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trustingly led me to the door of applied mathematics, and letme wander at will. I enjoyed

the freedom of exploration and owe my confidence to perform independent research to his

encouragement.

This work would not be possible without my advisor ProfessorJeffrey A. Fessler. Jeff is

a natural; uncork the bottle and the charm flows. Working withhim is fun and enjoyable.

I thank Professor James M. Balter for welcoming me to Michigan with open arms, and

generously showered me with support and friendship. I am grateful to Professor Alfred

O. Hero, whose intellectual power and enlightening guidance have always inspired me

to push for better. Much thanks goes to Professor Charles R. Meyer for his expertise,

valuable feedback, and patience with a humble graduate student like me. I am indebted
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4.4 Bias and variance approximation of ML-estimate obtained from expansion about(ᾱ, z̄). . . 89
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ABSTRACT

IMAGE GUIDED RESPIRATORY MOTION ANALYSIS:
TIME SERIES AND IMAGE REGISTRATION

by
Dan Ruan

Advisor: Jeffrey A. Fessler

The key feature of image guided radiation therapy (IGRT) systems is improved effi-

ciency in conformal dose delivery by extracting, modeling and predicting tumor movement

with imaging techniques. To harvest the benefit of an IGRT system, two major problems

have to be solved: motion modeling and image processing. This thesis investigates these

issues. In particular, we focus on the application of treating tumors in the thoracic and

upper abdominal region, where respiratory motion is the dominant factor for tumor move-

ment. The characteristics of respiration makes motion modeling difficult, as breathing tra-

jectories are semi-periodic with drifting in mean position, frequency and phase. Clinical

practice shows large variation of breathing patterns amongdifferent individuals, making

it necessary to quantify the regularity/reproducibility of a respiratory trace to determine

the applicability of certain treatment methods. To this end, we have proposed a subspace

projection method to quantitatively evaluate the semi-periodicity of a given observation

trace. Extracting tumor location from diagnostic imaging,albeit informative and accurate,

incurs radiation dose, which may result in normal tissue complication. To minimize diag-

xii



nostic dose, it is desirable to obtain radiographic observations at low frequency and use

external surrogates to infer internal tumor motion withoutradiation. The sparsity of the in-

ternal readout from diagnostic imaging together with the consideration of system latency

require methods that predict accurately over a long time range. These concerns intro-

duce additional challenges in applying classic time-series analysis techniques, and special

structured models are needed to incorporate prior knowledge (e.g., semi-periodicity in res-

piratory motion) for improved performance. Physiologicalhysteresis further complicates

external-internal inference and proper modeling is desired to estimating such a relation-

ship. In this thesis, we have investigated regression techniques for real-time tracking and

prediction, shape modeling for robust tracking with minimum observation and external-

internal inference estimation.

Image processing is another crucial component of IGRT. In particular, accurate tracking

and monitoring of tumor evolution, and efficient propagation of dose assignment require

accurate image registration. The solution to the registration problem needs to reflect phys-

ical priors and constraints. Adopting a regularized optimization setup, we investigated a

penalty function design that accommodates tissue-type-dependent elasticity information.

To properly account for the sliding effects at motion interfaces, we have studied a class

of discontinuity-preserving regularizers that yield smooth solutions in most regions, while

allowing discontinuities in the estimated motion field. We have further distinguished two

types of singularities in the deformation field,i.e., collision/vacuum generating flow v.s.

shear with the Helmholtz decomposition. Applying different regularizers to each com-

ponent discourages the deformation from the first type of unphysical singularities while

preserves large shear discontinuities.

The medical image registration field needs good validation and performance evaluation

tools. A most general analytical evaluation for image registration is challenging. We have,

xiii



however, during the course of this work, performed a preliminary analytical study. We

proposed a set of statistical generative models and provided bias and variance estimates for

certain estimators. In particular, we have investigated the approximate performance of the

maximum-likelihood estimator corresponding to the generative model and the commonly

adopted M-estimator. A simple example suggests that the approximation is reasonably

accurate.

Our studies in both time series analysis and image registration constitute essential

building-blocks for clinical applications such as adaptive treatment. Besides their theoret-

ical interests, it is our sincere hope that with further justifications, the proposed techniques

would realize its clinical value, and improve the quality oflife for patients.

xiv



CHAPTER I

Introduction

The two core components of image guided radiotherapy (IGRT)systems are image processing and radia-
tion delivery. The image processing module extracts tumor status information and feeds it into the treatment
delivery system. In particular, the motion of the tumor volume must be tracked and predicted with high ac-
curacy for subsequent localized target treatment; the movement of the whole region under radiation should
be monitored to ensure proper dose delivery, to avoid radiation to critical tissues such as heart and spine,
and to minimize normal tissue complication probability (NTCP). To this end, an accurate and efficient image
registration method is critical. Registration between two(or a sequence of) images estimates the deformation
among different image acquisitions, captures the evolution of the region of interest (ROI), and dynamically
propagates treatment plans. Despite the vast literature onimage registration studies, a good quantitative
evaluation tool is unfortunately absent. A performance study to the most generality is challenging, given the
nonlinear nature of the registration problem. However, questions then arise as to whether the performance of
image registration is limited by a model setup (objective function design) or the behavior of the minimization
algorithms deployed (local minima issues). Furthermore, to minimize diagnostic radiation dose, only sparse
observations of the internal tumor location are available to the treatment delivery system. For an effective
real-time gating system, a reliable mean position estimator is crucial to adaptively control the positioning of
the gating window. How to efficiently extract such control information from a minimum amount of data is a
key issue. This thesis considers these various questions inthree parts.

The first part, dealing with the adaptive mean tracking problem, is the subject of Chapter II. Given a
sparsely sampled respiratory trajectory that has drifts inmean, frequency and phase, we aim to extract the
mean trace in real time. To solve this loosely defined problem, we resort to a data-based approach which
incorporates the semi-periodic nature of breathing motion. In particular, in the state space that is augmented
via time lagging, we model the observations as samples in a sequence of time varying ellipses and extract
the projection of the center of such ellipses as the real-time estimate of mean position. Formulated as a
minimization problem with respect to the algebraic distance, the static ellipse fitting problem can be solved
by generalized eigen-decomposition. We introduce a recursive-least squares (RLSE) structured algorithm
which naturally leads to a dynamic adaptive solution in a slowly temporal-varying environment. Asymptotic
convergence of the proposed algorithm is derived. In addition, we generalize the original least squares fitting
problem to a robust estimation setting so that the solution is insensitive to reasonable amounts of outliers,
what may be caused by abrupt body movement or noisy data. We prove that the feasible region is a union
of two convex sets, analyze the geometry of both the feasibleregion and the functional value, and apply
gradient projection method to solve the adaptive problem. Experimental results with both simulated and
clinical data demonstrate feasibility of the proposed methods.

The remainder of the thesis studies the image registration problem - another key component in IGRT. We
discuss objective design, optimization issues and quantitative evaluation of registration performance; these
aspects are of interest for general image processing as well.

Chapter III focuses on designing regularizers that convey prior information in optimization-based reg-
istration for thoracic images. We consider two types of regularization design: one accounts for different
rigidity levels for various tissue types and the other accommodates sliding effects along motion boundaries.
Tissue-type-rigidity regularization is realized by penalizing the deviation of local transformation Jacobian

1
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from orthogonal; sliding regularization is studied by firstgeneralizing edge-preserving regularization from
image denoising problems, and then Helmholtz decomposing the flow to differentiate between the colli-
sion/vacuum generating component and the shear discontinuities. By regularizing the divergence and curl
components separately, we avoid the first type of unphysicaldiscontinuity, but preserve the latter one that
corresponds to shear flow.

Given any image registration method, its results should be validated and the performance evaluated. Un-
fortunately, despite vast literature on image registration algorithms, validation study mostly relies on either
simulation/phantom study or manually placed marker locations. The first approach completely ignores in-
trinsic information content of the input images, and may result in unreasonably stringent requirement (such
as “correct” alignment of uniform areas - the null space of any registration operator). The latter one, on the
other hand, is biased towards high gradient regions where human observers can identify reliable correspon-
dence and oblivious of the less obvious clues. As a first step in systematically studying the fundamental
performance limit of a registration model, Chapter IV presents a statistical generative model and the cor-
responding maximum-likelihood (ML) estimator. The bias and variance of this estimator is studied via
Craḿer-Rao bound analysis. For the commonly employed energy minimization based approaches, the local
behavior of the corresponding M-estimate is analyzed usingimplicit function theorem and Taylor expan-
sion. A simple example suggests reasonable accuracy of the adopted approximation and may lead to wider
generality upon further investigation.

The main contributions of this thesis can be summarized as follows.

• A novel data-driven mean tracking model for sparsely sampled semi-periodic data. More specifically, a
state augmentation setup and a formulation with algebraic distance that results in closed-form solution
from generalized eigen decomposition. An efficient ellipsetracking algorithm based on subspace
decomposition that dynamically adapts to slowly varying trends. Conditions and proof for asymptotic
convergence of the proposed algorithm. Analysis of the structure of the feasible parameter set. A
robust extension of the least squared problem to achieve robustness to outliers, a gradient projection
algorithm for solving the optimization problem, and its adaptive generalization.

• A tissue-type dependent regularization that encourages locally rigid behavior, where appropriate.

• An original discontinuity preserving regularization for nonrigid image registration that preserves mo-
tion boundaries.

• An original statistical generative model for image registration. Bias and variance analysis for the
maximum likelihood estimator. An M-estimate analysis of the conventional energy based registration
methods. Empirical comparison with a simple example.

• A new subspace projection based method that quantifies the reproducibility of a temporal trajectory
(Appendix A).

• A novel nonparametric local regression method in the augmented state space for real-time prediction
of respiratory motion (Appendix B).

• A state space augmentation approach to account for hysteresis for inferring internal tumor motion
from external surrogates (Appendix C).

The above remarks describe the major material in this thesis. To maintain the self-containedness of each
topic, we provide relevant background at the beginning of each chapter. In the course of this study, we came
to certain analyses and preliminary results that are marginally related to the main theme of this thesis, but
have potential for integration upoon further development.We provide them as optional sections and mark
the titles with an asterisk. These sections can be skipped without loss of continuity.



CHAPTER II

Adaptive Ellipse Tracking and its Application in Estimating
Respiratory Drifting 1

Good ellipse fitting methods are desirable in pattern recognition and computer vision. Simple low dimen-
sional shape models are often used to fit noisy high dimensional observation data for increased robustness.
Ellipses, as the projection of circular shapes, are common among observations from natural and artificial ob-
jects (e.g., human faces, tires, etc), and are among the most interesting shape models [26,44,89]. In addition,
ellipses also have potential applications in describing dynamical systems that exhibit semi-periodicity and
hysteresis. Using algebraic distance as the data fitting metric, ellipse fitting problems can be formulated in
a convex optimization setting, with quadratic constraints. Its solution involves looking for the eigen vector
corresponding to the largest eigenvalue in a generalized eigen decomposition problem. In this chapter, we
develop an adaptive method to dynamically fit the ellipse model, analyze the convergence of the proposed
algorithm, and discuss its application to estimating drifting in respiratory motion. Section 2.1 formulates the
ellipse fitting problem into the framework of generalized eigen decomposition. Section 2.2 proposes an itera-
tive algorithm for solving the generalized eigen problem. Section 2.3 considers adaptivity with data stream.
Section 2.4 applies the proposed algorithm to tracking meandrifting of respiratory motion. Section 2.6
provides relevant proofs used in this chapter.

2.1 Ellipse Fitting Model for Static Data

We model ellipses using a general quadratic curve equation.Let (x,y) denote the coordinates of a point
in the 2-dimensional state space, and definez = [x2 xy y2 x y 1]T , where superscriptT denotes transpose.
Then point(x,y) falls on the ellipse parameterized bya = [a b c d e f]T if and only if it satisfies the following
quadratic curve equation:

(2.1) F(a,z) = aTz = ax2 +bxy+cy2 +dx+ey+ f = 0,

with negative discriminant,i.e., b2−4ac< 0.
The center(x0,y0) of the ellipse parameterized witha is given by:

x0 =
2cd−b f
b2−4ac

y0 =
2a f−bd
b2−4ac

.(2.2)

From (2.1), a samplezi lies on a given ellipse parameterized bya if and only if F(a,zi) = 0. This
motivates the use ofF2(a,zi) as a measure of deviation of the sample from the ellipse. Thisis known
as “algebraic distance” which coincides with Euclidean distance in the caseF is a plane. It is computa-
tionally beneficial to adopt this discrepancy measure so that the collective distances forN samples can be
conveniently written in standard matrix form and manipulated with classic least-squares approaches as in

1This chapter is based on materials from [97,99].

3
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(2.3). For observed samples of the form(xi ,yi), i = 1,2, . . . ,N, we want to find the ellipse parametera that
minimizes the following cost function:

(2.3)
N

∑
i=1

F2(a,zi) = aTSa,

where we define the 6×6 empirical correlation matrixS
△
= ∑N

i=1ziz
T
i .

The minimizer of (2.3) is invariant to a constant scaling applied to a, so we impose the constraint that
b2−4ac=−1, or equivalently in matrix formaTCa = 1 with

(2.4) C =

[

C̃ 03×3

03×3 03×3

]

,

whereC̃
△
=





0 0 2
0 −1 0
2 0 0



, and 03×3 denotes a 3×3 matrix of zeros. In other words, our ellipse fitting

requires minimizingaTSa subject to the constraint thataTCa = 1.
Introducing the Lagrangian multiplierλ and differentiating, we need to solve the system of equations:

Sa−λCa = 0,

aTCa = 1.(2.5)

We solve this using the generalized eigen-decomposition ofthe pair(S,C). BecauseS has the form of a
covariance matrix, it is nonnegative semi-definite. We assume hereafter that there are enough data samples
andS is full-rank, i.e., its eigenvalues are strictly positive. In particular, by Theorem 1 in2 [31] , the pair
(S,C) has exactly one positive generalized eigenvalue and it corresponds to the unique local minimum of
the Lagrangian. The corresponding eigen vector is the optimal solution to the ellipse parameter in (2.3).
Let (λ,u) be the solution to the generalized eigenvalue problemSa = λCa with λ > 0, then(λ,a∗ =
√

1
uTCu

u) is the solution to the constrained minimization problem in (2.5). The rank deficiency ofC can

cause instability issues if a conventional generalized eigen-decomposition algorithm were applied,e.g.[92]
without caution. If analyzed properly, however, its sparsity may reduce computation.

For later convenience, we first introduce some notations, then restate the corrected lemma 1 in [31]

and prove it. We denote the generalized spectra asσ(A,B)
△
= {λ : Av = λBv}. Analogous to the

case of a single normal matrix, we define the condition numberof a generalized eigen decomposition as
κ(A,B) = |λmax(A,B)

λmin(A,B) | whereλmax(A,B), λmin(A,B) denote the maximal and minimal (by moduli) gener-

alized eigenvalues of(A,B). The signature3 i(A) of a real symmetric matrixA is the number of positive,
negative, and zero eigenvalues of the corresponding matrix. 4

Lemma II.1. The number of positive, negative, and zero generalized eigenvalues of(S,C), whereS ∈ℜn×n

is a symmetric5 positive definite matrix andC ∈ ℜn×n is symmetric, are the same as the signature of the
constraint matrixC.

Proof. Symmetric positive definite matrixS can be decomposed asQTQ with Q invertible. We can sub-
sequently rewrite the generalized eigen problemSu = λCu asQTQu = λCu. Apply a change of basis
v = Qu and getv = λ(Q−1)TCQ−1v. Thus,λ is the eigenvalue of(Q−1)TCQ−1. Let i(C) denote the
signature ofC, then by Sylvester’s law of inertia [131], which states thatthe signature ofC is invariant
under congruence transform, we havei(C) = i((Q−1)TCQ−1). Therefore, the number of positive, negative
and zero eigenvalues ofσ(S,C) are the same as the signature ofC.

2Both the statement and the proof of lemma 1 in [31] are flawed, but the result in theorem 1 is correct.
3Signature is often defined with respect to a symmetric bilinear(quadratic) form; they are the same objects, viewed from different

perspective.
4In general, eigen decomposition (spectral theorem) applies to normal matrices, which may not necessarily require real symmetry.

However, many applications deal with real symmetric matrices, including the one under consideration here.
5This is the part missing from [31].
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2.2 An Iterative Algorithm for Solving the Generalized EigenProblem

It is desirable to have an adaptive algorithm in the presenceof system variations. In particular, a rank-1
update is needed for the data covariance matrixS every time a new observation becomes available. As-
suming sufficient initial data, new data should only mildly perturb the system. Therefore, if we have an
iterative algorithm for the static system with enough tolerance to the initial conditions, we shall be confident
in using the last state estimate of the one-time-step-lag system as the initialization for the iteration with the
new system. In this section, we provide such an iterative algorithm, prove its asymptotic convergence, and
discuss the region of attraction.

We first recall some observations from previous discussions:

• a∗ is identical to the generalized eigenvectoru up to a normalization factor that is easy to compute.
From now on, we focus on deriving an iteration on the generalized eigen vector, no longer distinguish-
ing betweenu anda, assuming no confusion would result from such notational convenience.

• A simple eigen decomposition ofC yields thatσ(C) = {2,0,0,0,−1,−2}. From lemma II.1, and the
minimization setup, we are interested in tracking only the generalized eigen vector that corresponds
to the unique positive generalized eigen value of(S,C). It is equivalent to finding the eigen vector
for the largest eigenvalue, in other words, tracking the dominant eigen subspace.

We first discuss a method based on fixed-point analysis and generalized Rayleigh quotient to compute
the solution to generalized eigen problems(A,B) with bothA,B full rank.

If (λ,u) satisfy the generalized eigen decomposition relation:

(2.6) Au = λBu,

then we can generalize the Rayleigh-Ritz theorem and show (derivation provided in Section 2.6) that the
generalized eigen vectorsu correspond to the stationary points of the energy ratio function:

(2.7) J(u) =
uTAu

uTBu
,

and evaluatingJ at the eigenvectors results in the corresponding generalized eigenvalues.
In fact, the largest generalized eigenvalueλ is the global maximum ofJ. Substitutingλ = J(u) = uTAu

uTBu
in (2.6) yields

Au =
uTAu

uTBu
Bu.

By assumption,A is full rank, we may multiply the above expression withA−1 on both sides and obtain:

(2.8) u =
uTAu

uTBu
A−1Bu.

Equation (2.8) suggests that the generalized eigen vector is a fixed point for the iterative map

(2.9) f : u→ uTAu

uTBu
A−1Bu.

Furthermore, the energy ratio function evaluated at the fixed point is exactly the generalized eigenvalue that
corresponds to the fixed pointu.

To use (2.9) to iteratively solve (2.5), we first separate theessential subspace from the nuisance ones, by
decomposing the empirical correlation matrixS into block form as follows:

S =

[

E B

BT D

]

.

We also define the Schur complement of the blockD in matrixS asS̃
△
= E−BD−1BT . The decomposition

of the constraint matrixC is given by (2.4).
We provide an iterative scheme to compute the generalized eigen vectora and prove its asymptotic

convergence.
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Theorem II.2. Let the iteration ofa be given by

(2.10) an+1 = ηn
aT

n Wan

aT
n Can

S−1Can +(1−ηn)an,

where

W =

[

E 0
0 −D

]

,

and ηn ∈ (0,1) is asymptotically bounded above by2κ+1 with κ being the condition number of(S̃,C̃) 6.
Thenan converges asymptotically to the eigen vector that corresponds to the unique positive eigenvalue of
(S,C).

Proof. We decompose the state estimatea into the concatenation of two vectorsa = [a1;a2], and rewrite
(2.5) as:

Ea1 +Ba2 = λC̃a1

BTa1 +Da2 = 0.(2.11)

Notice thatE is the autocorrelation matrix of the first three dimensions of the observed data, and is
invertible by the assumption thatS is full rank. Being full rank,C̃ is invertible as well. We can solve the
above equation as

a2 = −D−1BTa1,

(E−BD−1BT)a1 = λC̃a1.(2.12)

In theorem II.3, we will show that iteration:

a1,n+1 = ηn
aT

1,nS̃a1,n

aT
1,nC̃a1,n

S̃−1C̃a1,n +(1−ηn)a1,n

= ηnh(a1,n, S̃,C̃)+a1,n,(2.13)

whereh(x, S̃,C̃)
△
= xT S̃x

xTC̃x
S̃−1C̃x−x, converges asymptotically to the solutiona1

7 of (2.12). Therefore,
by letting the covarianta2 evolve accordingly as:

(2.14) a2,n =−D−1BTa1,n,

we have asymptotic convergence to the only stable stationary pointa = [a1;a2] of (2.12).
In Lemma II.4, we show that the iteration given in (2.13) and (2.14) is identical to the update equation

in (2.10).

Theorem II.3. Iteration according to (2.13) converges to the generalizedeigen vector that corresponds to
the largest eigenvalue of(S̃,C̃), whereS̃= [E−BD−1BT ] is the Schur complement of the blockD in S.

The second equation in (2.12) simply states thata1 is the generalized eigen vector for the pair([E−
BD−1BT ],C̃). Observe that[E−BD−1BT ] is exactly the Schur complementS̃ of the blockD in matrix
S. SinceS is symmetric positive definite, so is̃S = [E−BD−1BT ]. As C̃ is the only block inC that
contributes to the nonzero spectral components andσ(C̃) = {2,−1,−2}, the second equation in (2.12)
captures all the nontrivial components of the original generalized eigen decomposition problem (2.6). It

6We will see thatσ(S̃,C̃)⊂ σ(S,C) and it is the subset that contains all non-zero generalized eigenvalues. It is often possible to
obtain upper bound forκ by utilizing either prior information or proper training. The role of stepsize (gain)ηn determines the trade-off
between convergence and convergence rate. The convergencebehavior of vanishing gain (ηn ≥ 0 ∑n ηn = +∞,∑n ηα

n < ∞ for some
α > 1) is commonly studied in the literature [65,93], but asymptotic constant gain (ηn ≥ 0 η := limn→∞ ηn > 0) is more desirable in
practice. The condition we have imposed includes that of the decreasing gain, but also admits cases with asymptotic constant gain.

7The eigen vector paired with the biggest eigenvalue when regarded as a generalized eigen decomposition problem from the second
equation. The original constraintaTCa = 1 translates toa1C̃a1 = 1, and prevents degenerated results.
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immediately follows from Sylvester’s Law of Inertia [40] that the generalized eigen spectrum of(S̃,C̃) has
the formλ1 > 0 > λ2≥ λ3.

Furthermore, since the generalized spectrum has no zero component, the second equationS̃a1 = λC̃a1

can be rewritten as
λ−1S̃a1 = C̃a1,

which indicates thatσ(C̃, S̃) = {λ−1|λ ∈ σ(S̃,C̃)} and the generalized eigen vector for(C̃, S̃) coincides
with that for(S̃,C̃) (up to possibly some positive scaling factor) with the pairing determined by the element-
wise inversion relation of the spectrum. Again, since thereis a unique positive eigenvalue (thus the max-
imum) of (S̃,C̃), the generalized eigen decomposition of(C̃, S̃) has only one positive element as well,
whose corresponding generalized eigen vector is of our interest. We will make use of the above observed
relationship in the proof of theorem II.3.

