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ABSTRACT

MOTION ASPECTS IN JOINT IMAGE RECONSTRUCTION AND
NONRIGID MOTION ESTIMATION

by

Se Young Chun

Chair: Jeffrey A. Fessler

Many medical imaging applications often require relatively long image acquisition

times to form high-SNR images. However, long scan times can lead to motion artifacts.

Conventional acquisition and reconstruction methods mustsacrifice enough measurements

for less motion artifacts or vice versa.

Motion-compensated image reconstruction (MCIR) methods use all collected mea-

surements, but reduce motion artifacts by incorporating motion information into the image

reconstruction framework. Several motion incorporation schemes in MCIR have showed

superior performance over image reconstruction methods without motion information.

However, there has been little research that emphasizes themotion aspects of MCIR. This

dissertation addresses a few issues of MCIR methods in motion aspects.

First of all, we investigated methods for motion regularization. The usual choice for a

motion regularizer in MCIR has been an elastic regularizer.Recently, there has been much

research on regularizing nonrigid deformations with two different motion priors. Conven-

xiv



tional methods that enforce deformations to be locally invertible require high computa-

tional complexity and large memory. We developed a sufficient condition that guarantees

the local invertibility and proposed a simple regularizer based on that sufficient condi-

tion. Using both motion invertibility and rigid motion priors may cause conflicts near the

diaphragm and the rib cage. We relaxed our motion invertibility regularizer to reduce un-

desirable bone warping yet better match the image intensities between deformed and target

images and permits discontinuous deformations near the sliding area.

Secondly, we studied the statistical properties of MCIR, showing that all MCIR meth-

ods are closely related to one another. This study also showed how motion affects the

spatial resolution and noise properties of MCIR. We designed spatial regularizers to pro-

vide approximately uniform spatial resolution for MCIR. These regularizers enabled dif-

ferent MCIR methods to approximately have the same resolution. Noise properties were

compared based on these regularizers.

Lastly, we investigated joint image reconstruction and nonrigid motion estimation with

different spatial and motion regularizers and regularization parameters. We performed a

4D PET simulation with lesions. Most MCIR methods produced better-quality images

with better SNR and less motion blur. The proposed motion invertibility regularizer al-

lowed more flexibility of deformation estimates compared toa conventional quadratic mo-

tion regularizer.
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CHAPTER 1

Introduction

1.1 Spatial/temporal tradeoff in image acquisition

When we take a picture of people we usually ask them not to move. We also try not

to move when we push the shutter button of a camera. However, we do not worry about

being completely still - whether we take photos or pose for them - because we can adjust

the shutter speed of the camera. By using a fast shutter speed, we can reduce motion blur

and get clearer pictures, as illustrated in Figure 1.1.

However, there are situations that require slower shutter speeds. Figure 1.2 shows

photos taken at night. Since there are fewer photons that a camera can collect, longer

exposures are needed for better quality photos.

These two examples illustrate the spatial/temporal trade-off in image acquisition. A

faster shutter speed is essential to avoid motion blur (hightemporal resolution), but it may

not collect enough photons (low SNR). On the other hand, a slower shutter speed allows

enough time to collect photons (or measurements) for a better quality of images (high

SNR) but is prone to motion artifacts (low temporal resolution). Figures 1.1 and 1.2 show

1“Shutter Speed - Everything You Wanted to Know but Thought itWas Uncool to Ask” at
http://www.idigitalphoto.com/shutter-speed-explained/

2“Shutter speed in Greenwich” taken by Aram Dulyan.
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1/8 sec

(a) 1/8 sec

1/30 sec

(b) 1/30 sec
1/60 sec

(c) 1/60 sec

1/500 sec

(d) 1/500 sec

Figure 1.1: Photos with different shutter speeds, illustrating motion artifacts1.

fortunate cases since there are ways to overcome the limitations in these situations: one

has plenty of photons while there is motion, and the other hasno motion while there are

not many available photons. However the worst situation mayhappen,i.e., not only having

the motion of subjects but also insufficient measurements. Unfortunately, many medical

imaging applications fall into this category.

1.2 Limitations in medical imaging modalities

Many medical imaging modalities have been used in clinical settings successfully to

improve patient care. However, there are also many application areas where medical imag-

ing modalities cannot capture good quality images due to their innate characteristics of

image acquisition speed and patient motion.
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Figure 1.2: Photos with different shutter speed to overcomeinsufficient measurements2.

The gantry speed of X-ray computed tomography (CT) is usually 330-400 milliseconds

(ms) per rotation [98]. This is enough to acquire a thorax/abdomen image without motion

blur as patients hold their breath (usually no more than 20 seconds). However, for cardiac

studies, heart-beat rates are usually as fast as 90 or 100 beats-per-minute (bpm), but it

usually takes 5-10 seconds to cover the entire heart. Therefore, cardiac CT must deal with

heart motion. Another issue related to CT image quality is radiation dose. It is desirable to

use a low dose in CT for the safety of patients. However, in some cardiac CT scans, only

part of the dose (measurements) is used for imaging. To reduce dose, CT should collect

fewer measurements and avoid motion blur.

Positron emission tomography (PET) collects gamma rays from radioactive materials

that were administered to patients and uses them for imaging. However, PET usually
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requires 3-7 minutes to acquire images per bed position or for each field of view [64].

Since the human breathing cycle is usually about 5 seconds, PET images can have heart

motion artifacts as well as respiratory motion artifacts.

Magnetic Resonance Imaging (MRI) collects k-space data, but each k-space readout

in short TR scans usually takes a few milliseconds (ms) [70].Since it can take seconds to

scan the full k-space for a 2D slice, cardiac and abdominal imaging may contain blurring

and ghosting artifacts. This innate limitation of a MR imageacquisition restricts the spatial

and temporal resolution of MR imaging [91].

There are many medical applications with different imagingmodalities that require

long image acquisition times for better-quality images while patient motion is inevitable

during the scan. Therefore, a proper strategy to deal with motion is crucial for these

applications.

1.3 Strategies for motion in medical imaging

There are several ways to treat motion in medical imaging [64]. One way is to ignore

motion and reconstruct an image from all measured data [59].Figure 1.3 (c) shows an

example of penalized weighted least square (PWLS) PET imagereconstruction with all

1 million (M) counts from 8 motion phases, without motion compensation. In comparison

to the true image in Figure 1.3 (a), it exhibits blur near the diaphragm and heart areas due

to motion. This ‘ungated’ image reconstruction method is used frequently in clinical PET

imaging.

For periodic motion, one can “gate” measurements accordingto motion, i.e., to col-

lect partial data at the same phase of heart or respiratory motion. Figure 1.4 illustrates

respiratory gating with 8 gates. A gating method aggregatesmeasurements at the same

phase of motion to reduce motion artifacts. However, gatingreduces SNR since it discards
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Figure 1.3: PWLS reconstructed PET images with different measurement counts and
with/without motion (Coronal views of 3D images).

data (7/8 of the total measurements in Figure 1.4). Figure 1.3 (b) shows an example of

the reconstructed image with 1/8 of measurements,i.e., 125 thousand (K) counts, out of

1 million (M) counts. Gating reduces the blur near the diaphragm, but it also produces a

low SNR image. This ‘gated’ image reconstruction has been investigated for many dif-

ferent medical imaging modalities such as PET [40, 62, 109],CT [10, 77], SPECT [71],

and MRI [3]. Gating is based on signals such as an electrocardiogram (ECG) [3], video-

camera based motion detectors [62], pneumatic respiratorybellows [45], and collected

data itself [39].

Temporal relationships between image frames can be exploited to improve image qual-

ity by using 4D models for image sequences and temporal regularizers [49,67]. Note that
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Figure 1.4: An example of a respiratory gating. A gating method only collects measure-
ments at the same phase of motion (shaded areas).

these methods may not use any explicit motion deformations.

Motion-compensated image reconstruction (MCIR) is a method to exploit all measure-

ments with motion information so that one may achieve both better signal-to-noise ratio

(SNR) and less motion-blurring [5, 6, 14, 19, 29, 35, 46, 52, 53, 57,69, 75, 100, 103]. In this

way, we can obtain the advantages of both gated and ungated methods. Figure 1.3 (d)

shows an ‘oracle’ reconstructed image that uses all measurements (1M counts) and elim-

inates motion artifacts by using a perfect model. This figureshows the ‘gold standard’

of a reconstructed image and illustrates that using motion compensation can improve the

image quality. MCIR methods are the focus of this dissertation.

1.4 Contributions of this dissertation

MCIR methods have been investigated to improve the reconstructed image qualityand

to reduce motion artifacts. Many medical imaging applications with different imaging

modalities can benefit from them. Since most medical imagingmodalities in some ap-

plications have suffered from insufficient measurements and motion artifacts due to their
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long image acquisition time, MCIR may aid in improving the reconstructed image quality

in terms of SNR and motion blur [14, 35, 52, 53, 57, 75]. MCIR methods can also im-

prove patient care as they can reduce an unnecessary scanning time or a harmful radiation

dose [100].

Recently many different MCIR models have been proposed and investigated [25, 34,

35, 46, 57, 114] not only in medical imaging research, but also for super resolution (SR)

research. They improved the quality of reconstructed images significantly compared to un-

gated and gated image reconstruction methods. However, there are also many unanswered

questions about MCIR methods.

First of all, how can we obtain reasonable nonrigid motion estimates? Many medi-

cal imaging applications require nonrigid motion information since human organ is non-

rigid [50]. However, estimating nonrigid motion isill-posed [18] and usually requires

motion priors to regularize. Even though nonrigid image registration methods have been

investigated extensively [18], not many have been used in MCIR methods. The usual

choice for motion regularization in MCIR has been a quadratic or an elastic penalty [35,

52, 53, 57, 75]. This dissertation proposes two kinds of motion regularizers. One is a mo-

tion regularizer that encourages local invertibility of deformations [13–15]. This method

is fast and memory-efficient, so it is suitable for MCIR methods, which usually involve

more than two image frames. Some medical imaging modalitiessuch as CT provide in-

direct information about tissue rigidity that can be used asa motion prior since we know

that rigid tissues such as bone can only move rigidly. However, such rigid motion pri-

ors may sometimes cause conflicts with priors on the smoothness or the local invertibility

of deformations. This dissertation proposed a method to relax our proposed motion in-

vertibility regularizer so that it can be used with a rigid motion regularizer without such

conflicts [17].
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Secondly, among many MCIR models which ones should we choose? MCIR models

differ in terms of how they incorporate motion information into the image reconstruction

framework. Even though they have been well-studied separately, there has been less at-

tention to comparing different MCIR methods. Asmaet al. compared two different MCIR

models, but the analysis used a conventional kappa approximation [24] for the noise com-

parison so it was limited [5]. This dissertation compares three different MCIR models

for the regularizedcase. Since MCIR methods experience resolution changes fornon-

rigid motion [96], it is important to match the spatial resolution of MCIR methods. For

given motion, we extend a regularization design for uniformspatial resolution [24] to

three different MCIR models. Based on the spatial regularization designs, we compare the

statistical properties of MCIR methods [14,16].

Lastly, what would happen to joint MCIR methods with different motion regularizers?

Our theoretical comparison of different MCIR methods in this dissertation is limited since

we assume given nonrigid motion. Analysis based on known motion is still useful since

there are many multimodal imaging applications where we canobtain motion information

separately such as PET/CT [53, 75] and PET/MR. However, there are also many appli-

cations with unknown nonrigid motion so joint MCIR methods are necessary to estimate

motion information simultaneously. In SR problems, there has been some research on the

performance analysis with unknown global translation motion [78, 79]. Even though it

would be very beneficial to analyze the theoretical performance of MCIR, it is very chal-

lenging to deal with nonrigid motion in this analysis. As an initial step, this dissertation

reports a simulation comparison of MCIR methods with different motion regularizers [14].

1.5 Outline of the dissertation

This dissertation investigates the motion aspects of MCIR models.
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Chapter 2 describes a mathematical framework for incorporating motion models in

medical imaging. Three existing MCIR models are considered: post-reconstruction mo-

tion correction (PMC) [34, 46], motion-compensated temporal regularization (MTR) [57,

114], and a parametric motion model (PMM) [25,35],

Chapter 3 investigates sufficient conditions for ensuring the local invertibility of esti-

mated deformations and proposes a fast and memory-efficientmotion regularizer based on

them [13, 15]. We compare this proposed method to a conventional Jacobian penalty [41,

47].

Chapter 4 elaborates on resolving conflicts between a proposed motion invertibility

regularizer [15] and a rigid motion regularizer of rigid tissues [56, 84, 93] near the sliding

area of the diaphragm. This chapter proposes to relax a motion invertibility regularizer by

using a Geman-type function [17,26].

Chapter 5 compares the statistical properties of differentMCIR methods with known,

but possibly nonrigid, motion. Spatial regularizers for different MCIR methods are pro-

posed to approximately provide uniform spatial resolution[16], extending [24].

Lastly, Chapter 6 shows preliminary simulation results of joint MCIR methods with

XCAT 4D phantom images and lesions [88]. We compared MCIR methods with the pro-

posed motion invertibility regularizer and with a conventional quadratic motion regular-

izer [14].



CHAPTER 2

Motion-compensated image reconstruction models

In the previous chapter, we reviewed strategies for dealingwith motion artifacts in

medical imaging. This chapter provides mathematical formulae for these strategies, that

will be used for the rest of this dissertation. Ungated and gated image reconstruction mod-

els and their cost functions will be presented. Three existing MCIR models and their cost

functions will also be listed. The models of this chapter aregeneral enough to represent

different medical imaging modalities, but more specific assumptions will be made in other

chapters when necessary.

2.1 Mathematical models

2.1.1 Measurement model

Let tm denote the time of themth “scan,” i.e., the mth frame in a gated study or

in a video sequence. We assume that the measurements are related to the objectfm =

{f(·, tm)} linearly as follows:

ym = Amfm + ǫm, m = 1, . . . , M (2.1)

whereym denotes the measurements for themth frame,Am denotes the system model for

themth frame ,ǫm denotes noise, andM is the number of gates or frames. We assume

10



11

that the objectfm and measurementym are motion-free,i.e., the object does not move

during themth scan (gate or frame). We allow the system modelAm to possibly differ for

each frame to accommodate systems that rotate such as gated SPECT or CT or that can

otherwise change sampling properties dynamically such as MRI. We can also assume that

Am = A0, ∀m for cases such as an attenuation corrected PET scan or a videosequence.

2.1.2 Deformation model

In this thesis, we usenth-order B-spline based deformations for our theoretical results

in Chapter 3 and 4. We use cubic B-spline based motion for all simulations involving

motion estimation in Chapter 3, 4 and 6.

A 3D nonrigid transformationT : R
3 → R

3 can be written

T (r) = r + d(r), (2.2)

wherer = (x, y, z) andd(r) is the deformation. We model the 3D deformation (or dis-

placement)d = (dx, dy, dz) using a tensor product ofnth-order B-splines as follows:

dq(r; α) =
∑

ijk

αq
ijkβ

(

x

mx
− i

)

β

(

y

my
− j

)

β

(

z

mz
− k

)

, (2.3)

whereq ∈ {x, y, z}, mq is knot spacing in theq direction andβ is anth-order B-spline

basis.

2.1.3 Image interpolation model

We parametrize the objectfm(r) , f(r, tm), for r ∈ R
3, with a basis functionω as

follows:

fm(r) =

K
∑

k=1

cmkω(r − lk) (2.4)

whereK is the number of basis functions andlk ∈ R
3 is the center of thekth basis

function.



12

Then, for a warpr 7→ r + d(r; α) that is parameterized byα, a warped version of the

imagefm can be represented as

fm(r + d(r; α)) =

K
∑

k=1

cmkω(r + d(r; α) − lk) . (2.5)

For convenience, we rewrite (2.5) in matrix-vector notation. Letcm = (cm1, . . . , cmK) de-

note a vector of the image coefficients for themth frame, andfm = (fm(r1), . . . , fm(rN))

denote a vector of a discretization offm(r) with N samples at locations{rn}. Then a

warped image vector{fm(rn + d(rn; α))} can be represented in the matrix form

T̆ (α)cm (2.6)

where theN × K warping matrixT̆ (α) has elements

[T̆ (α)]nk = ω(rn + d(rn; α) − lk) . (2.7)

In our simulation, we used a tensor-product of cubic B-spline image bases forω, with

lk = rk.

We assume thatd(rn; α) is defined by the B-spline deformation model (2.3) in some

chapters. However, the analysis in Chapter 5 does not assumeany motion model for the

given nonrigid motion information. For simplicity, the model (2.5) ignores any intensity

changes due to local volume changes.

2.1.4 Warp model

For notational convenience, we define a warpT̆j,i from the coefficients of imagefi to

the imagefj based on the vector-matrix notation (2.6) as follows:

fj = T̆j,ici, i, j = 1, · · · , M. (2.8)

For applications with periodic motion, we can additionallydefinefM+1 , f1 andT̆M+1,M ,

T̆1,M . We also denote that

T̆0 = T̆i,i, i = 1, · · · , M. (2.9)
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For some parts of our analysis, we use the image to image warpTj,i defined such that

fj = Tj,ifi, i, j = 1, · · · , M. (2.10)

This matrix can be approximated by

Tj,i ≈ T̆j,iT̆
−1
0 (2.11)

where usingT̆−1
0 suffices to chooserk = lk and T̆−1

0 with B-spline basesω are well-

defined [105,106].

For some parts of the analysis, we assume that the given warpsTj,i are invertible,

symmetric and transitive,i.e.,

T−1
j,i = Ti,j , ∀ i, j (2.12)

Tj,i = Tj,j−1Tj−1,j−2 · · ·Ti+1,i, ∀ j > i. (2.13)

We let |∇Tj,i| denote the determinant of the Jacobian matrix for the transformationr +

dj,i(r; α) in (2.7) for notational convenience.

2.2 Motion-compensated image reconstruction

2.2.1 Cost function and optimization

Cost functions for MCIR methods usually contain measurementsym, unknown images

fm, and known or unknown motion parameterized byαm. A typical form of the cost

functions for MCIR methods is

Ψ(y1, · · · , yM |f1, · · · , fM , α1, · · · , αM). (2.14)

In this thesis, we use the Conjugate Gradient (CG) optimization method to mini-

mize (2.14) with respect tof1, . . . , fM , α1, . . . , αM . We use an alternating minimization

method that minimizes (2.14) with respect tof1, . . . , fM andα1, . . . , αM alternatively,
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i.e.,

start loop

(α̂1, · · · , α̂M) = argmin
α

1
,··· ,αM

Ψ(y1, · · · , yM |f̂1, · · · , f̂M , α1, · · · , αM)

(f̂1, · · · , f̂M) = argmin
f1,··· ,fM

Ψ(y1, · · · , yM |f1, · · · , fM , α̂1, · · · , α̂M)

end loop.

The loop is repeated until the estimates “converge”,i.e., change less than some small

threshold between subsequent iterations. The step size in the CG method is determined by

the first step of Newton’s method. See Appendix A for details.

2.2.2 Motion-compensated image reconstruction models

We investigated three different types of MCIR methods in this dissertation: post-

reconstruction motion correction (PMC) [34, 46], parametric motion model (PMM) [14,

25,35,52,53,75,100] and motion-compensated temporal regularization (MTR) [57,114].

Here we explain how each MCIR method alters (2.14).

PMC decouples images and motion in (2.14) as follows:

M
∑

m=1

Ψ1(ym|fm) (2.15)

Ψ2(f̂1, · · · , f̂M |α1, · · · , αM). (2.16)

We assume that measurementsym are independent from each other.Ψ1 is a cost function

that estimates an image for each gatefm from each measurementym. The gated image

reconstruction estimator̂fm will be applied to the cost functionΨ2 that estimates warps

T1,m from mth frame to1st frame. We chose frame 1 for PMC image reconstruction

without loss of generality and a warpT1,m depends on some parametersαm. Therefore,
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the PMC estimator becomes an average of the warped estimatedimages from all frames:

f̂PMC =
1

M

M
∑

m=1

T̂1,mf̂m

whereT̂1,m depends on̂αm.

PMM substitutesfm with Tm,1f1 in (2.14) whereTm,1 depends onαm. Therefore, the

PMM cost function becomes

Ψ(y1, · · · , yM |f1, α1, · · · , αM). (2.17)

The cost function (2.15) does not depend on motionαm. We could estimate images and

then motion sequentially. In contrast, the estimator of an imagef̂1 in (2.17) depends on

the estimator of motion̂α1, · · · , α̂M and vice versa. Therefore, images and motion have

to be estimated simultaneously.

