT phantom toolkit [88]. Figure 6.2 sha@wdifferent slices where
lesions are located at frame 1 (exhale status) and framehélérstatus). Depending
on the location of the lesions, they may appear in differéines because there is large
superior-inferior motion by diaphragm. We chose 4 rectdagareas to contain all lesions
as regions of interest (ROI). Our ROIs contain a total of 16Rels out of the image’s
1,228,800 voxels in different frames, which is only 0.0084Pthe total volume.

Generated gated images were projected using CTI 931 PETeacgeometry with 160
detector samples, 3.375 mm distance between detectoy t@flsangle views, 3.375 mm
strip width, and 10% random coincidences. We assumed thatititogram of each gated
image has 125,000 (125K) mean true coincidences and adlated sinograms contain
1 million (1M) counts total. We ignored the attenuation imsteimulation. The conju-
gate gradient (CG) algorithm was used for image reconstmiaptimization with 100
iterations. FBP reconstructed images were used as iniiafjes. CG was also used for
nonrigid motion estimation with 2-level multiresolutiomé 100, 200 iterations at each
level.

A quadratic spatial regularizer was used to reduce the ha@kenof PET imaging.
As we increase the spatial regularization parametgrwe can reduce the noise in re-
constructed images, but we also lose details in them. Fi§udlustrates that we need
to chooseny carefully to reduce the noise and to preserve fine detailb asclesions.
Figure 6.4 shows quantitative results for different spaigularization parameter values.
As we increase the spatial regularization parametgrthe norm of the difference be-
tween the true image and reconstructed images decreasegveilp as we can observe
in PWLS1M, a too strong regularization parameter may blerfthe structure of images

and increase the norm of the difference. We can observe maneadic results in the ROI
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TRUE 1, slices 23, 25, 33, 41

1 10
o () %,
160
73 9 “s
—4 0
1 160
TRUE 4, slices 17, 21, 33, 35
1 . 10
() 9,
160
%N Co
. Lo
1 160

Figure 6.2: Axial views of frame 1 (exhale) and frame 4 (id)dbr 4 lesions.

since it contains the large portion of fine details,, lesions. Note that ROI only occupies
less than 0.01% of total volume, but contributes 5.05% t6 2% of the total difference

norm. It seems that PWLS125K still benefits from using straglarization parameters
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PWLS 1, R =100, slice 25 PWLS 1, R = 500, slice 25
1 10 1 10

160 0 160 0

PWLS 1, R = 2000, slice 25
1 10

160 0
1 160

Figure 6.3: PWLS reconstruction with differemt: 100, 500 and 2000.
because of high noise.

6.2.1 Gated and ungated image reconstructions

Figure 6.5 shows reconstructed images by gated PWLS recatish with low count
measurements (one frame) and ungated PWLS reconstructibrhigh count measure-
ments (all frames). The top figure shows severe noise duewtacdmnts and it is not
easy to differentiate between lesions and noise. Imagetateican not be seen clearly.
The bottom figure shows severe motion blurs. Most lesionsmayadcardium structures
are blurred or placed at the wrong locations. These two el@srghow that utilizing all
measurements and compensating for motion are both negd¢esastain good quality re-

constructed images. Figure 6.6 shows a reconstructed imglgdM counts and without
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Figure 6.4: Norm of the difference between the true imagerandnstructed images with
different measurement counts and different spatial regaltion parameters.

motion. It shows all 4 lesions better than images in figure Btis figure may be a good
reference for the performance of all MCIR methods.

Table 6.1 shows the qualitative results of gated (PWLS126Kgated (SUM1M), and
oracle (PWLS1M) image reconstructions. PWLS125K has tighdst norm of differ-
ence between the true image and the reconstructed imageefgaime spatial regulariza-
tion parameter. SUM1M has superior noise reduction peréorce for all areas (All) but
PWLS125K shows lower norm of difference for ROI. This is afeef of gating, which
avoids motion artifacts. Because we use all measuremekts gthd avoid motion arti-
facts, we may be able to achieve the norm of difference clog@ 18 in PWLS1M as seen

in the Table 6.1.
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PWLS 1, R =500, slices 23, 25, 33, 41
1 : 10

160

1 160

PWLS SUM, R =500, slices 23, 25, 33, 41
1 ' 10

0 (@

160

1 160

Figure 6.5: PWLS reconstruction with 125K counts (withowttion) and 1M counts (with
motion). Slices 23, 25, 33, 41.