Proof. We consider (2.13) in the framework of generic stochastic approximation algorithms [4]a1,n+1 =
a1,n+ηnh(a1,n). To apply the corresponding convergence analysis technique, we need to first justify several
assumptions. Viewing (2.13) in the classic adaptive form, we know precisely the mathematical conditions
relating to the objects, in particular, the gainηn, the functionh and the state(S̃,C̃) (in our case, since we
start with the update equation, there is no residual perturbation involved in the evolution, as opposed to the
more general form of adaptive updates). In general, the state is represented by a Markov chain controlled by
the parameter to be estimated, and it is assumed that for fixedparameter, the state has to be asymptotically
stationary, and its limiting behavior regular in the parameter. In our setting, static collective dataS (we
disregard the given constantC) is used, the duplicate of which can be regarded as the simplest form of
Markov chain if preferred. Therefore, the stationarity andregularity condition with respect toa1 [4] is
trivially satisfied. Furthermore, it is easy to check that the update functionh(aa, S̃,C̃) is continuously
differentiable with respect toa1 and regular (locally Lipschitz). Therefore, we are allowedto use ODE
based approach as a tool to prove asymptotic convergence. SinceS̃ andC̃ are both constant, we omit them
as argument ofh for notational brevity.

We link a continuous time ODE to the discrete time algorithm (2.13) to a first order approximation by:

h̃(a1(sn)) =
∂
∂s

a1(s)|s=sn, a1,n = a1(sn)

≈ 1
ηn

(a1,n+1−a1,n)

=
a1(s)TS̃a1(s)

a1(s)TC̃a1(s)
S̃−1C̃a1(s)−a1(s).(2.15)

We representa1(s) as a linear combination of the generalized eigen vectors of(S̃,C̃).

(2.16) a1(s) =
K

∑
k=1

θk(s)vk.

Substituting this parameterization in (2.15) yields a coordinate-wise (with respect to the basis{vk}Kk=1) ODE
as:

∂
∂s

θk(s) =
∑K

k=1 θk(s)2

∑K
k=1

1
λk

θk(s)2

1
λk

θk(s)−θk(s) ∀ k = 1,2, . . . ,K

=
[ ∑K

k=1 θk(s)2

∑K
k=1

1
λk

θk(s)2

1
λk
−1
]

θk(s),(2.17)

where(λk,vk) are thekth generalized eigenvalue and eigenvector of(S̃,C̃), andθk(s) is thekth time (itera-
tion) varying projection coefficient indicating the strength of a1(s) along directionvk.

We define a regionΩ = {θ = (θ1, . . . ,θK)| |θk| ≤
√

−λk
(K−1)λ1

|θ1| for k > 1}. In our case,K = 3 and

0> λ2≥ λ3. It is easy to check that∑K
k=1 θk(s)

2

∑K
k=1 λ−1

k θk(s)2 ≥ 0 for anyθ ∈Ω. Fork > 1, λk < 0, and (2.17) states that

∂
∂s

θk(s) = αk(s)θk(s)
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with αk(s) < 0 for all k > 1. It follows from Lyapunov stability theorem [46] thatθk(s) = 0 ass→ ∞ for
k > 1. On the other hand, sinceλ1 > 0 > λ2≥ λ3, we have

K

∑
k=1

λ−1
k θk(s)

2 < λ−1
1 θ1(s)

2 < λ−1
1

3

∑
k=1

θk(s)
2.

Subsequently,

∂
∂s

θ1(s) =
[ ∑K

k=1 θk(s)2

∑K
k=1

1
λk

θk(s)2

1
λ1
−1
]

θ1(s) >
[ ∑K

k=1 θk(s)2

λ−1
1 ∑3

k=1 θk(s)2

1
λ1
−1
]

θ1(s).

Unlike the other modes (k 6= 1) where origin serves as a stable sink, the magnitude ofθ1(s) increases as its
ODE behaves as

∂
∂s

θ1(s) = α1(s)θk(s),

with α1(s) > 0. Therefore,a1→ v1 asymptotically.
We have thus far proved the asymptotic convergence if the update follows the ODE. In other words,

when the step sizeη is sufficiently small. Bigη values correspond to cruder discretizations of the ODE, and
may cause discrepancies between the convergence properties of the ODE and the original update equation
(2.13). In order to reveal this effect, we need to explore thepole structure of the dynamic system in both
continuous and discrete time. We consider the behavior ofh̃(a1(s)) in the neighborhood of the stationary
pointa1(s) = vk, wherevk is thek-th generalized eigen vector of(S̃,C̃). Local linearization results in

Ak =
∂

∂a1(s)
h̃(a1(s))|a1=vk.

It is easy to see that the eigenvalues ofAk are given byσ(Ak) =
{λk

λ j
−1, j ∈ {1,2, . . .K} \ {k}

}

. These

are the Laplacian domain poles. The transformation in (2.15) defines a map to Z-domain viaz= ηs+1. We
list below all possibilities in mapping the pole patterns inLaplacian domain and Z-domain8:

1. Whenλk,λ j are of the same sign,s= λk
λ j
−1∈ (−1,κ−1).

Whens> 0 (s-pole in RHP),z= ηs+1 > 1 falls outside the unit circle, which corresponds to locally
unstable pattern. Whens∈ (−1,0) (s-pole in LHP),−1< z< 0 lies inside the unit circle, stable.s= 0
corresponds toz= 1, for critical stability.

2. Whenλk,λ j are of opposite signs, ands= λk
λ j
−1∈ (−2,−1)⊂ LHP.

In this case,z= ηs+1∈ (−1,0) is inside the unit circle, corresponds to a locally stable pattern.

3. Whenλk,λ j are of opposite signs, ands= λk
λ j
−1 <−2⊂ LHP.

In this case, the s-pole lies inside the LHP, corresponding to local stability. To avoid discrepancy, we
want the mapped z-pole to fall inside unit circle. Recall that with S̃ andC̃ both normal,κ(S̃,C̃) =

|λmax(S̃,C̃)
λmin(S̃,C̃)

| whereλmax andλmin are maximal and minimal (by moduli) eigenvalues of the generalized

eigen decomposition. Therefore,s≥ −κ− 1, and withη asymptotically bounded above by2κ+1,
z∈ (−1,1) corresponds to a local stable pattern.

Therefore, the local stability pattern of the stationary points for the ODE and the update equation (2.13)
agree. This links the convergence of the ODE to that of the discrete-time equation, and asymptotic conver-
gence ofa1 is thus proved.

Lemma II.4. Iteration (2.10) is identical to the set of updates given in (2.13) and (2.14).

8This is very different than the commonly seen eigen decomposition of correlation matrices where spectrum is always positive.
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Proof. Recall thatS̃ is the Schur complement of blockD in

S =

[

E B

BT D

]

.

Performing matrix inversion in block form results in:

(2.18) S−1 =

[

S̃−1 −S̃−1BD−1

−D−1BTS̃−1 D−1 +D−1BTS̃−1BD−1

]

Setting aside the generalized Rayleigh quotient in (2.13),we observe that the major matrix operations in-
volved in the update can be “extracted from (2.18) as:

S̃−1 =
[

I 0
]

S−1
[

I

0

]

−D−1BTS̃−1 =
[

0 I
]

S−1
[

I

0

]

.(2.19)

Notice that the sparse structure inC induces the following relations:

Ca =

[

C̃a1

0

]

=

[

I

0

]

C̃a1

aTCa = aT
1 C̃a1(2.20)

Therefore, we can rewrite the iteration in (2.13) as:

(2.21) a:,n+1 = ηnλnS
−1Ca:,n +(1−ηn)a:,n,

whereλn denotes the generalized Rayleigh quotient estimated in then-th iteration.
Furthermore, we rewrite the numerator of the generalized Rayleigh quotient as:

aT
1 S̃a1 = aT

1 [E−BD−1BT ]a1

= aT
1 Ea1−a1BD−1DD−1BTa1

= aT
1 Ea1−a2Da2,(2.22)

by the dependence ofa2 ona1 indicated in (2.14).
Putting the above ingredients back into the iteration yields the compact representation (2.10).

2.3 Adaptive Ellipse Fitting

For ellipse fitting, the matrixC describes the shape prior (constraint) of the data, and remains constant.
When new data becomes available, the system dynamics are reflected via changes in the empirical covariance
matrix S. Formulation (2.10) expresses the update of the state estimate in terms of sub-blocks and inverse
of S directly (with no hidden or intermediate transformations as in (2.13)). This enables a straightforward
derivation for the update equations whenS changes upon the arrival of new data samples. Notice thatS

takes on the form of empirical covariance, so the diagonal sub-blocksE andD are empirical covariance
matrices with respect to their own subspaces and are completely decoupled. In practice, the update of the
generalized Rayleigh quotient can be performed accordingly. In essence, the only quantity of real concern
in updating the state estimate isS−1. To incorporate the time varying property of the system, we can simply
extend the previous results with a hyper-level evolving time tag. To express the time varying property of the
system, we usean(i),Sn(i) etc. to denote the various quantities at a given acquisition timet = i∆t. For a
given i, we rewrite (2.10) as follows:

an+1(i) = ηn
an(i)TW (i)an(i)

an(i)TCan(i)

(

S(i)
)−1

Can(i)+(1−ηn)an(i), n = 0,1, . . . ,Ni−1,

a0(i +1) = aNi (i),(2.23)



10

whereNi denotes the number of iterations used to compute the ellipseparameters at a given timei. The
challenge is to compute the inverse ofS(i +1) efficiently, and we provide below efficient rank-one updates
for S−1 for both the sliding window adaptation and exponential discount adaptation.

2.3.1 Sliding Window Adaptation

In the sliding window adaptation, we use a constant length sliding window to “mask out” the historical
data samples except the ones that are close enough to the timeinstance of interest. We defineS(i) =

∑i
j=t−L+1z jz

T
j with L indicating the constant window size.

When a new sample pairzi+1 becomes available,

S(i +1) =
i+1

∑
j=i+1−L+1

z jz
T
j

= S(i)−zi−L+1z
T
i−L+1 +zi+1z

T
i+1.(2.24)

To computeS(i +1)−1 from S(i)−1, we denoteQ(i) = S(i)−zi−L+1z
T
i−L+1, so thatS(i +1) = Q(i)+

zi+1z
T
i+1. We invoke the Woodbury matrix identity [39] to computeS(i + 1)−1 with two step rank one

updates:

Q(i)−1 = (S(i)−zi−L+1z
T
i−L+1)

−1

= S(i)−1−S−1zi−L+1(z
T
i−L+1S(i)−1zi−L+1−1)−1zT

i−L+1S
−1

S(i +1)−1 = (Q(i)+zi+1z
T
i+1)

−1

= Q(i)−1−Q−1zi+1(z
T
i+1Q(i)−1zi+1 +1)−1zT

i+1Q
−1.(2.25)

For this procedure to be executable, invertibility of(xT
t−L+1S(t)−1xt−L+1−1) and(xT

t+1Q(t)−1xt+1 +
1) are required. The second one is obvious withQ > 0. We prove the first condition in Section 2.6. This pair
of properties (2.25) provides a recursion forS(i). Substituting into (2.10) yields a recursion in the estimation
parametersa(i).

2.3.2 Discounting Adaptation

As an alternative to a fixed-length sliding window, we can usetemporal discounting to emphasize the
most recent data. In this case, we defineS(i) = 1−γ

1−γt ∑i
j=1 γi− jz jz

T
j , whereγ ∈ (0,1) is a user-selectable

discounting parameter. We can easily writeS(i +1) recursively as:

(2.26)
1− γi+1

1− γ
S(i +1) = γ

1− γi

1− γ
S(i)+zi+1z

T
i+1

Invoking the matrix inversion lemma yields the recursion for S(i +1)−1:

(2.27) S(i +1)−1 =
1− γi+1

γ− γi+1 S(i)−1−S(i)−1zi+1

{

1− γ
γ− γi+1 +zT

i+1S(i)−1zi+1

}−1

zT
i+1S(i)−1.

Substituting this in (2.23) yields an adaptive ellipse fitting algorithm with temporal discounting.

2.4 Application to Tracking Respiratory Mean Drift

Modeling and predicting tumor motion caused by respirationis challenging due to temporal variations
in breathing patterns. Treatment approaches such as gatingor adaptive bed adjustment/alignment may not
require full knowledge of instantaneous position, but might benefit from tracking the general trend of the
motion. One simple method for tracking mean tumor position is to apply moving average filters with window
sizes corresponding to the breathing periods. Yet respiratory motion is only semi-periodic, so such methods
require reliable phase estimation, which is difficult in thepresence of noise. As an alternative, we form a



11

state vector from the respiration signal values at the current instant and at a previous time, and utilize the
algorithms discussed in Section 2.2 and Section 2.3 to dynamically fit ellipse models to the training data
and extract the mean position according to (2.2). Ellipse eccentricity and orientation potentially capture
hysteresis in respiratory motion. We test the proposed method with simulated breathing traces, as well as
with real time-displacement (RPM, Varian) signals. Estimation traces are compared with retrospectively
generated moving average results to illustrate the performance of the proposed approach.

2.4.1 Application Background

Accurate modeling and prediction of tumor motion caused by breathing is a challenging problem. Pre-
vious studies [37, 53, 109, 125] have noted the difficulty of instantaneous position tracking and prediction.
Given such limitations in accuracy, and considering the actual dosimetric impact of small motion variations,
treatment approaches such as gating or adaptive bed adjustment/alignment may not require instantaneous
position, but might benefit from following trends of the motion, in particular mean position drifting and/or
abrupt shifts. Current amplitude-based gating systems compare an instantaneous tumor location measure-
ment with a pre-determined gating window threshold and trigger the treatment beam on/off. A potential
modification to such systems would incorporate real-time mean drifting information to (1) adjust bed posi-
tion to compensate for continuous mild drifting; (2) trigger the treatment beam off upon detection of signif-
icant drift. Compensating for mean position drifting couldincrease effective delivered dose given a fixed
treatment margin, or alternatively, it could allow the use of smaller margins to achieve the same dose deliv-
ery. Previously, other investigators have shown that therecould be only limited gains in trying to eliminate
breathing movement completely, and laid the groundwork forconsideration of the methodology described
here. Engelsman demonstrated that the margin needed for cyclic breathing can be represented as a Gaussian
with standard deviation of 0.4 times the amplitude of motion [27]. Wolthaus demonstrateda method for
efficiently selecting a mean patient representation from a 4D CT data set [132]. Evidence from these and
other investigations [52] hint at the possibility that a ’tracking’ system that estimates variation in position
such as the local mean may provide significant benefit by reducing or eliminating non-periodic trends in mo-
tions, while reducing demands on temporal response and acceleration of couch or multileaf collimator-based
adjustment systems.

Fig. 2.1 illustrates how real-time knowledge of mean drifting helps to reduce gating margin for the same
treatment dose delivery (90% in this simulation). In this example, mean compensation reduces the margin
by about 70% compared to traditional static gating approach.

Furthermore, mean drift (or home position motion) is more stable, with slower temporal variation than
instantaneous position. This makes it more practical to seek an estimator for this lower order quantity.
By imposing smoothness, a good estimator should be less susceptible to noise than instantaneous position
trackers.

The seemingly intuitive moving average filter is impractical for real-time application due to (1) the
absence of “future” observations at the instant of estimation, and (2) the difficulty of estimating instantaneous
phase online from noisy observations.

2.4.2 Experiment Setup

We simulated two sets of data so that we could have “ground-truth” for verification purposes. For the
first set of simulations, we used noise-free, strictly periodic data with both ideal sinusoid and modified
cosine models [69]. In particular, the discrete sinusoidaland modified cosine waveforms were generated
respectively with

xsin
i = x(i∆t) = x0 +asin(πi∆t/T−φ)(2.28)

xmodified cos
i = x(i∆t) = x0−acos2n(πi∆t/T−φ),(2.29)
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Figure 2.1: Effect of drift compensation for gating system:respiration trajectory (blue solid line); mean
position (red dashed line); gating with static window with 90% delivery coverage (magenta
dashdot line); mean drift compensated dynamic gate with 90%coverage (black dotted line).

ID V.S. Parameter 1 2 3 4 5 6 7 8 9 10 11 12

Data Characterization9

STD 2.91 6.47 13.05 2.83 4.86 2.78 4.30 7.61 2.08 7.72 13.04 6.56
P-P 10.93 25.03 48.91 9.02 13.09 11.47 17.77 26.93 13.14 37.44 38.97 32.54

Period (sec) 4.5 4.6 7.2 5.6 4.4 5.4 4.7 9.7 4.7 4.1 3.1 5.2

Table 2.1:RPM Dataset information

where we used the valuen= 2. In the second test, we generated a semi-periodic sinusoidfunction with slow
frequency drifting by modulating thelocal frequency with random offset components, as follows

xsin
i = x0 +asin

{

π∆t
i

∑
k=1

(1/T +δk)−φ

}

(2.30)

xmodified cos
i = x0−acos2n

{

π∆t
i

∑
k=1

(1/T +δk)−φ

}

,(2.31)

where theδk values were randomly distributed via a Gaussian distribution N
(

0,σ2
)

with σ≪ 1/T. In the
simulation, we set periodT = 5 seconds,∆t = 1/30 corresponding to a sampling frequency of 30Hz, home
positionx0 = 0, magnitudea = 5cm, and systematic phase offsetφ = 0. Fig. 2.2 shows typical simulation
traces.

For real clinical data, we used the Real-Time Position Management (RPM, Varian Medical Systems,
Palo Alto, CA) system to obtain the trajectories of externalfiducials placed on the chests of 12 patients. The
displacement-time relationship was recorded at 30Hz and isassumed to be highly correlated with superior-
inferior diaphragm motion [125], which is a major source of respiratory motion for tumors in the chest or
lung area. We centered and scaled the unit-less RPM data so that their dynamic range corresponds to typical
SI motion for chest and lung tumors [107, 109]. We can thereafter consider the units to be on the order of
mmfor typical thorax tumor motion. Characteristic parameters for the RPM data used in our experiment are
reported in Table 2.1.
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2.4.3 Results

The fitting methods approximate data in the state space(x,y) by ellipses. It is desirable to have the center
of such ellipse, which corresponds to the mean estimator, tobe robust to missing data, spurious data, and
to input data lengths that differ from the ideal period centered at the time instant of estimation. Fig. 2.2
illustrates both data-abundant cases and the cases where only a segment ( 3 seconds worth) of arc data is
available for fitting. The fitted ellipses are overlaid with the observation samples in the augmented state
space. The second column in Fig. 2.2 illustrates that ellipses are reasonable approximations for the scattered
observations in the state space. The difference between column 3 and 4 in Fig. 2.2 indicates the change
of parameters in the presence of scarce and/or non-centereddata. Not only does the ellipse fitting method
degrade gracefully with partial data, but also the mean position estimated from this approach is reasonably
stable. This empirical study illustrates the feasibility of using the proposed method in mean tracking and
prediction.

Adaptive Estimation

We first test the case where we use a fixed interval of the most recent data. In the real time estimation
and prediction setting, all the input samples into the estimation algorithm precede the time instant of interest.
We also want to emphasize that the windowed history is used tohelp estimate the ellipse parameters; and it
need not have integer multiples of the period. We tested the windowed ellipse fitting with 5 second and 7
second local history length, and report the results in Fig. 2.3. Discount adaptation yield very similar results
to the windowed fitting, resulting in virtually overlappingreal-time mean tracking curves. We omit them
from the figures for visualization clarity. We also plot the outputs of two simple moving average filters with
fixed window lengths.

We constructed our simulations to have frequency 0.2Hz for deterministic cases or centered around that
for the randomly frequency modulated realizations. Therefore, the “ground-truth” mean motion was zero for
all the simulations. The clinical RPM data (Patient 1 in bothTable 2.1 and Fig. 2.6) also has approximately
the same frequency. Since both the simulated and clinical data lack mean drifting, a good estimator for
the mean position should yield very stable (flat) output. Whenwe select the training window size to be
the “oracle” (ground-truth value unknown to the algorithm)value ofL = 5 seconds, which coincides with
the signal period, outputs are stable from both the moving average operator and the proposed method10,
as illustrated by the the left column in Fig. 2.3. On the otherhand, it is impossible to guarantee that the
history window size will always match the “true” period. We illustrate the effect of a disagreement, where
window sizeL = 7 seconds in the right column in Fig. 2.3. The moving average filter exhibits undesirable
oscillations, whereas the ellipse fitting method provides comparable results as in the case of perfect period
match.

The size of the sliding window and the discount factor must compromise between response speed (track-
ing efficiency) and robustness (tracking stability). Even though the ellipse fitting method is not too sensitive
to the window size, it is helpful to choose window lengthL and discount factorγ from a short segment of
training data. Fig. 2.4 illustrates the effect of various choices of window length parameterL on mean estima-
tion performance with some RPM data and Fig. 2.5 illustratesthe effect of the discount factorγ. For RPM
data with relatively long period and slow drifting (as in Fig. 2.4(a) and Fig. 2.5(a)), it is desirable to use a
larger window size (and correspondingly weaker discounting, largeγ) to take advantage of its robustness.
On the other hand, for breathing signals that have relatively short periods and rapid shifts in mean position,
such as the one illustrated in Fig. 2.4(b) and Fig. 2.5(b), shorter window lengths and small discount factors
are preferable for prompt response to mean changes.

To automatically adjust the sliding window length and the discount parameter, we take a short segment
of training data at the beginning of each treatment fraction, and apply a subspace projection-based period
estimation method [101]. For the signals in Fig. 2.4, the signal in subplot (a) yields a period estimate of 9.7
seconds and the signal in subplot (b) yields a period estimate of 3.1 seconds. Using the estimated period as
the sliding window length and choosing the corresponding discount factor appear to be reasonable based on
Fig. 2.4 and Fig. 2.5. We apply this scheme to automatically choose the adaptive parameters for all of the 12
RPM datasets and report the results in Fig. 2.6. For baselinecomparison, we collect the complete trajectory,

10A constant offset (as observed in the modified cosine case) hasmarginal clinical effect, as long as it is consistent.
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Figure 2.2: Illustration of ellipse fitting performance of the proposed method. Each row corresponds to a
different data source: row1 (aX) ideal sinusoid; row2 (bX) ideal modified cosine; (cX) locally
modulated (noisy) sinusoid; (dX) locally modulated (noisy) modified cosine; (eX) clinical RPM
trace scaled so that P-P≈ 10mm to mimic SI motion. Column-wise: X(1) time-displacement
graph; X(2) augmented state space with displacement and itsdelay (τ = 0.5 seconds); X(3)
ellipse fitting (red dashed line) applied to complete dataset; X(4) ellipse fitting (red dashed line)
applied to partial dataset.

and apply a moving average filter with the “oracle” window size L to obtain a reasonable “ground-truth”.
The deviation of the two adaptive real-time mean position estimator from this “gold standard” (with constant
offset compensated) is reported in terms of mean squared error (RMSE) in Table 2.2. Both adaptive methods
demonstrate reasonable agreement with the retrospectively obtained “ground-truth”.
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Figure 2.3: Comparison of moving average (MA) and ellipse fitting estimator for mean position tracking:
left column X(1): “oracle” history window length:L = 5 seconds matches the underlying signal
periods exactly; right column X(2): history window lengthL = 7 seconds disagrees with the sig-
nal periods. Rows correspond to different data source as in Fig. 2.2. Blue solid line: observation
signal; black dotted line: moving average output; red dash dot: output from the ellipse fitting
algorithm.