Lastly, MTR decouples motion parameters and measurements in the cost function

(2.14) as follows:

M
∑

m=1

Ψ1(ym|fm) + Ψ2(f1, · · · , fM , α1, · · · , αM). (2.18)

SinceΨ2 in the MTR cost function couples images and motion, images and motion have

to be estimated simultaneously just like the PMM case. A typical choice forΨ2 is

ζ

M
∑

m=1

‖fm+1 − Tm+1,mfm‖2
2

whereTm+1,m depends onαm.

A MCIR cost function (2.14) can be simplified according to each MCIR method. Chap-

ter 5 studies the relationship between different MCIR estimators with given motion. Chap-

ter 6 compares different MCIR methods in joint image reconstruction and nonrigid motion

estimation by simulations. The analyses in Chapter 5 aid theunderstanding of the results

with more complicated joint MCIR models.
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2.2.3 Regularizers

Estimatingf1, . . . , fM , α1, . . . , αM from y1, . . . , yM based on a cost function (2.14)

is usually highlyill-posed. One of the typical ways to resolve this issue is to introduce

regularizers for images and motion:

Ψ(y1, · · · , yM |f1, · · · , fM , α1, · · · , αM) + ηRRR(f1, · · · , fM) + ηMRM(α1, · · · , αM).

(2.19)

A motion regularizerRM is usually based on motion priors such as smoothness of

warps, motion invertibility, tissue rigidity and so on. Chapter 3 and 4 describe two mo-

tion regularizersRM based on two different motion priors: motion invertibilityand tissue

rigidity/sliding. They can also be used for general image registration problems.

A typical spatial regularizer is a quadratic regularizer based on the assumption (or

image prior) that the image is smooth. Nonquadratic spatialregularizers are also fre-

quently used to preserve edges. The spatial resolution properties of an image reconstruc-

tion method depend on the relationship betweenΨ andRR, not onRR alone. There has

been several efforts to design spatial regularization methods that approximately provide

uniform spatial resolution. This regularization design depends on measurements,i.e.,

RR(f1, · · · , fM |y1, · · · , yM).

Chapter 5 extends such methods to consider motion estimates, i.e.,

RR(f1, · · · , fM |y1, · · · , yM , α̂1, · · · , α̂M) (2.20)

to improve spatial resolution uniformity.

With the knowledge of simplified MCIR cost functions and estimators, motion regular-

izerRM and spatial regularizerRR in (2.20), Chapter 6 reports the results of simulations

for joint image reconstruction and nonrigid motion estimation based on (2.19) with the

proposed motion regularizer of Chapter 3.



CHAPTER 3

Regularization for nonrigid motions: invertibility 1

One of the important issues in motion-compensated image reconstruction is the mo-

tion estimation problem. Image registration has been a coretool not only in motion-

compensated image reconstruction, but also in many medicalimaging applications. Image

fusion of structural and functional images requires image matching from one to another.

Several image reconstruction schemes for MR, PET and CT incorporate motion correc-

tion or joint estimation of motion into the reconstruction process to improve image qual-

ity [34, 51, 52, 57, 75, 76]. Radiation treatments may be ableto target cancer cells more

accurately through motion correction [111, 112]. Rigid or affine transformations can pro-

vide fast and reliable image registration for relatively small changes. However, most of the

human body does not conform to a rigid or affine approximation[18]. Lamareet al. [51]

used affine image registration for respiratory motion correction, but reported that it was

sufficient only for a single organ and associated lesions. Effective motion correction usu-

ally requires nonrigid image registration, which enables more flexible matching of local

details between two images than rigid registration.

There are many methods for nonrigid image registration [18,33]. Since Szeliskiet

al. [95], B-spline bases have been used frequently for nonrigidimage registration be-

1This chapter is based on [13,15].

17
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cause locally supported basis function expansions are easier to solve computationally than

PDEs and B-splines have the properties of smoothness, compact support, fast interpolation

schemes and hierarchical structure for multi-resolution [33, 48, 104]. However deforma-

tions with high degrees of freedom can lead to unrealistic transformation results such as

folding in the absence of appropriate constraints [18].

There have been some efforts to regularize nonrigid image registration based on B-

splines by making certain reasonable assumptions. Rueckert et al. [86] penalized the

bending energy of the deformation directly, assuming that the local deformation of tis-

sues should be smooth. Sorzanoet al. [92] proposed a regularizer based on the gradients

of the divergence and the curl of the displacement field. Rohlfing et al. [81] used an in-

compressibility constraint: the Jacobian determinant of atransformation should be unity,

assuming that local deformations are volume preserving. They applied this method after

making an initial affine transformation. See [33] for other methods for constraining the

transformation.

Another reasonable constraint is to impose local invertibility of the nonrigid transfor-

mation to ensure that image registration is topology-preserving or diffeomorphic.

One way to ensure local invertibility is to require the Jacobian determinant of the

transformation to be positive everywhere, either as a hard constraint or by a penalty

method [47]. However most such approaches constrain the Jacobian determinant of a

transformation only at each discrete voxel grid point, so local invertibility is not strictly

guaranteed on the whole continuous domain. Recently, Sdika[87] described a condition

involving thegradientof the Jacobian determinant that encourages the local invertibility

to be achieved everywhere even though that condition is invoked only at each discrete

grid point. However, compared to unregularized image registration, calculating the Jaco-

bian determinant or its gradient significantly increases computation time due to additional
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B-spline interpolations of the partial derivatives of a deformation.

Ensuring invertibility is somewhat easier when using1st-order B-spline bases for de-

formations. Musseet al. [61] derived elegant linear constraints that provide necessary

and sufficient conditions to ensure that the Jacobian determinant values of such transfor-

mations are positive everywhere. However, that 2D approachwas restricted to1st-order

B-spline deformations. Karacaliet al. [38] proposed a method to regularize 2D and 3D

deformations to ensure that1st-order B-splines are topology-preserving. Nobletet al.[68]

generalized [61] for 3D B-spline deformations and illustrated their method with1st-order

B-splines, but enforcing the constraints requires much higher computation than regular-

ization based on bending energy.

Lastly, one can ensure local invertibility by imposing sufficient conditions that are

simpler than the necessary conditions. Choiet al. [11] suggested box constraints for cu-

bic B-spline deformation coefficients that ensure invertibility, but those sufficient condi-

tions preclude large deformations. Rueckertet al.[85] concatenated many transformations

based on those box constraints to achieve large deformations. Rohdeet al. [80] suggested

a sufficient condition for local invertibility, derived using Neuman series for a transfor-

mation model that uses a sum of deformations. Motivated by [80], Kim et al. [41–43]

suggested similar sufficient conditions for 3D transformations based on cubic B-splines

and implemented a constrained minimization algorithm using Dykstra’s cyclic projection

method. We recently extended Kim’s sufficient conditions for local invertibility of defor-

mations so that we can usenth-order B-spline bases and so we can also assign the upper

bound on the Jacobian determinant value independently fromthe lower bound choice. We

implemented it with a simple and fast quadratic-like penalty function [13,15].

This chapter elaborates on the method based on the proposed sufficient condition for

the local invertibility of deformations [13, 15] and and compares it empirically with other
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regularization methods based on existing sufficient conditions for the local invertibility of

deformations as well as with the traditional Jacobian penalty method that uses a discrete

grid [41,47].

3.1 Background

3.1.1 Mathematical model for nonrigid registration

The goal in image registration is to estimate the deformation coefficientsα = {αq
i,j,k}

in (2.3) by maximizing a similarity metricΨ:

α̂ = arg max
α

Ψ[g(·), f(T (·; α))] (3.1)

whereg(r) andf(r) denote two 3D images.

To help stabilize the estimation, and to have physically plausible deformations, often

we would like to ensure that the estimated coefficientsα̂ in (2.2) correspond to a diffeo-

morphic transformationT . The methods in this chapter are applicable to any similarity

metric; for a survey of such metrics, see [32]. Section IV focuses on thel2 similarity met-

ric for registering thorax CT images at different inhalations for the purpose of radiation

therapy planning and monitoring.

3.1.2 Invertibility and diffeomorphic transformations

Invertibility of a nonrigid transformationT is a necessary condition for it to be dif-

feomorphic.T is diffeomorphic if bothT andT−1 are continuously differentiable. If we

use a B-spline basis withn ≥ 2 in (2.2), thenT is continuously differentiable. ( Musseet

al. [61] addressed the case wheren = 1. ) By the implicit function theorem, if the Jaco-

bian matrix ofT , denoted∇T , is invertible everywhere, then near every point there exists

a unique continuously differentiable local inverse. The determinant of the Jacobian forT ,
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denoted|∇T |, must be non-zero for diffeomorphic nonrigid image registration. Also for

T to be orientation preserving, we want|∇T | > 0.

Unfortunately, the condition|∇T | > 0 everywhere does not by itself ensure thatT

is globally one-to-one. One way to ensure thatT is invertible globally is to ensure that

transformation maps the boundary of the domain onto itself [61, 68]. However, we do not

enforce such boundary conditions in here because the field ofview for thorax inhale and

exhale CT images does not contain the whole body and there is usually missing anatomy

in the superior-inferior directions.

3.1.3 Related work

The goal of diffeomorphic nonrigid image registration withthe parametric representa-

tion of deformation (2.3) is to maximize the similarity metric (3.1) subject to the constraint

α ∈ C0 , {α : |∇T (r; α)| > 0, ∀r ∈ R
3}. (3.2)

In general this is an impractical constraint except when using linear deformation mod-

els [38, 61, 68] becauser ∈ R
3 so there are uncountably many conditions. One way to

simplify (3.2) is to replace the “∀r” requirement with a set of voxel grid points [47,87]:

C1 , {α : |∇T (r; α)| > 0, r ∈ grid points}. (3.3)

However, becauseC0 ⊂ C1, this does not guarantee local invertibilitybetweengrid points.

Nevertheless the smoothness of B-spline bases helps regularizeC1 so using the constraint

C1 often provides fairly good results [47]. However, computing |∇T (r; α)| at all the grid

points is computationally expensive.

Simplifying the condition|∇T (r; α)| > 0 overR3 always involves smaller sets than

C0. Choiet al. [11] found box constraints for cubic B-spline deformation coefficients that
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ensure invertibility:

C2 , {α : |αq
i,j,k| < mq/K, ∀i, j, k}, (3.4)

whereK ≈ 2.05 in 2D andK ≈ 2.48 in 3D. The setC2 provides a sufficient condition for

local invertibility becauseC2 ⊂ C0. However,C2 is a very restrictive constraint set that

allows only very small deformations. To achieve large deformations, Rueckertet al. [85]

composed several transformations that each satisfied this condition.

Kim et al. [41–43] suggested a sufficient condition for ensuring invertibility of cubic

B-spline deformations that allows a larger family of deformations. Instead of restricting

the absolute values of the coefficients as in (3.4), this condition limits the differencesof

adjacent B-spline coefficients:

C3 ,
⋂

q∈{x,y,z}

{α : |αq
i+1,j,k − αq

i,j,k| < mqkq, |αq
i,j+1,k − αq

i,j,k| < mqkq,

|αq
i,j,k+1 − αq

i,j,k| < mqkq, ∀i, j, k}, (3.5)

wherekx + ky + kz < 1. AlthoughC3 ⊂ C0, this sufficient condition only allows large

deformations with fairly small Jacobian determinant values. In particular, one can show

that 1 − (kx + ky + kz) ≤ |∇T (r; α)| ≤ (1 + kx)(1 + ky)(1 + kz) + (1 + kx)kykz +

kx(1 + ky)kz + kxky(1 + kz) ∀α ∈ C3 [41–43]. This means thatC3 does not allow acute

volume changes locally. This is because the upper bound on the Jacobian determinant is

determined by the lower bound design. For example, if we choosekq = 1/3 so that the

lower bound for the Jacobian determinant|J| is 0, then the upper bound for the Jacobian

determinant value would be automatically determined to76/27 ≈ 2.8148 which is fairly

small [41]. The section 3.2 provides new broader sets of sufficient conditions.



23

3.2 Local invertibility condition

3.2.1 Lemmas

We first extend Kim’s sufficient conditions for local invertibility to overcome two lim-

itations [13, 15]. Firstly, anth-order B-spline basis (n ≥ 1) can be used instead of cubic

B-spline basis for deformation modeling. Secondly, the upper bound of Jacobian determi-

nant can be designed independently from the lower bound of Jacobian determinant.

Lemma 3.1. For concise notation, denote the JacobianJ = ∇T of a 3D transformation

as

J = I +















x1 x2 x3

x4 x5 x6

x7 x8 x9















.

Then the corresponding determinant is given by

|J| = (1 + x1)(1 + x5)(1 + x9) + x2x6x7 + x3x4x8 − (1 + x1)x6x8

−(1 + x5)x3x7 − (1 + x9)x2x4. (3.6)

Suppose that the elements of the 3D Jacobian determinant satisfy xi ∈ Ii, i = 1, . . . , 9

whereIi ⊂ R are compact intervals. Then|J| achieves its global maximum and minimum

values overI = I1 × · · · × I9 and those maximum and minimum values are achieved for

a pointx∗
i for whichx∗

i ∈ {max Ii, min Ii} for ∀i = 1, . . . , 9.

The Appendices have the proofs of these Lemmas. This Lemma implies that we can

determine the global minimum and maximum of|J| over the compact setI “simply” by

calculating the29 possible values of|J| at the vertices ofI. (It is trivial to apply this

Lemma to 2D cases.)

Kim et al.provided a specific formula for the ‘possible’ maximum and minimum of|J|

for given ranges of eachxi value using Karush-Kuhn-Tucker conditions [41]. We suggest
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next a generalization using Lemma 3.1.

Lemma 3.2. Suppose that|xi| ≤ kqi
< 1

2
whereqi = x for i = 2, 3, qi = y for i = 4, 6

and qi = z for i = 7, 8. Also suppose that−kpi
≤ xi ≤ Kpi

wherepi = x for i = 1,

pi = y for i = 5 and pi = z for i = 9. Thenmin |J| = 1 − (kx + ky + kz) and

max |J| = (1 + Kx)(1 + Ky)(1 + Kz) + (1 + Kx)kykz + kx(1 + Ky)kz + kxky(1 + Kz).

In other words,

1 − (kx + ky + kz) ≤ |J| ≤ (1 + Kx)(1 + Ky)

·(1 + Kz) + (1 + Kx)kykz + kx(1 + Ky)kz

+kxky(1 + Kz). (3.7)

Kim’s proposition was restricted to the case whereKx = kx, Ky = ky, andKz = kz.

To ensure local invertibility,kx + ky + kz should be less than1, where eachkq is positive,

so that the lower bound in (3.7) is positive.

Kim et al.showed a second proposition about the relationship betweenthe first partial

derivative of deformation and adjacent deformation coefficients for the cubic B-spline ba-

sis case [41]. We show next that this relation is also valid for generalnth-order B-spline

bases (n ≥ 1). We also generalize the bounds used by Kimet al. with Lemma 3.2 [13,15].

Lemma 3.3. If bm ≤ αq
i+1,j,k − αq

i,j,k ≤ bM for ∀i, j, k, then bm

mx
≤ ∂

∂x
dq(r) ≤ bM

mx
for

∀r whereq ∈ {x, y, z} Similarly, if bm ≤ αq
i,j+1,k − αq

i,j,k ≤ bM for ∀i, j, k, then bm

my
≤

∂
∂y

dq(r) ≤ bM

my
and if bm ≤ αq

i,j,k+1 − αq
i,j,k ≤ bM for ∀i, j, k, then bm

mz
≤ ∂

∂z
dq(r) ≤ bM

mz
for

∀r respectively.

This Lemma limits the range of values of the first derivative of d(r) overR3 by re-

stricting the differences of adjacent deformation coefficients. Combined, Lemmas 3.2 and

3.3 show that one can obtain a transformationT that is everywhere locally invertible by



25

maximizing a similarity metric subject to constraints on the differencesbetween adjacent

deformation coefficients, as summarized in the following Theorem.

Theorem 3.4.Suppose0 ≤ kq < 1
2

for q ∈ {x, y, z}. Define:

C4 , {α :− mxkx ≤ αx
i+1,j,k − αx

i,j,k ≤ mxKx,

− myky ≤ αy
i,j+1,k − αy

i,j,k ≤ myKy,

− mzkz ≤ αz
i,j,k+1 − αz

i,j,k ≤ mzKz,

|αq
i+1,j,k − αq

i,j,k| ≤ mqkq for q = y, z,

|αq
i,j+1,k − αq

i,j,k| ≤ mqkq for q = x, z,

|αq
i,j,k+1 − αq

i,j,k| ≤ mqkq for q = x, y, ∀i, j, k}.

In (2.3), if α ∈ C4 then|J| satisfies the bounds in (3.7)∀r ∈ R
3. Moreover, ifkx + ky +

kz < 1, then the transformation (2.3) is locally invertible everywhere.

This theorem applies to deformations based on anynth-order B-spline basis. We set the

lower and upper bounds for|J| by setting appropriatekq andKq values forq ∈ {x, y, z}.

3.2.2 Restrictions

Theorem 3.4 establishes thatα ∈ C4 is a simple sufficient condition for local invertibil-

ity. However,C4 does not allow all possible locally invertible deformations, i.e., C4 ⊂ C0.

Then one can ask how restrictive this sufficient condition is.

AlthoughC4 allows for acute volume expansion, it precludes acute volume shrinkage.

Figure 3.1 illustrates this limitation for a 1D transformation. The desired transformation

maps[0.0 0.6] to [0.3 0.6], i.e., T (x) = x + d(x) whered(x) = 0.3 − x/2 (acute volume

shrinkage). This deformation belongs toC0 because−1 < ∂d(x)
∂x

< ∞. However if we

impose the sufficient condition−0.33 < ∂d(x)
∂x

, then Figure 3.1 shows that acute volume

shrinkage is precluded because the minimum derivative of the transformation is0.67. The
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constrained transformation maps[0 0.6] to [0.3 0.7] instead of[0.3 0.6]. More generally,

when we choosekx, ky andkz subject tokx + ky + kz < 1 to ensure invertibility,C4

imposes restrictions for acute volume changes in each direction.

0 0.2 0.4 0.6 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x

T
(x

)

 

 

no deformation
ideal deformation
constrained deformation

Figure 3.1: Illustration of limitation ofC4. The constrained transformation maps[0 0.6] to
[0.3 0.7] instead of[0.3 0.6].

The 2D case illustrates the solution space ofC4 in terms of Lemma 3.2. Lemma 3.2 is

trivial for a 2D Jacobian determinant|J| = (1 + a)(1 + d) − bc whereJ =







a b

c d






. A

deformation having a positive Jacobian determinant must satisfy (1 + a)(1 + d) > bc. We

can introduce a free parameterk such that|J| is always positive if(1+ a)(1+ d) > k and

bc < k for anyk. Figure 3.2 visualizes the solution space for 2D invertibledeformations

in terms ofa, b, c, d, andk. For fixedk, any values of (a, d) that lie above the upper line

or below the lower line yield a positive Jacobian determinant if (b, c) lies between these

lines. Lines vary ask varies. To allow acute volume shrinkage, we needk to be close to0

as observed in Figure 3.1. However smallerk values imply more restrictive sets for(b, c).

Lemma 3.2 corresponds to fixingk = kxky such thatkx + ky < 1 andkx ≥ 0, ky ≥ 0.
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Figure 3.2: Solution space for 2D positive Jacobian determinant. Smallerk values admit
smallera, d values but preclude more values ofb, c.

This yields the rectangular areas fora, b, c, d shown in Figure 3.3 (forkx = ky = 1/2 and

k = 1/4). Thus Theorem 3.4 not only uses a fixed value fork, but also imposes restrictive

box constraints on the deformation derivatives. However itstill has a larger solution space

than traditional box constraints on the B-spline coefficients such as [11]. Becausek is

fairly small, relaxing this sufficient condition may allow larger volume shrinkage [13,15].

3.2.3 Concatenating transformations

SinceC4 is a restrictive sufficient condition, it may not contain allreal deformations

of interest. To allow larger deformations, we can concatenate multiple elemental transfor-

mations that belong toC4, i.e., let T (r) = T N(· · · (T 2(T 1(r)))) where eachT k satisfies

C4. Since eachT k is diffeomorphic,T is also diffeomorphic.