6.2.2 Post-reconstruction motion compensation

Joint PMC methods with a quadratic motion regularizer aredpfoposed motion in-

vertibility regularizer described in Chapter 3 were penfid in this simulation. Figure 6.7



106

PWLS 1 (1M counts), R = 500, slices 23, 25, 33, 41
1 ' 10

160

1 160

Figure 6.6: PWLS reconstruction with 1M counts, without rpt(frame 1: slices 23, 25,
33,41).

Table 6.1: Norm of difference for PWLS125K and SUM1M with ieaus spatial regular-
ization parameter values. Norms of a true image are 1581lygad 181.0 (ROI).

"R
Area| Method 100 500 1000 2000

PWLS1IM | 556.3 334.8 320.1 340.1
All PWLS125K| 1393.4 782.0 625.9 533.0
SUM1M 769.2 610.7 587.3 578.6
PWLS1IM | 478 60.1 71.7 839
ROl | PWLS125K| 103.5 84.9 88.2 95.3
SUM1M 106.6 110.6 114.8 119.3

shows PMC reconstructed images with a quadratic spatialagger () = 500) and mo-
tion regularizers (a motion invertibility penalty withy, = 10 and a motion quadratic
penalty withrn,, = 0.1). This figure shows the improvement of reconstructed image-q
ity compared to Figure 6.5 in terms of SNR and motion artgatlost lesions show higher
visibility, but reconstructing the lesion in the liver seerery challenging.

Figure 6.8 shows the estimated warps (slice 23) from an imag@ame 4 to an image
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PMCinv, R =500, M = 10, slices 23, 25, 33, 41
1 : 10

< 7,
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PMCqdr, R =500, M = 0.1, slices 23, 25, 33, 41
1 ' 10

D (D

160
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Figure 6.7: PMC reconstructiomg = 500) with invertibility penalty ¢, = 10, TOP)
and quadratic penalty){; = 0.1, BOTTOM) (frame 1: slices 23, 25, 33, 41).

at frame 1 with both a motion quadratic regularizer and a amtnvertibility regularizer.
The top left figure shows the estimated warp with a motion ritividity regularizer and

nyv = 10. As we increase),; = 1000, we can have a better regularity in the estimated
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warp as seen in the top right figure. Increasing the spatgilagization parametefz can
regularize the estimated warp better as shown in the botéfdtrfiure. Lastly, bottom
right figure shows the estimated warp with a quadratic motégularizer. Even though
this looks more smooth compared to other warps in FiguretBi8warp still contains 276
voxels of the negative Jacobian determinant values out288@0 voxels. This shows that
our proposed motion invertibility regularizer achievee tbcal invertibility of warps with

more flexibility.

PMCinv:4 to 1, R =500, M = 10, slice 23

PMCinv: 4 to 1, R = 500, M = 1000, slice 23

PMCinv: 4 to 1, R = 2000, M = 10, slice 23 PMCqdr: 4 to 1, R = 500, M = 0.1, slice 23

Figure 6.8: Warps that were estimated from individuallyorestructed images. Only bot-
tom right warp with quadratic penalty contains 276 pointmiefjative Jacobian determi-
nant value.

Table 6.2 shows the quantitative results of PMC with varimggilarization parame-

ters. The number of voxels that contain the negative Janateserminant values (NJD)
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shows that increasing spatial and motion regularizatiocrarpaters reduces the number
of negative Jacobian determinant values. In contrasteasing spatial and motion reg-
ularization parameters may not always decrease the norriffefethce between the true
image and the reconstructed image. Too large spatial regatimn parameter may blur
the details of images and too large motion regularizatioampater may allow insufficient
flexibility of warps so that it may cause a mismatch. The nofmiitference in ROl shows
this point clearly. The lowest norm of difference in ROl waehieved with not-too-large
spatial and motion regularization parameters.

In Table 6.2, PMC with the motion invertibility regularizéPMCinv) achieved its
lowest norm of difference 72.8 at ROI (622.0 at All) whepn = 100 andn,, = 10. PMC
with the motion quadratic regularizer (PMCqdr) achievedidwest norm of difference
73.9 at ROI (655.4 at All) wheng = 100 andn,; = 0.1. Note that NJD are 0 and 1279,
respectively. This shows that using the proposed motioertiblity regularizer has better
flexibility in terms of achieving local invertibility at edcvoxel with a similar level of
difference norm.