Sensitivity to Sampling Rate

In some cases, it is preferable to obtain observations at a low frequency. This is particularly true when
internal tumor motion is extracted from real-time imaging devices that would incur radiation dose. Sparse
sampling poses a particular challenge to the conventional mean estimator based on a moving average filter,
which is more vulnerable to miss calculation of period length when there are very few samples, resulting
in intolerably high variance in mean estimation. We tested the use of sparse real-time observations by sub-
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Figure 2.4: Effect of window lengthL on tracking performance. Solid line: observation; red dashed line:
L = 7 seconds; green dash-dot line:L = 5 seconds; black dotted line:L = 3 seconds. (a) RPM
with relatively long period; (b) RPM with relatively short period
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Figure 2.5: Effect of discount factorγ on tracking performance. Solid line: observation; red dashed line:
γ = .99; green dash-dot line:γ = .97; black dotted line:γ = .95. (a) RPM with relatively long
period; (b) RPM with relatively short period

ID V.S. Parameter 1 2 3 4 5 6 7 8 9 10 11 12

PeriodL (sec) 4.5 4.6 7.2 5.6 4.4 5.4 4.7 9.7 4.7 4.1 3.1 5.2
Sliding Win RMSE 0.35 0.77 0.96 0.23 0.68 0.36 0.35 0.90 1.09 1.22 1.21 1.40
Discount factorγ .978 .979 .986 .982 .978 .982 .979 .990 .979 .976 .968 .981

Discounting RMSE 0.36 0.77 1.08 0.24 0.71 0.35 0.44 1.22 1.54 1.55 2.18 1.39

Table 2.2:Mean Estimation Performance

sampling from the 30Hz signal, applying both windowed and discounted adaptive algorithms to estimate the
mean target position, and comparing with the retrospectively generated “true” mean from densely sampled
data. Fig. 2.7 illustrates how different observation ratesaffect overall RMS error across all patients. Both
adaptive approaches are quite robust to low sampling rate. In particular, as the windowed adaptation only
used historical samples that are within one period, which isnormally about 4−6 seconds, the observable
“break-down” at 1Hz in Fig. 2.7(a) corresponds to estimating the ellipse from 4−6 samples only, which is
somewhat expected. On the other hand, the discounted adaptation utilizes all previous samples in a weighted
fashion, and is naturally less affected by sparse sampling as shown in Fig. 2.7(b).

Setting the Temporal Scale

The size of the window widthL and the discount factorγ control the trade-off between response speed
and smoothness of the tracking trace in each adaptive algorithm respectively. Even though the ellipse fitting
method is robust to missing data (e.g., a partial period), it is still desirable to react more promptly when
changes are more frequent (short underlying breathing periods and/or rapid shifts in mean position) and
track stably otherwise. For fixed-length sliding window adaptivity, it is preferable to choose a window size



17

5 10 15 20 25 30
−6

−4

−2

0

2

4

6

 

 

Win L=4.5sec
Discount γ=0.99
Retrospective Oracle MA

5 10 15 20 25 30

−6

−4

−2

0

2

4

 

 

Win L=5.4sec
Discount γ=0.99
Retrospective Oracle MA

5 10 15 20 25 30

−15

−10

−5

0

5

10

15

20

 

 

Win L=3.1sec
Discount γ=0.99
Retrospective Oracle MA

5 10 15 20 25 30

−10

−5

0

5

10

 

 

Win L=4.4sec
Discount γ=0.99
Retrospective Oracle MA

5 10 15 20 25 30

−20

−15

−10

−5

0

5

10

15

 

 

Win L=4.1sec
Discount γ=0.99
Retrospective Oracle MA

5 10 15 20 25 30

−5

0

5

 

 

Win L=5.6sec
Discount γ=0.99
Retrospective Oracle MA

5 10 15 20 25 30
−12

−10

−8

−6

−4

−2

0

2

 

 

Win L=4.7sec
Discount γ=0.99
Retrospective Oracle MA

5 10 15 20 25 30

−20

−10

0

10

20

 

 

Win L=7.2sec
Discount γ=1
Retrospective Oracle MA

5 10 15 20 25 30

−10

−5

0

5

10

 

 

Win L=9.7sec
Discount γ=1
Retrospective Oracle MA

5 10 15 20 25 30
−15

−10

−5

0

5

10

 

 

Win L=4.6sec
Discount γ=0.99
Retrospective Oracle MA

5 10 15 20 25 30
−10

−5

0

5

 

 

Win L=4.7sec
Discount γ=0.99
Retrospective Oracle MA

5 10 15 20 25 30
−25

−20

−15

−10

−5

0

5

 

 

Win L=5.2sec
Discount γ=0.99
Retrospective Oracle MA

Figure 2.6: Mean tracking for RPM data with window size determined by period estimator. solid line: ob-
served data; black dotted line: retrospective moving average mean estimation with “oracle”
period; red dash line: sliding window mean estimator with window sizeL chosen with period
estimation during training phase; green dash-dot line: discounting estimator with discount factor
γ chosen such thatγL/∆t = 1/20.
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Figure 2.7: Overall RMS error (across all patients) as a function of sampling rate: (a) with windowed ellipse
fitting adaptivity; (b) with discounted ellipse fitting adaptivity with discount factorγ chosen such
thatγL/∆t = 1/20. Both methods are robust above 2Hz sampling rates.

that roughly matches the “true” period of the signal. Therefore, we use a short segment of training data at
the beginning of each treatment fraction, find the closest periodic function to the training segment using a
subspace projection method [101] and use the derived periodas the fixed window lengthL.
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We could choose the discount factorγ analogously by usingeffective memory length, defined by

(2.32) L̃(i) =
i

∑
j=1

γi− j ,

because the time unit has a more intuitive physical interpretation. For largei, the efficient memory length
is L̃ = 1

1−γ . In other words, we expect the performance of an adaptive mean tracker with discount factor

γ = 1− 1
L to behave similarly to a sliding window estimator with window sizeL. In general, however, the

discount method should be more stable, but less responsive towards changes than the corresponding sliding
window approach withL = L̃ because previous samples are never completely “forgotten”. Thus, we use the
period estimated from projection as noted before [101] to find L from 20 seconds of training data, then find
γ such that

γαL = β,

where the pair of parameters(α,β) adjusts the decay rate. It has the interpretation that the effect of a given
sample decays toβ afterα periods. We found that in practiceα = 1 andβ = 0.05 is a reasonable choice and
we use these values in later investigations.

2.4.4 Discussion

Although we assumed uniform sampling for simplicity, the proposed approaches easily generalize to
nonuniform sampling scenarios, thanks to the robustness ofthe fitting process. Lower sampling rates should
affect the estimation less than the partial datasets testedin Fig. 2.2. Nearly uniform but sparse sampling
along the ellipse would increase estimator variance, but should not introduce bias, unlike the partial data
case where all the samples are concentrated along an arc segment.

Unlike simple filtering methods, the ellipse fitting method is more objective-oriented: it is specifically de-
signed for estimating time-variant mean of breathing signals. The ellipse model reflects the semi-periodicity
of respiratory motion. The fitting process is flexible enoughto capture changing trends yet is robust enough
to control noisy oscillations. The adaptive algorithms provide efficient updates of the ellipses and allow
the users to determine the update rates of the fitting. For adaptive methods using either sliding window or
discounting factor, parameter selection involves the trade-off between system response speed and stability.
We have suggested one way to adjust the sliding window lengthL based on the estimated nominal period
length, and discussed a connection between the discount factor γ and the “effective memory length”̃L to pro-
vide some guidance about the choice of those parameters. Fast drifting sequences require a more responsive
system, and this should be reflected in the corresponding parameter settings. Even though the mean drifting
pattern and the respiratory frequency are very often closely correlated, a slow (and regular) breathing pattern
may still exhibit abrupt changes, as observed in the upper-left corner of Fig. 2.6. It is possible to resolve this
issue by applying the proposed method on a training segment and then investigating the variation pattern of
the estimated mean position to further decouple the different causes of the mean position changes. As rela-
tion (2.32) only holds asymptotically, and the discountingmethod is less forgetful than its sliding window
counterpart, the discount factor may need to be further reduced to accommodate the more rapidly changing
trends.

Our algorithms generalize easily to non-uniformly sampledobservations and higher dimensional cases.
Commercial solvers for some intermediate steps, such as generalized eigen-decomposition, are available.
Clinical experience and physical prior knowledge can help guide choosing either the proper sliding window
size or discount factor. In general, both the window size andthe discount factor allow real-time adjustment
(at the possible cost of more complicated update rules), andcould even be tuned intra-fraction, if necessary.
The intuitive interpretation of the parameters in terms of window sizeL, effective memory length̃L and
decaying parameters(α,β) makes the control of those parameters practical.

Practical issues that are worth further investigation include learning of mean position drifting rate, ab-
normal abrupt change detection, and proper adjustment of the adaptivity pace. This concerns the clinically
significant question of “how far we can reliably extrapolateinto future based on current observations”. For
clinical use, the proposed method needs to be further validated on both external surrogate and internal tu-
mor trajectories, as they may bear different noise properties. Dose effect on various treatment methods and
software-hardware cooperation issues should also be studied.
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2.5 Generalized Fitting Cost for Robust Estimation

It is often desirable to use a potential function that is robust to the presence of outliers. It is therefore,
natural to ask for extension of the squared algebraic distance to robust potential functions such as generalized
Gaussian, Huber, Hypergeometric,etc. When a more general form of the potential function is to be used, the
problem can not be reduced to generalized eigen-decomposition, because the potential is no longer quadratic.
General purpose optimization routines need to be studied. Note that this is not a dramatic sacrifice as [90]
shows that the generalized eigen decomposition problem canbe mapped bijectively into determing whether
a matrix A− λB is copositive. Meanwhile, the problem of determing the copositiveness is shown to be
NP-complete [82], so is the generalized eigen problem.

Proposition II.5. The set defined bya′Ca≥ 1 is a union of two convex sets.

Proof. Recall the condition for defining the set can be rewritten as 4ac−b2≥ 1 wherea = [a,b,c,d,e, f ]T .
It is straight forward that[d,e, f ] ∈ ℜ3 is a convex subspace. We only need to test the subspace of[a,b,c].
Observe that feasible points satisfy 4ac≥ b2 +1 > 0, thusa andc would have the same sign. This naturally
split the whole set into two disconnected portionsa′Ca ≥ 1,a > 0 anda′Ca ≥ 1,a < 0. Without loss of
generality, we concentrate on proving the convexity of the setU = {a′Ca≥ 1,a > 0} hereafter.

Let (a,b,c) and(x,y,z) are points insideU . SinceU is closed, its convexity is implied by “midpoint
convexity” [16]. It suffices to test midpoint convexity, which we prove below:

4
a+x

2
c+z

2
− (

b+y
2

)2−1 = 1/4
{

4ac+4xz+4az+4xc−b2−2by−y2−4
}

≥ 1/2{2az+2xc−by−1} .(2.33)

Notice that

az+xc ≥ 2
√

azxc= 2
√

(ac)(xz)

≥ 2

√

b2 +1
4

y2 +1
4

=
1
2

√

(b2 +1)(y2 +1).(2.34)

However,
(b2 +1)(y2 +1) = b2y2 +b2 +y2 +1≥ b2y2 +2by+1 = (by+1)2,

thus
√

(b2 +1)(y2 +1)≥ by+1 (This relation holds regardless of the signs ofb andy).
Plugging into (2.33) results in

4
a+x

2
c+z

2
− b+y

2

2

−1≥ 0,

yielding midpoint convexity ofU .

In principle, we could consider general-purpose optimization techniques to solve a general objective
function of the formΦ(Z;a) = ∑N

i=1 φ(zi ;a), with φ = φr(·;δ)◦F(zi ;a) = φr(a
Tzi ;δ). φr may be chosen

to be a robust fitting function; it should be positive symmetric about the origin, and equals zero if and only
if the argument is zero. Our goal is to solve the general constraint optimization problem:

â = argmin
a∈C

Φ(a),

whereC is a given constraint set.
We will start by considering a simple constrained minimization method calledgradient projection, which

is essentially the gradient descent method with projectionon the constraint set at the end of each iteration.

(2.35) a(n+1) = P C (a
(n)−α∇Φ(a(n))),

whereP C denotes the projector on to the convex setC . If stepsizeα is chosen appropriately, then for certain
families of cost function, the gradient projection method (2.35) converges, as established by Theorem II.6
below. [6, p. 83] analyzes a generalization of the above algorithm.
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Theorem II.6. LetC denote a nonempty, convex, closed subset ofℜnp. LetΦ : ℜnp→ℜ be convex and dif-

ferentiable with gradient g(x)
△
= ∇Φ(x) satisfying a Lipschitz condition of the form‖∇Φ(a)−∇Φ(ã)‖ ≤

L‖a− ã‖ , ∀a, ã ∈ C . Suppose the set of minimizersX ⋆ =
{

a⋆ ∈ C : Φ(a⋆) ≤ Φ(a), ∀a ∈ C
}

is
nonempty. If0 < α < 2/L, then the gradient projection algorithm (2.35) converges tosomea⋆ ∈ X ⋆.

In our case, the convex half cone is defined bya′Ca≥ 1. Given a initial pointa0 = a(n)−α∇Φ(a(n)).
If a0 /∈ C , then the projectiona = P C (a0) has to satisfy:

a0−a ‖Ca⇒ a0−a = γCa

a′Ca = 1,(2.36)

whereC =





0 0 2
0 −1 0
2 0 0



 and its spectraρ(C) = {−2,−1,2}. There are two scenarios to be considered:

1. Whenγ ∈ −ρ(C)−1 = {1/2,1,−1/2}, the linear operatorI + γC has a nontrivial null-space of di-
mension one. The solutiona in that case is obtained as the intersection between a two-dimensional
plane (co-dimension one equals the multiplicity of the corresponding eigenvalue) and the cone shape.

2. Let Assumingaγ
△
= [I + γC]−1a0 for γ /∈ −ρ(C)−1. We need to findγ such that

a′γCaγ = 1.

Let the eigen decomposition ofC beC = VΛV ′ and the above equality can be rewritten as:

a′0V[I + γΛ]−1Λ[I + γΛ]−1V ′a0 = 1.

Noting thatV is the “natural” coordinate system determined byC andV ′a0 is the representation ofa0

in that coordinate, we rewrite the problem in the general form of y′0Λ̃(γ)y0 = 1 where we can identify
y0 = Va0 andΛ̃(γ) is the diagonal scaling[I + γΛ]−1Λ[I + γΛ].

Without further manipulation, this corresponds to finding the roots to a 6th-order polynomial.

We usually desire the resulting projectiona to be close to the starting pointa0. It follows froma0−a = γCa

that
‖a0−a‖22 = γ2a′C ′Ca,

and it is straight forward to pick out thea that is closest toa0 in L2 sense among several (up to 6) candidates.
As stated in Theorem II.6, the stepsizeα in (2.35) needs to be upper-bounded by 2/L to ensure conver-

gence, whereL is the Lipschitz constant for the gradientg(x). In what follows, we will use Huber function
as an example to illustrate the procedure of obtaining an upper bound for the Lipchitz constantL. We let
φ(zi ;a) = φh(·;δ)◦F(zi ;a) = φh(a

Tzi ;δ) as the fitting measure, whereφh is the huber function given by:

(2.37) φh(t;δ) =

{ 1
2t2 |t|< δ;
δ|t|− 1

2δ2 |t| ≥ δ.

Notice that this is reasonable fitting measure asφh ≥ 0 and the equality holds if and only ifzi falls on the
ellipse parameterized bya.

The column gradientg(Z;a,δ) is given by:

g(Z;a,δ) =
∂

∂a
Φ

= ∑
i

φ′h(a
Tzi ;δ)zi ,(2.38)

whereZ
△
= [z1,z2, . . . ,zn] is the collection of all data points.
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Our goal is to find the Lipchitz constantL such that

‖g(Z;a,δ)−g(Z; ã,δ)‖2≤ L‖a− ã‖2 ,

for all a andã on the feasible setC .

‖g(Z;a,δ)−g(Z; ã,δ)‖2 =

∥

∥

∥

∥

∥

∑
i
[φ′h(a

Tzi ;δ)−φ′h(ã
Tzi ;δ)]zi

∥

∥

∥

∥

∥

2

(2.39)

Note that the derivative of huber function is nonnegative with its slope bounded above by unity:

φ′h(t;δ) =







t |t|< δ
δ t > δ
−δ t <−δ.

Thus|φ′h(t;δ)−φ′h(t̃;δ)| ≤ |t− t̃|. Substitutingt = aTzi andt̃ = ãTzi yields:

(2.40) |φ′h(aTzi ;δ)−φ′h(ã
Tzi ;δ)| ≤ |aTzi− ãTzi |

Let c
△
= [φ′h(a

Tz1),φ′h(a
Tz2), . . . ,φ′h(a

Tzn)] and c̃
△
= [φ′h(ã

Tz1),φ′h(ã
Tz2), . . . ,φ′h(ã

Tzn)], then (2.39)
can be rewritten as:

‖g(Z;a,δ)−g(Z; ã,δ)‖2 =
√

(c− c̃)TZTZ(c− c̃)

=
√

ρ(ZTZ)‖c− c̃‖2 .(2.41)

Subsituting the elementwise bound (2.40) into‖c− c̃‖2 yields:

‖c− c̃‖2 =
√

∑
i
(ci− c̃i)2

=
√

(a− ã)TZTZ(a− ã)

=
√

ρ(ZTZ)‖a− ã‖2 .(2.42)

Substituting (2.42) into (2.41) yields:

‖g(Z;a,δ)−g(Z; ã,δ)‖2≤ L‖a− ã‖2 ,

whereL = ρ(ZTZ). A loose upperbound forρ(ZTZ) is trace
{

ZTZ
}

= ∑n
i=1zT

i zi asZTZ is nonegative
definite. This is a reasonable result considering the “strength” of ∇Φ(a) incorporates the collective effect
of all the data points, and in in extreme cases whenzi are “aligned” would scale as the number of sample
points, andρ(ZTZ) ≈ trace

{

ZTZ
}

. This loose upperbound may be convenient to use when the dataare
dynamically updated, as it does not require repetitively performing eigen decomposition.

We remark on the structure of the generalized fitting with robust cost here.

• It is reasonable to assume that the general robust fitting objective takes on the form ofΦ(Z;a) =

∑N
i=1 φr(z

T
i a;δ) where theφr is some robust cost function andδ controls its shape and scale. Moreover,

the symmetry ofφr about the orgin in its argument(aTzi) translates naturally to the overall objective
Φ. This symmetry has an important geometric implication. Recall that the feasible set of parameters
is the union of two convex cones distinguished by the sign of the first element ofa; together with
the above analysis about the geometry of the objective function, we conclude that the graph of the
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objective is symmetric about the origin11. Technicality aside, this clears the last bit of reservation one
may have towards the applicability of the gradient projection method. Given an initiala0, one can
arbitrarily pick a cone (the natural choice would be the one whose first coordinate has the same sign
as the element ofa0), and then perform gradient projection on the chosen cone. Based on whichever
minimizer a⋆ we obtained , a simple reflection results in−a⋆: another minimizer with the same
objective function value that resides on the other convex cone.

• Given the iterative structure of the gradient projection method, extension to adaptivity is natural. For
static data case, we alternate between two operations: projection onto the feasible setC and gradient
descent in the direction of∇Φ. Notice that the inclusion of a new data point only perturbs∇Φ by
∇φ(znew), but does not affect the projection operatorP C . The result from previous iterations should
be regarded as an initialization to the updated cost function. More specifically, the adaptive version
for the gradient projection algorithm is given by:

an+1(i) = P C (an(i)−α∇Φ(an(i))), n = 0,1, . . . ,Ni−1,

a0(i +1) = aNi (i),(2.43)

wherei indexes the data samples andn indexes the inner iterations.

• We used algebraic distance to implicitly represent the ellipse to obtain a convex formulation and
a simple solution. It is possible to modify the algebraic fit of the ellipses to drive it closer to the
geometric solution, which is the minimizer of geometric distance. The idea is to weigh the samples
based on a given estimation, leading to a simple iterative mechanism. [11] provides the following
interpretation. The algebraic solutiona is the least squares minimizer ofΦ. Let h(z) be the geometric
distance from the center of the fitted ellipseOe to z

h(z) = ||z−Oe||2,

and determinepi by intersecting the ray from the ellipse’s center tozi and the ellipse. Then

φ(zi) = κ
(h(zi)

2

h(pi)2 −1
)

≈ 2κ
h(zi)−h(pi)

h(pi)
, if zi ≈ pi ,(2.44)

for some constantκ. Thus one may interpret the algebraic solution as a fit to the ellipse with respect to
the relative distances, where distant points are weighted less than near points. This explains why the
algebraic solution tends to neglect points far from the center. This is in fact, a desirable trait in many
applications where non-eccentric ellipses are favored.

If one prefers to minimize the absolute distance, then datazi can be weighted withh(pi) for a given
estimated ellipse. The resulting estimated ellipse may then be used to update the weight, thus itera-
tively solving the weighted least squares problem. Naturally, if one is interested in solving the fitting
in least squared sense for the geometric distance, then the weight for datazi may be set tod(zi)/φ(zi)
whered(zi) is the geometric distance ofzi from the currently estimated ellipse. The advantage of such
iterative weighted least squares scheme is that the there isno need to compute Jacobian or Hessian as
in the case of a direct nonlinear optimization with respect to geometric distance. The drawback is that
its solution generally differs from the minimizer of the geometric distance.

11This is a bit sloppy, since the graph lies inℜdim(a)+1 dimension, so it should be ideally stated as symmetric with respect to
(0,Φ(Z;0)). However,0 is not a feasible point in the domain, soΦ is not defined on that point, which makes this statement illegitimate.
A quick remedy would be to redefineΦ as:

Φ̃(a) =

{

Φ(a) a∈ C ;
+∞ a /∈ C .

and the graph of̃Φ is symmetric with respect to(0,∞).
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To harvest the benefit of using robust objectives, we need to choose the parameters for those functions
properly. For instance, the threshold parameter for Huber function determines the transition fromL2 cost to
L1 penalty. Without assuming prior knowledge about the mixingprobability of normal samples against noise
outliers, we determine the parameter by considering the classification sub-problem. In particular, we use the
Ostu’s method, aiming to best distinguish between the normal and noisy samples. More specifically, after
thenth iteration, we examine the distribution of the fitting error and find the valueδ(n+1) that minimizes the
within-class variance of the fitting error from the previousiteration{ei = φh(a

Tzi ;δ(n))}. Mathematically,
the threshold parameter at thenth iterationδn is selected as the minimizer to

σ2
w(δ)

△
= w1(δ)σ2

1(δ)+w2(δ)σ2
2(δ),

wherew1 = P(ei ≤ δ) is the probability of normal samples (errors smaller than threshold) under the assump-
tion of thresholdδ, w2 = 1−w1; σ2

i is the empirical variance of each class.
We illustrate the robustness of the proposed method with a simulated example. Noisy samples were

uniformly distributed inside the computation region with aroughly elliptical object (the bone contour from
a head CT slice). Figure 2.5 illustrates the initial fitting with quadratic minimization and the evolution of the
estimated ellipse with the gradient projection method.
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Figure 2.8: Evolution of robust fitted ellipse with the gradient projection method: blue dots: observed sample
locations; green line: fitted ellipse.

2.6 Appendix

• Proof for the statement about stationary points of the energy ratio function in (2.7).