Rueckertet al. [85] used a box constraintC2 [11] to guarantee that each elemental

transformation is diffeomorphic. We useC4 for our elemental transformations. This

should require fewer elemental transformations becauseC4 allows a larger solution space
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Figure 3.3: Local invertibility sufficient condition spacein 2D, for k = 1/4, kx = ky =
1/2 andKx = Ky = ∞. C4 corresponds to using a fixedk value. (a)a > −1/2 and
d > −1/2. (b) |b| < 1/2 and|c| < 1/2.

thanC2, as illustrated in the section 3.2.4.

3.2.4 2D simulation: warping a disk to a “C” shape

We applied several constrained nonrigid image registration methods to the challeng-

ing registration problem shown in Figure 3.4. We placed deformation knot points every

4th pixel, i.e., mx = my = 4. The data fit term used sum of squared differences. For

optimization we used augmented Lagrangian multipliers [87] with the conjugate gradient

method. Line search step size was determined by one step of Newton’s method. We used

fast B-spline interpolation [105–107] with a 4-level multiresolution scheme [108].

Figures 3.5 and 3.6 show the unconstrained registration andresults of usingC1, C2

andC4. The unconstrained result in Figure 3.5(a) shows some unrealistic warping such

as folding. Figure 3.5(b) shows the regularized deformed images with a Jacobian penalty

based onC1. This shows a more regular warp than Figure 3.5(a). However,C1 allows a

larger solution space than the ideal solution spaceC0.
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Source

(a) 2D source image

Target

(b) 2D target image

Figure 3.4: Images for illustrating 2D nonrigid registration.

Figures 3.6(a) and (b) show the limitation of using a single warp based onC2 and

C4 respectively. The sufficient conditionsC2 andC4 do not contain the complicated dif-

feomorphic transformation needed to map the source image tothe target image in Fig-

ure 3.4. However, this warp can be achieved satisfactorily by composing just 3 warps that

each belong toC4, as shown in Figure 3.8. In contrast, to achieve a satisfactory warp

by composing transformations that lie in the box constraintC2 [11, 85] required about 30

concatenations, as shown in Figure 3.7. For larger and more complicated deformations,

our proposed constraintC4 can be used as a simple elemental transformation to provide

diffeomorphic composite transformations.

3.2.5 Larger sufficient condition: Lemma

Section 3.2.2 showed thatC4 is a restrictive solution space mainly because it uses a

fixedk globally and allows a rectangular instead of curved areas. In this section, we show

that Lemma 3.3 can be used to find another sufficient conditionfor the local invertibility

that has flexiblek values locally and allows curved covered areas.
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No constraint No constraint

(a) No constraint.
Jacobian constraint Jacobian penalty

(b) Jacobian constraintC1.

Figure 3.5: Deformed images (left) and their warped grids (right)
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Box constraint Box constraint

(a) Box constraintC2.
Proposed constraint Proposed constraint

(b) Proposed constraintC4.

Figure 3.6: Deformed images (left) and their warped grids (right)
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Box constraint Box constraint

Box constraint Box constraint

Figure 3.7: 10, 20, 30 compositions of box constraintC2 and a warped grid of 30 compo-
sitions.
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Proposed constraint Proposed constraint

Proposed constraint Proposed constraint

Figure 3.8: 1, 2, 3 compositions of proposed constraintC4 and a warped grid of 3 com-
positions. Proposed constraint requires much less transformations to achieve a satisfiable
deformation than the box constraint.
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Lemma 3.5. For 2D deformation, if

mxmymJ ≤ det Hi,j,i′,j′ ≤ mxmyMJ

for ∀(i, j), i′ = i − n + 1, ..., i + n andj′ = j − n, ..., j + n − 1 where

Hi,j,i′,j′ =







mx + αx
i+1,j − αx

i,j αx
i′,j′+1 − αx

i′,j′

αy
i+1,j − αy

i,j my + αy
i′,j′+1 − αy

i′,j′






,

thenmJ ≤ |J| (r ) ≤ MJ for ∀r.

Similarly, for 3D deformation, if

mxmymzmJ ≤ det Ki,j,k,i′,j′,k′,i′′,j′′,k′′ ≤ mxmymzMJ

for ∀(i, j, k), i′ = i − n + 1, ..., i + n, j′ = j − n, ..., j + n − 1, k′ = k − n, ..., k + n,

i′′ = i − n + 1, ..., i + n, j′′ = j − n, ..., j + n andk′′ = k − n, ..., k + n − 1 where

Ki,j,k,i′,j′,k′,i′′,j′′,k′′ , (3.8)














mx + αx
i+1,j,k − αx

i,j,k αx
i′,j′+1,k′ − αx

i′,j′,k′ αx
i′′,j′′,k′′+1 − αx

i′′,j′′,k′′

αy
i+1,j,k − αy

i,j,k my + αy
i′,j′+1,k′ − αy

i′,j′,k′ αy
i′′,j′′,k′′+1 − αy

i′′,j′′,k′′

αz
i+1,j,k − αz

i,j,k αz
i′,j′+1,k′ − αz

i′,j′,k′ mz + αz
i′′,j′′,k′′+1 − αz

i′′,j′′,k′′















, thenmJ ≤ |J| ≤ MJ for ∀r.

This sufficient condition has much larger solution space than the solution space The-

orem 3.4 has. However, the number of constraints are(2n)2 for 2D deformation and

(2n)4(2n + 1)2 for 3D deformation for each voxel. For 3D deformation and cubic B-

spline basis, we would have 63504 conditions for each voxel.This seems prohibitive for

practical use such as penalty methods or constrained optimization methods because there

are too many constraints. This optimization is very challenging and it is not addresses in

this thesis.
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3.3 Simple regularizer based on local invertibility condi-
tion

3.3.1 Proposed simple regularizer

If we want to strictly ensure local invertibility, then we maximize a similarity metric

subject to the linear constraintsα ∈ C4. However, to simplify the computation, we can

relax the invertibility condition by using a penalty method[13,15,47]. In a penalty method

we maximize an objective function that is the similarity metric minus a penalty function

that encourages the invertibility condition, but does not enforce it strictly.

We propose to construct a penalty function based on the following piecewise quadratic

function:

p(t; ζ1, ζ2) =



































1
2
(t − ζ1)

2, t < ζ1

0, ζ1 ≤ t ≤ ζ2

1
2
(t − ζ2)

2, ζ2 < t,

which is illustrated in Figure 3.9. The argumentt denotes a difference between two adja-

cent deformation coefficients. This function does not strictly constrain such differences,

but its first and second derivatives are simple and convenient for use in optimization algo-

rithms such as conjugate gradient. The final new penalty function is

R(α) =
∑

q∈{x,y,z}

∑

i,j,k
[

p(αq
i+1,j,k − αq

i,j,k; ζ
q,x
1 , ζq,x

2 )

+ p(αq
i,j+1,k − αq

i,j,k; ζ
q,y
1 , ζq,y

2 )

+ p(αq
i,j,k+1 − αq

i,j,k; ζ
q,z
1 , ζq,z

2 )
]

, (3.9)

whereζq,r
1 = −mqkq for ∀r ∈ {x, y, z} , ζq,r

2 = mqkq for r 6= q andζq,r
2 = mqKq for

r = q. Note that choosingζ1 = ζ2 = 0 would correspond to a quadratic roughness penalty

over B-spline coefficients, which is akin to encouraging thevolume preserving condition
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|J| = 1, ∀r.

Being based on the somewhat restrictive solution spaceC4, the new penalty method can

encourage the local invertibility on the whole continuous domain with a fast and memory

efficient implementation. This implementation is possiblebecauseC4 does not require ad-

ditional B-spline interpolations beyond the interpolations needed for the data fitting term.

It also encourages the smoothness of deformations inherently because it constrains the dif-

ferences between adjacent deformation coefficients. In contrast, usingC0 or C1 is much

more expensive for one transformation.

−0.5 0 0.5
0
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0.04

difference of adjacent coefficients

pe
na

lty
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al
ue

Figure 3.9: A variant of quadratic penalty function (solid)and real constraints (dashed)
used with constraint setC4.

3.3.2 Incorporating a priori knowledge of motions

For diffeomorphic transformations using Theorem 3.4, the usual choice would bekx =

ky = kz = 1/3 − ǫ for some smallǫ. However, if we havea priori knowledge about

the deformation, then we can assign eachkq accordingly. For instance, for registering

thorax inhale and exhale images, we can assignkx = ky = 1/4 − ǫ andkz = 1/2 − ǫ

because the deformation in thez direction is larger due to diaphragm motion, whereas

the deformations in thex andy directions are smaller. With this design,C4 allows50%
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local shrinkage alongz and75% local shrinkage alongx andy instead of allowing67%

shrinkage in each direction. We can use this sufficient condition for the proposed simple

regularizer to encourage local invertibility of the deformation.

3.3.3 2D simulation: expansion and shrinkage

We applied nonrigid image registration to the256 × 256 images in Figure 3.10 us-

ing no constraint, a Jacobian penalty based onC1, a quadratic roughness penalty [112],

a regularizer based on Kim’s constraintC3, and our proposed penalty method based on

C4. Figure 3.10 has an expanding circle and a shrinking ellipseto illustrate the difference

betweenC3 andC4. Since we havea priori knowledge about vertical motion, we investi-

gated two sets of parameters inC4: a symmetric way withkx = ky = 1/2− 0.01× 1/2 as

well as an asymmetric way withkx = 0.35 − 0.01 × 0.35 < ky = 0.65 − 0.65 × 0.01.

We placed deformation knot points every 4th pixel. The data fit term used sum of

squared differences. For optimization we used the conjugate gradient method. Line search

step size was determined by one step of Newton’s method. We used fast B-spline interpo-

lation and the 4-level multiresolution scheme as in III-D. We ran200 iterations for each

level or ran until thel0 norm of the gradient is less than the machine accuracy. We checked

the local invertibility by computing Jacobian determinantvalues on a grid 10 times finer

than the image resolution.

Figure 3.11 quantifies the tradeoff between image similarity and local invertibility for

the 5 different registration methods for a range of regularization parameters. The horizon-

tal axis is the root mean square (RMS) difference between thedeformed image and the

target image (log scale) and the vertical axis is the number of the finer (10 times) voxel

grid points having a non-positive Jacobian determinant (log scale). We took a log after

adding1 for the number of non-positive Jacobian determinant since the lowest number of
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it is 0.

For the unconstrained case, the RMS difference was0.0109 and the number of neg-

ative Jacobian determinants was497644. As the regularization parameters decrease, the

RMS differences and the number of negative Jacobian determinants of all other methods

approached closely to these values. This is expected because the unconstrained case is the

same as any other penalty method with regularization parameter0.
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(a) 2D source image
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(b) 2D target image

Figure 3.10: Images for illustrating expansion and shrinkage.

As we increased the regularization parameters, the number of negative Jacobian de-

terminants “generally” decreases, eventually towards zero, although not always monoton-

ically. The RMS differences also “generally” increase as the regularization parameters

increase for most methods except Jacobian penalty. This is because the Jacobian con-

straintC1 contains the original constraintC0 and it does not restrict the deformation so

that it can achieve low RMS difference for strong penalty parameters. For properly chosen

regularization parameters, symmetric/asymmetric proposed simple penalties show fairly

good performance compared to Kim’s or quadratic penalty methods based on more re-

strictive sufficient conditions (Kim’s:Kx = kx, Ky = ky and quadratic:Kx = kx = 0,
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Figure 3.11: RMS difference and negative Jacobian determinant trade-off for different
regularization parameters. (log scale)

Table 3.1: The best RMS difference for each method with zero negative Jabocian determi-
nant in 2D simulation.

Jacobian New (asym) New (sym) Kim Quadratic
0.0373 0.0360 0.0454 0.2026 0.6091

Ky = ky = 0).

Table 3.1 shows the best RMS difference of image for each method with zero non-

positive Jabocian determinant values over the 10 times finergrid. The proposed simple

penalty witha priori motion information performed well compared to Jacobian penalty.

However, as the regularization method depends on more restrictive condition, the RMS

difference is larger. It clearly shows that a quadratic penalty oversmoothes the deforma-

tions.

Our proposed asymmetric penalty performed a little better than Jacobian penalty in



40

these experiments. However, our proposed penalty may not always perform better. It

depends on the convergence, regularization parameter, image structure and so on. Since

the data fitting term is non-convex, local minima may affect the result, too. However, for

simpler cases like in Figure 3.10 our proposed regularization method may perform close

to the Jacobian penalty method. In the section 3.3.4, we apply both methods to the 3D real

CT images of a patient.

3.3.4 3D real CT images

We applied our proposed regularization method (3.9) to the problem of registering 3D

breath-hold X-ray CT images of a real oncology patient scanned at inhale and at exhale.

These images are useful for radiation treatment planning. The image size was396×256×

128 as shown in Figures 3.12 and 3.13. We chosekx = ky = 1/4 − 0.01 × 1/4 and

kz = 1/2 − 0.01 × 1/2 because we expect the deformation in thez direction to be larger

than the deformations in thex andy directions due to diaphragm motion.

We used the same methods as in Section IV-C except for the multiresolution scheme.

For the first 3 levels of multiresolution, the knot spacing was every 8 pixels for downsam-

pled images, and for the last level of multiresolution the knot spacing was every 4 pixels.

We ran120 iterations at each level to see the convergence properties.The regularization

parameter that multiplies (3.9) was chosen experimentallyto achieve the minimum value

of data fitting term such that all Jacobian values on the imagegrid were positive.

Figure 3.14 shows the difference images between the target image and the deformed

images. As expected, the difference image for unconstrained registration in Figure 3.14(a)

has smaller values than the constrained difference images in Figures 3.14(b) and (c). The

RMS difference for unconstrained registration was the smallest, which was19.9 HU. The

RMS errors of the Jacobian penalty (25.9 HU) and the proposed penalty (29.2 HU) were
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Source: Coronal Source: Sagittal

Source: Axial

Figure 3.12: 3D source (exhale) X-ray CT image.
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Target: Coronal Target: Sagittal

Target: Axial

Figure 3.13: 3D target (inhale) X-ray CT image.
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Table 3.2: Computational cost at the finest level
Method CPU time per iteration (sec)

Unconstrained 25.7
Jacobian penalty 81.1
Proposed method 27.4

somewhat higher. However, Figure 3.15(a) shows that unconstrained registration yields

an unrealistic warped grid. The number of negative Jacobiandeterminant voxels was

316914 out of12582912 voxels. Figure 3.15(c) shows a smoother warp than Figure 3.15(b)

because our proposed penalty method is based onC4 which is a smaller set thanC1. Our

proposed method has smoothness property implicitly because it restricts the range of the

differences between adjacent B-spline coefficients.

The proposed penalty method was much faster and more memory efficient than the tra-

ditional Jacobian penalty method per iteration. If one usesthe sum of squared error as the

data fitting term and penalizes negative Jacobian determinant values on each image grid

point in 3D with cubic B-splines, then the interpolations needed to compute the gradients

of the direct Jacobian penalty function require about 1.8 times more operations than the

interpolations needed for the gradient of the data fitting term. Table 3.2 shows the com-

putational cost for one iteration at the last (finest) level of the multiresolution procedure.

Our proposed method requires only slightly more time per iteration than unconstrained

registration, and much less time than using a Jacobian penalty. Furthermore, in this sim-

ulation, the traditional Jacobian penalty method requiredabout twice as much memory

as our proposed method because it must store the interpolation results for the Jacobian

gradient. Figure 3.16 shows the convergence of each method.

We could compose a coarse resolution warp based on (3.9) withone full sequence

of coarse-to-fine warp based on (3.9) to reduce RMS differences further with only slight

increase in computation.
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3.4 Discussion

We proposed a new condition (Theorem 3.4) that is sufficient to ensure the local invert-

ibility of transformations based on B-splines. Its limitation can be overcome by using com-

posite transformations. This proposed sufficient condition can be used with constrained

optimization such as augmented Lagrangian multiplier method [87] or Dykstra’s cyclic

projection method [41].

We showed that the proposed sufficient condition is more general than other simple

sufficient conditions that ensure local invertibility everywhere such as box constraint [11].

When used in composite transformations, it requires many fewer transformations to achieve

comparable deformations [85].

We also relaxed our local invertibility condition by a simple quadratic-like penalty.

This approach achieves more flexible image matching compared to other penalty meth-

ods based on more restrictive local invertibility conditions. For practical use in a thorax

image registration, we used a single transformation with a simple quadratic-like penalty

that encouragesα ∈ C4. This gave a fairly good deformation with no negative Jacobian

determinant values on image voxel grid points. This approach is much simpler and faster

than the traditional Jacobian determinant penalty and is more memory efficient.

Some application areas require not only local invertibility, but also require comput-

ing the inverse transformation. One approach is to estimateboth forward and backward

image registration parameters with consistency regularizer [12]. Using both consistency

regularizer and our proposed regularizer can be interesting future work.

Another interesting future work is implementing Lemma 3.5.It will allow much larger

sufficient condition compared to the proposed sufficient conditionC4, but the optimization

is challenging.
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Figure 3.14: Differences between 3D target and deformed images.
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No constraint: Coronal No constraint: Sagittal

(a) No constraint

Jacobian penalty: Coronal Jacobian penalty: Sagittal

(b) Jacobian penalty

Proposed method: Coronal Proposed method: Sagittal

(c) Proposed penalty

Figure 3.15: Warped grids for 3D inhale-exhale registration.
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Figure 3.16: Convergence of each method.



CHAPTER 4

Regularization for nonrigid motions: rigidity and sliding 2

Nonrigid image registration is a key tool in medical imaging. It provides more flexible

image matching than rigid transformation, but suffers by its ill-posedness, often resulting

in unrealistic deformations [18]. There has been a lot of research on regularizing or con-

straining deformations with reasonable motion priors suchas smoothness of deformations,

the invertibility of deformations [13, 15, 38, 41, 68, 80, 87] and the rigid deformations of

rigid objects (or tissues) [55,56,60,84,93]. Many papers have investigated each constraint

separately.

Both invertible deformations and rigid deformations of rigid tissues are reasonable

constraints in respiratory motion estimation because breathing motion is invertible and

some rigid structures such as bones are present. Since smoothness motion regularizer or

motion invertibility regularizer usually cause bone warping in ribs, it is only natural to

use both motion priors together in the image registration ofhuman respiratory motion.

Combining both regularizers seems straight forward, but both motion regularizers cause

conflicts in some areas near the interface between the rib cage and the diaphragm. In these

areas, motion invertibility prior and tissue rigidity prior penalize deformations in opposite

ways.

2This chapter is based on [17].
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In chapter 3, we proposed a simple piecewise quadratic penalty that encourages the

local invertibility of motions [13, 17]. In this chapter, wepropose to relax this motion

regularizer by using a Geman-type function [8,26]. As we usethe rigid motion constraint

for rigid tissues together [56,84,93], this allows for deformations to be piecewise smooth

instead of globally smooth. With small sacrifice of regularity, this relaxed motion invert-

ibility regularizer allows the motion regularizer based ontissue rigidity to improve the

bone rigistration [17]. This also permits better matching between deformed and target im-

ages and deformations to be discontinuous in the area of the interface between the rib cage

and the diaphragm.

We applied this Geman-type penalty function only to the x- and y-direction partial

derivatives of the z-direction deformation to address the sliding motion of the diaphragm.

192× 128× 128 3D CT inhale and exhale images of a real patient were used to show the

benefits of this new penalty method.

4.1 Background

Figure 4.1 shows zoomed coronal CT images of a real patient atexhalation and in-

halation. The diaphragm slid down as the patient inhaled while his/her rib bones stayed at

a similar position. Smoothness motion prior and motion invertibility prior encourage the

connectivity between rib bones and diaphragm to be maintained. Usually the ribs near the

diaphragm in an exhale image go down together with the diaphragm as a patient inhales.

Since the ribs are relatively small structures, the image matching data fitting term is not

strong enough to allow the ribs to stay still.

The rigid motion prior of rigid structures such as bones can correct the bone warps.

However, when we use both the motion invertibility prior andthe tissue rigidity prior

together, the motion invertibility prior encourages some rib bones to go down and the
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Figure 4.1: Coronal views of 3D exhale and inhale images of a real patient. Connectivity
between diaphragm and rib bones is not preserved since diaphragm is sliding down while
rib bones remain at the similar location.

tissue rigidity prior encourages the rib bones to stay in position. This causes conflicts.

Figure 4.2 shows the number of negative Jacobian determinant values when we apply both

motion regularizers together. As expected, most negative Jacobian determinant values are

near the interface between the diaphragm and the rib cage.