Tables 6.1 and 6.2 show that PMC achieves better norm oféifée at both ROl and
All areas than gated and ungated image reconstruction mgtfiche minimum norms of
difference for gated and ungated image reconstructionlaad ROI are 533.0 (All) and
84.9 (ROI). The minimum norms of difference for PMC with anptmon regularizer are
435.0 (All) and 72.8 (ROI), which are superior to gated angaiad image reconstruction.
However, because the nonrigid image registration in PMC pexformed with recon-
structed images from insufficient measurements, the acgwhiimage registration may
also be poor. Poor image registration hurts the performah&MC significantly. Joint
estimation of both images and motion may improve the perdmre and may achieve the

performance close to the results of oracle image recongiru(PWLS1M). The norms of
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difference for PWLS1M are 320.1 in All and 47.8 in ROI.

Table 6.2: Norm of difference (All, ROI) and the number of agge Jacobian determi-
nants (NJD) for PMC with various spatial and motion reguaation parameters. Norms
of a true image are 1581.7 (All) and 181.0 (ROI).

PMCinv MR

Area] ny | 100 500 1000 2000
0.1 [ 678.8 465.6 437.4 435.0
Al | 10 | 622.0 440.4 4248 430.4
1000 624.9 4347 4204 4315
01| 734 801 865 947
ROI | 10 | 728 784 845 941
1000| 82.8 86.8 93.5 102.0
0.1 | 9667 4538 2616 1126

NJD | 10 0 5 0 0
1000 O 0 0 0
PMCqdr MR

Area] ny | 100 500 1000 2000

0.01| 699.7 481.3 4479 440.3
All 0.1 | 655.4 446.7 4235 426.4
1 594.0 418.1 408.8 421.9
001 770 81.0 885 955
ROI | 0.1 | 73.9 752 840 946
1 774 826 919 99.7
0.01 | 51313 39431 29599 17422
NJD | 0.1 | 1279 276 28 0
1 0 0 0 0

6.2.3 Parametric motion model

The alternating optimization for joint PMM also was perf@adhwith respect to im-
ages and motion. FBP reconstructed images were used ad im#ges. Initial motion
estimates were obtained from FBP reconstructed images2alghiel multiresolution and
100/100 iterations for each level. Then, alternating mimation for joint PMM was per-
formed with 20 (image), 33 (motion), 20 (image), 33 (motid2) (image), 33 (motion),

and 40 (image) iterations.
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Figure 6.9 shows the PMM reconstructed images with a motieertibility regularizer
and a quadratic motion regularizer. Both reconstructiothmgs improved the quality of
reconstructed images and the lesion visibility compareghted and ungated image recon-
structions in Figure 6.5. Figure 6.10 shows warp estimat&MiM with different spatial
and motion regularizers. The top left figure shows the esathavarp withnz = 500 and
ny = 10. This warp shows large flexibility, but only contains 45 visxef negative Jaco-
bian determinant values in 7 mappings and 1,228,800 vorelegch mapping. Increasing
1y €an regularize the estimated warp better as seen in thegbpfigure. Unlike PMC,
the estimated warp of PMM does not seem to be regularized fmyafrcreasing the spa-
tial regularization parameter; as shown in the bottom left figure. It would be important
to analyze the relationship between image estimates andmegtimates of PMM since
accurate motion estimation is crucial for better perforoeaaf MCIR method.

Table 6.3 shows that increasing the spatial regularizgiBmameter)r causes the re-
duction of noise in general (All), but also blurs fine deta&il$gR0OI. Increasing the motion
regularization parameter,, provides locally invertible warps at more voxels, but aigo-|
its the degree of freedom in the estimated warps. This lafllexibility increases the norm
of difference in ROI for large motion regularization paraerevalues. Note that PMMqdr
with nz = 500 andn,, = 1 has 987 negative Jacobian determinant values. This is becau
a too strong motion regularization parameter sometimesesawarps be folded at the
boundaries of images. PMMinv shows the lowest norm of diffiee 63.3 at ROI, which
is close to 47.8 at ROI from PWLS1M. It is lower than PMC’s I@wv@orm of 72.8 at
ROI. A PMM method is very promising for obtaining good-qiyalieconstructed images
for ROI. However, note that the norm of difference for All i£&.9, which is higher than
PMC'’s 622.0 for All. Analyzing this trade-off between imagealities of PMM at ROI

and All would be an interesting future work to improve thefpemance of PMM image
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PMMinv, R =100, M = 10, slices 23, 25, 33, 41
1 : 10

160

1 160

PMMqdr, R =100, M = 0.1, slices 23, 25, 33, 41
1 ' 10

0. O

1 160

Figure 6.9: PMM reconstructiomfg = 100) with invertibility penalty ¢,, = 10) and
quadratic penaltyrf,; = 0.1) (frame 1: slices 23, 25, 33, 41).

reconstruction.