Claim II.7. The generalized eigen vectors of(A,B) correspond to the stationary points of the energy
ratio function

J(u) =
uTAu

uTBu
.

Proof. We compute the stationary point of the energy ratio functionJ(u), i.e., we set:

(2.45)
∂

∂u
J(u) = 0

T .

The derivative on the LHS of (2.45) turns out to be:

∂
∂u

J(u) =
1

uTBu
[AuuTBu−BuuTAu].

With A > 0, B > 0 as previously assumed, so thatuTAu anduTBu are simply positive scalars,
setting the above expression to zero is equivalent to requiring

uTBuAu = uTAuBu.



24

This is exactly the condition for generalized eigen decomposition:

Au =
uTAu

uTBu
Bu.

Therefore, the generalized eigen vectors are the stationary points for the energy ratio functionJ(u).
Moreover, the evaluated functional values provide the corresponding generalized eigenvalues. This
result can be considered as a generalization of the Rayleigh-Ritz theorem.

• Derivation for (2.17)

We make use of the relationship between the generalized eigen decomposition(S̃,C̃) and(C̃, S̃).
Up to a constant gain, the set of generalized eigen vectors ofthe two problems coincide, pairing
with element-wise inverted spectrum. Since we aim to prove the convergence of the coefficients of
the eigen vectors either to zero or really large, the constant scaling can be neglected for the sake of
argument clarity. We use the alternative setup of(C̃, S̃) in deriving (2.17) to take advantage of the
assumed positive definiteness ofS̃. The generalized eigen decomposition of(A,B) with B being
symmetric positive definite indicates the existence of a generalized eigen matrixV (with columns
being the generalized eigen vectors) that can simultaneously diagonalizeA andB:

AV = ΛBV ;

V TBV = I;

V TAV = Λ.(2.46)

WhereΛ is a diagonal matrix whose diagonal elements are the corresponding generalized eigenvalues
of (A,B). Indeed, the use of two-stage conventional eigen decomposition to compute generalized
eigen decomposition reflects exactly this property. We apply this to(C̃, S̃) and call their eigen matrix
V . Again,V is also an eigen matrix for(S̃,C̃).

The linear representation in (2.16) can be rewritten as:

a1(s) = V θ(s),

whereθ(s) = [θ1(s),θ2(s), . . . ]T .

Substituting in the relevant terms in (2.15), we have

a1(s)
TS̃a1(s) = θ(s)TV TSV θ(s) =

K

∑
k=1

θk(s)
2

a1(s)
TC̃a1(s) = θ(s)TV TCV θ(s) = θ(s)TΛ−1θ(s) =

K

∑
k=1

λ−1
k θk(s)

2

S̃−1C̃a1(s) =
K

∑
k=1

λ−1
k θk(s)(2.47)

The second and third lines in the above derivation also make use of the element-wise inversion relation
between the spectra of(C̃, S̃) and(S̃,C̃).

Representing both the LHS and RHS of (2.15) with respect to the basis{vk}k=1,2,...,K , and we have
coordinate-wise equation (2.17).

• Proof of invertibility in (2.25).

Proposition II.8. LetQ(t)
△
= S(t)−xt−L+1x

T
t−L+1, then(xT

t−L+1S(t)−1xt−L+1−1) is invertible.

Proof. Proving the invertibility of a scalar quantity is the same asshowing that it is none-zero. We
rewrite the relation betweenS andQ as: S(t) = Q(t) + xt−L+1x

T
t−L+1. Invoking the Woodbury

matrix inversion lemma, we get:

(2.48) S(t)−1 = Q(t)−1−Q(t)−1xt−L+1(x
T
t−L+1Q(t)−1xt−L+1 +1)−1xT

t−L+1Q(t)−1.
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Plugging (2.48) intoxT
t−L+1S

−1xt−L+1−1 yields:

xT
t−L+1S

−1xt−L+1−1

= xT
t−L+1[Q(t)−1−Q(t)−1xt−L+1(x

T
t−L+1Q(t)−1xt−L+1 +1)−1xT

t−L+1Q(t)−1]xt−L+1 +1)−1

= xT
t−L+1Q(t)−1xt−L+1−xT

t−L+1Q(t)−1xt−L+1
1

xT
t−L+1Q(t)−1xt−L+1 +1

xT
t−L+1Q(t)−1xt−L+1−1.

Let p
△
= xT

t−L+1Q(t)−1xt−L+1, thenp > 0 asQ(t) > 0. We rewrite the expression in (2.49) in terms
of p and get

p− p× 1
p+1

p−1 =
1

p+1
[p(p+1)− p2− (p+1)] < 0.

This result states thatxT
t−L+1S(t)−1xt−L+1− 1 < 0, thus invertible. In fact, the negativity of this

term is not accidental, but a natural consequence of the consistent relation stated below. When
xT

t−L+1S(t)−1xt−L+1−1 6= 0, we could apply the matrix inversion lemma in two differentways (ex-
pressingS−1 with Q−1, and the other way around), and obtain:

Q(t)−1−S(t)−1 = Q(t)−1xt−L+1(x
T
t−L+1Q(t)−1xt−L+1 +1)−1xT

t−L+1Q(t)−1

= −S(t)−1xt−L+1(x
T
t−L+1S(t)−1xt−L+1−1)−1xT

t−L+1S(t)−1.(2.49)

BecauseQ > 0, the RHS of line 1 in (2.49) is positive definite. With the minus sign in the front and
its quadratic form, line 2 in (2.49) indicates thatxT

t−L+1S(t)−1xt−L+1− 1 < 0 if it is ever nonzero
(otherwise (2.49) cannot be established in the first place).



CHAPTER III

Regularized Nonrigid Image Registration: Local Elasticity Penalty,
Discontinuity Preserving Flow and Performance Analysis1

In medical applications, spatial alignment is often required to properly integrate useful information from
separate images [74,138].Registrationis the procedure of retrieving the transformation that mapsfrom the
target image’s coordinate space to the source image’s coordinates.

Registration algorithms can be classified according to the family of transformations. Rigid/affine (global)
registration algorithms have only a few degrees of freedom,while nonrigid registration algorithms often
have a very high dimensional space of feasible transformations. Usually, rigid registration methods provide
satisfactory matching results for individual bone structures, but are in general not descriptive enough for
elastic tissues that undergo more free-form deformations.

Nonrigid registration problems can be highly under-determined when transformations of high dimen-
sionality are used, resulting in ill-conditionedness, instability of solutions as well as multiple local optima.
Regularizations are usually introduced to alleviate theseissues and to effectively incorporate prior physical
knowledge into the problem formulation. Regularized nonrigid image registration algorithms usually involve
minimizing a cost function, consisting of a dissimilarity measure and a penalty term that discourages un-
desirable transformations. Conventional regularizationmethods usually treat the region of interest (ROI) as
one single deformable body and homogeneously penalize deviations from smoothness or incompressibility
properties of the deformation field [55,56,96].

However, homogeneous smoothness regularization has its limitations. In particular, ignoring the elas-
ticity differences between tissue types can cause non-physical results, such as bone warping. Furthermore,
isotropic smoothing throughout the ROI blurs motion edges,resulting in artifacts across motion interfaces
where sliding effects occur, which are commonly observed between diaphragm and rib cage during respira-
tion.

To address the tissue-dependent elasticity issue, segmentation-based methods were proposed to treat
each segmented region of an image independently [51, 64, 128]. These methods rely heavily on precise
segmentation and may incur boundary issues with overlapping/vacuum region in the deformed image. Em-
pirical spatial filtering was also used to “correct” the deformation field as a post-processing step [112].
Unfortunately, its deviation from an optimization setup complicates convergence assessment. To study dis-
continuities in deformation field, some recent research addresses motion field discontinuity problem using
variation-based techniques for joint segmentation and estimation [24,134]. In these methods, smooth regions
and singularity set (edges) are devised according to image intensity, and registration aims to align each part
respectively. The smoothness and discontinuity in the deformation itself is not addressed directly. We adopt
the regularized optimization framework, and propose regularization designs to address the tissue-dependent
elasticity and discontinuity preservation issues respectively.

Section 3.1 introduces the regularized registration setup. Section 3.2 provides an approach to incorpo-
rating tissue-type-dependent rigidity information into nonrigid registration2 and Section 3.3 proposes a class
of discontinuity preserving regularizers to address the effects of sliding along motion interfaces. Given the
general regularized optimization setup, various optimization techniques can be used. We adopted B-spline

1This chapter is based on material from [102].
2We proposed this method in 2006 [102] while [113] and [114] independently studied a similar penalty in 2006 and afterwards.
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parametrization in Section 3.2 for its natural smoothness,and variational flow in Section 3.3 to better re-
veal the anisotropic filtering structure. These are specificchoices for representing the deformation that are
independent of the regularizers themselves, and should notbe considered as limitations: in particular, the
variational flow solved on rectangular grids can be regardedas a special case of zero-th order B-spline with
its support equal to the pixel size. Preliminary results aredemonstrated with each approach.

3.1 General Optimization Formulation for Regularized Registration

The goal of nonrigid registration is to find the optimal transformationT∗ such that the transformed source
image best matches the target. We usef ,g : Ω→ ℜ to denote the intensity map for the source and target
images respectively, whered is the image dimensionality, and the open setΩ ⊂ ℜd denotes the physical
region of interest (ROI) for registration. LetT : Ω→ℜd be the transformation. Our goal is to find:

T̂ = argmin
T∈Γ

E(T, f ,g)

= argmin
T∈Γ
{Ed(g, f ◦T)+Er( f ,g;T)},(3.1)

where the setΓ is the class of admissible transformations.E is the overall objective function that we want
to minimize, consisting of two parts:Ed(g, f ◦T) denotes the data dissimilarity measure, also called data
infidelity term, andEr( f ,g;T) denotes the regularization term that is applied to penalizeundesirable trans-
formations. In the general regularization setting,Er can also depend on imagesf andg.

3.1.1 Data Dissimilarity (Infidelity) Measure

Let x∈ Ω denote the coordinate (in vector form) of a specific spatial location. We useTx to denote the
local transformation at locationx and∑x(·) to denote the summation over a discrete lattice that is a subset
of Ω.

Sum of Squared Differences (SSD)

The sum of squared differences is a sensible data dissimilarity metric when the reference and the homol-
ogous image are acquired with the same modality with consistent parameters:

(3.2) Ed,SSD= ∑
x

(g(x)− f (T(x)))2.

This metric has been considered by [58,61,62,85,115].

Mutual Information (MI)

When different modality images are to be registered, mutual information (MI) is a popular choice, since
it does not require explicit knowledge about the intensity mapping between different modalities [20, 72, 75,
88,116,126,130]:

Ed,MI = −I(g, f ◦T)

= −H(g)−H( f ◦T)+H(g, f ◦T),(3.3)

whereH(·) denotes the entropy of a random variable andH(·, ·) denotes the joint entropy of two random
variables.

In medical image data, we only have access to discrete samples of the intensity. To both improve the
smoothness of the dissimilarity measure and approximate its derivative, we use Parzen window to estimate
a differentiable entropy from the sample values [25]. Following the setup in [116], the joint discrete Parzen
histogram is:

(3.4) hPaz(F,G;T) =
1

ε f εg
∑
x

w
(F− f (T(x))

ε f

)

w
(F−g(x)

εg

)

,
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for F ∈B f andG ∈Bg, whereB f andBg are discrete sets of intensities associated with the sourceand
target images respectively.w(·) is the Parzen window that integrates to unity, andε f , εg control the width of
Parzen window in each dimension of the joint histogram.

The data infidelity term (negative mutual information) is computed using the normalized joint discrete
Parzen probabilityp(F,G;T) ∝ hPaz(F,G;T) as:

(3.5) Ed,MI =− ∑
F∈B f

∑
G∈Bg

p(F,G;T) log2
p(F,G;T)

pf (F ;T)pg(G)
,

wherepf (F ;T) andpg(G) are obtained by marginalizing the joint probabilityp(F,G;T) over binsBg and
B f respectively.

Other dissimilarity criteria used in image registration include correlation coefficient and its variation;
and landmark matching based comparison. It is also common tocombine two or more of the above metric
(e.g., SSD and landmark) depending on the applications.

3.2 Tissue-type Dependent Rigidity Regularization

For modeling efficiency, we parametrize the deformation field Φ(x)
△
= T(x)− x instead of the transfor-

mationT itself. To improve the conditioning of the problem, a roughness penalty is incorporated in terms of
the gradients of the deformationΦ, using the squared Frobenius norm‖∇Φ‖2Frob. We define the local tissue
rigidity based regularization to be a weighted superposition of local non-rigidity penalty,∑x γ(x)r(Tx). The
overall regularizer reads:

Er( f ,g;T) = Enonrigid( f ,g,T)+Eroughness(T)

= ∑
x
{γ(x)r(Tx)+α(x)

∥

∥∇Φx
∥

∥

2
Frob}.(3.6)

Here, we focus on designingEnonrigid , where we will chooser(Tx) to penalize the deviation of the local
transformations from being rigid, andγ(x) is the spatially varying weight that reflects local tissue rigidity
properties. In particular,γ(x) controls thelocal “trade-off” between intensity match and deformation rigidity.
It should be large within bone structures and small within more elastic regions,e.g.muscle and fat. We call
it “local stiffness factor”to reflect this physical interpretation. Correspondingly,the spatially varying“local
smoothness factor”α(x) controls the local trade-off between intensity match and deformation smoothness.
Since we are mainly interested in spatially varying stiffness property in this work, we setα(x) to be a
constant throughout the ROI for simplicity.

3.2.1 Regularization Design

Local Rigidity Functional

The local rigidity functionalr : (ℜd→ℜd)→ℜ≥0 quantifies how much the local transformation deviates
from being rigid. We desire the functionalr to have the following properties:

• r(Tx) = 0 if and only ifTx is a rigid transform.3

• The functionalr should be invariant to orthogonal coordinate transformation.

To satisfy the first property, we utilize the following arguments:

Lemma III.1. A necessary and sufficient condition for a transformation T to be rigid at xis that its Jacobian

matrix DTx
△
= ∇T(x) is orthogonal.

3Here, we equate rigid transformation with the isometry inℜd, which by formal definition also includes reflections. However, reflec-
tion rarely occurs in practice. Moreover, the roughness penalty described in (3.6) and our choice of a smooth basis for parametrization
the deformation field further decreases the chance of a local reflection in the transformation estimate.
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The proof follows from the group structure of the isometry onℜd, and the fact that the Jacobian op-
eration provides a group homomorphism between the isometrygroup onℜd and the orthogonal group in
d-dimension.

Lemma III.1 involves a matrix property, so it suffices to design a penalty that measures how “non-
orthogonal” the Jacobian matrix of the local transformation DTx is.

We use the following fact:

Lemma III.2. A necessary and sufficient condition for a matrix M∈ℜd×d to be orthogonal is that
∥

∥MMT − Id
∥

∥=
0, where‖·‖ denotes any matrix norm.

If M is orthogonal,MMT = Id, and
∥

∥MMT − Id
∥

∥ = 0 for any norm. On the other hand, for any matrix
norm,

∥

∥MMT − Id
∥

∥ = 0 impliesMMT = Id, which is exactly the definition for a square matrixM to be
orthogonal.

Therefore, once we definer(Tx) based on
∥

∥DTx(DTx)
T − Id

∥

∥, the first required property is automatically
satisfied.

Lemma III.3.
∥

∥DTx(DTx)
T − Id

∥

∥ is invariant under isometric (rigid) transformations.

Isometric transforms on the coordinate system can be incorporated into the local transformationTx by
applying the inverse transform. By the chain rule of differentiation, it immediately follows thatD(Tx ◦g) =
DTxDg. If g is an isometry by assumption, thenDg is an orthogonal matrix, and the invariance result follows
from a simple manipulation:

D(Tx◦g)D(Tx ◦g)T = DTxDg(Dg)T(DTx)
T

= DTx(DTx)
T .(3.7)

Thus
∥

∥DTx(DTx)
T − Id

∥

∥ also satisfies the second property above.
For simplicity and computation efficiency, we choose to use the squared Frobenius norm, and define the

following local rigidity regularization function:

(3.8) r(Tx)
△
=

1
2

∥

∥DTx(DTx)
T − Id

∥

∥

2
Frob.

Some previous work enforces tissue incompressibility by constraining the Jacobian determinant to be
close to unity [55], but a unity valued transformation determinant is only a necessary but not sufficient
condition for local rigidity. The combination of Jacobian determinant with its condition number may be a
possible alternative, but would require spectral analysiswhich is computationally demanding. We choose
the squared Frobenius norm because it satisfies the two properties above and yet is easy to compute.

Local Stiffness Factor

To design the spatially varying local stiffness factorγ(x), which determines the relative weighting be-
tween data infidelity and deviation from rigidity, it would be desirable to have accurate knowledge about
mass, elasticity, as well as other mechanical properties. Unfortunately, detailed information is rarely avail-
able. Instead, we infer the rigidity level of local tissue from observed CT values. The empirical design
could be improved given more precise/specific prior knowledge. We observe that in calibrated X-ray CT
images, pixel intensity (CT number) is highly correlated with tissue type information, hence is a good infer-
ence source for local rigidity. Therefore, instead of designing a direct mapγ : Ω→ℜ+, we define the local
stiffness factor by applying a transfer functions(·) to the image intensity map:

γ(x) = s( f (x)),

wheres: ℜ→ℜ+ is a monotone increasing map from the domain of CT number to rigidity level. We choose
to use a scaled and shifted hyperbolic tangent function in our application due to its simplicity (two parameters
with clear shape meaning) and desirable mapping form: the properly placed sharp rising edge distinguishes
bone structures from more elastic tissues, while the saturation behavior is robust to small intensity variations
of the same tissue type.
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Fig. 3.1 shows the empirical histogram taken from a 192× 160× 60 breath-held thorax CT volume
with voxel size 0.2×0.2×0.5cm3. Observations for the tissue type v.s. CT number (in Hounsfield unit)
relationship agree with theoretical values [49] in that:

Air : −1000HU
Fat
Muscle

}

: −100∼ 60HU

Bones : 250∼ 1000HU.

We choose the location and shape parameters for the hyperbolic function such that the non-rigidity
penalty dominates in the bony structures, and is relaxed within elastic tissues.

−1000 −500 0 500 1000
CT number (HU)

Scaled Histogram

Stiffness Factor

air

lung

fat

muscle

bony structure

(a) (b)

Figure 3.1: Illustration of stiffness factors(·). (a) design of functionalh based on theoretical tissue-type-to-
CT-number map; (b) scaled stiffness factor v.s. tissue typeinformation inferred from empirical
histogram.

Parametrization and Optimization

We adopt the widely used tensor product B-spline basis to parametrize both the deformation fieldΦ
[62] and the image intensity. In practice, we often use B-spline βn(x) of ordern = 3 for both purposes in
volumetric registration. B-splines are smooth functions with explicit derivatives [118] and finite support.
They are piecewise polynomials and can be recursively constructed by convolution [120,121].

The deformation for each directionr is represented independently with the corresponding set ofB-spline
coefficientsΘl = {θl

i} as follows:

(3.9) Φl (x;Θ) = ∑
i∈N(x)

θl
iβi(x).

For volumetric case (d = 3), l ∈ {1,2,3} represents deformation direction alongx,y andz coordinates re-
spectively, and separable B-spline basis is used:

βi(x) = β
( x

∆x
− i
)

β
( y

∆y
− j
)

β
( z

∆z
−k
)

,

where i = (i, j,k) denotes the B-spline knot location,∆x,∆y,∆z determines the scale of B-spline in each
direction,x = (x,y,z) denotes the spatial location, and its neighborhoodN(·) is determined by the support
of the B-spline basis.



31

The image model provides a continuous representation of an image given by a set of samples. In fact,
only the source image requires interpolation in the formulation considered here:

(3.10) f (x) = ∑
i∈N(x)

ciβi(x),

where the expansion B-spline coefficientsci are computed from the sample values ofG by recursive digital
filtering [121].

We utilize a multi-resolution scheme in the registration process, and use gradient descent method at each
resolution level to evolve the overall cost function until convergence.

For optimization, we used the derivative of the SSD energy (3.2), given by:

(3.11)
∂

∂θl
i

Ed,SSD= ∑
x

(g(x)− f (T(x)))∇ f |T(x)β
n(x− i).

The derivative for negative mutual information from (3.5) is given by [116]:

(3.12)
∂

∂θi
Ed,MI =− ∑

F∈B f

∑
G∈Bg

∂
∂θl

i

p(F,G;T) log2
p(F,G;T)

pf (F ;T)
.

The terms involved in evaluating the regularization are:

(3.13) ∇Φx =
[

∑
i

θl
iβ

j
i (x− i)

]

(l , j)∈{1,2,3}×{1,2,3}
,

whereβ
j
i denotes the derivative of the basis functionβ in the jth direction. Using the derivative property of

the B-spline, the derivative ofβ can be computed analytically [118]:

(3.14)
∂
∂x

βn(x) = βn−1(x+1/2)−βn−1(x−1/2).

The local tissue rigidity based penalty term is similarly derived based on the fact that

DTx = ∇Tx = ∇Φx + Id.

The derivative of the penalty with respect to deformation parameterθl
i can be written as:

(3.15)
∂

∂θl
i
∑
x

γ(x)r(Tx) = ∑
x

γ(x) trace
{

[DT(DT)T − Id]
[ ∂

∂θl
i

DTDTT +DT
∂

∂θl
i

(DT)T]},

where we precompute and store∂
∂θl

i
DT = βl for computation efficiency.

3.2.2 Experiment and Test Results

Experiment One: Geometry Validation by Thresholding

In the first experiment, we tested the proposed approach withtwo thorax CT scans of the same patient:
one at 80% of the vital capacity inhale breath hold (deep inhale breath hold, tidal breathing generally peaks
at about 40%) and one at exhale. The scans were 512×512×148 with voxel size 0.2×0.2×0.5cm3. We
used the deep inhale breath-hold thorax CT image as the target and further cropped it to size 259×175×107
to reflect the region of interest. Sum of Squared Differences(SSD) was used as dissimilarity metric. Fig. 3.2
shows typical data slices (different views) of the target image, source image and the inferred stiffness map
(h◦ f ). The inferred stiffness map captures rigid structures reasonably well.

We first show the registration results in slice views for pureglobal rigid, affine transformation, and
nonrigid registration with and without nonrigid regularization. The deformed source image is displayed on
top of the target image for comparison purposes in Fig. 3.3.
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Figure 3.2: Different views of the original data and tissue information inferred from it. Top row [X(1)]:
coronal slices; middle row [X(2)]: sagittal slices; bottomrow [X(3)]: axial slices. Left column
[a(#)]: slices from target image; middle column [b(#)]: slices from source image; right column
[c(#)]: slices from inferred stiffness map.

Fig. 3.3 illustrates that nonrigid registration outperforms global rigid/affine model based registration on
matching intensity. The advantage is most obvious in regions where organs have undergone extremely elastic
deformations, such as the diaphragm. The different performance in the lung area is less noticeable due to
the overall low intensity level in lung region, so mismatch in that region is not emphasized in SSD setting.
Finally, the introduction of proposed tissue type dependent regularization does not seriously deteriorate
intensity matching performance compared to conventional B-spline in general.

To better reveal the geometry of the deformation, we extracted bone structures by thresholding the CT
numbers at 250 HU, because they are good indicators of tissuetype. Geometry extracted from both the target
and the deformed source volumes are overlaid to compare the bone structure alignment in Fig. 3.4.