4.2 Method

4.2.1 A simple penalty that encourages local invertibility

We briefly review the motion invertibility regularizer in chapter 3 [13,15].

Theorem 4.1.Suppose0 ≤ kq < 1/2 for q ∈ {x, y, z}. Define:

C4 ≡ {α :− mxkx ≤ αx
i+1,j,k − αx

i,j,k ≤ mxKx,

− myky ≤ αy
i,j+1,k − αy

i,j,k ≤ myKy,

− mzkz ≤ αz
i,j,k+1 − αz

i,j,k ≤ mzKz,

|αq
i+1,j,k − αq

i,j,k| ≤ mqkq for q = y, z,

|αq
i,j+1,k − αq

i,j,k| ≤ mqkq for q = x, z,

|αq
i,j,k+1 − αq

i,j,k| ≤ mqkq for q = x, y, ∀i, j, k}.
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Figure 4.2: Coronal, sagittal and axial views of the number of negative Jacobian determi-
nant values when we use motion invertibility prior and tissue rigidity prior together.

In (2.3), ifα ∈ C4 then the Jacobian determinant ofT satisfies the bounds

1 − (kx + ky + kz) ≤ det∇T (r) ≤ (1 + Kx)(1 + Ky)(1 + Kz)

+ (1 + Kx)kykz + kx(1 + Ky)kz + kxky(1 + Kz)

for ∀r ∈ R
3. Moreover, ifkx + ky + kz < 1, then the transformation (2.3) is locally

invertible everywhere.

Based on Theorem 4.1, we proposed the following simple penalty that encourages
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local invertibility:

RI(α) =
∑

q∈{x,y,z}

∑

i,j,k

[

p(αq
i+1,j,k − αq

i,j,k; ζ
q,x
1 , ζq,x

2 )

+p(αq
i,j+1,k − αq

i,j,k; ζ
q,y
1 , ζq,y

2 )

+p(αq
i,j,k+1 − αq

i,j,k; ζ
q,z
1 , ζq,z

2 )
]

(4.1)

whereζq,s
1 = −mqkq for ∀s ∈ {x, y, z} , ζq,s

2 = mqkq for s 6= q andζq,s
2 = mqKq for

s = q. The functionp is defined by

p(t; ζ1, ζ2) =



































1
2
(t − ζ1)

2, t ≤ ζ1

0, ζ1 < t ≤ ζ2

1
2
(t − ζ2)

2, otherwise.

(4.2)

All parameterskq, Kq are determined based on Theorem 4.1 andkx + ky + kz < 1 allows

(4.1) to be a penalty that encourages local invertibility. [13,15].

4.2.2 A tissue rigidity penalty

Staringet al. [93] and Modersitzki [60] defined a rigid transformation as follows.

Definition 4.2. A transformationT (r) is rigid if it is linear, i.e., ∂2
i1,i2T = 0 for all i1, i2 ∈

{x, y, z}, orthogonal,i.e., ∇T ′∇T = I, and orientation preserving for∀r ∈ R
3, i.e.,

det∇T = 1.

Using all three constraints requires high computational complexity for calculating the

first and second order derivatives of transformation. Sincewe apply an invertibility con-

straint which encouragesdet∇T > 0, the orthogonal property∇T ′∇T = I implies

orientation preservingdet∇T = 1. We do not also use linear property∂2
i1,i2T = 0 since

it is not a dominant term according to the simulation of Staring et al. [93]. It is also not
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desirable to compute the second order partial derivatives since it is computationally de-

manding. Thus, we only use the orthogonal property, following Loeckxxet al. [56] and

Ruanet al. [84]. So, our rigidity penalty function is

RR(α) =
∑

r

γ(f(r))||∇T (r)T∇T (r) − I||2Frob, (4.3)

where|| · ||Frob is a Frobenius norm andγ(x) = tanh((x − 1200)/10)/2 + 1/2.

Ruanet al. [84] calculates the Jacobian values on all image voxels and Staring et

al. [93] suggests to calculate only on all knot points instead ofall image voxels. This

choice depends on the scale of images. If a lower resolution image can capture the topol-

ogy of bone structure well, then we can calculate Jacobian values on all the knot points

only. However, if the original image has poor resolution, then we may have to calculate

all Jacobian values on all image voxels.

Since the number of voxels containing bone structure is usually much smaller than the

number of voxels for the whole body, we can save more computation time by calculating

the tissue rigidity contraint only for voxels containing rigid tissues. We do not calculate

||∇T (r)T∇T (r) − I||2Frob if γ(f(r)) < ǫ.

4.2.3 A proposed relaxed invertibility penalty

Since using both motion invertibility penalty (4.1) and tissue rigidity penalty (4.3)

causes conflicts near the diaphragm and the rib cage, we propose to relax the motion

invertibility penalty (4.1). However, since sliding of thediaphragm in respiratory motion

occurs mainly in the z-direction deformation, we only relaxthe invertibility penalty for

the x- and y- differences of z-direction deformation by using a Geman-type function [26].

We replace some of thep(·) terms in (4.1) as follows:

p(cz
i+1,j,k − cz

i,j,k; ζ
z,x
1 , ζz,x

2 ) to g(cz
i+1,j,k − cz

i,j,k; ζ
z,x
1 , ζz,x

2 , α0)

p(cz
i,j+1,k − cz

i,j,k; ζ
z,y
1 , ζz,y

2 ) to g(cz
i,j+1,k − cz

i,j,k; ζ
z,y
1 , ζz,y

2 , α0)

(4.4)
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where

g(t; ζ1, ζ2, α0) =







































































1
2
(α0 − ζ1)

2, t ≤ α0

1
2
(t − ζ1)

2, α0 < t ≤ ζ1

0, ζ1 < t ≤ ζ2

1
2
(t − ζ2)

2, ζ2 < t ≤ α1

1
2
(α1 − ζ2)

2, otherwise.

(4.5)

Therefore, the modified invertibility regularizer̃RI(α) is

R̃I(α) =
∑

q∈{x,y}

∑

i,j,k

[

p(αq
i+1,j,k − αq

i,j,k; ζ
q,x
1 , ζq,x

2 )

+p(αq
i,j+1,k − αq

i,j,k; ζ
q,y
1 , ζq,y

2 )

+p(αq
i,j,k+1 − αq

i,j,k; ζ
q,z
1 , ζq,z

2 )
]

+g(αz
i+1,j,k − αz

i,j,k; ζ
z,x
1 , ζz,x

2 , α0)

+g(αz
i,j+1,k − αz

i,j,k; ζ
z,y
1 , ζz,y

2 , α0)

+p(αz
i,j,k+1 − αz

i,j,k; ζ
z,z
1 , ζz,z

2 ) (4.6)

Figure 4.2.3 depictsp andg functions.

4.2.4 Graduated non-convexity (GNC) method

Our proposed penalties change the problem in (3.1) as follows:

α̂ = arg max
α

Ψ[g(·), f(T (·; α))] − βIR̃I(α) − βRRR(α). (4.7)

The proposed penalty function (4.5) is non-convex and it maycause local minima during

the optimization. Blakeet al. describe a graduated non-convexity (GNC) method as an

optimization method with Geman-type function [8]. It changes the shape of a functiong

from an almost convex function to a Geman function as optimization proceeds. We used

a GNC method combined with a conjugate gradient method to optimize the cost function
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Figure 4.3: A quadratic-like penalty for invertibility constraint and a Geman-like penalty
to relax invertibility constraint.

(4.7).

4.3 Simulation results

4.3.1 Experiment setup

We investigated 192× 128× 128 3D CT inhalation and exhalation images of a real pa-

tient shown in Figures 3.12 and 3.13. We used a 3rd-order B-spline basis for deformation

and deformation knots for every 4 voxels. The sum of the squared difference was used for

the data fitting term. We did not use a multi-resolution for this experiment since the lower

resolution image seemed to lose detailed information aboutthe rib cage and our rigidity

penalty did not seem to work well with poor resolution information. We performed 300
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Table 4.1: Negative Jacobian determinant values and data fitting RMS error
Method # of (-) Jacobian determinant Data fitting RMS error (HU)

No constraint 122597 30.59
Invertibility 0 36.26

Rigidity 0 38.13
Relaxed 341 38.11
Source 3145728 207.28

iterations of the conjugate gradient method with 4 cycles ofGNC [8].

4.3.2 Local invertibility and image matching

Figures 4.4, 4.5, 4.6, and 4.7 show the deformed images for each method. No con-

straint case is the best case in terms of matching the deformed image to the target image.

The rest of the results of each method shows plausible deformed images.

Table 4.1 shows these image matchings in a quantitative way.The data fitting RMS

error of and between source and target images is 207.28 HU andno constraint case results

in 30.59 HU after 300 iterations. However, this also resultsin 122597 voxel points of

negative Jacobian determinant values among 3145728 voxels. Figures 4.8 and 4.9 show

projection views of these negative Jacobian determinants.

Applying invertibility penalty [13, 15] (Invertibility) alone and both invertibility and

rigidity penalties (Rigidity) achieved 0 negative Jacobian determinant values. However,

due to the constraints applied, the data fidelity RMS error values are higher than a case with

no constraints. Our proposed method (Relaxed) has 341 negative Jacobian determinant

values among 3145728 voxels. This is natural because we intend to allow discontinuities

near the interface between the diaphragm and the rib cage. Figure 4.9 shows that the

discontinuities appear near the area we expected for most ofthe cases. This method also

achieved a better data fidelity RMS error value (38.11 HU) than the Rigidity method (38.13

HU) since we relaxed an invertibility penalty.
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No constraint: Coronal No constraint: Sagittal

No constraint: Axial

Figure 4.4: Coronal, sagittal and axial views of 3D deformedimages with no constraint.
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Invertibility: Coronal Invertibility: Sagittal

Invertibility: Axial

Figure 4.5: Coronal, sagittal and axial views of 3D deformedimages with and the invert-
ibility penalty
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Ridigity: Coronal Ridigity: Sagittal

Ridigity: Axial

Figure 4.6: Coronal, sagittal and axial views of 3D deformedimages with the invertibility
and rigidity penalties.
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Relaxed: Coronal Relaxed: Sagittal

Relaxed: Axial

Figure 4.7: Coronal, sagittal and axial views of 3D deformedimages with the proposed
relaxed invertibility and rigidity penalties.
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Figure 4.8: Projected coronal, sagittal and axial views of the number of non-positive Jaco-
bian determinant values in no constraint.
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Figure 4.9: Projected coronal, sagittal and axial views of the number of non-positive Ja-
cobian determinant values in the proposed method. Most of negative values in proposed
method are near inbetween the rib cage and the diaphragm.
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4.3.3 Improved bone registration

Figure 4.4 shows a deformed image very close to an original target image. Bones near

the diaphragm in the Invertibility case and the Rigidity case show clear bone warps due

to the sliding motion of the diaphragm. In the Rigidity case,too strong rigidity penalty

parameter causes the image intensity mismatch between the deformed image and the tar-

get image. Whereas too weak rigidity penalty parameter results in more bone warpings.

The right rib bone in coronal views went downward in both cases, and the spinal bones are

stretched due to a sliding effect. However, Figure 4.7 showsthat the bone moving / stretch-

ing is corrected. Figure 4.10 shows 3D bone structures for each method and shows that

our proposed method corrects bone warps significantly more compared to the invertibility

method or the rigidity method.

4.3.4 Sliding effect

Figures 4.12 and 4.13 show quiver plots of deformations for each method in coronal

and sagittal views. The no constraint case shows very localized deformations. However,

in the case of invertibility penalty, the nearby deformation field is affected by a major

downward motion of the diaphragm and we can even observe strong arrows outside the

body and inside the spine. However, our proposed method reduced the magnitude of

arrows outside the body (and on rib bones) and inside the spine. It seems more realistic to

have discontinuous motions near these areas.

4.4 Discussion

This chapter introduces a new relaxed invertibility penalty method as an extension of

our previous work [13, 15]. We applied it to a 3D respiratory image registration problem

with a rigidity penalty which reduced bone warps significantly with a small sacrifice of lo-
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cal invertibility and data fidelity. Estimated deformationnear the diaphragm seems more

realistic in terms of its discontinuity. However, the determination of parameters for a Ge-

man function may depend on individual patients and investigating this with more patients

will be an interesting future study.

Due to the width of the support of cubic B-splines, cubic B-spline based image reg-

istration might not be the best way to implement tissue rigidity penalty. Rigid constraint

near the support of this basis seems to lead to less flexible data fitting in the area of tissues

near bones. More general settings in rigidity penalty [60] and in sliding treatment [83]

seem to be another promising future study.
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Figure 4.10: 3D bone structures of deformed images for No constraint and Invertibility.
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Figure 4.11: 3D bone structures of deformed images for Invertibiliry / Rigidity and Pro-
posed method.
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No constraint No constraint

(a) No conatraint
Invertibility Invertibility

(b) Invertibility
Rigidity Rigidity

(c) Invertibility / Rigidity
Relaxed Relaxed

(d) Proposed method

Figure 4.12: Zoomed coronal views of deformed images (LEFT)by using no constraint,
invertibility penalty (Invertibility), invertibility / rigidity penalty (Rigidity), and relaxed
invertibility / rigidity penalty (Relaxed) and their quiver plots (RIGHT).
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No constraint No constraint

(a) No constraint
Invertibility Invertibility

(b) Invertibility
Rigidity Rigidity

(c) Invertibility / Rigidity
Relaxed Relaxed

(d) Proposed method

Figure 4.13: Zoomed sagittal views of deformed images (LEFT) by using no constraint,
invertibility penalty (Invertibility), invertibility / rigidity penalty (Rigidity), and relaxed
invertibility / rigidity penalty (Relaxed) and their quiver plots (RIGHT).



CHAPTER 5

Spatial resolution and noise properties in regularized
motion-compensated image reconstruction methods3

MCIR methods have great potential to improve image quality in the presence of sub-

ject motion. Unlike gated image reconstruction methods [62, 77], MCIR methods use

all collected data and unlike an ungated image reconstruction [59], it uses motion infor-

mation to avoid motion artifacts. There has been a lot of research on MCIR models for

different medical imaging modalities to compensate mainlyfor cardiac or respiratory mo-

tion [14,35,52,53,57,69,75,100].

MCIR methods differ in terms of how they incorporate motion information into image

reconstruction frameworks. Many MCIR models have been proposed and investigated:

post-reconstruction motion correction (PMC) [6,19,46,103], motion-compensated tempo-

ral regularization (MTR) [9, 27, 29, 31, 57], and the parametric motion model (PMM) [14,

35,52,53,69,75,100]. Even though each MCIR method has beenwell-studied separately,

there has been less research on the comparison of different MCIR methods. Manjeshwar

et al. [58] and Thielemanset al. [102] compared PMC and PMM in terms of lesion de-

tectibility. Asmaet al. also compared PMC and PMM theoretically in terms of the bias

and covariance of them [5]. However, the analysis used a conventional kappa approxima-

3This chapter is based on [16].

69
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tion [24] for the noise comparison so it was limited. Zibettiet al. compared MTR and

PMM empirically in the super-resolution (SR) application [113,115].

The spatial resolution and noise analyses for different MCIR models may be the first

step for thefair comparison of them. Only after we approximately match the spatial reso-

lutions of different MCIR methods, it is meaningful to compare their noise performance.

The spatial resolution and noise properties have been well-studied for for static image

reconstruction [1, 23, 24, 74, 89, 94] and dynamic image reconstruction [4]. This chapter

investigates the spatial resolution and noise properties of PMC, PMM, and MTR care-

fully, extending [24] to MCIR methods [16]. For known nonrigid motion, we analyse the

statistical properties of different MCIR models and compare them. This analysis can be

an initial step to the performance analysis of joint MCIR methods. This analysis may be

still useful since known motion may be reasonably realisticfor some multi-modal medical

imaging applications such as PET/CT [2,53] and PET/MR.

This chapter is organized as follows. Section 5.1 studies three different MCIR models

and estimators [25, 35, 46, 57, 115]. It shows how one estimator is related to another es-

timator. Section 5.2 investigates the spatial resolution properties of each MCIR estimator

and discusses the spatial regularizer designs that provideapproximately uniform spatial

resolution and resolution matching. Section 5.3 derives the noise properties with given

uniform spatial resolution and compares them. Section 5.4 shows some 2D tomography

(PET) simulations with known nonrigid motion to illustratethe theory.

5.1 Motion-compensated image reconstructions

We consider three different types of MCIR methods: post-reconstruction motion cor-

rection (PMC) [6, 19, 34, 46, 103], parametric motion model (PMM) [7, 14, 20, 25, 35, 52–

54,65,66,69,75,79,100] and motion-compensated temporalregularization (MTR) [9,27,
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57, 113, 115]. Here we treat the nonrigid motion informationas predetermined (known).

One can determine the motion information from the measurementsym or from other mea-

surements,e.g., from CT in PET/CT system or MR in PET/MR system.

5.1.1 Post-reconstruction motion correction (PMC)

Often one can reconstruct each imagef̂m from the corresponding measurementym

based on (2.1) and some prior knowledge (e.g., a smoothness prior). For simplicity, here

we focus on a penalized weighted least square (PWLS) estimator [22] with a quadratic

penalty as follows:

f̂m = argmin
fm

‖ym − Amfm‖2
Wm

+ η‖Cmfm‖2
2 (5.1)

whereWm is a weight matrix that approximates the inverse of the covariance ofym, η

is a spatial regularization parameter, and typicallyCm is a finite-difference matrix. The

analysis is easily generalized to other noise models [24].

The estimatorŝfm in (5.1) can be expressed as:

f̂m = [Fm + ηRm]−1A′
mWmym, m = 1, · · · , M (5.2)

where

Fm , A′
mWmAm (5.3)

andRm , C ′
mCm. Oncef̂1, . . . f̂M are reconstructed, one way to improve the SNR

would be to average all of them. However, the resulting imagewould be contaminated by

motion blur.

One way to reduce motion artifacts is to use the motion information to map each image

fm to a single image. Without loss of generality, we chosef1 as our target image to
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reconstruct. Then, using (2.10) and (5.2), a natural definition for the PMC approach is

f̂PMC ,
1

M

M
∑

m=1

T1,mf̂m (5.4)

=
1

M

M
∑

m=1

T1,m[Fm + ηRm]−1A′
mWmym.

For later convenience, we use (2.13) to rewrite (5.4) as follows

f̂PMC =
1

M

M
∑

m=1

[F̆m + ηR̆m]−1T ′
m,1A

′
mWmym (5.5)

whereF̆m , Tm,1
′FmTm,1 andR̆m , Tm,1

′RmTm,1.

5.1.2 Parametric motion model (PMM)

For PMM, we first need to choose a reference image frame among{f1, · · · , fM}.

Without loss of generality, we assume thatf1 is our reference image frame. Then, com-

bining the measurement model (2.1) with (2.10) yields a new measurement model that

depends only on the imagef1 instead of the all imagesfm:

ym = AmTm,1f1 + ǫm, m = 1, . . . , M.

Stacking up these models yields the overall model

yc = AdTcf1 + ǫc, (5.6)

where

yc = [y′
1, · · · , y′

M ]′,

Ad = diag {A1, · · · , AM} ,

Tc = [T1,1
′, · · · , TM,1

′]′,

ǫc = [ǫ′1, · · · , ǫ′M ]′.
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The PWLS estimator for the measurement model (5.6) is

f̂PMM = argmin
f1

‖yc − AdTcf1‖2
Wd

+ η‖C1f1‖2
2

= [T ′
cFdTc + ηR1]

−1T ′
cA

′
dWdyc, (5.7)

whereWd is a weight matrix that approximates the inverse of the covariance ofyc, i.e.,

Wd = diag {W1, · · · , WM} andFd , A′
dWdAd, which is a block-diagonal matrix of

Fm, i.e., diag {F1, · · · , FM}. Note that

Fc , T ′
cFdTc =

M
∑

m=1

T ′
m,1FmTm,1 =

M
∑

m=1

F̆m.

Then, one can rewrite (5.7) as follows:

f̂PMM =

[

M
∑

m=1

F̆m + ηR1

]−1 M
∑

m=1

T ′
m,1A

′
mWmym. (5.8)

5.1.3 Motion-compensated temporal regularization (MTR)

The MTR method exploits the motion information that matchestwo adjacent images

as a penalty:

‖fm+1 − Tm+1,mfm‖2
2. (5.9)

wherem = 1, · · · , M − 1. This penalty is added to the cost function in (5.1) to define the

MTR cost function.