113

PMMinv: 1 to 4, R =500, M = 10, slice 23
PMMinv: 1 to 4, R =500, M = 1000, slice 23

PMMqdr: 1 to 4, R =500, M = 0.1, slice 23

Figure 6.10: Estimated warps of PMM with different spatiatianotion regularizers.

6.2.4 Motion-compensated temporal regularization

We performed the optimization for MTR in a similar way as PMMrst, we need
to determine¢ for MTR. As discussed in Chapter 5, having large€ @ important to
increase the correlation between estimated images so thetddn produce better quality
images. However, in the practical implementation, having large¢ may cause a slow
convergence in the optimization process. Figure 6.11 shibatgoo large; increases the
norm of difference in ROl because we set the maximum itematiomber 100 and the
image estimate did not converge. We chgse 1 for the rest of MTR simulation.

Figure 6.12 shows that the reconstructed MTR images areleésonoisy and less
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Table 6.3: Norm of difference (All, ROI) and the number of agge Jacobian determi-
nants (NJD) for PMM with various spatial and motion reguation parameters. Norms
of a true image are 1581.7 (All) and 181.0 (ROI).

PMMinv MR
Area] ny | 100 500 1000 2000

0.1 | 717.6 547.0 473.4 4475
All 10 | 7189 534.1 465.2 440.7
1000 | 680.7 503.0 445.8

01| 676 741 826 93.1
ROI 10 | 63.3 73.0 821 925
1000| 75.0 82.6 89.7

0.1 156
NJD | 10 | 243 45 12 29
1000 0
PMMqdr NRr

Area] ny | 100 500 1000 2000

0.01| 715.6 547.8 4725 4455

All 0.1 | 696.4 517.3 454.8 432.8
1 | 6857 530.2 4718

001| 665 744 824 932

ROl | 0.1 | 67.3 76.1 858 95.7

1 |1053 985 99.7

0.01 112
NJD | 0.1 66 0 0 0
1 987

blurred compared to gated and ungated reconstructed imadgegure 6.5. Figure 6.13
shows the estimated warps in MTR with different motion regizkers and their parameters.
The top left figure shows the estimated warp with motion itikéity regularizer ¢)z =
500, ny; = 10). Increasingn,, regularizes warps as seen in the top right figure, but
increasingnr does not seem to affect the regularity of motion much. Théobotright
figure suggests that the quadratic motion regularizer miyvakss flexibility than the
motion invertibility regularizer.

Table 6.4 shows that a too large spatial regularizationmatearn; and a too large mo-

tion regularization parameter,, increase the norm of difference between the true image
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Figure 6.11: Norm of the difference between the true imagkraoonstructed images with
different{ and different motion regularizers.

and the reconstructed image. This is because a too fgrgeay blur image details and
a too largen,; may reduce the flexibility of image matching. Note that MTRidnaery
small number of negative Jacobian determinant values coedga PMM or PMC. This
is because MTR uses the warps between adjacent image fraptebe warps between
frame 1 and framen.

The lowest norm of difference in MTR is 60.1 at ROI, which isgar to the lowest
norm of difference in PMM. However, the norm of differenceMTR for All (533.1)
is much lower than the norm of difference in PMM for All (713 ®hen each achieves
the lowest norm of difference at ROI. For this reason, Fighi@looks more noisy than
Figure 6.12. In Chapter 5, we showed that PMM and MTR have @h@esmage recon-
struction performance for given motion information. Simgetion estimation performance
may degrade the image reconstruction performance in jetimhation framework, this re-

sult may be explained by an image registration performamedyais in MCIR models.
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MTRinv, R = 100, M = 10, slices 23, 25, 33, 41
1 : 10
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MTRqdr, R = 100, M = 0.1, slices 23, 25, 33, 41
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Figure 6.12: MTR reconstructiom£ = 100) with motion invertibility regularizer,, =
10) and motion quadratic regularizey,¢ = 0.1) (frame 1: slices 23, 25, 33, 41).