We can clearly observe nonphysical warping of bones in the deformed source geometry using conven-
tional B-spline based nonrigid registration method without the proposed regularization. This is a typical
local optimum situation. Upon localizing the occurrence ofthis particular“bone warping”phenomena, we
can observe that the“pseudo-periodic”structure of the ribs makes the resulted deformation and thede-
sired physical one having comparable intensity dissimilarity (data infidelity) value. On the other hand, since
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c(1) c(2)
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d(1) d(2)

d(3)

Figure 3.3: Deformed source image (green) overlaid with target image (dark blue) for comparison of inten-
sity match. Different views are indicated with numbers: [X(1)] coronal view; [X(2)] sagittal
view; [X(3)] axial view [X(3)]. Different registration method are distinguished with letters:
[a(#)] rigid transformation model; [b(#)] affine transformation model; [c(#)] B-Spline registra-
tion with smoothness penalty only; [d(#)] B-Spline registration with both proposed regulariza-
tion.

B-spline is a smooth local basis, together with smoothness regularization to enforce continuity of the defor-
mation field, in regions close to diaphragm/lung region where deformation of more elastic nature occurs, the
deformation of bone structures are compromised to resemblethose of elastic tissues.

When the proposed regularization is applied, however, the deformation on the bone structures are given
an additional“force” to conform to rigid transformation. Fig. 3.4 shows obvious improvements regarding
the bone-warping issue.

Experiment Two: Quantitative Validation with Bifurcation Landmarks

In the second experiment, we evaluate the registration accuracy in soft tissue regions as it might be
adversely affected by the introduction of the proposed regularization. Sequential thorax CT scans were
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a(1) b(1)

a(2) b(2)

Figure 3.4: Geometry extracted from registration results:target (blue) vs. deformed source (white). Left
column [a(#)]: B-spline based nonrigid registration with no local rigidity regularization; right
column [b(#)] B-spline based nonrigid registration resultwith proposed local tissue type depen-
dent regularization. Top row [X(1)]: whole ribcage view; bottom row [X(2)]: local zoom-in
view around diaphragm neighborhood.

obtained on a helical CT scanner (CT/I, General Electric, Milwaukee, WI) for 11 patients. Two scans
were obtained from each patient, one at normal exhale followed immediately by a scan at normal inhale
during coached voluntary breath-hold periods of 18-35 seconds. Scans were obtained with a pitch of 2,
using a 5mm aperture. The total time spent from the start of the first scan through the completion of the
second scan was less than 5 minutes. Images were reviewed by experts to ensure that they were free of
breathing-related artifacts in reconstruction. To quantitatively analyze the registration accuracy, we compare
the position of known features in the target and source images. A human observer chose six landmarks
within the right lung per patient [21]. Landmarks included vascular and bronchial bifurcations, and were
nearly uniformly distributed in the ROI. Computed transform from registration algorithms was applied to
the landmark coordinate in the target image and compared to the landmark position in the source image
coordinate. Fig. 3.5 illustrates some of the manually picked landmarks.

We applied negative mutual information (MI) as the data dissimilarity metric to reflect the general appli-
cability of the proposed methods, even though X-ray CT images are used both as the source and the target
image to maximize the consistency of manually picked corresponding landmark pairs. Moreover, landmarks
picked at lung bifurcations should fairly characterize theeffect of the additional regularization on the soft
tissue regions. We compared thin-plate splines (TPS), conventional B-splines and the proposed regularized
B-splines in this test. In TPS setup, control points were placed manually on the source and the target dataset.
We used the TPS results from [21], where 30 control points were used to align the inhale and exhale CT
model of the right lung, with 5 each on 6 specified Superior-Inferior planes in the target dataset. Nelder-
Mead simplex algorithm was used to maximize MI for TPS. For the conventional and modified B-spline
registration, multi-resolution scheme was used to achievecomputation efficiency. In each resolution level,
control knots were placed uniformly in the low-pass filteredsource image, and B-spline coefficients are
updated using gradient descent algorithm until convergence.



35

(a) (b)

Figure 3.5: Illustration of landmark data on thorax CT: (a) illustration of volumetric data; (b) manual land-
mark positioning based on bifurcations

We computed the difference between the deformed landmark positions on the source coordinate and
the corresponding manually picked target landmark position. Fig. 3.6 shows box plots illustrating median,
lower/higher quartile, data extent and outliers to characterize the registration accuracy along each axis: right-
left (RL), anterior-posterior (AP), and inferior-superior (IS). The regularized B-spline registration is com-
petitive against thin-plate splines or conventional splines inside the lung. Limitation of human observer due
to image resolution (voxel size 0.2×0.2×0.5cm3) and the dominant motion in inferior-superior direction
are also reflected in the registration performance.

We also calculated the Euclidean registration error between deformed landmark locations and the man-
ually selected points. In Fig. 3.7, we ordered the patients according to the mean Euclidean error for TPS
method, and used box-plot to illustrate the Euclidean errordistribution for different methods. Fig. 3.7(d)
shows the mean Euclidean error of landmark position estimate for each patient, and a box-plot of the collec-
tive Euclidean error for each method is provided in Fig. 3.7(e). Both conventional B-splines and regularized
B-splines uniformly outperform the manually assisted thin-plate splines method, whereas performance of the
two B-splines based registration methods are comparable. This agrees with the qualitative results in Fig. 3.3
where the proposed regularization appears to preserve the flexibility of the conventional B-splines method in
soft tissues. The mean and standard deviation of Euclidean error for regularized B-spline isMR−BSP= 0.5 cm
andσR−BSP= 0.48 cm respectively, on the same order as the slice thickness,and superior toMTPS= 0.85 cm
andσTPS= 0.55 cm from TPS orMBSP= 0.56 cm andσBSP= 0.55 cm from conventional B-spline.

We used three B-spline resolution levels which took about 100 iterations in the last (finest) resolution
level to converge. The computation time for both the conventional B-splines and the regularized B-spline
are both in the order of minutes on a standard PC (2.4 GHz CPU and 1G internal memory) running Linux.
All programming and visualization in this paper were carried out on the Advanced Visual Systems (AVS)
software platform with central modules implemented in C/C++. Including the regularization increased the
registration time by less than 20% in most cases.

3.2.3 Discussions

We quantify local non-rigidity by the deviation of the localJacobian from being orthogonal, measured
by a computationally efficient Frobenius norm. We considered both mono- and multi- modality registrations
involving a CT image as either the source or target observation. Local tissue rigidity level is inferred by
applying a smooth monotone function to the CT values, avoiding explicit segmentation. The smoothness
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Figure 3.6: Registration error for different methods: TPS,BSP and Regularized BSP. Left column [a(#)]:
Thin plate spline registration with manually picked control points; middle column [b(#)] con-
ventional B-spline registration; right column [c(#)] B-spline registration with proposed local
tissue type dependent regularization. Top row [X(1)]: right-left (RL) registration error in right-
left (RL) direction; middle row [X(2)]: registration errorin anterior-posterior (AP) direction;
bottom row [X(3)]: registration error in inferior-superior (IS) direction.

of the inference function provides robustness to partial volume effects caused by limited resolution and by
multi-resolution schemes deployed to speed up computation.

The proposed regularization design is independent of the user-specified dissimilarity metric and the
parametrization of the transformation field. We evaluated registration accuracy using the popular B-spline
deformation parametrization, with two different dissimilarity metrics: sum of squared differences (SSD)
and negative mutual information (MI). In the first case, we visualized bone geometry in the target and the
deformed source image for qualitative assessment. In the second case, we compared deformed landmark
locations with manually specified“ground-truth” values for quantitative validation. Comparison among
thin-plate splines (TPS), conventional B-splines and the proposed method indicates minimal compromise of
registration accuracy in soft tissue regions, but significantly improved ribcage registration.

We have performed a preliminary study on incorporating tissue type information into nonrigid registra-
tion framework essentially via the introduction of a spatially-varying stiffness coefficient map and use that
to adjust the local trade-off between intensity match and rigidity property. This allows inhomogeneous reg-
ularization throughout the deformation field estimation. We would like to extend this work in the following
aspects:
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Figure 3.7: Comparison of 3-dimensional Euclidean Error. Top row (left to right): TPS, BSP and Regular-
ized BSP. Bottom left: mean Euclidean error over all landmarks on the same patient; bottom
right: box plot of the Euclidean error distribution over alllandmarks through all patients.

• We would like to extend the non-homogeneity that we introduced in this work further to non-isotropic
setting. In many situations, anatomical structures not only demonstrate tissue-type dependent inhomo-
geneous deformation, but also directional variations. Examples are bending in head-neck region and
the dominant elongation/deformation in up-down direction(vertical direction in sagittal plan) related
to breathing motion. These information could be handled in heuristic fashions by non-uniformly plac-
ing the B-spline knots and having different knot spacing in different directions. However, these ad-hoc
techniques could be tricky in practice and lacks certain theoretical justification. Furthermore, adjusting
B-spline knots can only strictly control the deformation level in the 3 vertical plans, which may not be
sufficient for some clinical applications. We conjecture that by introducing anisotropic regularization
into the optimization framework, we would be able to have a more flexible and straight-forward way
to accommodate direction related priors.

• In X-ray Computed Tomography, we designed the stiffness mapas the composition of a monotone
increasing function with the intensity map, taking advantage of the fact that in this particular modality,
intensity is a very reliable reference source for tissue type information. This is not true in general. We
would like to explore approaches to address this issue for other modalities in future work.

3.3 Discontinuity-Preserving Regularization

Motivated by the common presence of sliding effects in medical imaging,e.g., the discontinuous motion
between diaphragm and ribcage during breathing, we study regularization schemes that preserve discontinu-
ities in the deformation field.

Recent research on image registration that accounts for discontinuities can be classified into two cat-
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egories. The first class [23, 24, 134] is based on joint segmentation and registration. In these methods,
smooth regions and singularity sets (edges) are devised according to image intensity, and registration aims
to align each part respectively. The smoothness and discontinuities in the deformation is not addressed
directly. The second category is motivated by edge-preserving image restoration [34, 35, 77]. Several au-
thors [10,15,33,129] have tried to generalize total variation type regularization for vector valued functions.
These methods use regularization that combines the total variation from each deformation coordinate. Mean-
while, decomposition and representation of a vector field byvelocity potentials and stream functions [38]
have motivated flow regularizations with divergence and curl components [42, 135, 137]. Analogous to
image denoising, [136] has proposed a convex Hodge decomposition based total variation regularization
method to denoise vector fields, resulting in piecewise harmonic flows. This paper is closely related to the
latter category, and intends to adapt such principles to design regularizations for medical image registration
applications.

There are many ways to extend regularizers,e.g., Tikhonov or total variation (TV), originally developed
for scalar fields, to vector flow applications. However, naive extensions may violate the intrinsic structure
of the problem, and result in loss of desirable properties. Taking total variation as an example, summing
over the total variation in each component direction [10, 33, 129] compromises the rotational invariance
with respect to the coordinate system. Section 3.3.1 handles this issue with care and proposes a class of
regularizers for vector fields that preserve discontinuities in the deformation field. We provide general
analysis of their functional forms, and define some desired properties as a consequence. We derive the
descending flow for optimization based on variational calculus and discuss briefly some implementation
issues.

Section 3.3.2 further notes that only sliding or shear discontinuity is physical in medical image regis-
tration, hence it is necessary to distinguish this class of admissible discontinuity from collision or vacuum
creating singularities. To design a regularizer that differentiates between these two types of discontinuities
and preserves only large shears, we take advantage of the Helmholtz decomposition, and regularize the
divergence and curl components of the vector field differently.

Preliminary result for this work in progress shows promising results.
For clarity, we discuss the derivations for 2D case, yet all analysis generalizes naturally to higher di-

mensions unless specified otherwise. We represent the deformation vector fieldΦ : Ω→ ℜ2 as Φ(x) =
[u(x),v(x)]T , whereu andv are directional deformation and assumed to be orthogonal (but do not have to
align with the image coordinate(x,y)) in general. As we are mainly interested in geometric regularization
for smoothness/discontinuity, the regularization term istaken to be independent of the image. It corresponds
to a special case of the regularized registration problem introduced in Section 3.1 with

Er( f ,g;T) = Er(Φ).

A constant weightλ is adopted throughout the whole image to balance the data fidelity and regularization
energy. We focus on designingEr , and assume mono-modality images withL2 metric as data fidelity measure
hereafter. Thus the goal of registration can be formulated as:

Φ∗ = argmin
Φ∈Γ

E( f ,g,Φ)(3.16)

= argmin
Φ∈Γ
{Ed(g, f ◦ (I +Φ))+λEr(Φ)}.(3.17)
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3.3.1 Indiscriminate Discontinuity Preserving Regularization

To encourage smooth deformations in most of the region of interest (ROI), yet admitting some disconti-
nuities requires a “magnitude” measure of the local change of the deformation field, analogous to the norm
of image gradient in image restoration. The Jacobian of the deformationΦ atx is given by:

DΦ(x) =

[

ux uy

vx vy

]

.

We propose to use the Frobenius norm of the matrixDΦ(x) as the local measure of variation for the defor-
mation field:

|DΦ|Frob =
√

u2
x +u2

y +v2
x +v2

y(3.18)

=
√

|∇u|22 + |∇v|22.

This matrix norm is independent of both the image coordinatesystem(x,y) and the deformation vector
field direction(u,v). For simplicity, we assume that theu andv components of the vector field correspond to
the deformation field inx andy directions respectively hereafter. In addition, this measure of “deformation
change” introduces coupling among the various directions in the vector fields and reflects the intuition that
we observe a “jump” in the deformation field regardless of thespecific direction such change occur, unlike
the simple coordinate-wise sum used in traditional opticalflow regularization [3,8]. For simplicity, we make
matrix Frobenius norm the default notation for|DΦ| hereafter and drop the subscript.

We consider a class of regularizers with the form:

(3.19) Er(Φ) =

Z

φ(|DΦ|)dx.

Applying variational analysis, and assuming Neuman boundary conditions,i.e., ∂nu = 0 and∂nv = 0 on∂Ω,
we derive the descent flow [3]wr = (ur ,vr) of Er to be as follows:

ur = ∇ ·
( ∂

∂∇u
φ
)

(3.20)

= ∇ ·
(φ′(|DΦ|)
|DΦ| ∇u

)

.

The expression for the update flowvr for v is similar. For simplicity, we define the “influence function” as

ψ(s)
△
= φ′(s)/s.

To design a proper regularizationφ that results in edge preserving flow, we interpret the process as
anisotropic filtering and decompose the effect of the flow into the normal and tangent directions foreach
component of the deformation field. We derive the regularization flow inu− direction as:

(3.21) ur = ψ(|DΦ|)(uxx+uyy)+
φ′′(|DΦ|)−ψ(|DΦ|)

|DΦ|2 (u2
xuxx+2uxuyuxy+u2

yuyy).

By convention, we denote the second derivatives ofu in the tangent (T-) direction and normal (N-)
direction asuTT anduNN respectively, with

uTT = TT∇2uT =
1
|∇u| (u

2
xuyy+u2

yuxx−2uxuyuxy);

uNN = NT∇2uN =
1
|∇u| (u

2
xuxx+u2

yuyy+2uxuyuxy).

Rearranging the terms in (3.21) yields:

(3.22) ur = ψ(|DΦ|)uTT + |∇u|2
(φ′′(|DΦ|)
|DΦ|2 − ψ(|DΦ|)

|DΦ|2 +
ψ(|DΦ|)
|∇u|2

)

uNN.
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For 2D case (higher dimension situations have similar structure):

ψ(|DΦ|)
|∇u|2 − ψ(|DΦ|)

|DΦ|2 = ψ(|DΦ|) |∇v|2
|DΦ|2|∇u|2 .

The coupling betweenu andv in the flow motivates us to consider the contribution of variation in each

deformation direction in|DΦ|. We defineβu
△
= |∇u|2
|DΦ|2 andβv

△
= |∇v|2
|DΦ|2 . By construction,β ∈ [0,1] andβu +

βv = 1. Then (3.22) can be rewritten as:

(3.23) ur =
(

φ′′(s)βu +ψ(s)βv
)

uNN +ψ(s)uTT,

Now we are ready to discuss some desired properties for the functionφ. This is more complicated than
image restoration problems asφ is intrinsically a function of bothu andv.

• In the presence of small variations in the deformation, (|DΦ| small implies|∇u|, |∇v| both small),
isotropic smoothing is desirable in each individual deformation direction. It is reasonable to require
non-trivial smoothing along the tangent direction:

(3.24) φ′(0) = 0, with lim
s→0+

ψ(s) > 0.

To have isotropic diffusion ass→ 0+ is equivalent to:

lim
s→0+

βv +βu
φ′′(s)
ψ(s)

= 1.

Together with the fact thatβu +βv = 1, isotropic diffusion for small deformation implies

(3.25) lim
s→0+

ψ(s) = lim
s→0+

φ′′(s) > 0.

Once the conditions (3.24) and (3.25) are satisfied, the flow (3.23) for small variation reduces to:

ur ≈ φ′′(0)∆u.

The same analysis holds forvr . We immediately recognize that this diffusion coincides with the
isotropic flow from the heat equation.

• In the presence of large variations in deformation (large|DΦ|), it is desirable to diffuse the deformation
along the discontinuity, but not across it. We need to keep inmind that the level of discontinuity|DΦ|
takes into account deformation in all directions, and the diffusion process in a certain direction (u or
v) is decomposed with respect to its own gradient field. In other words, the diffusion process inu
direction is the projection of the joint deformation flow onto that direction. To preserve discontinuity,
it suffices to annihilate the coefficients ofuNN andvNN for large |DΦ|, and assume non-vanishing
coefficients for the tangent flow components.

{

lims→+∞ φ′′(s)βu +ψ(s)βv = 0;
lims→+∞ ψ(s) > 0.

If one were to insist on the annihilation of the normal flow forall possible combinations of(βu,βv), it
would be necessary to require:

lim
s→+∞

φ′′(s) = 0 and lim
s→+∞

ψ(s) = 0.

On the other hand, ifβu ≈ 0, indicating that the variation inx−direction (|∇u|) is relatively small,
isotropic diffusion in that direction would not result in over-smoothing discontinuity and should be
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acceptable. Withv being the major contributor to the overall discontinuity in|DΦ|, only vNN has to
be annihilated. Unfortunately, this again results in a set of incompatible conditions onφ:

lim
s→+∞

φ′′(s)≤ 0 and lim
s→+∞

ψ(s)≥ 0.

One possible compromise is to let both terms approach zero ass→+∞, but at different rates:

(3.26)

{

lims→+∞ φ′′(s) = lims→+∞ ψ(s) = 0;

lims→+∞
φ′′(s)
ψ(s) = 0.

Many functions satisfy the above conditions (3.24),(3.25)and (3.26),e.g., the hypersurface minimal function
φ(s) =

√

(1+s2) [3]. Due to the nonconvex nature of registration problems, we are interested in finding only
reasonable local minima in general. In the usual case whereEd is nonconvex inΦ, it may be unnecessary to
insist onφ being convex.

We make a quick comment here:

• φ(s) = s2 corresponds to the regularization energy:

(3.27) Er,l2(Φ) =
Z

‖∇u‖2 +‖∇v‖2dx.

This is a natural generalization of Tikhonov regularization in image restoration. It is the same energy
that Horn and Schunk [48] introduced in the optical flow setting.

• φ(s) = scorresponds to the regularization energy:

(3.28) Er,l1(Φ) =

Z

√

‖∇u‖2 +‖∇v‖2dx,

which can be regarded as a rotationally invariant generalization of the total variation (TV) regulariza-
tion for flow fields [129].

A Test Setup with Truncated Quadratic Regularizer

For simplicity, we consider mono-modality registration with L2 norm as the data fidelity measure,i.e.,

Ed =
1
2

Z

Ω
(g(x)− f (x+Φ(x)))2,

and the corresponding variational descent flow is given by:

wd(x) =
(

g(x)− f (x+Φ(x)
)

∇ f (x+Φ(x)).

For the preliminary test, we use a truncated quadratic [9] asthe regularization function:

(3.29) φ(s,α) =

{

(α0
α )2s2 |s| ≤ α

α2
0 otherwise.

The disadvantage and benefit of this choice are both clear. With strict “saturation” behavior above the scale
parameterα, it poses a challenge for optimization. Graduated nonconvexification approaches can be utilized.
On the other hand, this formulation provides nice theoretical interpretations. It is natural to introduce a line
process [35] which is equivalent to “labeling” the outlier in the robust estimation setting [7].

Notice that (3.29) also provides a simple recipe to extract singularity setSof |DΦ| from the estimatedΦ
by thresholding at levelα:

S= {x : |DΦ(x)|> α}.
This may be useful for extracting motion interfaces.

To alleviate the local minima issue due to nonconvexity, we start with a large initialα. This is equivalent
to use the conventional Tikhonov regularization (the vector version is more commonly known as Horn and
Schunk in optical flow) of the formEr = |∇u|2+ |∇v|2 asS= /0 for α large enough. Then the scale parameter
α is gradually decreased till the desired tolerance for discontinuity. To speed up the implementation, a multi-
resolution scheme is applied.
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Decreasing α

Figure 3.8: Truncated quadratic regularization with varying scale.

Preliminary Results

We apply the setup described in Section Section 3.3.1 to two coronal CT slices obtained from deep
inhale and exhale phases. Proposed regularization resultsin smooth deformation in homogeneous organ
(lung, heart and exterior of rib-cage) and correctly preserves motion interfaces on the boundaries between
the diaphragm, heart atria, rib cage and the lungs.
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(a) source image (inhale) (b) target image (exhale)

(c) deformed source with Tik. reg. (d) deformed source with TQ. reg.

 

 

1

2

3

4

5

6

(e) |DΦ| with Tik. reg.
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(f) |DΦ| with TQ. reg.

Figure 3.9: Registration comparison between Tikhonov (Tik) and Truncated quadratic (TQ) regularizations.
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(a) quiver plot for Tik reg.

(a) quiver plot for TQ reg.

Figure 3.10: Comparison of deformation fields.
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3.3.2 Discriminative Shear Preserving Regularizer

The problem of designing regularizer to accommodate sliding effects in medical registration has several
distinct traits. First, we prefer to pose the problem in an optimization framework with a single energy func-
tional and obtain the deformation as its optimal, rather than to use regularization to post-process some initial
estimate or segmentation. Secondly, the deformation should be fairly smooth except at the sliding sites.
Thirdly, dramatic local volume change seldom occurs in physical deformations; in particular, the deforma-
tion should neither create collision flow that maps different pixels to the same location (folding) nor generate
vacuums. Similarly, within the complement of the sliding surface, shear should be fairly small. On the other
hand, we should preserve the large shear at the sliding boundaries. This requires our method to differentiate
among different types of discontinuities and regularize them accordingly. Finally, medical image registration
involves tissues that are elastic with sliding motion, and we expect nonvanishing divergence and curl compo-
nents from a physical deformation, so we are not interested in studying the extreme cases of pure solenoidal
or irrotational flows. The above prior knowledge can be incorporated by devising a smooth regularization
on the divergence component and a regularization on the curlcomponent that preserves large-magnitude.
Motivated by [136], we consider the following regularization energy:

(3.30) Er,divcurl(Φ) =
Z

Ω
α‖div Φ‖2 +β‖curl Φ‖dx.