Equations (5.1) and (5.9) can be represented in a simpler vector-matrix notation. First,

rewrite (2.1) as follows:

yc = Adfc + ǫc, (5.10)

wherefc = [f ′
1, · · · , f ′

M ]′. One can use (5.10) with any statistical image reconstruction

objective function. We focus here on PWLS as follows:

f̂c = argmin
fc

‖yc − Adfc‖2
Wd

+ η‖Cdfc‖2
2 + ζ‖Tcircfc‖2

2

= H−1
MTRA′

dWdyc, (5.11)
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whereCd = diag {C1, · · · , CM}, ζ is a temporal regularization parameter,

Tcirc ,















−T2,1 I

. . . . . .

−TM,M−1 I















, (5.12)

andHMTR , Fd + ηC ′
dCd + ζT ′

circTcirc. Therefore,

f̂MTR = [I 0 · · · 0] f̂c (5.13)

= [I 0 · · · 0] H−1
MTRA′

dWdyc.

We may also modifyTcirc for periodic (or pseudo-periodic) image sequences by assuming

thatTM+1,M , T1,M andfM+1 , f1.

5.1.4 Limits of MTR estimator for ζ

The temporal regularization term (5.9) in (5.11) will increase the correlation between

the estimatorŝci andĉj for i 6= j asζ increases. We investigate the limiting behavior of

the MTR estimator asζ → 0 and asζ → ∞.

It is easy to see the limit of̂fc asζ → 0 since

HMTR → Fd + ηC ′
dCd , FMTR

whereFMTR is block-diagonal. The inverse ofFMTR isFMTR
−1 = diag {(Fm + ηRm)−1}M

m=1 .

Therefore, the MTR estimator̂fc will be

f̂c → F−1
MTRA′

dWdyc =















f̂1

...

f̂M















, (5.14)

and therefore,f̂MTR → f̂1 asζ → 0. In other words, asζ → 0, the MTR estimator for

each frame is the same as separate (single frame) image reconstruction in (5.1).
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f̂c has more interesting behavior asζ → ∞. To see this, we need to treat the null

space ofRcirc , T ′
circTcirc carefully. SinceRcirc is symmetric nonnegative definite, it has

an orthonormal eigen-decomposition of the form

Rcirc = [U1 U0]







Σ1 0

0 0






[U1 U0]

′

whereU1, U0 are unitary matrices andΣ1 ≻ 0. The columns of the matrixU0 span the

null space ofRcirc. From the definition ofTcirc, it is easy to see that the null space ofRcirc

consists of images that satisfiy the following condition:

f2 = T2,1f1 (5.15)

f3 = T3,2T2,1f1

...

fM = TM,M−1 · · ·T2,1f1,

for any imagef1. In other words, theMN × MN matrix Rcirc has a null space of at

least dimensionN . In contrast, the spatial regularizerCd usually has a null space only of

dimension1. A system of equations (5.15) becomes

fc =





















T2,1

T3,2T2,1

...

TM,M−1 · · ·T2,1





















f1 , T̃cf1. (5.16)

When we add a periodic condition

f1 = T1,MfM (5.17)

to (5.12), we assume that (5.17) is linearly dependent on (5.15). In this case,Rcirc still has

a null space of at least dimensionN . We can construct the matrixU0 as follows:

U0 = T̃c

(

T̃c
′
T̃c

)−1/2

, T̃cS (5.18)
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whereT̃c
′
T̃c ≻ 0 becauseT̃c

′
T̃c = I +

∑M
m=2(Tm,m−1 · · ·T2,1)

′Tm,m−1 · · ·T2,1 andI is

positive definite. Thus,S is invertible.

Under the usual assumption thatF1 andR1 have disjoint null spaces, one can verify

that

B , U ′
0FMTRU0 ≻ 0.

To proceed, we expressFMTR as follows:

[U1 U0]
′FMTR[U1 U0] =







N M ′

M B






.

Note that even thoughΣ1 is diagonal,N andB are not diagonal in general. Thus,

[FMTR + ζRcirc]
−1 = U







N + ζΣ1 M ′

M B







−1

U ′

whereU = [U1 U0]. By Schur complement [28], we have

[FMTR + ζRcirc]
−1 =

U







∆ −∆M ′B−1

−B−1M∆ B−1 + B−1M∆M ′B−1






U ′

where∆ = [N + ζΣ1 −M ′B−1M ]−1. SinceΣ1 is positive definite,∆ → 0 asζ → ∞.

Thus,

H−1
MTR = [FMTR + ζRcirc]

−1 → U0B
−1U ′

0. (5.19)

Therefore, the MTR estimator̂fc becomes

f̂c → T̃c[T̃c
′
FMTRT̃c]

−1T̃c
′
A′

dWdyc (5.20)

asζ → ∞. In other words, the MTR estimator̂fc goes to

f̂c → T̃c[Fc + ηR̃c]
−1T̃c

′
A′

dWdyc (5.21)

= T̃c

[

M
∑

m=1

F̆m + ηR̆m

]−1 M
∑

m=1

T ′
m,1A

′
mWmym
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whereR̃c = T̃c
′
C ′

dCdT̃c.

The dimension of the null space forRcirc is greater than or equal to the dimension of

f1. Therefore, (5.21) may always have the nonzero estimated image and is not biased due

to largeζ .

5.1.5 Comparison of different MCIR estimators

Observing the limit behavior of the MTR estimator shows thatMTR estimator (5.14)

is equivalent to a separate PWLS estimator (5.2) asζ → 0. Forζ → ∞ case, we can show

the relationship between (5.20) and (5.8) as we assume thatTj,i is transitive. In this case,

T̃c becomesTc. In practice, getting exactly transitive deformations is challenging [90].

Then, we can show that

f̂MTR → f̂PMM as ζ → ∞, (5.22)

whenη = 0. If the regularizersR1 and
∑M

m=1 R̆m are designed carefully, then (5.22) may

be true forη 6= 0. So, for known motion, the MTR estimatorŝfc for all frames can be

obtained by simple warps of̂fPMM as follows:

f̂c = Tcf̂PMM (5.23)

whenζ → ∞.

For PMC estimator (5.4), we used an unweighted average of themotion corrected

estimators of all frames. The MTR estimator forζ → ∞ (and the PMM estimator) can be

interpreted as aweightedaverage of all estimators from all frames as follows:

f̂MTR →
[

M
∑

m=1

F̆m + ηR̆m

]−1 M
∑

m=1

T ′
m,1A

′
mWmym

=
M
∑

m=1

ΓmT1,m(Fm + ηRm)−1A′
mWmym

=
M
∑

m=1

Γmf̂m, (5.24)
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where the weighting matrices are given by

Γm ,

[

M
∑

l=1

F̆l + ηR̆l

]−1

(F̆m + ηR̆m).

The PMM and MTR with largeζ give more weight to estimatorŝfm depending on factors

such as high certainty (Fisher information matrixFm), motionTm,1 and regularization.

5.2 Spatial resolution properties

Spatial resolution depends on many factors in an imaging system, so analyzing it usu-

ally requires system-specific information. In this section, we provide a way to match the

spatial resolutions of each MCIR method so that we can fairlycompare the noise proper-

ties with the same (or similar) bias. Since it is hard to deal with the many different factors

that cause spatial resolution non-uniformity, we focus on an ideal tomography system for

our analysis,i.e., no detector blur.

For the analysis in this section, we assumeAm = A0 for all m, but we allow the warp

Tm,1 and the statistical weightsWm to differ for eachm. Some PET and CT scans satisfy

these assumptions. We also assume that we are using the first-order difference matrixCm

as a spatial regularizer (penalizingx andy directions in 2D).

5.2.1 Separate image reconstruction

Since we will be providing methods to approximately match the spatial resolution of

MCIR methods with the spatial resolution of a reconstructedimage of each frame sep-

arately, we first briefly review the methods for providing uniform spatial resolution of a

separate image reconstruction [24].

The expected value of (5.2) form is

E{f̂m} = [Fm + ηRm]−1Fmfm. (5.25)



79

We are interested in the local impulse response (LIR) atjth pixel and the corresponding

LIR ljm can be obtained from the expected value of the estimator as follows:

ljm = [Fm + ηRm]−1Fmδj . (5.26)

A continuous-space analogue to rewrite (5.26) as the local frequency response atjth pixel

is as follows [89]:

ωj
m(Φ)/|ρ|

ωj
m(Φ)/|ρ| + ηRj

m(ρ, Φ)
(5.27)

ωj
m(Φ) is a weight fromWm, andRj

m(ρ, Φ) is from Cm. WhenCm is the first-order

difference matrixC0, thenRj
m(ρ, Φ) = (2πρ)2. Note that this local frequency response

(5.27) depends onωj
m(Φ), which is local shift variant.

To approximately provide uniform spatial resolution, we apply spatial regularizers [24]

Cm such that

Cm , C0D(κm) (5.28)

where

[κm]j ,

√

[A′
0Wm1]j/[A′

01]j, (5.29)

and1 = [1 1 · · · 1]′. Note that we assumedAm = A0 for all m. Since we can

approximate

Fm = A′
0WmA0 ≈ D(κm)A′

0A0D(κm) = D(κm)F0D(κm), (5.30)

(5.25) becomes

E{f̂m} ≈ D(κm)−1[F0 + ηR0]
−1F0D(κm)fm (5.31)

whereF0 = A′
0A0 andR0 = C ′

0C0. Note that (5.30) is a local approximation nearjth

pixel where we are interested in and sinceκm values are smoothly varying, the approxima-

tion in (5.30) is reasonable. Then, one can cancel outD(κm)−1 andD(κm) in (5.31) since

one can approximate[F0 + ηR0]
−1F0 as nearly diagonal. Therefore, using the modified
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regularizer in (5.28),

E{f̂m} ≈ [F0 + ηR0]
−1F0fm (5.32)

and the corresponding local frequency response of a continuous-space analogue for (5.32)

becomes

1/|ρ|
1/|ρ| + η(2πρ)2

, (5.33)

which is now local shift invariant. We use this form below when considering the effects of

motion.

5.2.2 Post-reconstruction motion correction

The expected value of the PMC estimator (5.4) is the sum of each expected valuêfm

since the expectation operator is linear. So, the expected value off̂PMC is

E{f̂PMC} =
1

M

M
∑

m=1

T1,m[Fm + ηRm]−1Fmfm (5.34)

sinceE{ym} = Amfm. Applying the modified spatial regularizerCm in (5.28) for each

frame of (5.34) and using (5.32) shows that

E{f̂PMC} ≈ 1

M

M
∑

m=1

T1,m[F0 + ηR0]
−1F0Tm,1f1 (5.35)

where we substitutefm with Tm,1f1.

Since the original system response[F0 + ηR0]
−1F0 is sandwiched in betweenT1,m

andTm,1 operators in (5.35), the nature of the system response may change due to mo-

tion effects. We are interested in nonrigid motion and assume that the motion is locally

affine. Since the original system response is space invariant, without loss of generality,

we assume the local linear transformation at thejth pixel. However, dealing with general

linear transformations poses a challenge that may require designing a regularizer with dif-

ferent weights according along different directions [89, 94]. We discuss this challenge in

Appendix C.2.
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The system response (5.33) with the modified spatial regularizer is space and rotation

invariant. However, the spatial resolution property will change a lot for the scaling motion.

To see this effect clearly, we consider the scaling motion inpolar coordinate.

When we assume that

(Tm,1f1)(r, φ) ≈ f1(r/smj, φ) (5.36)

wherer belongs to a small neighborhood of thejth pixel, Tm,1 is a continuous-space

analogue ofTm,1, andf1(r, φ) is a continuous-space analogue off1 in polar coordinate.

smj is a scaling factor atjth voxel, we can express the local frequency response of a

continuous-space analogue for (5.35) as follows:

1/|ρ/smj |
1/|ρ/smj| + η(2πρ/smj)2

=
1/|ρ|

1/|ρ| + η/|smj|3(2πρ)2
. (5.37)

Note that in practice, the measurement matrixAm may contain a blur function and a

scaling factorsmj may alter that function. This may cause (5.37) to be incorrect. In this

paper, we neglect blur in the measurement matrixAm for simplicity.

Therefore, (5.37) suggests that eachCm should include a factor of|smj |3 to maintain

the uniform spatial resolution. When we set

Cm , C0D([κm]j|smj |3/2), (5.38)

the system response (5.37) becomes (5.33). Therefore,

E{f̂PMC} ≈ [F0 + ηR0]
−1F0f1 ≈ E{f̂1}. (5.39)

This example shows that a simple local scaling motion can alter the spatial resolution

because it alters the regularization parameterη by η/|smj|3. Therefore, the spatial reso-

lution in each frame may change after each goes throughT1,m operator. Equation (5.38)
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suggests that we need an extra term|smj |3/2 to approximately provide uniform spatial

resolution for local expanding or shrinkingsmj .

5.2.3 Parametric motion model

From (5.8), the expected value of̂fPMM is given by

E{f̂PMM} =

[

M
∑

m=1

F̆m + ηR1

]−1 M
∑

m=1

F̆mf1. (5.40)

SinceT ′
m,1 ≈ T1,mD(|∇Tm,1|j) (see Appendix C.1) andD(|∇Tm,1|j) = D(1/|smj |2)

from (5.36), equation (5.40) becomes

E{f̂PMM} =

[

M
∑

m=1

D(|smj |2)F̃m + ηR1

]−1 M
∑

m=1

D(|smj |2)F̃mf1 (5.41)

where F̃m , T1,mFmTm,1. Thus, the local frequency response of a continuous-space

analogue for (5.41) is

∑M
m=1 |smj |2ωj

m(Φ)/|ρ/smj |
∑M

m=1 |smj|2ωj
m(Φ)/|ρ/smj | + η(2πρ)2

=

∑M
m=1 |smj |3ωj

m(Φ)/|ρ|
∑M

m=1 |smj|3ωj
m(Φ)/|ρ| + η(2πρ)2

. (5.42)

This suggests that we can achieve uniform spatial resolution by using

C1 , C0diag {ν} (5.43)

where

[ν]j ,

√

√

√

√

M
∑

m=1

|smj |3[T1,mκm]2j . (5.44)

Using (5.43), the local frequency response (5.42) approximates (5.33). In other words, the

expected value of̂fPMM becomes approximately

E{f̂PMM} ≈ [F0 + ηR0]
−1F0f1 ≈ E{f̂1}, (5.45)

which is also the same asE{f̂PMC}.
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5.2.4 Motion-compensated temporal regularization

The expected value of the MTR estimatorf̂c in (5.13) is as follows:

E{f̂c} = [FMTR + ζRcirc]
−1Fdfc. (5.46)

Since it is not easy to see the spatial resolution property off̂c in (5.46), we investigated

the spatial resolution properties asζ → 0 andζ → ∞.

The limiting behavior off̂c asζ → 0 in (5.14) shows that

E{f̂c} →















E{f̂1}
...

E{f̂M}















. (5.47)

This is the same as the expected value of the individually reconstructed imagêfm from

each measurementym. Therefore,E{f̂MTR} → E{f̂1} as ζ → 0. In this case, using

the regularizer (5.38) for each frame provides approximately uniform spatial resolution

effectively for frame 1,i.e., a frame forf̂MTR. Then, what will happen for the spatial

resolution asζ → ∞?

The limit of the expected valueE{f̂c} is approximately

E{f̂c} → Tc[Fc + ηRc]
−1Fcf1 (5.48)

asζ → ∞ because of (5.20). So,

E{f̂MTR} → [Fc + ηRc]
−1Fcf1. (5.49)

The local frequency response of (5.49) with the regularizer(5.38) is
∑M

m=1 ωj
m(Φ)/|ρ/smj|

∑M
m=1 ωj

m(Φ)/|ρ/smj| + ηωj
m(Φ)|smj |3(2πρ/smj)2

and it becomes
∑M

m=1 |smj|ωj
m(Φ)/|ρ|

∑M
m=1 |smj |ωj

m(Φ)/|ρ| + η|smj|ωj
m(Φ)(2πρ)2

=
1/|ρ|

1/|ρ| + η(2πρ)2
. (5.50)
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which is the same as (5.33). Therefore, (5.50) shows that

E{f̂MTR} → [F0 + ηR0]
−1F0f1 = E{f̂1} (5.51)

as ζ → ∞. This is approximately the same local frequency response asthe PMC and

PMM estimators. However, the mean of other frames inf̂c may not converge toE{f̂1}.

This shows that usingR1 in (5.8) has the equivalent effect of usingRc in (5.21).

5.3 Noise properties

Since noise properties of an estimator depend on the spatialresolution properties in-

duced by the regularizer, we focus on the modified regularizers that provide approximately

uniform spatial resolution as explained in the previous section. In this section, we assume

thatWm = Cov{ym}−1 for all m since it is a usual choice for PWLS reconstruction [22].

We also assume that all measurementsym for all m are independent,i.e., Cov{f̂m, f̂n} = 0

for all m 6= n. (This does not hold in parallel MRI due to coil couples, but is reasonable

in most often tomographic imaging systems.)

5.3.1 Post-reconstruction motion correction

The covariance of the PWLS estimator of a single framef̂m is straightforward from

(5.2) as follows:

Cov{f̂m} = [Fm + ηRm]−1Fm[Fm + ηRm]−1. (5.52)

When we apply the modified regularizer (5.28) toRm, (5.52) becomes

Cov{f̂m} = D(κm)−1
Ω0D(κm)−1, (5.53)

where

Ω0 , [F0 + ηR0]
−1F0[F0 + ηR0]

−1.
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By imposing uniform spatial resolution, we have non-uniform noise variance (whenWm is

nonuniform) due toD(κm)−1. D(κm) depends on the measurement covarianceCov{ym}.

Because we assume that all measurementsym are independent, the covariance of the

PMC estimator (5.4) is

Cov{f̂PMC} =
1

M2

M
∑

m=1

T1,mCov{f̂m}T1,m
′ (5.54)

=

M
∑

m=1

D(|∇Tm,1|1/2
j )T1,mCov{f̂m}Tm,1D(|∇Tm,1|1/2

j )

because of (C.2). In our example,D(|∇Tm,1|j) = D(1/s2
mj). When we apply (5.38) to

Rm, equation (5.54) can be approximated

Cov{f̂PMC} ≈ 1

M2

M
∑

m=1

D([κ̃−1
m ]j/smj)Ω0D([κ̃−1

m ]j/smj), (5.55)

whereκ̃−1
m , T1,mκ−1

m .

5.3.2 Parametric motion model

The covariance of the PMM estimator (5.7) is

Cov{f̂PMM} = [Fc + ηR1]
−1Fc[Fc + ηR1]

−1. (5.56)

When we apply (5.43) toR1 and re-writeFc + ηR1, then

Fc + ηR1 =

M
∑

m=1

D(s2
mj)D(T1,mκ2

m)(F0 + ηR0), (5.57)

whereκ2
m is a vector of the elements[κm]2j . Therefore, (5.56) becomes

Cov{f̂PMM} = D(ν̃)−1
Ω0D(ν̃)−1 (5.58)

where

[ν̃]j ,

√

√

√

√

M
∑

m=1

s2
mj[T1,mκm]2j .
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5.3.3 Motion-compensated temporal regularization

The covariance matrix of the MTR estimatorf̂c is

Cov{f̂c} = H−1
MTRFdH

−1
MTR. (5.59)

We study the limits of (5.59) asζ → 0 andζ → ∞.

For ζ → 0, sinceHMTR → FMTR which is block-diagonal, (5.59) goes to

Cov{f̂c} →















Cov{f̂1}
. . .

Cov{f̂M}















. (5.60)

Thus,Cov{f̂MTR} → Cov{f̂1} asζ → 0.

For ζ → ∞, (5.59) becomes

Cov{f̂c} → Tc[Fc + ηRc]
−1Fc[Fc + ηRc]

−1T ′
c , (5.61)

i.e., the covariance of̂fMTR goes to

Cov{f̂MTR} → [Fc + ηRc]
−1Fc[Fc + ηRc]

−1. (5.62)

Assuming that eachRm uses (5.38), it is easy to show that

Cov{f̂MTR} → Cov{f̂PMM}

sinceRc in (5.62) is equivalent toR1 in (5.56) when (5.38) is applied toRc.

5.3.4 Comparison of noise properties in MCIR methods

The covariance of PMM (5.58) is the same as the covariance of MTR for ζ → ∞, as

expected becausêfMTR → f̂PMM asζ → ∞. However, the covariance of PMC (5.55)

has a different form. These two forms lead to two main differences in terms of noise

performance.
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First, the covariance of PMM (5.58) is smaller than the covariance of PMC (5.55) when

there are frames with significantly different noise levels.To illustrate this point, without

the loss of generality, consider the effects of various values ofκ1.