This will be an interesting future work.
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MTRinv: 2 t0 3, R = 500, M = 10, slice 23

MTRinv: 2 to 3, R = 500, M = 10000, slice 23

MTRIinv: 2 to 3, R = 2000, M = 10, slice 23

MTRqdr: 2 to 3, R =500, M = 0.1, slice 23

Figure 6.13: Warps of MTR reconstructed images with difféigatial and motion regu-
larization parameters.

6.3 Discussion

In this chapter, we investigated MCIR methods in terms afitj@nage reconstruc-
tion and nonrigid motion estimation. Estimated images antion warps by each MCIR
method with different spatial and motion regularizers shew each regularization pa-
rameter affects the estimators.

All MCIR methods outperformed gated and ungated image istcoction in the lesion
areas (ROI) and the overall region (All). Motion estimatresults with the proposed mo-
tion invertibility regularizer and the quadratic motiorgrdarizer show that the proposed

method allows more flexibility of warps than a conventionahdratic motion regularizer
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Table 6.4: Norm of difference (All, ROI) and the number of agge Jacobian determi-
nants (NJD) for MTR with various spatial and motion reguation parameters (= 1).
Norms of a true image are 1581.7 (All) and 181.0 (ROI).

MTRinv MR
Area] ny | 100 500 1000 2000

0.1 |533.0 451.8 432.7
All 10 | 528.8 448.9 430.6 433.3
1000 | 517.5 4425 427.0
10000 442.1
01 | 611 735 835
ROI 10 61.0 726 822 926
1000 | 66.1 76.3 854
10000 82.0
0.1 0 0 0

NJD | 10 0 0 0 0
1000 0 0 0
10000 0
MTRqdr MR

Area] ny | 100 500 1000 2000

0.01 | 533.1 453.0 433.1

All 0.1 |515.7 4414 426.4 4324
1 525.7 451.7 434.9

001 | 60.1 73.0 833

ROI 01 | 681 793 884 975
1 788 84.9 90.8

0.01 | 28 13 0

NJD | 0.1 0 0 0 0

1 0 0 0

and discourages non-invertible deformations well.

There are several possible areas for future work. MoresgalPET simulation with
attenuation and scattering will be important to investgadtatistical analysis with more
realizations will reveal more statistically meaningfusudts in joint MCIR methods. The-
oretical and empirical analyses of the motion estimatiorigoeance in MCIR methods
such as Cramer-Rao bound may aid in improving the overalbpaance of MCIR meth-
ods in terms of images and motion. Observer study on the MDIR methods is also

important for the clinical purpose since it deals with ‘B&kslarm’ in non-lesion areas.
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We can investigate the motion estimation regularizationenas we add a temporal reg-
ularizer in PMM or add more constraints in nonrigid motiotimstion such as symmetric-
ity or transitivity of warps. Joint MCIR methods are usuatlymputationally demanding.
In our simulation, for total 100 iterations of image estirnatand 100 iterations of nonrigid
motion estimation (4 alternation), it took about 7 hourshwiit multi-threading. Imple-
menting a parallel scheme using graphical processing Gifit{) may make these methods

be more practical in the clinical setting.



CHAPTER 7

Conclusion

7.1 Summary

This dissertation addressed the issues of motion in MCIRelsodWe investigated
motion regularizations based on different motion priomsalgzed the spatial resolution
and noise properties of MCIR models with different motioodrporation models, spatial
regularization designs to provide uniform spatial resoluin the presence of motion, and
joint MCIR methods with different spatial and motion regudars for 4D XCAT simula-
tion and lesions.

Chapter 3 and 4 proposed motion regularizers that can beindd@IR models and
in general image registration. Chapter 3 proposed a suiticendition of local invertibil-
ity for deformations withnth-order B-spline bases. We also proposed a simple, fast and
memory efficient motion regularizer based on the propos#atgnt condition. Chapter 4
investigated the conflict of using both motion invertilyiliegularizer and tissue rigidity
regularizer near the diaphragm and the rib cage, sliding area. We proposed to relax
a motion invertibility regularizer by using a Geman-typ@&dtion so that we can correct
warped bones near the sliding area better and further matage intensity between de-
formed and target images. It also permitted discontinu@figrchation fields near sliding

area.
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Chapter 5 discussed different MCIR models with known nadrigotion. We dis-
cussed the relationship between different estimators faifferent MCIR methods. It
turns out that MTR converges to PMM estimator as we incréagaglues. We can also
match the spatial resolution of both PMM and MTR if we desilge tegularizers care-
fully. We also showed that PMC can be the same as PMM as PMGugsghted average.
We also developed a spatial regularization design to peouidform spatial resolution. It
allowed us to match the spatial resolution of one MCIR mettwdnother. Having the
same resolution is important to compare the noise propaofi® CIR models.