The regularization on curlΦ is reminiscent of total variation. It penalizes small curl values, yet is much
more forgiving to large values than the quadratic form. In fact, similar to total variation, one could argue
that the proposed functional is unbiased towards shears.

As a simple sanity check, we examine how the proposed regularization energy would drive an initial flow
field. We derive the variational direction to descendEr(Φ) and use it to evolve the flow. In the absence of
data fidelity term, one tradeoff parameter is sufficient, andit is equivalent to descend the following function:

(3.31) Er,divcurl,2d =
Z

Ω
(ux +vy)

2 + γ|uy−vx|dx.

Both divergence and curl operators are linear and invariantto rigid coordinate transformation, so it suffices
to check typical cases by aligning the flow to one of the coordinate.

• If Φ = (u(x),0),then a large value inux would indicate a jump along the direction of the flow, which
would potentially causes folding or a vacuum. Locally, we would have divΦ = ux 6= 0, yet curlΦ = 0.
Penalizing theL2 norm of divΦ as in (3.30) discourages largeux values, thereby this helps prevent
folding or vacuums.

• If Φ = (u(y),0), then a large value inuy would indicate the presence of shear along the flow which we
want the regularization to preserve. In this case, divΦ = 0 and curlΦ 6= 0. Regularization with theL1

norm of curl f achieves the desired effect of allowing this type of shear.

In 3D, the deformationΦ = (u,v,w) is decomposed into its divergence and curl components as follows:

(3.32) divΦ = ux +vy +wz;

(3.33) curlΦ = det





i j k
∂
∂x

∂
∂y

∂
∂z

u v w



 ,

wherei,j,k are the unit vectors for thex−, y−, andz−axes, respectively.
Divergence is still a coordinate independent scalar field. The curl component, however, is a vector field

with three coordinatesΩ→ℜ3, and its direction is determined by the right hand rule. For the regularization
function to be rotationally invariant, we use theL2 length of the curl field pointwise and then integrate over
the spatial coordinates,i.e.,

Er,divcurl,3d(Φ) =

Z

Ω
(div Φ)2 + γ‖curl Φ‖2dx

=

Z

Ω
(ux +vy +wz)

2 + γ
√

(wy−vz)2 +(uz−wx)2 +(vx−uy)2dx.(3.34)
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Preliminary Experiment

To study the effect of proposed regularization, we first testit on an initial flow field. The flow was evolved
along the energy descending direction, which is derived using variational calculus. We approximated the
absolute value term with|uy−vx| ≈

√

(uy−vx)2 + ε whereε is a small positive constant.
For image registration, the deformed source image needs to be interpolated. We use the fast B-spline

interpolation scheme proposed by Unseret al.[119–121] with a 4-level multi-resolution structure [122]. The
source image is represented as:

(3.35) f (x,y) = ∑
i, j

ci, jβn(
x

∆x
− i)βn(

y
∆y
− j),

whereβn is thenth-order B-spline basis.
For computational efficiency, we also use linear combinations of tensoredmth-order B-spline basis to

express the deformation field:

u(x) = ∑
i, j

du
i, jβ

m(
x

mx
− i)βm(

y
my
− j);

v(x) = ∑
i, j

dv
i, jβ

m(
x

mx
− i)βm(

y
my
− j).(3.36)

The finest level of B-spline deformation basis was chosen to be very narrowly supported (2 pixels)so that its
interpolating behavior does not compromise discontinuitypreservation within a given tolerance. It is straight
forward to generalize the notations in (3.35) and (3.36) to higher dimensions thanks to the tensor structure
of the B-spline basis adopted here.

• Regularizing Flow

In general, it is difficult to characterize the solution to a nonlinear registration problem. To study
how the regularization energy would bias the registration results, we first examine its effect on a given
flow. In particular, we are interested in checking whether itcould prevent collision/folding and vacuum
creation, yet preserve sliding (shear) discontinuities. Since the proposed penalty can be regarded as a
combination ofL2 andL1 regularization on the divergence and curl component respectively, we also
compare with the results of Horn and Schunk (3.27) and total variation (3.28) regularization.

Fig. 3.11 and Fig. 3.12 test the regularization effects on colliding flow and vacuum generating flow
respectively. Notice thatL1 regularization preserves large divergence, and is vulnerable to such flow;
L2 regularization successfully smooths the flow to prevent both collision and vacuum. The proposed
regularization behaves likeL2 on the divergence, and enjoys similar robustness. Fig. 3.13presents
the results on a pure shear flow. HomogeneousL2 regularization blurs the motion interface and is
inferior to theL1 regularization. The proposed method is effectivelyL1 for curl and preserves big
shears as illustrated. Fig. 3.14 provides an example where collision and sliding coexist. It is clear that
the proposed method successfully alleviates the collisionand preserves the sliding component.

• 2D Sliding Block Registration

In the first registration test, we simulated two blocks sliding against each other over lightly textured
still background. As before, we compare the performance using L1, L2 and the proposed regulariza-
tion. The absence of a quantitative measure of performance has always been an issue in image regis-
tration, and a “fair” choice of parameter needs to be made when several models are to be compared.
Since the weighting parameters in the energy functional control the tradeoff between data fidelity and
regularization, varying their values could lead to very different estimates. Indeed, all models would
coincide in the extreme case when the weight of the regularization is set to be zero, as the result is
driven solely by data matching. In the absence of a rigorous way to choose the optimal parameters,
it is only fair that we compare the models over a range of tradeoff parameter values. Fortunately, we
have access to the ground truth deformation with the simulated data4 One may argue that there are

4Due to background occlusion, there is no deformation that could match the target perfectly.
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original image transformed image original flow

Er,l1 Er,l2 Er,divcurl

Er,l1 Er,l2 Er,divcurl

Figure 3.11: Regularization results for a colliding/folding flow. First row: (left to right) original image,
transformed image, original (unregularized) flow. Second row: resulting flow under different
regularizations. Third row: image transformed according to regularized flows.

infinitely many deformations that would generate the same source and target image pair in Fig. 3.15,
yet the uniform (within each block) sliding is the most common and natural interpretation for physi-
cal motions. We expect this simple simulation to reasonablyrepresent the major features of physical
sliding in medical applications.

Fig. 3.16 quantifies the tradeoff between image similarity and regularization, and their effect on esti-
mating the deformation field. For each method under comparison, we vary the tradeoff parameter, and
plot the error of estimated deformation map v.s. intensity mismatch. The horizontal axis is the sum
of squared difference of intensity values over the computation domain and the vertical axis reports
the discrepancy between the estimated deformation and the ground truth flow, measured by sum of
squared distance of the error vectors. We observe that for a wide range of data fitting error, the pro-
posed method outperforms the other alternative choices in terms of real registration error. This makes
the proposed method appealing. Unlike the oracle ground-truth, the data fitting metric is accessible in
practice, and people often choose registration results (orregularization parameters) based on intensity
error. Since the proposed regularizer corresponds to a better deformation estimate for the same inten-
sity mismatch, it is a better choice given an fixed error budget in data matching. Furthermore, if one
has access to a good parameter choice for all regularizers (or has the luxury of running a few trials and
then somehow rate the results), the proposed regularizer has the best performance among all.
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original image transformed image original flow

Er,l1 Er,l2 Er,divcurl

Er,l1 Er,l2 Er,divcurl

Figure 3.12: Regularization results for a vacuum generating flow. First row: (left to right) original image,
transformed image, original (unregularized) flow. Second row: resulting flow under different
regularizations. Third row: image transformed according to regularized flows.
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original image transformed image original flow

Er,l1 Er,l2 Er,divcurl

Er,l1 Er,l2 Er,divcurl

Figure 3.13: Regularization results for a sliding flow. First row: (left to right) original image, transformed
image, original (unregularized) flow. Second row: resulting flow under different regulariza-
tions. Third row: image transformed according to regularized flows.
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original image transformed image original flow

Er,l1 Er,l2 Er,divcurl

Er,l1 Er,l2 Er,divcurl

Figure 3.14: Regularization results for a flow with simultaneously significant divergence and curl compo-
nents. First row: (left to right) original image, transformed image, original (unregularized) flow.
Second row: resulting flow under different regularizations. Third row: image transformed ac-
cording to regularized flows.

source image target image ground-truth deformation

Figure 3.15: Simulated sliding blocks and the ground truth deformation.



51

1.5 2 2.5 3 3.5 4 4.5 5
4

5

6

7

8

9

10

11

12
x 10

4

SSD of Intensity Discrepancy

E
st

im
at

io
n 

E
rr

or
 o

f D
ef

or
m

at
io

n

 

 

L
1

L
2

Proposed

Figure 3.16: Registration performance comparison: registration error v.s. intensity discrepancy.
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Figure 3.17: Best estimation results (relative to the ground truth deformation) from various regularization
methods. Column-wise (left to right): (X1)L1 regularization; (X2)L2 regularization; (X3)
Proposed regularization. Row-wise (top to bottom): (a#) deformed template; (b#) quiver flow;
(c #) vertical component of the deformation.
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• 2D CT Image Registration

Sliding is widely observed along the boundary of the rib cageand internal organs. In this test, we ob-
tained two breath-hold X-ray CT images of a real oncology patient, scanned at deep inhale (80%vital
capacity) and exhale - a common procedure in radiation treatment planning. As a preliminary study,
we applied the proposed regularization to register the pairof 2D coronal slices shown in Fig. 3.3.2.
As in the sliding block experiment, we compare the proposed method with theL1 andL2 regularized
results. With real clinical data, there is no ground truth, and the tradeoff parameters were chosen
experimentally. For each regularization method, we ran theregistration using several different param-
eter values, and picked the one that achieves a reasonable balance between data fidelity and physical
feasibility via visual examination. Fig. 3.18 shows the “best” registration results of all regularization
methods. With the chosen parameters, all three regularizedregistrations provide comparable intensity
agreement between the deformed template and the target images. This suggests the fairness of later
comparison, as the results can be interpreted as minimization of each regularization energy subject to
the intensity match constraint. The warped grid maps and quiver plots [Fig. 3.18(c#) & (d#)] illus-
trate the advantage of the proposed regularization. In particular, the deformation on both interior and
exterior of the rib cage are fairly smooth, and the motion boundary in between is preserved. Interest-
ingly, the proposed regularization also naturally extracts the motion boundary between the lung and
the mediastinum, which are affected differently by respiration. As breathing mainly induces motion
along superior-inferior direction (vertical in our presentation), we examine that component closely in
Fig. 3.19. Inside the thorax, registration result with the proposed regularization demonstrates good
continuity, which agrees with the physical interaction between the lungs and diaphragms during res-
piration. Motion discontinuities are effectively represented along the rib cage and the surface of the
mediastinum. Fig. 3.20,Fig. 3.21 and Fig. 3.22 illustrate the deformation field overlain on image inten-
sity to reveal the agreement (or disagreement) of the estimated deformations with motion boundaries.
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Figure 3.18: Registration results of CT data with various regularizations. Column-wise (left to right): (X1)
L1 regularization; (X2)L2 regularization; (X3) Proposed regularization. Row-wise (top to
bottom): (a#) deformed source; (b#) intensity difference between deformed source and the
target images; (c #) warp grid representation of deformation; (d#) quiver plot of deformation.
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Figure 3.19: Vertical component of the deformation from CT registration. (a)L1 regularization; (b)L2 reg-
ularization; (c) Proposed regularization.

Figure 3.20: Quiver plot overlain with image intensity forL1 regularized image registration.
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Figure 3.21: Quiver plot overlain with image intensity forL2 regularized image registration.

Figure 3.22: Quiver plot overlain with image intensity for discriminately regularized image registration.
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• 3D CT Image Registration

Unfortunately, the proposed functional seems to be insufficient by itself in regularizing 3D registration.
In the neighborhood of sliding, the unphysical rolling effects are widely observed. It is possible that
this phenomenon is related to the Kelvin-Helmholtz instability for shear flows. Since our algorithm
iteratively updates the deformation flow, it behaves as an physical process that evolves the shear flow.
In this case, the shear surface is subject to the Kelvin-Helmholtz instability and any small perturbation
in the normal direction of the shear surface incurs rolling;in fact, singularities occur in finite time.
Also, this stability is more obvious in higher dimensions, which possibly explains the relative benign
behavior in the 2D cases. As indicated by generalized fluid flow models, introducing material viscosity
and surface tension may help prevent such turbulence. It is also possible that decomposing the overall
deformation into a concatenation of small physical steps may alleviate this rolling artifacts, as smaller
deformation requires relatively fewer iterations to resolve, and to reach a reasonable result before the
singularities form.

Figure 3.23 and Figure 3.24 illustrate the rolling artifacts.

coronal slice of source coronal slice of target

warped grid deformed source

Figure 3.23: Coronal view for 3D discriminate registration. The same slice from source, target and deformed
source volume. Since it is a full 3D registration, the deformed source pulls information in all
(x,y,z) directions and the source slice is shown for reference purpose only.
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coronal slice of source coronal slice of target

warped grid deformed source

Figure 3.24: Sagittal view for 3D discriminate registration. The same slice from source, target and deformed
source volume. Since it is a full 3D registration, the deformed source pulls information in all
(x,y,z) directions and the source slice is shown for reference purpose only.
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3.3.3 Discussions

In Section 3.3.1, we first analyzed the conditions for a general class of regularizers of the form(3.19) in
an axiomatic fashion, in the sense that beginning from the assumed behavior of a regularizer, we derived
the consequence of these assumptions and the correspondingfunctional form. Further noticing the necessity
of distinguishing among different types of singularities,namely, folding/vacuum v.s. shear, with the latter
being the only physically admissible, we designed different regularizers for each component based on the
Helmholtz decomposition. In particular, we have used an isotropicL2 diffusion on the divergence component
to enforce volume compatibility (no folding or gap), and adopted anL1 regularizer on the curl component to
preserve large shear.

In fact, we can substitute a more general regularization functionalφ in place of theL1 norm, and discuss
the conditions onφ so that the regularized energy can preserve sliding, as follows

(3.37) Er,gen(Φ) =
Z

Ω
α‖div Φ‖2 +βφ(‖curl Φ‖)dx.

The influence of the regularizationφ should be such that it penalizes weak curls, corresponding to a smoother

deformation field, but preserves the curl if it is strong. We denoteψ(s)
△
= φ′(s)/s for s∈ (0,∞), and call it

the “influence function” as before.
Mimicking the works in image restoration [3], it is easy to show thatφ needs to satisfy the following

conditions.

1. To suppress small curl values,

φ′(0) = 0, lim
s→0+

φ′(s)
s

= lim
s→0+

φ′′(s) = φ′′(0) > 0.

2. To preserve large shear,

lim
s→+∞

φ′′(s) = lim
s→+∞

φ′(s)
s

= 0 and lim
s→+∞

φ′′(s)
φ′(s)/s

= 0.

There are many functions that satisfy these properties. In this study, we investigated the truncated quadratic
function, which was shown to be the discrete analogue of the Mumford-Shah functional [13]; the abso-
lute value function, which corresponds to regularizing theL1 norm of the curl component; and the Huber
function, which can be regarded as the inf-convolution ofL1 andL2 functionals [14].

Shear preserving regularization for three dimensional registration needs further investigation.



60

3.4 Equivalence Between TwoL2 Div- L1 Curl Regularizations⋆

Section 3.3 considered discontinuity preserving image registration with energy of the form:

(3.38) E(Φ) =

Z

( f −g◦Φ)2dx+λdiv

Z

|div Φ|2dx+λcurl

Z

|curl Φ|dx,

which behaves asL2 regularizer on the divergence component to encourage homogeneous smoothness in
volume change andL1 regularizer on the curl component to preserve large shears.

It is immediate that another form has similar properties:

(3.39) Ẽ(Φ) =
Z

( f −g◦Φ)2dx+λdiv

√

Z

|div Φ|2dx+λcurl

Z

|curl Φ|dx.

One may argue that regularization in (3.39) is one-homogeneous inΦ so that the coefficientsλdiv andλcurl

have the same units. On the other hand, the setup in (3.38) hasnice point-wise structure, and direct opti-
mization is easier. IfE has a unique minimizer, then the equivalence between this two setups are trivally
true; however, the data fidelity term in intensity matching image registration problems is nonconvex, and
uniqueness of the minimizer cannot be established in general.

In what follows, we show an approximate equivalence betweenthese two formulations. The main idea
of the proof is to first transform the regularized optimization problems into the corresponding constrained
version, and then establish equivalence in the constrainedsetup.

For simplicity, we use the following formulation for energy

Eλ(Φ) =
(

Z

( f −g◦Φ)2dx+α
Z

|curl Φ|dx
)

+λ
Z

|div Φ|2dx

= (| f −g◦Φ|22 +α|curl Φ|1)+λ|div Φ|22.(3.40)

The equivalence between (3.40) and (3.38) is easily shown byidentifying λ = λdiv andα = 1/λcurl .

Given f , g and for a fixedα, we denoteA(Φ)
△
= | f −g◦Φ|22 + α|curl Φ|1 andB(Φ)

△
= |div Φ|22, so that

Eλ(Φ) = A(Φ) + λB(Φ). SinceE is not convex in general, there may exist multiple minimizers, and we
denote the set of minimizers ofEλ as:

Cλ = {Φ : E(Φ)≤ E(Ψ), ∀Ψ ∈ Γ},

and the corresponding energy value asE∗λ = minEλ(Ψ).

Claim III.4. For λ1 < λ2. If C1∩C2 = /0, then B(Φ1) > B(Φ2) for Φ1 ∈Cλ1
andΦ2 ∈Cλ2

.

Proof. Assume not. TakeΦ1 ∈Cλ1
andΦ2 ∈Cλ2

such thatB(Φ1)≤ B(Φ2)., then

Eλ2
(Φ1) = A(Φ1)+λ2B(Φ1)

= A(Φ1)+λ1B(Φ1)+(λ2−λ1)B(Φ1)

= E∗λ1
+(λ2−λ1)B(Φ1)

< Eλ1
(Φ2)+(λ2−λ1)B(Φ2)

= Eλ2
(Φ2).

(3.41)

The third line follows from the fact thatΦ1 ∈Cλ1
; the fourth line from the assumption thatΦ2 /∈Cλ1

and
B(Φ1)≤ B(Φ2). This contradicts the assumption thatΦ2 minimizesEλ2

.
In fact, as long as we assumeΦ1,Φ2 do not simultaneously belong toCλ1

∩Cλ2
, the contradiction would

hold.
We now argue that forλ1 6= λ2, it is highly probable thatCλ1

∩Cλ2
= /0. The minimizer(s) for the energy

Eλ(Φ) = A(Φ)+λB(Φ) need to satisfy the Euler-Lagrange equation

dA(Φ)+λdB(Φ) = 0.
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If Φ⋆ simultaneously minimizesEλ1
andEλ2

, i.e., Φ ∈Cλ1
∩Cλ2

, then it must be true thatdB(Φ⋆) = 0. It
immediately follows thatdA(Φ⋆) = 0 as well, so thatΦ⋆ satisfies the Euler-Lagrange equation for allλ and
that it is the minimizer for allEλ. In particular, it is a minimizer for

Eλ=0(Φ) = A(Φ).

Meanwhile,dB(Φ⋆) = 0 implies divΦ = 0 andB(Φ) = 0. This means thatΦ⋆ is a divergence free
minimizer of the energy| f −g◦Φ|22 + α|curl Φ|1 (which does not penalize divergence at all!). This result
also holds the other way around: if there exist a divergence-free elementΦ in C0, thenΦ ∈ Cλ ∀λ. The
contrapositive of the original statement says that ifC0 has no divergence-free elements,Cλ1

∩Cλ2
= /0 ∀λ1 6=

λ2.
Now we are ready to state it as a theorem.

Theorem III.5. If Φ0 is a divergence free minimizer of E0 = | f −g◦Φ|22+α|curl Φ|1, then it also minimizes
Eλ ∀λ, and E∗λ = E∗0 = A(Φ0). If there is no such element, then Cλ1

∩Cλ2
= /0 for anyλ1 6= λ2. Moreover, for

λ1 < λ2 and anyΦ1 ∈Cλ1
, Φ2 ∈Cλ2

, B(Φ1) > B(Φ2).

Recall the definitions of outer normals in [28], which is closely related to sub-differential in functional
minimization.

Definition III.6. Given p,v∈ℜN, let H(p,v) denote the closed half space

H(p,v) = {x∈ℜN : (x− p) ·v≤ 0}.
Given a convex domainΩ⊂ℜN and a pointp∈ ∂Ω, the collection of outer normals toΩ at p is defined as:

NΩ(p) = {v∈ℜN : Ω⊂ H(p,v)}.
Consider the 2-dimensional plane(A(Φ),B(Φ)), then for givenλ, Eλ = A(Φ)+λB(Φ) is constant along

lines of slope− 1
λ . Assume the setΩ △

= {(A(Φ),B(Φ))},Φ ∈ Γ to be convex inℜ2 (if not, we shall consider
its convex hull for now), then we have the following lemma.

Lemma III.7. p∈ ∂Ω is a minimizer of Eλ if and only if−(1,λ) ∈ NΩ(p).

This is a direct application of the Karush-Kuhn-Tucker (KKT) condition: the gradient of theEλ is (1,λ).
To require that∇Eλ to “point away” from the feasible set is equivalent to the condition we stated with the
definition of outer normals.

Furthermore, note that if∂Ω is differentiable atp, thenNΩ(p) contains a single direction, so this is
equivalent to the traditional requirement of−∇ f = −∇g whereΩ = {x : g(x) ≤ 0}. If ∂Ω is differentiable
everywhere, then anyp = (a,b) ∈ ∂Ω minimizesa+λb for at most oneλ.

Ω

(aλ1
,bλ1

)

(aλ2
,bλ2

)

Ω

(−1,−λ)

(ah(λ),bh(λ))

(al (λ),bl (λ))

Ω

NΩ(p)

case 1 case 2 case 3

Figure 3.25: Illustration for the three cases of feasible region: strictly convex and everywhere differentiable,
nonstrictly convex and everywhere differentiable, nondifferentiable.

• Case 1.If Ω is strictly convex5, then the minimizer ofEλ for eachλ corresponds to exactly one point
p(λ) = (a(λ),b(λ)) on ∂Ω, andb(λ) is strictly monotonically decreasing as a function ofλ.

5
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bl (λ) bh(λ)

(a) behavior of solution to unconstrained formulation (b) corresponding constraint

Figure 3.26: Equivalence between unconstrained and constrained formulation: Eachλ in the unconstrained
formulation maps to a constrained optimization problem minA(Φ) over a circle (or ring).

• Case 2.If ∂Ω is everywhere differentiable, butΩ is NOT strictly convex. In particular, if∂Ω contains
line segments ofa+ λb = cλ for λ ∈ Σ, then the minimizer ofEλ for eachλ /∈ Σ corresponds to
exactly one pointp(λ) = (a(λ),b(λ)) on ∂Ω; the minimizer ofEλ for eachλ ∈ Σ corresponds to a
line segment on∂Ω, and the corresponding second coordinatesb(λ) form a continuum onℜ. In other
words,b(λ) (now a multiple valued function) has the property that ifλ1 < λ2, thenb(λ1) > b(λ2); and
if b1,b2 ∈ b(λ), thenb∈ b(λ) for anyb1≤ b≤ b2.