As κ1 → ∞, frame 1 has significantly better SNR than other frames and itis desirable

to emphasize the information from frame 1. However, in this case, the covariance of PMC

(5.55) shows that

Cov{f̂PMC} → 1

M2

M
∑

m=2

D

(

1

smj [κ̃m]j

)

Ω0D

(

1

smj [κ̃m]j

)

as κ1 → ∞. Therefore,Cov{f̂PMC} may not have zero covariance. However, since

ν̃ → ∞ asκ1 → ∞, the covariance of PMM (5.58) becomes

Cov{f̂PMM} → 0.

This shows that̂fPMM automatically emphasizes the information from the most informa-

tive frames.f̂MTR has the same property forζ → ∞.

As κ1 → 0, the information from frame 1 is contaminated by extreme noise. In this

case, (5.55) shows that

Cov{f̂PMC} → ∞.

A simple average is not effective at rejecting outliers. In contrast, asκ1 → 0,

[ν̃]j →

√

√

√

√

M
∑

m=2

s2
mj [T1,mκm]2j =

√

√

√

√

M
∑

m=2

s2
mj [κ̃m]2j

and the covariance of PMM still has a finite value. This shows that f̂PMM is less easily

contaminated by frames with poor statistics.Cov{f̂MTR} also has the same property for

largeζ value.

Secondly, the variance of PMM is lower than the variance of PMC. Both PMM and

PMC covariances consist ofΩ0 matrix and diagonal matrices. We compare the vari-

ances of PMM and PMC by comparing such diagonal elements. When we havebm ,
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s2
mj [T1,mκm]2j , thejth diagonal element of the PMM covariance is

1
∑M

m=1 bm

[Ω0]jj,

and thejth diagonal element of the PMC covariance is

1

M2

M
∑

m=1

1

bm
[Ω0]jj.

By Cauchy-Schwartz inequality,

M2 =

(

M
∑

m=1

√

bm/
√

bm

)2

≤
M
∑

m=1

bm

M
∑

m=1

1/bm,

which shows that

Var{f̂PMM} ≤ Var{f̂PMC}. (5.63)

Asmaet al. [5] also showed (5.63), but only for the unregularized case.Since we have

spatial regularization designed to approximately provideuniform spatial resolution, we

can show (5.63) even for regularized case. PMC also can achieve the same level of noise

performance since PMM is a weighted version of PMC as we showed in (5.24). For MTR

estimator, the variance of it becomesVar{f̂MTR} → Var{f̂PMM} asζ → ∞.

5.4 Simulation results

5.4.1 Simulation setting

Figure 5.1 shows four image frames of a 2D object with known motion (scaling, rotat-

ing and translating). The original image has 160× 160 samples with3.4mm pixel width.

We forward-projected these original images using the CTI 931 PET scanner geometry /

detector response with 160 detector samples, 3.375 mm spacing, 192 angular views, and

3.375 mm strip width. We used 250K mean true coincidences foreach frame (1M total)

with 10% random coincidences. We ignored attenuation in this simulation to see the effect

of the theory clearly because attenuation depends on objectsize.
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4 images with known motion

 

 

1 160

1

160

   0

10.1

Figure 5.1: Four true image framesf1, . . . , f4 with scaling, rotation and translation. Three
impulses are placed at+ marks.

5.4.2 Spatial resolution matching

We computed the local impulse response (LIR) of each method by reconstructing im-

ages from noiseless projection data as suggested in [24]. Welocated three impulses at

frame 1 (+ marks in figure 5.1) and warped the original image into each frame. Our target

full width of half maximum (FWHM) was 1.9 pixels.

Figure 5.2 (a) shows the LIR of PWLS 1 (circle) from a single frame (separate) image

reconstruction with a conventionalκ in (5.28) at the hot region. This is our target LIR

for all three MCIR methods. Figure 5.2 also shows the LIR of PMCo, i.e., PMM with

a conventionalκ in (5.28). It shows that a conventionalκ may cause spatial resolution

mismatch due to scaling motion. However, LIR of the PMC with our modifiedκ in (5.38)
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(a) LIRs of PMC
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PWLS 1 (FWHM: 2.05)
PMMo FWHM: 2.02)
PMM (FWHM: 2.01)
PMMe (FWHM: 2.00)

(b) LIRs of PMM

Figure 5.2: Profiles of LIRs at hot region. For (a), PWLS 1 is from a single frame and it is
the target LIR. PMCo uses a conventional staticκ. PMC uses a proposed regularizer. For
(b), PMMo uses a conventionalκ of frame 1 multiplied by the number of frames. PMM
uses a proposedν. PMMe uses an equivalent regularizerRc from MTR.

can compensate for the spatial resolution mismatch. LIRs atother areas show almost

identical results.

Figure 5.2 (b) shows LIRs of PMM with three different regularizers. All regularizers

show close matching with PWLS 1 within0.1 pixel error. PMMo performs very well

compared to other proposed regularizers. It seems that the scaling factor compensates for

the effect ofκs from other frames in (5.43), but PMMo only used a conventionalκ of frame

1 multiplied by 4. However, with noise, PMMo may perform poorly since it estimatesκ

from one frame, not from all frames as seen in (5.43).

Lastly, figure 5.3 (a) and (b) shows LIRs of MTR with differentvalues ofζ . MTRo

with a conventionalκ in (5.28) shows that there would be resolution mismatch due to

scaling asζ increases. However, MTR with the proposed regularizer in (5.38) shows that

LIRs are matching well within0.1 pixel error for differentζ values. It seems thatζ = 1

is large enough to see the effect ofζ → ∞. We can also notice that PMMe in figure 5.2

(b) and MTR withζ = 1 have the same FWHM (1.84 pixels). This result explains (5.21)

well.
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PWLS 1 (FWHM: 2.05)
MTRo w/ 0.01 (FWHM: 2.05)
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(a) MTR with (5.28)
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PWLS 1 (FWHM: 2.05)
MTR w/ 0.01 (FWHM: 2.06)
MTR w/ 0.3 (FWHM: 2.03)
MTR w/ 1 (FWHM: 2.03)

(b) MTR with (5.38)

Figure 5.3: Profiles of LIRs at hot region. MTRo is with a conventionalκ. MTR is with
the proposed regularizer (5.38).

5.4.3 Reconstructed images and variances

Figure 5.4 (a) shows an image that is reconstructed by (5.1) from a single realization.

Since the measurement of one frame has a low photon count (250K), it has a poor quality.

Figure 5.4 (b) shows the result when we use all photon counts (1M), but without motion

correction. Motion artifacts are observed in the result. Figures 5.4 (c) and (d) show re-

constructed images of PMC and PMM. Compared to (a) and (b), both (c) and (d) show

improved image quality in terms of noise and reduction of motion artifacts.

Figures 5.5 (a), (b) and (c) show reconstructed images of MTRwith differentζ values

(0.01, 0.3, 1). (a) looks similar to figure 5.4 (a), but a little better becauseζ is not com-

pletely 0. Asζ increses, reconstructed images is getting closer to the result of PMM in

figure 5.4 (c). Figure 5.5 (d) shows a reconstructed image of PMM with Rc. This looks

very close to reconstructed images of PMM withR1 and MTR for largeζ . In practice,ζ

does not have to be∞, butζ = 1 is large enough relative to other terms in (5.11).

Lastly, figure 5.6 shows that the standard deviation of MCIR methods are lower than

the standard deviation of PWLS single frame reconstruction.
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Figure 5.4: Reconstructed images from a single realization. (a) is a PWLS reconstructed
image from frame 1. (b) is a reconstructed image from all frames without motion correc-
tion. (c) is a PMC reconstructed image. (d) is a PMM reconstructed image.

5.5 Discussion

We investigated three different MCIR methods and their spatial resolution and noise

properties. Analyses show that MTR is equivalent to PMM asζ → ∞ with given motion

and is also equivalent to PWLS 1 asζ → 0.

When we use MTR with given periodic motions, it is important to make sure that

warps are transitive. Otherwise, we may have an additional condition for null space of

Rcirc, f1 = T1,MfM , which may not depend on (5.15).

This analysis can help to understand the joint estimation problem of image and motion
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Figure 5.5: MTR reconstructed images from a single realization with differentζ . As ζ
increases, it approached to a PMM reconstructed image with aregularizerRc.

in each MCIR model. For example, since the Jacobian determinant values of estimated

deformations may change the spatial resolution properties, it is very important to have a

good motion prior in the joint estimation with MCIR methods.

We also showed that PMM and MTR (for largeζ) are equivalent to PMC with special

weights for sum. It is important to be rigorous in terms of statistical principle when we

model the reality to achieve better statistical properties. PMC can be a natural choice when

we have multiple reconstructed images, but PMM and MTR with largeζ shows that PMC

needs specific weights to achieve better noise property withthe same resolution.

Lastly, spatial resolution analysis for MCIR methods is very challenging in practice.
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Figure 5.6: Standard deviation (SD) of PWLS vs. SD of MCIR methods. All MCIR
methods reduce SD compared to PWLS from a single frame.

There are many factors to consider, such as different measurement matricesAm, blurring

kernel in eachAm, different detector response for different size of objectsand so on. It is

also very challenging to deal with different motions, such as scaling with different rate in

each direction or shear motion. However, maintaining similar levels of spatial resolution

for each frame, such as (5.38), and then applying post filtering would be reasonable to use

in practice.

There can be many future directions for research in this area. Designing a spatial

regularizer for uniform spatial resolution with shear motion and with different regulariz-

ers other than quadratic penalty will be a challenging task.Extending this analysis with

unknown motion will be another interesting future work.



CHAPTER 6

Joint image reconstruction and nonrigid motion
estimation with motion invertibility regularizer 4

Medical imaging modalities such as PET, SPECT, CT and MRI provide useful patient

image information for diagnosis, treatment planning, and intervention in clinical settings.

However, due to the innate limitation of medical imaging modalities in terms of acquisition

time and patient motion, there are some trade-offs between spatial resolution and motion

artifacts. Gating methods based on breathing signals or ECGsignals [63] can reduce

motion artifacts significantly, but can also reduce SNR by discarding potentially useful

data.

MCIR methods have been investigated to exploit all collected data and motion infor-

mation to improve the quality of reconstructed images with abetter SNR and less motion

artifacts. Most of the methods incorporate nonrigid motioninto their image reconstruc-

tion models since human organ motion is nonrigid [50]. Motion can be given from other

sources [30,44,52,53,75] or be estimated from the collected data [35,57,99].

MCIR methods with given nonrigid motion are very useful and have been researched

frequently. Many multi-modal imaging systems such as PET/CT and PET/MR provide low

resolution functional imaging and high resolution structural imaging. MCIR methods can

4This chapter is based on [14].
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be used to improve the quality of low resolution imaging and motion can be estimated from

high resolution imaging such as CT or MR. Based on this situation, many researchers have

investigated MCIR methods with given motion mainly for PET/CT [52,53,75]. However,

since PET/CT does not acquire PET and CT measurements simultaneously, there can be

discrepancies between PET and CT motion [21,59].

Joint MCIR methods have broad potential applications. Two of the three MCIR meth-

ods described in Chapter 5, namely PMM and MTR, have been investigated previously for

joint reconstruction/registration problems. Joint PMM has been investigated for PET [34–

37], CT [97–99], and MRI [69, 70]. Joint MTR has been also studied for SPECT perfu-

sion imaging [29–31] and emission computed tomography (ECT) [9, 27, 57]. However,

there has been little research on the performance analysis for joint MCIR methods. In

SR research, there are some efforts to seek the fundamental limits of PMM [7, 54, 101].

Robinsonet al. used the Cramer-Rao (CR) bound to analyze the performance ofjoint

PMM, but it was limited to global translation motion [78, 79]. Ruan also used the CR

bound for the performance analysis of global translation motion estimation and treated

images as nuisance parameters [82].

It may be beneficial to explore the estimates of joint MCIR methods with different

spatial and motion regularization parameters. Better understanding of the joint MCIR

models may be helpful to attack the performance analysis of joint MCIR methods. This

chapter provides some preliminary results for different joint MCIR methods with various

spatial and motion regularization parameter values. It also investigates the joint MCIR

methods with different motion regularizers: a proposed motion invertibility regularizer in

Chapter 3 and a conventional quadratic motion regularizer [14]. These preliminary results

help reveal how different motion regularizers can affect image estimates. We simulated

4D gated PET imaging with the 4D XCAT phantom [88]. The XCAT phantom provides a
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tool to add lesions and we placed 4 lesions in different areas.

6.1 Motion treatment in model-based image reconstruc-
tion

In this section, we briefly review different strategies for incorporating motion in model-

based image reconstruction. We also review different MCIR models with unknown motion

and add motion regularizers to MCIR models.

6.1.1 Ungated image reconstruction

One possible approach to motion in model-based image reconstruction is to ignore it

altogether. In this case, the measurement model is as follows:

yc = Acf1 + ǫc

whereAc , [A′
1 . . .A′

M ]′. Then, the PWLS estimator forf1 is

f̂SUM = argmin
f1

‖yc − Acf1‖2
Wd

+ ηR‖C1f1‖2
2. (6.1)

Note that there is no motion estimation in this case.

6.1.2 Separate frame-by-frame image reconstruction

As the opposite extreme from section 6.1.1, one can reconstruct an image from each

frame that is motion-free:

f̂m = argmin
fm

‖ym − Amfm‖2
Wm

+ ηR‖Cmfm‖2
2, m = 1, · · · , M. (6.2)

The measurementym can be collected over a short period of time or can be collected

during the same phase of periodic motion such as cardiac and respiratory motion [62, 77,

109]. The estimateŝfm will have lower SNR thanf̂SUM becausef̂m uses less data.
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6.1.3 Post-reconstruction motion correction

The estimate (6.1) contains motion artifacts whereas (6.2)has poor SNR due to in-

sufficient measurements. Using motion information in model-based image reconstruction

may improve the reconstructed image quality in terms of SNR and motion artifacts. Post-

reconstruction motion correction (PMC) is a straightforward method that implements this

idea.

We denote a warp fromfn to fm asTm,n and assume thatTm,n is parametrized by

αm,n in (2.6). Then, the warp can be represented as

Tm,n = T̆ (αm,n)T̆−1
0 ,

whereT̆0 , T̆ (0). The PMC method estimates the motion parameter vectorα1,m from

the reconstructed images:

α̂1,m = argmin
α

1,m

d(f1, T̆ (α1,m)T̆−1
0 fm) + ηMRM(α1,m), m = 2, · · · , M

whered(·, ·) is any metric to measure the distance between one image from the other.

We used the sum of squared difference (L2 norm), but other metrics such as correlation

coefficient [41] or mutual information [72,110] can also be used.RM(·) can be an elastic

motion regularizer or one of the regularizers we proposed inchapter 3 and 4.

Then, the PMC estimator is the average of motion-corrected estimators for individual

frames:

f̂PMC =
1

M

(

f̂1 +

M
∑

m=2

T̆ (α̂1,m)T̆−1
0 f̂m

)

. (6.3)

Unfortunately, the motion estimatesα̂1, . . . , α̂M are based on image estimatesf̂1, . . . , f̂M

that may have poor image quality due to insufficient measurements.
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6.1.4 Motion-compensated temporal regularization

By adding a motion regularizer to the cost function of MTR in (5.11), we have a joint

MTR estimate for image and motion as follows:

(f̂1, · · · , f̂M , α̂2,1, · · · , α̂M,M−1) = argmin
f1,··· ,fM ,α

2,1,··· ,αM,M−1

M
∑

m=1

‖ym − Amfm‖2
Wm

+ηR‖Cmfm‖2
2 + ζ

M−1
∑

m=1

‖fm+1 − T̆ (αm+1,m)T̆−1
0 fm‖2

2 + ηMRM (αm+1,m).

For periodic motion, we can modify the temporal regularization term by adding‖f1 −

T̆ (α1,M)T̆−1
0 fM‖2

2.

This cost function combines image reconstruction cost functions and image registra-

tion cost functions with a weightζ . We usually optimize this cost function by the alternat-

ing optimization scheme in section 2.2.1 for images and motion. Motion estimates affect

the quality of image reconstruction via the motion-compensated temporal regularization

term, which may improve the quality of reconstructed imagesas discussed in chapter 5.

Image estimates also affect motion estimation performance, so joint MTR improves the

estimates of image and motion in a joint fashion.

6.1.5 Parametric motion model

Joint PMM is simply the combination of the PMM approach in (5.7) and a motion

regularizer as follows:

(f̂1, α̂2,1, · · · , α̂M,1) = argmin
f1,α

2,1,··· ,αM,1

M
∑

m=1

‖ym − AmT̆ (αm,1)T̆
−1
0 f1‖2

Wm

+η‖C1f1‖2
2 + ηM

M
∑

m=2

RM(αm,1).

Unlike other MCIR methods in this thesis, the joint PMM performs nonrigid image

registration using raw data,i.e., sinogram data in tomography. PMM uses a weighted

least square metric that measures the difference between measurements and the projection
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of warped images. A negative log likelihood can be used when joint PMM uses maxi-

mum likelihood estimation instead of PWLS. Joint PMM uses the alternating optimization

scheme in section 2.2.1 and aims to improve the quality of both image and motion esti-

mates in a joint fashion.

6.2 Simulation results

We simulated 4D gated PET imaging with the 4D XCAT phantom [88]. The spatial

sampling of images was 160× 160× 48 with 3.3 × 3.3 × 3.4 mm3 voxel size. Original

images covered diaphragm and lung area. We generatedM = 8 images at equally-divided

respiratory phases during a 5 second breathing period. We assumed that there is no heart

motion to focus on respiratory motion correction. Figure 6.1 shows sagittal and coronal

views of exhale and inhale states for the XCAT phantom.

frame 1, sagittal x=65
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frame 4, sagittal x=65
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frame 1, coronal y=80
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Figure 6.1: Sagittal (TOP) and coronal (BOTTOM) views of XCAT phantom, frame 1
(exhale, LEFT) and frame 4 (inhale, RIGHT)

We placed lesions at 4 different areas (2 in right lung, 1 in left lung, and 1 in liver)
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at frame 1. Each spherical lesion had a 10 mm diameter. These lesions were moved

and stored by the XCAT phantom toolkit [88]. Figure 6.2 shows4 different slices where

lesions are located at frame 1 (exhale status) and frame 4 (inhale status). Depending

on the location of the lesions, they may appear in different slices because there is large

superior-inferior motion by diaphragm. We chose 4 rectangular areas to contain all lesions

as regions of interest (ROI). Our ROIs contain a total of 100 voxels out of the image’s

1,228,800 voxels in different frames, which is only 0.0081%of the total volume.

Generated gated images were projected using CTI 931 PET scanner geometry with 160

detector samples, 3.375 mm distance between detector cells, 192 angle views, 3.375 mm

strip width, and 10% random coincidences. We assumed that the sinogram of each gated

image has 125,000 (125K) mean true coincidences and all collected sinograms contain

1 million (1M) counts total. We ignored the attenuation in this simulation. The conju-

gate gradient (CG) algorithm was used for image reconstruction optimization with 100

iterations. FBP reconstructed images were used as initial images. CG was also used for

nonrigid motion estimation with 2-level multiresolution and 100, 200 iterations at each

level.

A quadratic spatial regularizer was used to reduce the high noise of PET imaging.

As we increase the spatial regularization parameterηR, we can reduce the noise in re-

constructed images, but we also lose details in them. Figure6.3 illustrates that we need

to chooseηR carefully to reduce the noise and to preserve fine details such as lesions.

Figure 6.4 shows quantitative results for different spatial regularization parameter values.

As we increase the spatial regularization parameterηR, the norm of the difference be-

tween the true image and reconstructed images decreases. However, as we can observe

in PWLS1M, a too strong regularization parameter may blur the fine structure of images

and increase the norm of the difference. We can observe more dramatic results in the ROI
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Figure 6.2: Axial views of frame 1 (exhale) and frame 4 (inhale) for 4 lesions.

since it contains the large portion of fine details,i.e., lesions. Note that ROI only occupies

less than 0.01% of total volume, but contributes 5.05% to 24.67% of the total difference

norm. It seems that PWLS125K still benefits from using strongregularization parameters
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PWLS 1, R = 100, slice 25
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PWLS 1, R = 500, slice 25
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PWLS 1, R = 2000, slice 25
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Figure 6.3: PWLS reconstruction with differentηR: 100, 500 and 2000.

because of high noise.