Chapter 6 investigated joint MCIR methods with proposedomanvertibility regular-
izer. Realistic 4D XCAT phantom and lesions were used foed&ET image reconstruc-
tion simulation. Our simulation showed that all MCIR metkaohproved image quality
in terms of SNR and reduces motion artifacts. We also obsdetivat the joint estima-
tion of motion such as PMM and MTR improves images in term®sidn visibility than
PMC. Our result also showed that our proposed motion inviéityi regularizer encour-
ages the local invertibility better in a noisy environmentiallows more flexibility than a

conventional quadratic motion regularizer.

7.2 Future work

The proposed motion invertibility regularizer encouragpesl invertibility of motion
in a fast and memory-efficient way. There are some applioatibat actually require us to
estimate inverse deformations. Combining consistent @magistration with the proposed
invertibility regularizer may improve the quality of estated deformations [12].

At the end of Chapter 3, we showed a lemma that gives a sufficiemdition that
may provide a larger set of local invertibility of motion. iBHemma contains many more

constraints than the proposed sufficient condition. Imgetimg image registration with
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many constraints in an efficient way will be both challengamgl interesting to see.

We proposed a relaxed motion invertibility regularizer tupe with the conflicts be-
tween using a motion invertibility regularizer and a tissiggdity regularizer. However, it
is important to investigate more on how to determine desayameters in a Geman func-
tion that may be patient-dependent. Another issue can bB-g@ine bases for motion
and motion discontinuity. Since B-spline bases have finifgsrt, they may be subopti-
mal for representing discontinuous deformations. Addngsthis issue in a more general
non-parametric motion estimation will be interesting.

We studied the spatial resolution and noise properties offi@ethods and proposed
a spatial regularization design to provide approximateiyfarm spatial resolution with
translation, rotation and local scaling of same rates imiaéictions. It will be desirable
to deal with motion such as scaling with different rates iffiedleént directions and shear
motion for spatial regularization design. Developing atgpaegularization design for
different imaging modalities, for more realistic systemdats that include blurring, and
with different spatial regularizers such as edge-presgrgpatial regularizers could be
future studies.

Moreover, more realistic PET simulation with attenuatiowl &cattering will be valu-
able. Applying to real PET measurements will provide valaaxperiments for clinical
settings. In our MCIR models, we did not take mass presemati radio activitity preser-
vation into account. However, it is well-known that the toteass and the total radioactiv-
ity are preserved. Investigating modified MCIR models withssi or activity preserving
warps will be important.

Joint MCIR methods usually take several hours for one setaafsurement data. How-
ever, it can be parallelized easily, so that implementimgt jpICIR methods with parallel

computations such as using GPU will be an important goal factcal use of these mod-
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els in the future.

Motion estimation schemes of MCIR models are different. PM&s maximum-
likelihood based motion estimation and MTR uses image tegisn based ori., metric
between two estimated images. PMC does not use joint mosemation. Comparing
the performance of motion estimation in different MCIR nath may be crucial to im-
proving the quality of joint MCIR estimates. Cramer-Rao j@Rund analysis for super-
resolution with global translation has been studied thghtyi[79]. CR bound study on
MCIR models with nonrigid motion is challenging, but it mappide valuable insights on
the performance of MCIR methods in terms of image reconstm@nd nonrigid motion

estimation.
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APPENDIX A

Algorithms and several gradients/derivatives

A.1 Conjugate gradient and step size

For the cost functioW’(z), we wantz € R" such that

min ¥ (z)

where

X1

1=
I

T,
To minimize ¥ (z) € C? for x € R™ by Conjugate Gradient method whet8 is a twice

differentiable function space, tlig¢h iterative process of the conjugate gradient method is
A A

where

& ~VU(zF) k=0

—VU(zF) + B k> 0.
There are many ways to determif®, but we use the Polak-Ribiere-Polyak method,

V() (VE(h) - VI(EY)
V\I,@k—1)T (k1)

g =
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and we set this variable zero when it becomes a negative nuibe our minimization
problem of¥(z) with respect taxr comes down to the minimization problem with respect
to,i.e,

min ¥(z) = min ¥(z* + vd").
v

T

So, multi-dimensional optimization problem becomes a i@ kearch problem. Since
this is one of the steps in the optimization procedurezfoiwe might not have to find an
exacty to minimize this cost function.