• Case 3.If there existsp where∂Ω is nondifferentiable, and suppose that there existsλ1,λ2 ∈ℜ+ such
that−(1,λ1),−(1,λ2) ∈ NΩ(p), then p = (a,b) simultaneously minimizesEλ1

andEλ2
. Combine

with our previous argument with the specific definition ofEλ, it must be true thatp minimizes all
Eλ. In other words,Ω ∈ H(p,v) for v = −(cosθ,sinθ) for θ ∈ [0,π/2] (since we are only interested
in λ ∈ [0,∞]). This corresponds to the situation where a divergence-freeregistration arises as the
minimizer to| f −g◦Φ|22+α|curl Φ|1, which is highly unlikely in practice, we omit discussions about
this case to avoid too much technicality.

In summary, ifΩ is convex, then6, B(Φ) is either a constant or a continuum forΦ ∈Cλ for each fixedλ.
When∂Ω is differentiable,b(λ) is a strict monotone (potentially multi-valued) function of λ. For better

presentation, we definebl (λ) and bh(λ) as the lower and upper bounds of{b : a(λ) + λb(λ) = mina+
λb,(a,b) ∈Ω}. Therefore, ifΦ ∈Cλ, thenB(Φ) ∈ [bl (λ),bh(λ)] and we have the following equivalence:

Theorem III.9. Φ minimizes Eλ = A(Φ)+λB(Φ) if and only if it solves

minA(Φ)
s.t.B(Φ)=b, for someb∈[bl (λ),bh(λ)]

.

Proof. Quite straight-forward from previous argument.
If Φ is a minimizer forEλ, then takeb = B(Φ), and it must be a minimizer for

minA(Φ)
s.t.B(Φ)=b

.

On the other hand, ifΦ minimizes
minA(Φ)
s.t.B(Φ)=b

,

find theλ such thatb∈ [bl (λ),bh(λ)], andΦ minimizesEλ.

Definition III.8. A set of pointsS in N-dimensional space is strictly convex if for every two pointsx1 andx2 belonging toSsuch that
x1 6= x2, the straight line segment joining the two points belongs toSbut does not belong to the boundary ofS(i.e. all the points on the
interior of the straight line must be strictly in the interiorof S): that is, a setS is strictly convex if and only if for everyx1, x2 ∈ S, and
scalarν such that 0< ν < 1 we haveνx1 +(1−ν)x2 ∈ the interior ofS.

6With the exception of the rare case whereA(Φ) has a divergence-free minimizer
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Sincebl (λ),bh(λ) are positive quantities, the constrained setup can be rewritten as:

minA(Φ)
s.t.
√

B(Φ)=b, for someb∈[
√

bl (λ),
√

bh(λ)]

.

Replicating all previous argument, we can show that this canbe mapped to the unconstrained formulation

minẼγ = A(Φ)+ γ
√

B(Φ) = (| f −g◦Φ|22 +α|curl Φ|1)+ γ|div Φ|2

for someγ.
WhenΩ is not convex, its convex hull will contain one or more line segments, corresponding to case

2. The optimum will be achieved at the end points of such line segments, which is the intersection between
the originalΩ and its convex hull. This will affect the results in that for someλ, b(λ) may be the union
of continuum (or possibly continua) and single value(s). For the constrained formulation, this corresponds
to not solving the optimization if the constraintb takes on values in the complement of∪λb(λ). In that
scenario, the minimizer(a,b) lies in the interior of the convex hall ofΩ, and does not corresponds to the
minimizer of unconstrained problema+λb. This is O.K., as we are interested in showing the equivalence of
the unconstrained formulations finally, and the missing portions of the constrained space does not contribute
to the optimal solutions.



CHAPTER IV

Fundamental Performance Analysis in Image Registration Problems:
Cramér-Rao Bound and its Variations

Image registration, as a special form of signal warping, is an important task in image processing. In
contrast to the rapid development of algorithmic study in image registration, a standard performance evalu-
ation tool is in general absent, except [95] where the transformation is assumed to be a global translation. It
is important to investigate fundamental performance criteria in a principled manner to compare the overall
optimality of different estimators for nonrigid registration problems. This chapter presents an observation
model for image registration that accounts for image noise more realistically than most formulations, and
describes performance analysis based on Cramér-Rao Bound(CRB) and its related variant Modified Cramér-
Rao Bound(MCRB). We interpret the result of the commonly used optimization based registration as the
M-estimate of the objective function and derive its bias-variance behavior.

4.1 Model - the Ideal v.s. Commonly Used

Generally, image registration methods aim to find the motionin an image sequence{zi}, wherezi denotes
the ith observation (frame) of an underlying image. In reality, only sampled observations are available, with
spatial sample spacing∆. Therefore, it is natural to use a discrete spatial index to refer to the sampled
location. Without loss of generality, we takezi [n] = zc

i (n∆) wherezc notates the underlying continuous
intensity map. Accounting for additive observation noise,we formulate the generative model as:

(4.1) zi [n] = f (n+ τi(n))+ εi [n],

where it is standard to assumeεi to be independent identically distributed (i.i.d) Gaussian noise. In principle,
the task of registering the observation sequence is to find the deformation sequence of continuous maps{τi}
for all i. We adopt the parametric setting, and represent the underlying continuous image intensity as a linear
combination of a finite number of basis functionsb with coefficientsc = {ck}, i.e., f (x) = ∑K

k=1ckb(x,k).
For simplicity, we focus on pairwise registration which requires estimating one deformation fieldτ, and drop
the subindex inτi . Furthermore, we assume the deformation field is properly (sufficiently) parametrized with
α, so the estimation performance for deformation and image intensity may be characterized by that of the
parameter set(c,α). For simplicity, we formulate our problem in one dimension,but the analysis generalizes
to higher dimensions. The two observed images are modeled as:

z1[n] =
K

∑
k=1

ckb(n,k)+ ε1[n],

z2[n] =
K

∑
k=1

ckb(n+ τα(n),k)+ ε2[n] n = 1,2, . . . ,N,(4.2)

where{b(·,k)} are common intensity bases, andτ parametrized byα captures the pointwise deformation.
The components of additive noiseεi are zero mean I.I.D Gaussian with varianceσ2.

64
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The formulation in (4.2) captures the spatial sampling of the observation, the finite representation of the
underlying “true” intensity{ck}Kk=1 and the dense pointwise deformationτ.

For comparison purposes, we formulate the estimator in traditional registration setup as the optimal
transformation̂Γ such that1

(4.3) Γ̂ = argmin
Γ

D(z2,z1◦Γ),

whereD is some difference measure,e.g., sum-of-squared-difference (SSD) or mutual information (MI), and
Γ indicates the transformation. In this setting, it is implicitly assumed thatz1 (also known as the “source“)
is a noise-free version of the true intensity imagef , andz2 (also called the “target ”) is a deformed image
whose noise properties determines the proper choice of the difference metric. Clearly there is a lack of
symmetry regarding the presence of noise in this formulation.

For simplicity, we use sum-of-squared-difference (SSD) asour default choice of the error metricD for
(4.3) hereafter, corresponding to the Gaussian noise assumption, as adopted in many practical cases.

4.2 Cramér-Rao Bound and its Asymptotic Behavior

We first reformulate (4.2) in a compact vector form as follows.

(4.4) z =

[

z1

z2

]

=

[

A0

Aτ

]

c+

[

ε1

ε2

]

= Aτc+ǫ,

wherez
△
= [z1(1), . . . ,z1(N),z2(1), . . . ,z2(N)]T ∈ ℜ2N andc

△
= [c1, . . . ,cK ]T ∈ ℜK

≥0 are column vectors by
stacking the corresponding elements. The concatenated random noise vectorǫ∼N (0,Σ = σ2I2N). A0,Aτ ∈
MN×K have elementsA0(i, j) = b(i, j) andAτ(i, j) = b(i + τ(i), j) for i = 1,2, . . . ,N, j = 1,2, . . . ,K. The
overall system matrixA = [AT

0 ,AT
τ ]T . The Craḿer-Rao Bound(CRB) is a fundamental lower bound on

the variance of any unbiased estimator [123] and serves as a benchmark for estimator performance. When
maximum-likelihood (ML) estimators are applied, which areknown to be asymptotically unbiased, it is often
useful to bound their variance with CRB. In [45], it is suggested that when inverting the Fisher information
matrix (FIM) corresponding to the parameter of interest only is not straight-forward, it is feasible to use
“complete-parameter” Fisher information matrices. Following a similar logic, we can write (4.4) in a more
general form,

z = h(τα,c)+ǫ

= h(θ)+ǫ,(4.5)

whereh(τα,c)
△
= Ac andθ = [α,c] denotes the “complete-parameter” vector. It follows immediately from

the i.i.d Gaussian assumption of noiseǫ that the ML estimator̂θML minimizes theL2 distance between
observationz and system responseh(θ) as follows:

θ̂ML = argmin
θ
‖z−h(θ)‖2 .

Before we delve into the detailed computation, we clarify our goal and the structure of FIM here. We
are ultimately interested in the performance of estimatorsfor the deformation parameterα, and the image
intensity parameterc is chosen to augment the data to simplify expression. Withθ ∈ ℜN+K , the FIM
corresponding toθ takes on the form:

F(θ∗) = Ez|θ=θ∗

{

− ∂2

∂θ2 Λ(z|θ)|θ=θ∗

}

,

1There is a slight abuse of notation here. The more precise formulation would be: Γ̂ = argminΓ D(z2,P(zc
1 ◦Γ)), wherezc

1 the
underlying intensity map that agrees withz1 on sampling grids, andP is the sampling function such thatP(zc)(n) = zc(n∆). Even so,
the cost function is still incomplete, as onlyz1 is observed and the interpolatorI : z1→ zc

1 needs to be specified. The de facto objective
function is thusD(z2,P(I(z1)◦Γ)).



66

whereΛ is the log-likelihood functionΛ(z|θ)
△
= log f (z|θ).

Moreover, if we defineJx,y = E
{

[ ∂
∂xΛ(z)]T [ ∂

∂yΛ(z)]
}

, then the complete-data FIM can be decomposed

into block form as:

(4.6) Fθ =

[

Jα,α Jα,c

Jc,α Jc,c

]

.

The sub-blockJτ,τ is the FIM with respect to the quantity of interest - the deformation parameters. As
CRB is the inverse of the FIM, we can invoke the formula for partitioned-matrix inverse [39] to obtain:

CRB(α) = [Jα,α−Jα,cJ−1
c,cJc,α]−1

CRB(c) = [Jc,c−Jc,αJ−1
α,αJα,c]

−1.(4.7)

This form can be further simplified using its symmetry - a factthat we will utilize later in our computation.
The likelihood function with respect toθ is :

f (z;θ) =
1

(2π)2N/2|Σ|1/2
exp

(

−1
2
eTΣ−1e

)

,

wheree = z−h(θ) = z−A(τα)c.
The log-likelihood turns out to be:

Λ = log f (z;θ)

= −N log(2π)−2N logσ− 1
2σ2 ‖z−A(τα)c‖2 .(4.8)

Now we compute each term of the FIM.

∇τΛ = − 1
2σ2 ∇τ ‖z−A(τα)c‖2

=
1

σ2 (z−A(τα)c)T∇τ(A(τα)c)(4.9)

Notice that

∂
∂τ(l)

{Aτ[n, :]c} =
∂

∂τ(l)

K

∑
k=1

c(k)Aτ(n,k)

=
∂

∂τ(l)

K

∑
k=1

c(k)b(n+ τ(n),k)

=

{

∑K
k=1c(k)ḃ(n+ τ(n),k), l = n;

0 else,
(4.10)

whereḃ(·, ·) denotes the derivative ofb(·, ·) with respect to the first variable.
Plugging (4.10) into (4.9), we obtain

(4.11)
∂

∂τ(l)
Λ =

1
σ2 (z2(l)−Aτ[l , :]c)

K

∑
k=1

ḃ(l + τ(l),k)c(k).

Therefore, the gradient ofΛ with respect toτ is:

(4.12)
∂
∂τ

Λ =
1

σ2 [(z2−Aτc)⊙ (Dc)]T =
1

σ2 [diag{Dc}(z2−Aτ(c))]T ,

whereD is the matrix whose elements areD(i, j) = ḃ(i +τ(i), j),1≤ i ≤N,1≤ j ≤ K, and “⊙” denotes the
Schur/Hadamard product.
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By chain rule, the gradient ofΛ with respect toα is given by:

∇αΛ =
∂
∂τ

Λ
∂

∂α
τ

=
1

σ2 [(z2−Aτc)⊙ (Dc)]T [
∂

∂α
τ],(4.13)

where ∂
∂α τ ∈MN×L is the derivative matrix with element[ ∂

∂α τ](i, j) = ∂
∂α( j)τ(i), andL corresponds to the

length of the deformation parameterα.
Now we compute the FIMJα,α with

E

{

∂2

∂α2 Λ
}

= −E

{

[
∂

∂α
Λ]T [

∂
∂α

Λ]

}

= − dτ
dα

T

E

{

[
∂
∂τ

Λ]T [
∂
∂τ

Λ]

}

dτ
dα

(4.14)

= − 1
σ2

dτ
dα

T

E

{

diag{Dc}(z2−Aτc)[
1

σ2 (z2−Aτc)T diag{Dc}]T
}

dτ
dα

= − 1
σ2

dτ
dα

T

diag2{Dc} dτ
dα

(4.15)

To calculateJc,τ andJc,c, we take the derivative ofΛ with respect toc:

∂
∂c

Λ = − 1
2σ2

∂
∂c
||z−Ac||2

=
1

σ2 (z−Ac)TA .(4.16)

It is now straight forward to compute the entries for the complete FIM:

(4.17) E

{

∂2

∂c∂c
Λ
}

=− 1
σ2A

TA

E

{

∂2

∂τ(l)∂c(m)
Λ
}

=
1

σ2 E{−Aτ[l ,m]D[l , :]c+ ε2(l)D[l ,m]}

= − 1
σ2 Aτ[l ,m]D[l , :]c.(4.18)

The matrixJα,c can be represented in compact form as:

(4.19) E

{

∂2

∂α∂c
Λ
}

=− 1
σ2

dτ
dα

T

diag{Dc}Aτ.

With symmetry, the complete FIM is obtained:

(4.20) Fθ =
1

σ2

[

dτ
dα

T
diag2{Dc} dτ

dα
dτ
dα

T
diag{Dc}Aτ

AT
τ diag{Dc} dτ

dα ATA

]

.

As a special case, whenτ is parametrized with rect functions,i.e., τ(n) = α[n], we havedτ
dα = I . The FIM

for (τ,c) is then given by:

(4.21) F(τ,c) =
1

σ2

[

diag2{Dc} diag{Dc}Aτ
AT

τ diag{Dc} ATA

]

.

At this point, we make the following observations:
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1. With the commonly used model (4.3), it is assumed that the observed source imagez1 corresponds
to the ground truthc. In other words, most existing methods solve for the ML estimator τ with the
generative model:

(4.22) z2 =
K

∑
k=1

ckb(n+ τ(n),k)+ ε2(n),

by plugging in theck’s that best fitsz1. It is easy to derive the CRB for the log-likelihood function
Λcom(z2;τ) =−N/2log(2π)−N logσ− 1

2σ2 ||z2−Aτc||2. The FIM matrixFcom
τ = Jτ,τ as we derived

in (4.15). Therefore, CRBcom(τ) = J−1
τ,τ . Notice that asJτ,cJ−1

c,cJc,τ ≥ 0 2 , CRBcom(τ)≤ CRB(τ) as
extra information (known{ck}) is assumed in the case of (4.22). In other words, the plug-inoperation
provides a “looser” bound for the variance than the “true” CRB corresponding to model (4.2).

2. For asymptotically large SNR,i.e., σ2→ 0, we do expect a decent estimate ofc directly from the
source image, assuming no model mismatch in the generative basis. In this case, the plug-in estimator
as used in the traditional model, even though not a true ML estimator, is expected to perform similarly
to the real ML estimator. Indeed, [76] shows that the “fake” bound approximates the true CRB3.

3. The above points may be interpreted better with a slight modification of the model in (4.2). Instead of
i.i.d noise, we may assume that noise level in the two images are not symmetric, more specifically, we
assumeε1∼N (0,σ2

1IN) andε2∼N (0,σ2
2IN).

The log-likelihood is given by:

(4.23) Λ =− 1

2σ2
1

‖z1−A0c‖2−
1

2σ2
2

‖z2−Aτc‖2 +some constant.

The partial derivatives of the log-likelihood with respectto τ ( thusα) is not affected by target image
model, and the second-order derivative the log-likelihoodwith respect toc is given by:

E

{

∂2

∂c∂c
Λ
}

=− 1

σ2
1

AT
0 A0−

1

σ2
2

AT
τ Aτ.

We thus obtain the complete FIM with respect to(τ,c) as:

(4.24) F(τ,c) =

[ 1
σ2

2
diag2{Dc} 1

σ2
2
diag{Dc}Aτ

1
σ2

2
AT

τ diag{Dc} 1
σ2

1
AT

0 A0 + 1
σ2

2
AT

τ Aτ.

]

.

Whenσ1→ 0, corresponding to high SNR in the template image, thenJc,c→ ∞ and

CRB(τ) = [Jτ,τ−Jτ,cJ−1
c,cJc,τ]

−1→ J−1
τ,τ ,

which reduces to the CRBcom.

4. To compute CRB(τ) exactly could be challenging, asATA may not be easy to invert for arbitrary
τ. Notice that the sub-matrixA0 of A has nice shift-invariant structure, yetAτ depends on the defor-
mation. In special cases, such as when the whole image (signal) experience uniform transformation
τ(i) = constfor i = 1,2, . . . ,N, thenJc,c is block-shift-invariant, and efficient inversion is possible.

5. As a special case, we consider when the whole image experiences uniform transformation, where a
natural parametrization is to useα to describe the global transformation,i.e., τα(i) = α for ∀i.

2In most cases, we assumeJτ,cJ−1
c,cJc,τ to be nonsingular, so it is in fact positive definite.

3In particular, the parameter of interestτ is decoupled from the nuisance parameterc in this case, and the asymptotic behavior of
the bound can be shown with ease.
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Under the uniform transformation assumption, we have

dτ
dα

= 1,

where1 indicates a column vector (of lengthN in our case) with all unity elements.

Substituting this relation into (4.15), (4.19) respectively and we obtain:

Fθ =
1

σ2

[

1
T diag2{Dc}1 1

T diag{Dc}Aτ
AT

τ diag{Dc}1 ATA

]

=
1

σ2

[

cTDDTc [Dc]TAτ
AT

τ [Dc] ATA

]

.(4.25)

4.3 Relating to MCRB

The modified Craḿer-Rao Bound(MCRB) was first introduced [22] to resolve the synchronization issues
in decoding systems. Rather than seeking the variance around the estimator for the “true” augmented data
(“complete data”) which includes both the quantity of interest and the nuisance parametersc, MCRB choose
to look on the other parameters as “unwanted”. Instead of using the true CRB, the MCRB may be regarded
as an approximation via “marginalizing” over the nuisance parameters. In fact, MCRB is always lower than
CRB, thus a looser bound. In some cases, MCRB approaches the true CRB [76].

The central idea is the following. Instead of computing the true FIM

F = Ez

{

[
∂
∂τ

log f (z;τ)]2
}

,

it uses

(4.26) Ez,c

{

[
∂
∂τ

log f (z;τ,c)]2
}

.

The rationale for MCRB is the following:

Ez,c
{

[τ̂(z)− τ]2
}

= Ec

{

Ez|c[(τ̂(z)− τ)2]
}

≥ Ec

{

1

Ez|c[(
∂
∂τ log f (z;τ,c))2]

}

≥ 1

Ec

{

Ez|c[(
∂
∂τ log f (z;τ,c))2]

}

=
1

Ez,c

{

[ ∂
∂τ log f (z;τ,c)]2

} .(4.27)

The first inequality comes from the application of CRB to the estimator τ̂(z) for a fixedc and second is
Jensen’s inequality.

4.4 An Alternating Minimization Algorithm

For registration purposes, we want to minimize the negativelog-likelihood in (4.23). We adopt the
frequentist perspective and consider the the underlying image intensityf (and thusc) as fixed unknown. It
is natural to ask for the solution of the augmented problem:

(τ̂, ĉ) = argmin
τ,c
−Λ.

We describe an alternating minimization algorithm to solvethis problem as follows.
We make the following remarks:
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Algorithm 1 Alternating minimization of the nagetive log-likelihood in (4.23).
1: Initialize ĉ

2: repeat
3: For givenc = ĉ, minimize ‖z2−Aτc‖2 over τ. This step coincides with conventional registration

methods by assumingc known. Obtain̂τ.
4: For givenτ = τ̂, minimize 1

2σ2
1
‖z1−A0c‖22+ 1

2σ2
2
‖z2−Aτc‖22. This is a typical quadratic minimization

problem, and the solution is given by:

(4.28) ĉ =
[ 1

σ2
1

AT
0 A0 +

1

σ2
2

AT
τ Aτ
]†( 1

σ2
1

AT
0 z1 +

1

σ2
2

AT
τ z2
)

,

where(·)† indicates the pseudo-inverse operator for the Gram matrix.
5: until Some convergence condition is satisfied.

• As σ1→ 0, the contribution ofA0 andz1 dominates (4.28), and the solution reduces to

(4.29) ĉ =
[

AT
0 A0

]†
AT

0 z1,

which corresponds to the conventional method wherez1 is considered to be a highly reliable “tem-
plate” and the image intensity is solely obtained by fittingz1.

• More generally, alternating descent may be used instead of requiring the achieving minimizer at each
iteration. This could be particularly beneficial for the step in updatingτ conditioned on ˆc, as the
quadratic form in the other step makes the minimization overc trivial. Relaxing conditional maxi-
mization to increment in log-likelihood may has potential computational advantage as well as better
behavior to local maxima.

• As σ1→ 0, the alternating descent algorithm reduces to exactly anyconventional descent algorithm
in solving (4.3) withl2 difference metric. In the asymptotic case, the conditionalminimization ofc
given by (4.29) is independent ofτ and the whole alternating descent algorithm reduces to using the
plug-in estimator (4.29) and descend−Λ with respect toτ.

4.5 Comparison with Conventional Methods: CRB v.s. M-estimate

As we have commented briefly in the previous sections, the conventional method estimate the intensity
f from the source imagez1 only. With l2 difference metric, we can write the solution to the conventional
method as:

ĉ = argmin
c
‖z1−A0c‖22 ;

τ̂ = argmin
τ
‖z2−Aτĉ‖22 ,(4.30)

wherez1, z2 are discrete observations for the source and target image invector form,A0 andAτ are defined
as in (4.4).

The first equation in (4.30) can be solved in closed form givenits quadratic form:

ĉ = A†
0z1,

and we can rewrite (4.30) as:

(4.31) τ̂ = argmin
τ

∥

∥

∥
z2−AτA

†
0z1

∥

∥

∥

2

2
.

We can also stack the expression as before, and defineA
△
= [−AτA

†
0 I ] and write the objective as:

(4.32) τ̂ = argmin
τ

Φ(τ,z) = ‖A (τ)z‖22 .
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In the following derivations, we will choose the most convenient form and use the above equivalent expres-
sions interchangeably.