6.2.1 Gated and ungated image reconstructions

Figure 6.5 shows reconstructed images by gated PWLS reconstruction with low count

measurements (one frame) and ungated PWLS reconstruction with high count measure-

ments (all frames). The top figure shows severe noise due to low counts and it is not

easy to differentiate between lesions and noise. Image structure can not be seen clearly.

The bottom figure shows severe motion blurs. Most lesions andmyocardium structures

are blurred or placed at the wrong locations. These two examples show that utilizing all

measurements and compensating for motion are both necessary to obtain good quality re-

constructed images. Figure 6.6 shows a reconstructed imagewith 1M counts and without
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Figure 6.4: Norm of the difference between the true image andreconstructed images with
different measurement counts and different spatial regularization parameters.

motion. It shows all 4 lesions better than images in figure 6.5. This figure may be a good

reference for the performance of all MCIR methods.

Table 6.1 shows the qualitative results of gated (PWLS125K), ungated (SUM1M), and

oracle (PWLS1M) image reconstructions. PWLS125K has the highest norm of differ-

ence between the true image and the reconstructed image for the same spatial regulariza-

tion parameter. SUM1M has superior noise reduction performance for all areas (All) but

PWLS125K shows lower norm of difference for ROI. This is an effect of gating, which

avoids motion artifacts. Because we use all measurements (1M) and avoid motion arti-

facts, we may be able to achieve the norm of difference close to 47.8 in PWLS1M as seen

in the Table 6.1.
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PWLS 1, R = 500, slices 23, 25, 33, 41
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PWLS SUM, R = 500, slices 23, 25, 33, 41
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Figure 6.5: PWLS reconstruction with 125K counts (without motion) and 1M counts (with
motion). Slices 23, 25, 33, 41.

6.2.2 Post-reconstruction motion compensation

Joint PMC methods with a quadratic motion regularizer and the proposed motion in-

vertibility regularizer described in Chapter 3 were performed in this simulation. Figure 6.7
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PWLS 1 (1M counts), R = 500, slices 23, 25, 33, 41
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Figure 6.6: PWLS reconstruction with 1M counts, without motion (frame 1: slices 23, 25,
33, 41).

Table 6.1: Norm of difference for PWLS125K and SUM1M with various spatial regular-
ization parameter values. Norms of a true image are 1581.7 (All) and 181.0 (ROI).

Area Method
ηR

100 500 1000 2000

All
PWLS1M 556.3 334.8 320.1 340.1

PWLS125K 1393.4 782.0 625.9 533.0
SUM1M 769.2 610.7 587.3 578.6

ROI
PWLS1M 47.8 60.1 71.7 83.9

PWLS125K 103.5 84.9 88.2 95.3
SUM1M 106.6 110.6 114.8 119.3

shows PMC reconstructed images with a quadratic spatial regularizer (ηR = 500) and mo-

tion regularizers (a motion invertibility penalty withηM = 10 and a motion quadratic

penalty withηM = 0.1). This figure shows the improvement of reconstructed image qual-

ity compared to Figure 6.5 in terms of SNR and motion artifacts. Most lesions show higher

visibility, but reconstructing the lesion in the liver seems very challenging.

Figure 6.8 shows the estimated warps (slice 23) from an imageat frame 4 to an image
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PMCinv, R = 500, M = 10, slices 23, 25, 33, 41
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PMCqdr, R = 500, M = 0.1, slices 23, 25, 33, 41
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Figure 6.7: PMC reconstruction (ηR = 500) with invertibility penalty (ηM = 10, TOP)
and quadratic penalty (ηM = 0.1, BOTTOM) (frame 1: slices 23, 25, 33, 41).

at frame 1 with both a motion quadratic regularizer and a motion invertibility regularizer.

The top left figure shows the estimated warp with a motion invertibility regularizer and

ηM = 10. As we increaseηM = 1000, we can have a better regularity in the estimated
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warp as seen in the top right figure. Increasing the spatial regularization parameterηR can

regularize the estimated warp better as shown in the bottom left figure. Lastly, bottom

right figure shows the estimated warp with a quadratic motionregularizer. Even though

this looks more smooth compared to other warps in Figure 6.8,this warp still contains 276

voxels of the negative Jacobian determinant values out of 1228800 voxels. This shows that

our proposed motion invertibility regularizer achieved the local invertibility of warps with

more flexibility.

Figure 6.8: Warps that were estimated from individually reconstructed images. Only bot-
tom right warp with quadratic penalty contains 276 points ofnegative Jacobian determi-
nant value.

Table 6.2 shows the quantitative results of PMC with variousregularization parame-

ters. The number of voxels that contain the negative Jacobian determinant values (NJD)
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shows that increasing spatial and motion regularization parameters reduces the number

of negative Jacobian determinant values. In contrast, increasing spatial and motion reg-

ularization parameters may not always decrease the norm of difference between the true

image and the reconstructed image. Too large spatial regularization parameter may blur

the details of images and too large motion regularization parameter may allow insufficient

flexibility of warps so that it may cause a mismatch. The norm of difference in ROI shows

this point clearly. The lowest norm of difference in ROI wereachieved with not-too-large

spatial and motion regularization parameters.

In Table 6.2, PMC with the motion invertibility regularizer(PMCinv) achieved its

lowest norm of difference 72.8 at ROI (622.0 at All) whenηR = 100 andηM = 10. PMC

with the motion quadratic regularizer (PMCqdr) achieved its lowest norm of difference

73.9 at ROI (655.4 at All) whenηR = 100 andηM = 0.1. Note that NJD are 0 and 1279,

respectively. This shows that using the proposed motion invertibility regularizer has better

flexibility in terms of achieving local invertibility at each voxel with a similar level of

difference norm.

Tables 6.1 and 6.2 show that PMC achieves better norm of difference at both ROI and

All areas than gated and ungated image reconstruction methods. The minimum norms of

difference for gated and ungated image reconstruction at All and ROI are 533.0 (All) and

84.9 (ROI). The minimum norms of difference for PMC with any motion regularizer are

435.0 (All) and 72.8 (ROI), which are superior to gated and ungated image reconstruction.

However, because the nonrigid image registration in PMC wasperformed with recon-

structed images from insufficient measurements, the accuracy of image registration may

also be poor. Poor image registration hurts the performanceof PMC significantly. Joint

estimation of both images and motion may improve the performance and may achieve the

performance close to the results of oracle image reconstruction (PWLS1M). The norms of
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difference for PWLS1M are 320.1 in All and 47.8 in ROI.

Table 6.2: Norm of difference (All, ROI) and the number of negative Jacobian determi-
nants (NJD) for PMC with various spatial and motion regularization parameters. Norms
of a true image are 1581.7 (All) and 181.0 (ROI).

PMCinv ηR

Area ηM 100 500 1000 2000

All
0.1 678.8 465.6 437.4 435.0
10 622.0 440.4 424.8 430.4

1000 624.9 434.7 420.4 431.5

ROI
0.1 73.4 80.1 86.5 94.7
10 72.8 78.4 84.5 94.1

1000 82.8 86.8 93.5 102.0

NJD
0.1 9667 4538 2616 1126
10 0 5 0 0

1000 0 0 0 0

PMCqdr ηR

Area ηM 100 500 1000 2000

All
0.01 699.7 481.3 447.9 440.3
0.1 655.4 446.7 423.5 426.4
1 594.0 418.1 408.8 421.9

ROI
0.01 77.0 81.0 88.5 95.5
0.1 73.9 75.2 84.0 94.6
1 77.4 82.6 91.9 99.7

NJD
0.01 51313 39431 29599 17422
0.1 1279 276 28 0
1 0 0 0 0

6.2.3 Parametric motion model

The alternating optimization for joint PMM also was performed with respect to im-

ages and motion. FBP reconstructed images were used as initial images. Initial motion

estimates were obtained from FBP reconstructed images with2-level multiresolution and

100/100 iterations for each level. Then, alternating minimization for joint PMM was per-

formed with 20 (image), 33 (motion), 20 (image), 33 (motion), 20 (image), 33 (motion),

and 40 (image) iterations.
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Figure 6.9 shows the PMM reconstructed images with a motion invertibility regularizer

and a quadratic motion regularizer. Both reconstruction methods improved the quality of

reconstructed images and the lesion visibility compared togated and ungated image recon-

structions in Figure 6.5. Figure 6.10 shows warp estimates of PMM with different spatial

and motion regularizers. The top left figure shows the estimated warp withηR = 500 and

ηM = 10. This warp shows large flexibility, but only contains 45 voxels of negative Jaco-

bian determinant values in 7 mappings and 1,228,800 voxels per each mapping. Increasing

ηM can regularize the estimated warp better as seen in the top right figure. Unlike PMC,

the estimated warp of PMM does not seem to be regularized muchby increasing the spa-

tial regularization parameterηR as shown in the bottom left figure. It would be important

to analyze the relationship between image estimates and motion estimates of PMM since

accurate motion estimation is crucial for better performance of MCIR method.

Table 6.3 shows that increasing the spatial regularizationparameterηR causes the re-

duction of noise in general (All), but also blurs fine detailsin ROI. Increasing the motion

regularization parameterηM provides locally invertible warps at more voxels, but also lim-

its the degree of freedom in the estimated warps. This lack offlexibility increases the norm

of difference in ROI for large motion regularization parameter values. Note that PMMqdr

with ηR = 500 andηM = 1 has 987 negative Jacobian determinant values. This is because

a too strong motion regularization parameter sometimes causes warps be folded at the

boundaries of images. PMMinv shows the lowest norm of difference 63.3 at ROI, which

is close to 47.8 at ROI from PWLS1M. It is lower than PMC’s lowest norm of 72.8 at

ROI. A PMM method is very promising for obtaining good-quality reconstructed images

for ROI. However, note that the norm of difference for All is 718.9, which is higher than

PMC’s 622.0 for All. Analyzing this trade-off between imagequalities of PMM at ROI

and All would be an interesting future work to improve the performance of PMM image
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PMMinv, R = 100, M = 10, slices 23, 25, 33, 41
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Figure 6.9: PMM reconstruction (ηR = 100) with invertibility penalty (ηM = 10) and
quadratic penalty (ηM = 0.1) (frame 1: slices 23, 25, 33, 41).

reconstruction.
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Figure 6.10: Estimated warps of PMM with different spatial and motion regularizers.

6.2.4 Motion-compensated temporal regularization

We performed the optimization for MTR in a similar way as PMM.First, we need

to determineζ for MTR. As discussed in Chapter 5, having large aζ is important to

increase the correlation between estimated images so that MTR can produce better quality

images. However, in the practical implementation, having too largeζ may cause a slow

convergence in the optimization process. Figure 6.11 showsthat too largeζ increases the

norm of difference in ROI because we set the maximum iteration number 100 and the

image estimate did not converge. We choseζ = 1 for the rest of MTR simulation.

Figure 6.12 shows that the reconstructed MTR images are alsoless noisy and less
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Table 6.3: Norm of difference (All, ROI) and the number of negative Jacobian determi-
nants (NJD) for PMM with various spatial and motion regularization parameters. Norms
of a true image are 1581.7 (All) and 181.0 (ROI).

PMMinv ηR

Area ηM 100 500 1000 2000

All
0.1 717.6 547.0 473.4 447.5
10 718.9 534.1 465.2 440.7

1000 680.7 503.0 445.8

ROI
0.1 67.6 74.1 82.6 93.1
10 63.3 73.0 82.1 92.5

1000 75.0 82.6 89.7

NJD
0.1 156
10 243 45 12 29

1000 0

PMMqdr ηR

Area ηM 100 500 1000 2000

All
0.01 715.6 547.8 472.5 445.5
0.1 696.4 517.3 454.8 432.8
1 685.7 530.2 471.8

ROI
0.01 66.5 74.4 82.4 93.2
0.1 67.3 76.1 85.8 95.7
1 105.3 98.5 99.7

NJD
0.01 112
0.1 66 0 0 0
1 987

blurred compared to gated and ungated reconstructed imagesin Figure 6.5. Figure 6.13

shows the estimated warps in MTR with different motion regularizers and their parameters.

The top left figure shows the estimated warp with motion invertibility regularizer (ηR =

500, ηM = 10). IncreasingηM regularizes warps as seen in the top right figure, but

increasingηR does not seem to affect the regularity of motion much. The bottom right

figure suggests that the quadratic motion regularizer may allow less flexibility than the

motion invertibility regularizer.

Table 6.4 shows that a too large spatial regularization parameterηR and a too large mo-

tion regularization parameterηM increase the norm of difference between the true image
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Figure 6.11: Norm of the difference between the true image and reconstructed images with
differentζ and different motion regularizers.

and the reconstructed image. This is because a too largeηR may blur image details and

a too largeηM may reduce the flexibility of image matching. Note that MTR have very

small number of negative Jacobian determinant values compared to PMM or PMC. This

is because MTR uses the warps between adjacent image frames,not the warps between

frame 1 and framem.

The lowest norm of difference in MTR is 60.1 at ROI, which is similar to the lowest

norm of difference in PMM. However, the norm of difference inMTR for All (533.1)

is much lower than the norm of difference in PMM for All (718.9) when each achieves

the lowest norm of difference at ROI. For this reason, Figure6.9 looks more noisy than

Figure 6.12. In Chapter 5, we showed that PMM and MTR have the same image recon-

struction performance for given motion information. Sincemotion estimation performance

may degrade the image reconstruction performance in joint estimation framework, this re-

sult may be explained by an image registration performance analysis in MCIR models.
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MTRinv, R = 100, M = 10, slices 23, 25, 33, 41
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MTRqdr, R = 100, M = 0.1, slices 23, 25, 33, 41
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Figure 6.12: MTR reconstruction (ηR = 100) with motion invertibility regularizer (ηM =
10) and motion quadratic regularizer (ηM = 0.1) (frame 1: slices 23, 25, 33, 41).

This will be an interesting future work.
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Figure 6.13: Warps of MTR reconstructed images with different spatial and motion regu-
larization parameters.

6.3 Discussion

In this chapter, we investigated MCIR methods in terms of joint image reconstruc-

tion and nonrigid motion estimation. Estimated images and motion warps by each MCIR

method with different spatial and motion regularizers showhow each regularization pa-

rameter affects the estimators.

All MCIR methods outperformed gated and ungated image reconstruction in the lesion

areas (ROI) and the overall region (All). Motion estimationresults with the proposed mo-

tion invertibility regularizer and the quadratic motion regularizer show that the proposed

method allows more flexibility of warps than a conventional quadratic motion regularizer
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Table 6.4: Norm of difference (All, ROI) and the number of negative Jacobian determi-
nants (NJD) for MTR with various spatial and motion regularization parameters (ζ = 1).
Norms of a true image are 1581.7 (All) and 181.0 (ROI).

MTRinv ηR

Area ηM 100 500 1000 2000

All
0.1 533.0 451.8 432.7
10 528.8 448.9 430.6 433.3

1000 517.5 442.5 427.0
10000 442.1

ROI
0.1 61.1 73.5 83.5
10 61.0 72.6 82.2 92.6

1000 66.1 76.3 85.4
10000 82.0

NJD
0.1 0 0 0
10 0 0 0 0

1000 0 0 0
10000 0

MTRqdr ηR

Area ηM 100 500 1000 2000

All
0.01 533.1 453.0 433.1
0.1 515.7 441.4 426.4 432.4
1 525.7 451.7 434.9

ROI
0.01 60.1 73.0 83.3
0.1 68.1 79.3 88.4 97.5
1 78.8 84.9 90.8

NJD
0.01 28 13 0
0.1 0 0 0 0
1 0 0 0

and discourages non-invertible deformations well.

There are several possible areas for future work. More realistic PET simulation with

attenuation and scattering will be important to investigate. Statistical analysis with more

realizations will reveal more statistically meaningful results in joint MCIR methods. The-

oretical and empirical analyses of the motion estimation performance in MCIR methods

such as Cramer-Rao bound may aid in improving the overall performance of MCIR meth-

ods in terms of images and motion. Observer study on the jointMCIR methods is also

important for the clinical purpose since it deals with ‘false alarm’ in non-lesion areas.
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We can investigate the motion estimation regularization more as we add a temporal reg-

ularizer in PMM or add more constraints in nonrigid motion estimation such as symmetric-

ity or transitivity of warps. Joint MCIR methods are usuallycomputationally demanding.

In our simulation, for total 100 iterations of image estimation and 100 iterations of nonrigid

motion estimation (4 alternation), it took about 7 hours without multi-threading. Imple-

menting a parallel scheme using graphical processing unit (GPU) may make these methods

be more practical in the clinical setting.



CHAPTER 7

Conclusion

7.1 Summary

This dissertation addressed the issues of motion in MCIR models. We investigated

motion regularizations based on different motion priors, analyzed the spatial resolution

and noise properties of MCIR models with different motion incorporation models, spatial

regularization designs to provide uniform spatial resolution in the presence of motion, and

joint MCIR methods with different spatial and motion regularizers for 4D XCAT simula-

tion and lesions.

Chapter 3 and 4 proposed motion regularizers that can be usedin MCIR models and

in general image registration. Chapter 3 proposed a sufficient condition of local invertibil-

ity for deformations withnth-order B-spline bases. We also proposed a simple, fast and

memory efficient motion regularizer based on the proposed sufficient condition. Chapter 4

investigated the conflict of using both motion invertibility regularizer and tissue rigidity

regularizer near the diaphragm and the rib cage,i.e., sliding area. We proposed to relax

a motion invertibility regularizer by using a Geman-type function so that we can correct

warped bones near the sliding area better and further match image intensity between de-

formed and target images. It also permitted discontinuous deformation fields near sliding

area.

120
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Chapter 5 discussed different MCIR models with known nonrigid motion. We dis-

cussed the relationship between different estimators fromdifferent MCIR methods. It

turns out that MTR converges to PMM estimator as we increaseζ values. We can also

match the spatial resolution of both PMM and MTR if we design the regularizers care-

fully. We also showed that PMC can be the same as PMM as PMC usesweighted average.

We also developed a spatial regularization design to provide uniform spatial resolution. It

allowed us to match the spatial resolution of one MCIR methodto another. Having the

same resolution is important to compare the noise properties of MCIR models.

Chapter 6 investigated joint MCIR methods with proposed motion invertibility regular-

izer. Realistic 4D XCAT phantom and lesions were used for gated PET image reconstruc-

tion simulation. Our simulation showed that all MCIR methods improved image quality

in terms of SNR and reduces motion artifacts. We also observed that the joint estima-

tion of motion such as PMM and MTR improves images in terms of lesion visibility than

PMC. Our result also showed that our proposed motion invertibility regularizer encour-

ages the local invertibility better in a noisy environment and allows more flexibility than a

conventional quadratic motion regularizer.

7.2 Future work

The proposed motion invertibility regularizer encourageslocal invertibility of motion

in a fast and memory-efficient way. There are some applications that actually require us to

estimate inverse deformations. Combining consistent image registration with the proposed

invertibility regularizer may improve the quality of estimated deformations [12].

At the end of Chapter 3, we showed a lemma that gives a sufficient condition that

may provide a larger set of local invertibility of motion. This lemma contains many more

constraints than the proposed sufficient condition. Implementing image registration with
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many constraints in an efficient way will be both challengingand interesting to see.

We proposed a relaxed motion invertibility regularizer to cope with the conflicts be-

tween using a motion invertibility regularizer and a tissuerigidity regularizer. However, it

is important to investigate more on how to determine design parameters in a Geman func-

tion that may be patient-dependent. Another issue can be theB-spline bases for motion

and motion discontinuity. Since B-spline bases have finite support, they may be subopti-

mal for representing discontinuous deformations. Addressing this issue in a more general

non-parametric motion estimation will be interesting.

We studied the spatial resolution and noise properties of MCIR methods and proposed

a spatial regularization design to provide approximately uniform spatial resolution with

translation, rotation and local scaling of same rates in alldirections. It will be desirable

to deal with motion such as scaling with different rates in different directions and shear

motion for spatial regularization design. Developing a spatial regularization design for

different imaging modalities, for more realistic system models that include blurring, and

with different spatial regularizers such as edge-preserving spatial regularizers could be

future studies.

Moreover, more realistic PET simulation with attenuation and scattering will be valu-

able. Applying to real PET measurements will provide valuable experiments for clinical

settings. In our MCIR models, we did not take mass preservation or radio activitity preser-

vation into account. However, it is well-known that the total mass and the total radioactiv-

ity are preserved. Investigating modified MCIR models with mass or activity preserving

warps will be important.