To determine the step size we use the first iteration of Newton’s method with the

initial v = 0,
(2% + 0d”
y=0— ——7= (z _k)
W(z* 4 0d")
where
dy
. 92U (zF + vdb)
k k _ £ %4
U(z" ++d") = 972 :

A.2 Gradients/derivatives of weighted least square with
motion

The weighted least square (WLS) data fitting term is
U(e,a) = |ly — AT ()e|l3y
where
T(0)] o i) = w(z + d(r; %) — i)w(y + d(r;a¥) — j)w(z + d(r; a*) — k)
andr = (z,vy, z). We assume that

d(r;a?) = Ba".
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The gradient ofl with respect to image is straight forward
VeU(c,a) = 2T(a) A'W (AT (a)c — y). (A1)

The gradient ofl with respect to motiom is

2B’diag {8xT(Q)C} AIW(AT(Q)C - ’y)
Volle.a) = | 2B'ding {0,T(a)e} AW (AT (a)c ~ ) (A-2)
| 2Bding {azT“(g)c} AW (AT(2)c—y) |

where

%

[0:T ()] (2y2), 150y = @ (x + d(r;0") —i)w(y +d(r; oY) — j)w(z +d(r; a%) — k)

[0,T()) oo, i1y = w (@ + d(r;0%) — i) (y + d(r;a¥) — j)w(z + d(r; o) — k)

o

0T ()] (eye).(ik) = w (2 + d(r;0%) — i)w(y + d(r;0Y) — j)w(z + d(r; o) — k)

andw(z) = dw(x) /0.

As we have search directions of imageand motiond, by CG respectively, the step
size of them can be determined as follows. B¢e+~d,., «), the first derivative of it with
respect toy aty = 0 is

U(c,a) = V.¥(c,q) - d, (A.3)
and the second derivative is
V(e,a) = AT (a)d, |3 (A.4)

For¥(c,a +vd,), the first derivative of it with respect tpaty = 0 is

U(e,a) =Vo¥(c,a)- | d (A.5)




128

where

Qx + ’Yc_lgz

e

gz + 'YC_igz
The second derivative is
_ T 112
Adiag {QET(Q)C} Bd,.
U(c,a) =2 Adiag {@T(g)c} Bd,,, (A.6)
Adiag {azT“(g)c} Bd,.
L - Jd 1w

where we approximate this equation by eliminating all theosel order derivatives for

9

T(«) since the second order values tend to be unstable in high f«8$
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APPENDIX B

Proofs of Lemmas for invertibility sufficient condition

B.1 Proofof Lemma 3.1

Proof. The global maximum and minimum values exist sinége is continuous on the
compact sef; x --- x Iy. Suppose that, - - - , xg) achieves the global minimum value

of |[J| andminl; < z;, < max [, for somek. Fix all z; exceptzy,

J| is an affine
function with respect ta;;, so|J| can achieve equal or better global minimum value on
eitherxz;, = min [, or ;, = max [. The same argument can be applied forakuch that
min /; < x; < max [; and thus it generates a contradiction. The same argumeriiecan

applied to the global maximum case. O

B.2 Proof of Lemma 3.2

Proof. By Lemma 3.1, we need to evalugle only onz, € {—k,, K.}, x4 € {—ky,, K},
xg € {—k,, K.} andz; € {—k,, k,} whereq; = zfori = 2,3, ¢, = y fori = 4,6 and
q; = zfori =7,8. Forfixedz; exceptry, |[J(x1)| = (1+21){(1+25)(1+x9) — 628} +C
wherec is a constant for; and (1 + z5)(1 + z9) — xexg IS always positive under given
conditions. Sar; = K, for max|J| andz; = —k, for min |J|. Similarly we determine:;

andzxg. For fixedz; exceptrs, |J(x2)| = xo{xsxr — (1 + x9)x4} + ¢ Wherec is a constant
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for x,.

= —k, if x4 = —k, andzy = k, if x4 = k,. In other words,
Toxy = kyk, for min |J|. Similarly, zoxy = —k,k, for max |J|. In this fashionyxszs and
xzx7 Will be determined fomax |J| andmin |J|. From these results, one can induce that

TaTeX7 + x3x42s = 0 for max |J| andzyxerr = xgranrs = —kykyk, for min |J|. O

B.3 Proof of Lemma 3.3

Proof. Ford(z) = Y, ¢;"(x/m,—i), by usingZ " (z) = g" ' (z+1/2)— 3" (z—1/2)
in [106]

%d(x) = ZCZ ﬁ" (x/mg — 1)
= Z<cz- — e )B @ fme — i+ 1/2)/m,.

Using the constraints,, < o/, ;, —a,, < by and the propernty, 3" (v/m, — i) = 1,

we have the bounds

0
%dq( r) = Z(ag,j,k - ag—l,j,k)ﬁn_l(x/mx —i+1/2)

Z7j7k

< by /g Zﬂ"‘l(x/mz —i+1/2)
D B y/my =)D B (z/m. — k)
j k

Similarly, %dq(f) > b,,/m,. The other directiong, =z can be proved similarly. O
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B.4 Proof of Lemma 3.5

Proof. For 2D Jacobian determinant we use the same B-spline prepantthe proof of

Lemma 3.3
0 0 0 0
J=(14—d" 1+ —d — —d’(r)=—d"
9= (1 e ) (1 () — () o)
_ZZ{ Z+1] ai])(l_i_ OZ?’]""l af’llvjl>_
Y my
1,5 i',j
’i-‘rlj OK O[Z/]/+1 Of/

L1/ m, =i+ 1/2)

My My

B"(y/my — 5)B"(x/my — )" y/my — 7+ 1/2).

B z/my —i+1/2)"(x/m, —i) =0fori’ <i—n+1ori >i+nandf"(y/m, —

7B Hy/my, — 3 +1/2)=0forj’ <j—norj >j+n—1.3Dcaseissimilar. O
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APPENDIX C

Proofs of properties for warps.

C.1 Adjoint operator of 7

Assume that we have a continuous operdtarX’ — X whereX is the set of images
over the domaiR™. Assume that we have imag¢sc X andg € X and thaty = 7 f.
We define a transformatidfi such thay(x) = (7 f)(x) = f(T(z)), z € R". We assume
that7 : X — X is invertible.

Adjoint operatorZ’ of an operatofZ is defined as follows:

(9. Tf)=(f.T'g)

where(, ) denotes an inner product. Here we use the uswyahner product. By a simple

change of variable, we can get

(0. Tf) = / 9(2)(T f)(@)de
- / 9(2) f(T())dz
1 -1
= f(y)WQ(T (y))dy

= (f,T'g)

wherey = T'(x) and|VT(T~*(y))| is the determinant of Jacobian matrix6f We define
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an operatofD such that

Then, the adjoint operatdr’ is given by
T =T 'Dy. (C.1)

Therefore, in continuous space, the adjoint of an investitnrigid warp is the product of
the inverse of the warp with a diagonal operator based onabebijan determinant of the
warp.

Now we apply this result to the discrete space operalors considered in (2.10).

Using (C.1), we approximate the transposdhf, as follows:

! ~ -1 3: 1 ~ : 1
T, ,~ T, diag {7|va,n|j } ~ T, ,diag {7|VTm,n|j } ) (C.2)
C.2 Uniform spatial resolution for 2D linear transforma-

tion

The continuous-space analogue of the uniform spatial uésal system (5.33) com-
bined with a linear transformatidh and an inverse transformati@n ! can be represented

1y 1/lp|
4 QD(UI/)HW(/)@)) d (€3)

wherep = +u? + v? in the frequency domaiitu, v), Q is a Fourier operator, and

corresponds to the linear transform

a b T
T(x,y) =
c d Y

As we assume that we have an input functitfx, y) such that its Fourier transform
F(u,v), itis easy to show that the Fourier transform/fdf’’(z, y)) would be

1

WF(T_ (u,v)).
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Therefore, the equivalent local frequency response f@)(@ould be

1/1¢] 1
= - (C.4)
1/1p' +nR(p, ®) 1+ n[p/|R(p, )
where|p’| = [|T'(u, v)]]2.
We would like to modify a regularizeR (-) so that
10| R(p, ®) = (27)*(p)°. (C.5)
For a quadratic spatial regularizer, we can rewrite (C.5pHews:
~ 2
T (u,v)]|, <du2 + buv + 62}2) ~ (27m)% (u? + v?)>3, (C.6)

Therefore, the problem becomes to determine three freemseasa,b andé to approxi-
mate (C.6) which requires matching seven different termsguRarizer designs to match
the desired local impulse responses have been well-stuidi&thi et al. [89]. Similar

technique can be applied to our problem.
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