Joint MCIR methods usually take several hours for one set of measurement data. How-

ever, it can be parallelized easily, so that implementing joint MCIR methods with parallel

computations such as using GPU will be an important goal for practical use of these mod-
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els in the future.

Motion estimation schemes of MCIR models are different. PMMuses maximum-

likelihood based motion estimation and MTR uses image registration based onL2 metric

between two estimated images. PMC does not use joint motion estimation. Comparing

the performance of motion estimation in different MCIR methods may be crucial to im-

proving the quality of joint MCIR estimates. Cramer-Rao (CR) bound analysis for super-

resolution with global translation has been studied thoroughly [79]. CR bound study on

MCIR models with nonrigid motion is challenging, but it may provide valuable insights on

the performance of MCIR methods in terms of image reconstruction and nonrigid motion

estimation.
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APPENDIX A

Algorithms and several gradients/derivatives

A.1 Conjugate gradient and step size

For the cost functionΨ(x), we wantx ∈ R
n such that

min
x

Ψ(x)

where

x =















x1

...

xn















To minimizeΨ(x) ∈ C2 for x ∈ R
n by Conjugate Gradient method whereC2 is a twice

differentiable function space, thekth iterative process of the conjugate gradient method is

xk+1 = xk + γdk

where

dk =











−∇Ψ(xk) k = 0

−∇Ψ(xk) + βkdk−1 k > 0.

There are many ways to determineβk, but we use the Polak-Ribière-Polyak method,

βk =
∇Ψ(xk)

T (∇Ψ(xk) −∇Ψ(xk−1)
)

∇Ψ(xk−1)T∇Ψ(xk−1)
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and we set this variable zero when it becomes a negative number. Now our minimization

problem ofΨ(x) with respect tox comes down to the minimization problem with respect

to γ, i.e.,

min
x

Ψ(x) = min
γ

Ψ(xk + γdk).

So, multi-dimensional optimization problem becomes a 1D line search problem. Since

this is one of the steps in the optimization procedure forx, we might not have to find an

exactγ to minimize this cost function.

To determine the step sizeγ, we use the first iteration of Newton’s method with the

initial γ = 0,

γ = 0 − Ψ̇(xk + 0dk)

Ψ̈(xk + 0dk)

where

Ψ̇(xk + γdk) ≡ ∂Ψ(xk + γdk)

∂γ

Ψ̈(xk + γdk) ≡ ∂2Ψ(xk + γdk)

∂γ2
.

A.2 Gradients/derivatives of weighted least square with
motion

The weighted least square (WLS) data fitting term is

Ψ(c, α) = ‖y − AT̆ (α)c‖2
W

where

[T̆ (α)](xyz),(ijk) = ω
(

x + d(r; αx) − i
)

ω
(

y + d(r; αy) − j
)

ω
(

z + d(r; αz) − k
)

andr = (x, y, z). We assume that

d(r; αq) = Bαq.
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The gradient ofΨ with respect to imagec is straight forward

∇cΨ(c, α) = 2T̆ (α)′A′W (AT̆ (α)c − y). (A.1)

The gradient ofΨ with respect to motionα is

∇αΨ(c, α) =















2B′diag
{

∂xT̆ (α)c
}

A′W
(

AT̆ (α)c − y
)

2B′diag
{

∂yT̆ (α)c
}

A′W
(

AT̆ (α)c − y
)

2B′diag
{

∂zT̆ (α)c
}

A′W
(

AT̆ (α)c − y
)















(A.2)

where

[∂xT̆ (α)](xyz),(ijk) = ω̇
(

x + d(r; αx) − i
)

ω
(

y + d(r; αy) − j
)

ω
(

z + d(r; αz) − k
)

[∂yT̆ (α)](xyz),(ijk) = ω
(

x + d(r; αx) − i
)

ω̇
(

y + d(r; αy) − j
)

ω
(

z + d(r; αz) − k
)

[∂zT̆ (α)](xyz),(ijk) = ω
(

x + d(r; αx) − i
)

ω
(

y + d(r; αy) − j
)

ω̇
(

z + d(r; αz) − k
)

andω̇(x) = ∂ω(x)/∂x.

As we have search directions of imagedc and motiondα by CG respectively, the step

size of them can be determined as follows. ForΨ(c+γdc, α), the first derivative of it with

respect toγ atγ = 0 is

Ψ̇(c, α) = ∇cΨ(c, α) · dc (A.3)

and the second derivative is

Ψ̈(c, α) = ‖AT̆ (α)dc‖2
W (A.4)

ForΨ(c, α + γdα), the first derivative of it with respect toγ atγ = 0 is

Ψ̇(c, α) = ∇αΨ(c, α) ·















dαx

dαy

dαz















(A.5)
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where

α + γdα =















αx + γdαx

αy + γdαy

αz + γdαz















.

The second derivative is

Ψ̈(c, α) ≈ 2

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥















Adiag
{

∂xT̆ (α)c
}

Bdαx

Adiag
{

∂yT̆ (α)c
}

Bdαy

Adiag
{

∂zT̆ (α)c
}

Bdαz















∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

W

(A.6)

where we approximate this equation by eliminating all the second order derivatives for

T̆ (α) since the second order values tend to be unstable in high noise [73].
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APPENDIX B

Proofs of Lemmas for invertibility sufficient condition

B.1 Proof of Lemma 3.1

Proof. The global maximum and minimum values exist since|J| is continuous on the

compact setI1 × · · · × I9. Suppose that (x1, · · · , x9) achieves the global minimum value

of |J| andmin Ik < xk < max Ik for somek. Fix all xi exceptxk, |J| is an affine

function with respect toxk so |J| can achieve equal or better global minimum value on

eitherxk = min Ik or xk = max Ik. The same argument can be applied for allxi such that

min Ii < xi < max Ii and thus it generates a contradiction. The same argument canbe

applied to the global maximum case.

B.2 Proof of Lemma 3.2

Proof. By Lemma 3.1, we need to evaluate|J| only onx1 ∈ {−kx, Kx}, x4 ∈ {−ky, Ky},

x9 ∈ {−kz, Kz} andxi ∈ {−kqi
, kqi

} whereqi = x for i = 2, 3, qi = y for i = 4, 6 and

qi = z for i = 7, 8. For fixedxi exceptx1, |J(x1)| = (1+x1){(1+x5)(1+x9)−x6x8}+c

wherec is a constant forx1 and(1 + x5)(1 + x9) − x6x8 is always positive under given

conditions. Sox1 = Kx for max |J| andx1 = −kx for min |J|. Similarly we determinex5

andx9. For fixedxi exceptx2, |J(x2)| = x2{x6x7 − (1 + x9)x4}+ c wherec is a constant
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for x2. For min |J|, x2 = −kx if x4 = −ky andx2 = kx if x4 = ky. In other words,

x2x4 = kxky for min |J|. Similarly, x2x4 = −kxky for max |J|. In this fashion,x6x8 and

x3x7 will be determined formax |J| andmin |J|. From these results, one can induce that

x2x6x7 + x3x4x8 = 0 for max |J| andx2x6x7 = x3x4x8 = −kxkykz for min |J|.

B.3 Proof of Lemma 3.3

Proof. Ford(x) =
∑

i ciβ
n(x/mx−i), by using ∂

∂x
βn(x) = βn−1(x+1/2)−βn−1(x−1/2)

in [106]

∂

∂x
d(x) =

∑

i

ci
∂

∂x
βn(x/mx − i)

=
∑

i

(ci − ci−1)β
n−1(x/mx − i + 1/2)/mx.

Using the constraintsbm ≤ αq
i+1,j,k −αq

i,j,k ≤ bM and the property
∑

i β
n(x/mx − i) = 1,

we have the bounds

∂

∂x
dq(r) =

∑

i,j,k

(αq
i,j,k − αq

i−1,j,k)β
n−1(x/mx − i + 1/2)

βn(y/my − j)βn(z/mz − k)/mx

≤ bM/mx

∑

i

βn−1(x/mx − i + 1/2)

·
∑

j

βn(y/my − j)
∑

k

βn(z/mz − k)

≤ bM/mx.

Similarly, ∂
∂x

dq(r) ≥ bm/mx. The other directionsy, z can be proved similarly.
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B.4 Proof of Lemma 3.5

Proof. For 2D Jacobian determinant we use the same B-spline properties in the proof of

Lemma 3.3

|J| =
(

1 +
∂

∂x
dx(r)

)(

1 +
∂

∂y
dy(r)

)

− ∂

∂x
dy(r)

∂

∂y
dx(r)

=
∑

i,j

∑

i′,j′

{

(1 +
αx

i+1,j − αx
i,j

mx
)(1 +

αy
i′,j′+1 − αy

i′,j′

my
)−

αy
i+1,j − αy

i,j

mx

αx
i′,j′+1 − αx

i′,j′

my

}

βn−1(x/mx − i + 1/2)

βn(y/my − j)βn(x/mx − i′)βn−1(y/my − j′ + 1/2).

βn−1(x/mx − i + 1/2)βn(x/mx − i′) = 0 for i′ < i− n + 1 or i′ > i + n andβn(y/my −

j)βn−1(y/my − j′ + 1/2) = 0 for j′ < j − n or j′ > j + n − 1. 3D case is similar.
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APPENDIX C

Proofs of properties for warps.

C.1 Adjoint operator of T

Assume that we have a continuous operatorT : X → X whereX is the set of images

over the domainRn. Assume that we have imagesf ∈ X andg ∈ X and thatg = T f .

We define a transformationT such thatg(x) = (T f)(x) = f(T (x)), x ∈ R
n. We assume

thatT : X → X is invertible.

Adjoint operatorT ′ of an operatorT is defined as follows:

〈g, T f〉 = 〈f, T ′g〉

where〈, 〉 denotes an inner product. Here we use the usualL2 inner product. By a simple

change of variable, we can get

〈g, T f〉 =

∫

g(x)(T f)(x)dx

=

∫

g(x)f(T (x))dx

=

∫

f(y)
1

|∇T (T−1(y))|g(T−1(y))dy

= 〈f, T ′g〉

wherey = T (x) and|∇T (T−1(y))| is the determinant of Jacobian matrix ofT . We define
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an operatorDT such that

g = DT f iff g(x) =
1

|∇T (x)|f(x) , ∀x.

Then, the adjoint operatorT ′ is given by

T ′ = T −1DT . (C.1)

Therefore, in continuous space, the adjoint of an invertible nonrigid warp is the product of

the inverse of the warp with a diagonal operator based on the Jacobian determinant of the

warp.

Now we apply this result to the discrete space operatorsTm,n considered in (2.10).

Using (C.1), we approximate the transpose ofTm,n as follows:

T ′
m,n ≈ T−1

m,ndiag

{

1

|∇Tm,n|j

}

≈ Tn,mdiag

{

1

|∇Tm,n|j

}

. (C.2)

C.2 Uniform spatial resolution for 2D linear transforma-
tion

The continuous-space analogue of the uniform spatial resolution system (5.33) com-

bined with a linear transformationT and an inverse transformationT −1 can be represented

T −1Q′D
(

1/|ρ|
1/|ρ| + ηR(ρ, Φ)

)

QT (C.3)

whereρ =
√

u2 + v2 in the frequency domain(u, v), Q is a Fourier operator, andT

corresponds to the linear transform

T (x, y) =







a b

c d













x

y






.

As we assume that we have an input functionf(x, y) such that its Fourier transform

F (u, v), it is easy to show that the Fourier transform off(T (x, y)) would be

1

|∇T (u, v)|F (T−1(u, v)).



134

Therefore, the equivalent local frequency response for (C.3) would be

1/|ρ′|
1/|ρ′| + ηR(ρ, Φ)

=
1

1 + η|ρ′|R(ρ, Φ)
(C.4)

where|ρ′| = ‖T (u, v)‖2.

We would like to modify a regularizerR(·) so that

|ρ′|R(ρ, Φ) ≈ (2π)2(ρ)3. (C.5)

For a quadratic spatial regularizer, we can rewrite (C.5) asfollows:

‖T (u, v)‖2

(

ãu2 + b̃uv + c̃v2
)2

≈ (2π)2(u2 + v2)3. (C.6)

Therefore, the problem becomes to determine three free parameters̃a,̃b andc̃ to approxi-

mate (C.6) which requires matching seven different terms. Regularizer designs to match

the desired local impulse responses have been well-studiedin Shi et al. [89]. Similar

technique can be applied to our problem.
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court. Model-based respiratory motion compensation for emission tomography im-
age reconstruction.Phys. Med. Biol., 52(12):3579–600, June 2007.

[77] C. J. Ritchie, J. Hsieh, M. F. Gard, J. D. Godwin, Y. Kim, and C. R. Crawford.
Predictive respiratory gating: a new method to reduce motion artifacts on CT scans.
Radiology, 190(3):847–52, March 1994.

[78] D. Robinson and P. Milanfar. Fundamental performance limits in image registra-
tion. IEEE Trans. Im. Proc., 13(9):1185–99, September 2004.

[79] D. Robinson and P. Milanfar. Statistical performance analysis of super-resolution.
Image Processing, IEEE Transactions on, 15(6):1413–1428, June 2006.

[80] G. K. Rohde, A. Aldroubi, and B. M. Dawant. The adaptive bases algorithm for
intensity-based nonrigid image registration.IEEE Trans. Med. Imag., 22(11):1470–
9, November 2003.

[81] T. Rohlfing, C. R. Maurer, D. A. Bluemke, and M. A. Jacobs.Volume-preserving
nonrigid registration of MR breast images using free-form deformation with an in-
compressibility constraint.IEEE Trans. Med. Imag., 22(6):730–741, June 2003.

[82] D. Ruan. Image guided respiratory motion analysis: time series and image regis-
tration. PhD thesis, Univ. of Michigan, Ann Arbor, MI, 48109-2122, Ann Arbor,
MI, 2008.

[83] D. Ruan, J. A. Fessler, and S. Esedog̈lu. Discontinuitypreserving regularization
for modeling sliding effects in medical image registration. In Proc. IEEE Nuc. Sci.
Symp. Med. Im. Conf., pages 5304–8, 2008.

[84] D. Ruan, J. A. Fessler, M. Roberson, J. Balter, and M. Kessler. Nonrigid registration
using regularization that accommodates local tissue rigidity. In Proc. SPIE 6144,
Medical Imaging 2006: Image Proc., pages 614412:1–9, 2006.

[85] D. Rueckert, P. Aljabar, R. A. Heckemann, J. V. Hajnal, and A. Hammers. Diffeo-
morphic registration using B-splines. InMedical Image Computing and Computer-
Assisted Intervention, pages 702–9, 2006.

[86] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J. Hawkes.
Nonrigid registration using free-form deformations: application to breast MR im-
ages.IEEE Trans. Med. Imag., 18(8):712–21, August 1999.

[87] M. Sdika. A fast nonrigid image registration with constraints on the jacobian us-
ing large scale constrained optimization.IEEE Trans. Med. Imag., 27(2):271–81,
February 2008.

[88] W. P. Segars, M. Mahesh, T. J. Beck, E. C. Frey, and B. M. W.Tsui. Realistic CT
simulation using the 4D XCAT phantom.Med. Phys., 35(8):3800–8, August 2008.



143

[89] H. R. Shi and J. A. Fessler. Quadratic regularization design for 2D CT.IEEE Trans.
Med. Imag., 2009. To appear as TMI-2008-0455.

[90] O. Skrinjar and H. Tagare. Symmetric, transitive, geometric deformation and inten-
sity variation invariant nonrigid image registration. InBiomedical Imaging: Nano
to Macro, 2004. IEEE International Symposium on, pages 920–923 Vol. 1, April
2004.

[91] G. S. Slavin and D. A. Bluemke. Spatial and temporal resolution in cardiovascular
MR imaging: review and recommendations.Radiology, 234(2):330–8, February
2005.

[92] C. O. S. Sorzano, P. Thevenaz, and M. Unser. Elastic registration of biological
images using vector-spline regularization.IEEE Trans. Biomed. Engin., 52(4):652–
63, April 2005.

[93] M. Staring, S. Klein, and J. P. W. Pluim. A rigidity penalty term for nonrigid
registration.Med. Phys., 34(11):4098–108, November 2007.

[94] J. W. Stayman and J. A. Fessler. Regularization for uniform spatial resolution
properties in penalized-likelihood image reconstruction. IEEE Trans. Med. Imag.,
19(6):601–15, June 2000.

[95] Richard Szeliski and James Coughlan. Spline-based image registration. Int. J.
Comput. Vision, 22(3):199–218, 1997.

[96] K. Taguchi and H. Kudo. Motion compensated fan-beam reconstruction for non-
rigid transformation.IEEE Trans. Med. Imag., 27(7):907–17, July 2008.

[97] K. Taguchi, W. P. Segars, G. S. K. Fung, and B. M. W. Tsui. Toward time resolved
4D cardiac CT imaging with patient dose reduction: estimating the global heart
motion. InProc. SPIE 6142, Medical Imaging 2006: Phys. Med. Im., page 61420J,
2006.

[98] K. Taguchi, W. P. Segars, H. Kudo, E. C. Frey, E. K. Fishman, and B. M. W. Tsui.
Toward time resolved cardiac CT images with patient dose reduction: Image-based
motion estimation. InProc. IEEE Nuc. Sci. Symp. Med. Im. Conf., volume 4, pages
2029–32, 2006.

[99] K. Taguchi, Z. Sun, W. P. Segars, E. K. Fishman, and B. M. W. Tsui. Image-domain
motion compensated time resolved 4D cardiac CT. InProc. SPIE 6510, Medical
Imaging 2007: Phys. Med. Im., page 651016, 2007.

[100] K. Taguchi, M. Zhang, E. C. Frey, J. Xu, W. Paul Segars, and B. M. W. Tsui.
Image-domain material decomposition using photon-counting CT. InProc. SPIE
6510, Medical Imaging 2007: Phys. Med. Im., page 651008, 2007.



144

[101] M. Tanaka and M. Okutomi. Theoretical analysis on reconstruction-based super-
resolution for an arbitrary psf. InComputer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on, volume 2, pages 947–954,
June 2005.

[102] K. Thielemans, R.M. Manjeshwar, Xiaodong Tao, and E. Asma. Lesion detectabil-
ity in motion compensated image reconstruction of respiratory gated pet/ct. InNu-
clear Science Symposium Conference Record, 2006. IEEE, volume 6, pages 3278–
3282, Nov 2006.

[103] B. Thorndyke, E. Schreibmann, A. Koong, and L. Xing. Reducing respiratory mo-
tion artifacts in positron emission tomography through retrospective stacking.Med.
Phys., 33(7):2632–41, July 2006.

[104] M. Unser. Splines: A perfect fit for signal and image processing.spmag, 16(6):22–
38, November 1999.

[105] M. Unser, A. Aldroubi, and M. Eden. Fast B-spline transforms for continuous im-
age representation and interpolation.IEEE Trans. Patt. Anal. Mach. Int., 13(3):277–
85, March 1991.

[106] M. Unser, A. Aldroubi, and M. Eden. B-spline signal processing: Part I—theory.
IEEE Trans. Sig. Proc., 41(2):821–33, February 1993.

[107] M. Unser, A. Aldroubi, and M. Eden. B-spline signal processing: Part II—efficient
design and applications.IEEE Trans. Sig. Proc., 41(2):834–48, February 1993.

[108] M. Unser, A. Aldroubi, and M. Eden. TheL2 polynomial spline pyramid.IEEE
Trans. Patt. Anal. Mach. Int., 15(4):364–79, April 1993.

[109] S. S. Vedam, P. J. Keall, V. R. Kini, H. Mostafavi, H. P. Shukla, and R. Mohan.
Acquiring a four-dimensional computed tomography datasetusing an external res-
piratory signal.Phys. Med. Biol., 48(1):45–62, January 2003.

[110] W. M. Wells, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis. Multi-modal vol-
ume registration by maximization of mutual information.Med. Im. Anal., 1(1):35–
51, March 1996.

[111] R. Zeng, J. A. Fessler, and J. M. Balter. Respiratory motion estimation from slowly
rotating X-ray projections: Theory and simulation.Med. Phys., 32(4):984–91,
April 2005.

[112] R. Zeng, J. A. Fessler, and J. M. Balter. Estimating 3-Drespiratory motion
from orbiting views by tomographic image registration.IEEE Trans. Med. Imag.,
26(2):153–63, February 2007.

[113] Marcelo V. W. Zibetti, Fermı́n S. V. Bazán, and JoceliMayer. Determining the regu-
larization parameters for super-resolution problems.Signal Process., 88(12):2890–
2901, 2008.



145
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