Our goal is to derive the covariance of the minimizer defined above and we use similar philosophy as
in [30]. By implicit function theorem, the partial derivative of Φ with respect toτ are uniformly zero:

(4.33)
∂

∂τ(i)
Φ(τ,z)|τ=τ̂ = 0, ∀ spatial locationi,

for any given dataz.
Differentiating (4.33) again with respect tozand applying the chain rule yields:

(4.34) ∇20Φ(τ̂(z),z))∇zτ̂(z)+∇11Φ(τ̂(z),z) = 0.

Where, the components of∇20Φ(τ̂(z),z) are ∂2

∂τ(i)∂τ( j)Φ(τ̂(z),z), and the elements of∇11 are ∂2

∂τ(i)∂z( j)Φ(τ̂(z),z).
We consider the case when∇20Φ(τ̂(z),z) is invertible, or more precisely positive definite. This is equivalent
to requireΦ(τ̂(z),z) to belocally strictly convex. This assumption is true if the following regularity condi-
tion is satisfied:there∃ a compact neighborhoodN(τ̂) such thatΦ(τ,z) > Φ(τ̂(z),z) for all τ 6= τ̂ . Then we
have:

∇Yτ̂(z) = [−∇20Φ(τ̂,z)]−1∇11Φ(τ,z),

and the covariance matrix forτ̂ would beCov{z} transformed by local linearization [91],i.e.,

Cov{τ̂} ≈ ∇zτ̂(z)Cov{z}[∇zτ̂(z)]′.

By substitution, we obtain

(4.35) Cov{τ̂} ≈ [∇20Φ(τ̂,z)]−1∇11Φ(τ̂,z)Cov{z}[∇11Φ(τ̂,z)]′[∇20Φ(τ̂,z)]−1.

We assume the covariance ofz to be:

(4.36) Cov{z}=

[

σ2
1IN 0
0 σ2

2IN

]

,

so it remains to derive the expressions for∇20Φ(τ̂,z) and∇11Φ(τ̂,z).
We first adopt the objective function form in (4.31) to take derivative with respect toτ(l).

(4.37)
∂

∂τ(l)
Φ(τ,z) =

N

∑
n=1

(Aτ[n, :]A†
0z1−z2(n))

∂2

∂τ(l)2{Aτ(n)A†
0z1}.

Similar to (4.10),

∂
∂τ(l)

{

Aτ[n, :]A†
0z1

}

=
∂

∂τ(l)

K

∑
k=1

(A†
0z1)(k)Aτ(n,k)

=
∂

∂τ(l)

K

∑
k=1

(A†
0z1)(k)b(n+ τ(n),k)

=

{

∑K
k=1(A

†
0z1)(k)ḃ(n+ τ(n),k), l = n;

0 else,
(4.38)

whereḃ(·, ·) denote the derivative ofb(·, ·) with respect to the first variable.
Plugging (4.38) into the expression in (4.37) yields:

(4.39)
∂

∂τ(l)
Φ(τ,z) = (Aτ[l , :]A

†
0z1−z2(l))

K

∑
k=1

(A†
0z1)(k)ḃ(l + τ(l),k).
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To obtain∇20Φ, we take derivative with respect toτ(n). Noticing that ∂
∂τ(l)Φ depends onτ only viaτ(l),

we obtain:

∂2

∂τ(l)∂τ(n)
Φ(τ,z) =







{

∑K
k=1(A

†
0z1)(k)ḃ(l + τ(l),k)

}2
+ · · ·

+(Aτ[l , :]A
†
0z1−z2(l))∑K

k=1(A
†
0z1)(k)b̈(l + τ(l),k), l = n;

0 else.

whereb̈(·, ·) denotes the second-order partial derivative with respect to the first argument inb(·, ·).
To compute∇11Φ(τ̂,z), we need to take derivative of (4.39) with respect to each element of z. We

perform this by differentiating with respect to the elements inz1 andz2 respectively.
Noting that ∂

∂z1(n) [A
†
0z1](k) = A†

0[k,n], we obtain:

∂2

∂τ(l)∂z1(n)
Φ(τ,z) = Aτ[l , :]A

†
0[:,n]

K

∑
k=1

(A†
0z1)(k)ḃ(l + τ(l),k)+ · · ·

+(Aτ[l , :]A
†
0z1−z2(l))

K

∑
k=1

A†
0[k,n]ḃ(l + τ(l),k).(4.40)

∂2

∂τ(l)∂z2(n)
Φ(τ,z) =

{

−∑K
k=1(A

†
0z1)(k)ḃ(l + τ(l),k), l = n;

0 else.

We assume that at the point of evaluation(τ̌, z̄), the samples of the warpedzc
1 approximates the observa-

tion z2, more specifically:
AτA

†
0z̄1≈ z̄2.

This is a reasonable assumption for most registration results. For simplicity, we denote ¯c
△
= A†

0z̄1, Ď(i, j)
△
=

ḃ(i + τ̌(i), j), and the warping mapW
△
= Aτ̌A

†
0, then we can rewrite in matrix form:

∇20Φ(τ̌, z̄) = diag2{Ďc̄
}

∇11Φ(τ̌, z̄) =
[

diag
{

Ďc̄
}

W −diag
{

Ďc̄
} ]

.(4.41)

Plugging (4.41) and (4.36) into the expression forCov{τ̂} in (4.35), we obtain:

(4.42) Cov{τ̂}|τ̂=τ̌ ≈ diag
{

Ďc̄
}−1

[σ2
1WW

T +σ2
2I ]diag

{

Ďc̄
}−1

.

Remark: asσ2
1→ 0, z1 approaches the noise-free observation of the source imagef , and the conven-

tional method should yield the same estimate as the more realistic model. In fact,

Covσ1→0{τ̂}= σ2
2diag2{Ďc̄

}

,

which agrees with our previous analysis in (4.24) thatCRB(τ)→ J−1
τ,τ asz1 becomes asymptotically noise-

free.
It makes sense to compare the covariance prediction for the M-estimate of the conventional method and

the Craḿer-Rao Boundobtained from the more realistic model from (4.2). For simplicity, we assume thatA0

to be invertible so thatA−1
0 = A†

0 and consequently the warping mapW = AτA
−1
0 to be invertible.

To studyCRB(τ), we plug inJτ,c,Jc,c from (4.24) and obtain:

CRB(τ) = [Jτ,τ−Jτ,cJ−1
c,cJc,τ]

−1

=
{ 1

σ2
2

diag2{Dc}− 1

σ2
2

diag{Dc}Aτ[
1

σ2
1

AT
0 A0 +

1

σ2
2

AT
τ Aτ]

−1 1

σ2
2

AT
τ diag{Dc}

}−1

= σ2
2diag{Dc}−1{I − 1

σ2
2

Aτ[
1

σ2
1

AT
0 A0 +

1

σ2
2

AT
τ Aτ]

−1AT
τ
}−1

diag{Dc}−1 .(4.43)

With Aτ =WA0, we can write:

1

σ2
1

AT
0 A0 +

1

σ2
2

AT
τ Aτ =

1

σ2
1

AT
0 A0 +

1

σ2
2

AT
0W

TWA0.
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The middle part of (4.43) can be rewritten as:

{

I − 1

σ2
2

Aτ[
1

σ2
1

AT
0 A0 +

1

σ2
2

AT
τ Aτ]

−1AT
τ
}−1

=
{

I −σ2
1Aτ[σ2

2AT
0 A0 +σ2

1AT
0W

TWA0]
−1AT

τ
}−1

=
{

I −σ2
1AτA

−1
0 [σ2

2I +σ2
1W

TW ]−1A−T
0 AT

τ
}−1

=
{

I −σ2
1W [σ2

2I +σ2
1W

TW ]−1W T}−1
.(4.44)

By Woodbury-Sherman-Morissey identity:

[σ2
2I +(σ1W )σ1W

T
]−1 =

1

σ2
2

I − 1

σ4
2

σ2
1W [I +

σ2
1

σ2
2

WW T ]−1W T ,

thusσ2
{

I − 1
σ2

2
Aτ[

1
σ2

1
AT

0 A0 + 1
σ2

2
AT

τ Aτ]
−1AT

τ
}−1

= σ2
2I +σ2

1WW
T .

Substituting into (4.43) yields:

(4.45) CRB(τ) = diag{Dc}(σ2
2I +σ2

1WW
T)diag{Dc} .

This result coincides with the covariance estimate for the M-estimate evaluated at(Ď, c̄) in (4.42).

4.6 A Simple Example

This section uses a simple example to illustrate the resultsfrom previous sections and also to motivate
discussions about performance comparison. In particular,it is expected that the proposed model in (4.4)
has advantage over the traditional model in (4.3) as the estimation forc which parametrizes the underlying
image intensity should be more reliable, because it combines the information from both the source and the
target observations. Consider a simple model

(4.46) z =

[

z1

z2

]

=

[

I
αI

]

c+

[

ε1

ε2

]

,

where we assume bothz1 andz2 are vectors of the same size as the underlying (unknown)c. The scaling
parameterα which relatesz1 andz2 in the noise-free case is the quantity of interest.ǫ ∼ N (0,σ2

1I) and
ǫ2∼N (0,σ2

2I) are independent Gaussian additive noise.

M-estimator for the Conventional Method

In the conventionally method, the parameterc is estimated solely from observationz1:

(4.47) ĉ(z) = argmin
c
‖z1−c‖22 = z1.

Sincez1∼N (c,σ2
1I), ĉ is an unbiased estimator forc with covarianceσ2

1I .
The objective function that̂α minimizes is

(4.48) Φ(α,z)
△
= ‖[αI − I ]z‖22 = ‖z2−αz1‖22 .

α̂(z) = argmin
α

Φ(α,z)

= argmin
α
‖z2−αĉ‖22

= argmin
α
‖z2−αz1‖22

=
z1

Tz2

‖z1‖22
.(4.49)
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Hereafter, we discuss two approaches in approximating the mean and variance of̂α: a direct method
based on the explicit solution in (4.49); and an indirect approach that relies on implicit function theorem and
M-estimate. The explicit method is straightforward, requires less manipulation, and should be reasonably
accurate. On the other hand, explicit solutions are not available in general (as we will see for the ML
estimator), so the implicit method is more universally applicable. In this study, the direct method serves as a
good baseline reference for approximation performance, and the derivation based on indirect approach is of
didactic value.

Direct Approximation of Mean and Variance for the M-estimate

First, we directly approximate the mean and covariance ofα̂ based on the explicit solution in (4.49).
The expected value of̂α from (4.49) is given by:

E[α̂] = E

{

(c̄+ ε1)
T(ᾱc̄+ ε2)

(c̄+ ε1)T(c̄+ ε1)

}

,

whereε1∼N (0,σ2
1I) andε2∼N (0,σ2

2I). We compute the above expression using conditional expectation:

E[α̂] = Eε1 {Eε2[α̂]|ε1}

= ᾱEε1

{

(c̄+ ε1)
T c̄

(c̄+ ε1)T(c̄+ ε1)

}

.(4.50)

where the second line follows from the independence betweenε1 andε2.
Let ci denote theith element of ¯c andei denote theith element ofε1. Thenci are constants andei are

scalar i.i.d Gaussian variablesei ∼N (0,σ2
1).

We can rewrite (4.50) as:

(4.51) E[α̂]/ᾱ = E

{

∑n
i=1(ci +ei)ci

∑n
i=1(ci +ei)2

}

.

Define functionf : ℜn→ ℜ via f (x) = xTc

xTx
. We perform second-order Taylor expansion off around

the pointx = c̄ and then take expectation with respect tox = c̄+ ε1:

E[α̂]/ᾱ = E[ f (c̄)+
1
2
(x− c̄)T∇2

x f (c̄)(x− c̄)]

= 1+
1
2

E[(x− c̄)T∇2
x f (c̄)(x− c̄)]

= 1+
1
2

E[εT
1 ∇2

x f (c̄)ε1].(4.52)

Now we focus on the termE[εT
1 ∇2 fx(c̄)ε1] whose sign determines the bias. The gradient∇x f and the

Hessian∇2
x f of f are derived as follows:

∇x f = ‖x‖−2
2 c̄T −2‖x‖−4

2 (xT c̄)xT .

The ith element of∇x f is
[∇x f ]i = ‖x‖−2

2 ci−2‖x‖−4
2 (xT c̄)xi .

Taking derivative with respect tox j yields:

∂
∂x j

[∇x f ]i =−2‖x‖−4
2 cix j −2

{

−4‖x‖−6
2 xT c̄xix j +‖x‖−4

2 (xic j +xT c̄δ[i− j]
}

,

whereδ is the Kronecker impulse function defined as

δ[x] =

{

1 x = 0;
0 otherwise.
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The equivalent matrix representation of the Hessian is given by:

(4.53) ∇2
x f = 8‖x‖−6

2 xT c̄xxT −2‖x‖−4
2 (xc̄T + c̄xT)−2(xT c̄)‖x‖−4

2 I .

We evaluate the Hessian at ¯c and note thatE[ε1∇2 f (c̄)ε1] = σ2
1 trace

{

∇2 f (c̄)
}

depends only on the diagonal
elements of the Hessian, because the noiseε1 is i.i.d. We obtain:

[∇2
x f (c̄)]ii = 2‖c̄‖−4

2 (2c2
i −

n

∑
j=1

c2
j ),

so that

E[εT
1 ∇2

x f (c̄)ε1] = σ2
1

n

∑
i=1

[∇2
x f (c̄)]ii

= 2σ2
1‖c̄‖−2

2 (2−n),(4.54)

which is negative for alln > 2.
Subsequently,

(4.55) E[α̂]/ᾱ≈ 1− (n−2)σ2
1‖c̄‖−2

2 .

As (4.54) describes the difference betweenE[α̂/ᾱ] and unity, this indicates that forn> 2, α̂ is an estimate
of ᾱ that biases towards smaller magnitude.

Similarly, we computeVar{α̂} via E[α̂2]−E[α̂]2. The correlation reads:

E

{

(c̄+ ε1)
T(ᾱc̄+ ε2)(ᾱc̄+ ε2)

T(c̄+ ε1)

‖c̄+ ε1‖42

}

.

As before, we first use conditional expectation to separate out the uncertainty inε2 via:

E[α̂2] = Eε1Eε2[α̂
2|ε1] = E

{

(c̄+ ε1)
T(ᾱ2c̄c̄T +σ2

2I)(c̄+ ε1)

‖c̄+ ε1‖42

}

.

Define a deterministic symmetric matrixH
△
= (ᾱ2c̄c̄T + σ2

2I) and a functionf (x) = xT Hx

‖x‖42
, and we aim

to findE[ f (x)] for x = c̄+ ε1. We expand the functionf (x) aroundx = c̄ and approximateE[α̂2] via:

E[α̂2] ≈ c̄THc̄

‖c̄‖42
+

1
2

E[(x− c̄)T∇2
x f (c̄)(x− c̄)]

=
c̄THc̄

‖c̄‖42
+

1
2

E[εT
1 ∇2

x f (c̄)ε1].(4.56)

The deterministic termf (c̄) simplifies to:

f (c̄) =
c̄THc̄

‖c̄‖42
= ᾱ2 +

σ2
2

‖c̄‖22
.

Sinceε1 is componentwise independent,E[α̂2] only depends on the diagonal element of∇2
x f (c̄), which

we derive as follows.
∇x f (x) =−4‖x‖−6

2 xT(xTHx)+2‖x‖−4
2 xTH.

The ith element of∇x f (x) reads−4‖x‖−6
2 xi(x

THx)+2‖x‖−4
2 xTH(:, i)., whereH(:, i) indicates the

ith column ofH. We may explicitly writexTH(:, i) = ∑ j x j [ᾱ2cic j +σ2
2δ[i− j]]. The second-order derivative

is given by:

∂2

∂x2
i

f (x) = −4‖x‖−6
2 [xTHx+2xix

TH(:, i)]+24‖x‖−8
2 x2

i x
THx

+2‖x‖−4
2 (ᾱ2c2

i +σ2
2)−8‖x‖−6

2 xix
TH(:, i).(4.57)
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To evaluate∂2

∂x2
i

f (x) atx = c̄, we use the following relations:

c̄TH(:, i) = ci(ᾱ2‖c̄‖22 +σ2
2);

c̄THc̄ = ‖c̄‖22 (ᾱ2‖c̄‖22 +σ2
2).

Substituting these relations into the expression (4.57) for ∂2

∂x2
i

f (x), we obtain:

∂2

∂x2
i

f (x)|x=c̄ = 8‖c̄‖−6c2
i (ᾱ

2‖c̄‖22 +σ2
2)−4‖c̄‖−4 (ᾱ2‖c̄‖22 +σ2

2)+2‖c̄‖−4 (ᾱ2c2
i +σ2

2).

By the independence of the elements inε1, we obtain:

E[εT
1 ∇2

x f (c̄)ε1] = σ2
1∑

i

∂2

∂x2
i

f (c̄)

= ‖c̄‖−2 (10−4n)ᾱ2σ2
1 +‖c̄‖−4 (8−2n)σ2

1σ2
2.(4.58)

Substituting this quantity into (4.56) provides:

E[α̂2]≈ ᾱ2 +‖c̄‖−2 σ2
2 +‖c̄‖−2 (5−2n)ᾱ2σ2

1 +‖c̄‖−4 (4−n)σ2
1σ2

2.

Together with the estimation forE[α̂] obtained in (4.55), this equation yields an approximation for
Var{α̂} as:

Var{α̂} = E[α̂2]−E[α̂]2

= ‖c̄‖−2 (ᾱ2σ2
1 +σ2

2)−‖c̄‖−4 σ2
1[(n−4)σ2

2− (n−2)2ᾱ2σ2
1].(4.59)

Expressions (4.55) and (4.59) reveal some interesting structure. For large enoughn (in fact for n > 6),
the variance estimate(4.59) becomes upper-bounded by‖c̄‖−2 (ᾱ2σ2

1 +σ2
2), which we will show later is the

Craḿer-Rao Boundfor the statistical model. This implies that itcannot be unbiased. In fact, the bias quantity
measured by(2−n)‖c̄‖−2 σ2

1ᾱ also increases accordingly.

Alternatively, we can follow [30], and use implicit function theorem and Taylor expansion to approxi-
mate the bias and variance ofα̂ as the minimizer of (4.48). The data point ˇz at which to perform Taylor
expansion is mainly a choice of convenience rather than considerations of asymptotic behavior. One natural
choice of the expansion point would be the noiseless data. Let z̄ denote the noiseless observation ¯c andᾱ
denote the true parameter values, with ˇc andα̌ denoting the resulting estimates in (4.47) and (4.49) when ¯z

is observed. Then ¯z = [c̄; ᾱc̄], and

č = ĉ(z̄) = c̄;

α̌ = α̂(z̄) =
ᾱc̄T c̄

‖c̄‖22
= ᾱ.(4.60)

As the minimizer for (4.48),̂α satisfies:

∂
∂α

Φ(α,z)|α=α̂ = 2zT
[

I
0

]

[

αI −I
]

z = 0 ∀z.

Taking derivative with respect toz and invoking the chain rule, we obtain:

∂2

∂α2 Φ
∂

∂z
α+

∂2

∂α∂z
Φ = 0,

where

(4.61)
∂2

∂α2 Φ = 2‖z1‖22 = 2zT
[

I 0
0 0

]

z,
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(a1) bias approximationn = 5 (a2) variance approximationn = 5
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(b1) bias approximationn = 50 (b2) variance approximationn = 50

Figure 4.1: Bias and variance approximation obtained from explicit solution for conventional M-estimate.

and

(4.62)
∂2

∂α∂z
Φ = 2zT

{[

αI −I
0 0

]

+

[

αI 0
−I 0

]}

= 2zT
[

2αI −I
−I 0

]

.

Therefore,

(4.63)
∂

∂z
α̂(z) =− ∂2

∂α2 Φ−1 ∂2

∂α∂z
Φ =−‖z1‖−2

2 zT
[

2αI −I
−I 0

]

.

Evaluating (4.63) atz = z̄, we obtain an estimate of covarianceCov{α} at α̌ = α̂z as

Cov{α̂(z)} ≈ ∂
∂z

α(z̄)Cov{z} ∂
∂z

αT(z̄)

=
−1

‖c̄‖22
c̄T [ ᾱI −I

]

[

σ2
1I

σ2
2I

] −1

‖c̄‖22

[

ᾱI
−I

]

c̄

=
ᾱ2σ2

1 +σ2
2

‖c̄‖22
.(4.64)

This quantity (4.64) coincides with the Cramér-Rao Boundobtained from the statistical model as we will
show later.

To estimate the bias for̂α, we present the first and second-order Taylor expansion forE[α̂] as:

E(1)[α̂] = E[h(z)]

≈ E{h(ž)+∇zh(ž)(z− ž)}
= h(ž)+E{∇zh(ž)(z− ž)} .(4.65)
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E(2)[α̂] ≈ E

{

h(ž)+∇zh(ž)(z− ž)+
1
2
(z− ž)T∇2

zh(ž)(z− ž)

}

= h(ž)+E{∇zh(ž)(z− ž)}+ 1
2

E
{

(z− ž)T∇2
zh(ž)(z− ž)

}

.(4.66)

Notice that when ˇz is chosen to be ¯z, the quantity(z− ž) is zero mean Gaussian. It follows that the
first order termE{∇zh(ž)(z− ž)}= 0 in (4.65) and (4.66). Therefore, the first order Taylor approximation
yields:

(4.67) E(1)[α̂] = h(ž) = h(z̄) = ᾱ,

corresponding to zero bias.
The second-order approximation (4.66) requires computing∇2

zh(ž), which can be obtained up to second
order [30] via:

(4.68) ∇2
zh = [− ∂2

∂α2 Φ]−1
{

∂3

∂α3 Φ∇zhT∇zh+
∂3

∂α2∂z
ΦT∇zh+∇zhT ∂3

∂α2∂z
Φ+

∂
∂α

∇2
zΦ
}

.

Terms involved in the above expression are computed as follows:

∂3

∂α3 Φ = 0.

Taking derivative of (4.61) with respect toz yields

∂3

∂α2∂z
Φ = 2zT

[

I 0
0 0

]

= 2
[

zT
1 0

]

.

Taking derivative of (4.62) with respect toz yields

∂3

∂α∂z2 Φ = 2

[

2αI −I
−I 0

]

.

Evaluating atz = ž = z̄ and substituting into (4.68) yields:
(4.69)

∇2
zh(z̄) =− 1

2‖c̄‖22

{

−2

‖c̄‖22

[

c̄

0

]

[

ᾱc̄T −c̄T
]

+
−2

‖c̄‖22

[

ᾱc̄

−c̄

]

[

c̄T 0
]

+2

[

2ᾱI −I
−I 0

]

}

.

Sincez− ž ∼N
{

0,

[

σ2
1I 0
0 σ2

2I

]}

, the second-order term in (4.66) only involves the diagonalelements

of ∇2
zh(z̄). We extract the corresponding blocks from (4.69) as:

∂2

∂z1(i)2 h(z̄) = − 1

2‖c̄‖22

{

−4

‖c̄‖22
ᾱc2

i +4ᾱ

}

;

∂2

∂z1(i)2 h(z̄) = 0.(4.70)

Thus

E
{

(z− z̄)T∇2
zh(z̄)(z− ž)

}

= ∑
i

σ2
1

∂2

∂z1(i)2 h(z̄)

=
σ2

1

‖c̄‖22
(2ᾱ−2ᾱn)

= 2(1−n)ᾱ
σ2

1

‖c̄‖22
.(4.71)
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It follows that the second-order estimation forE[α̂] is

(4.72) E(2)[α̂] = E(1)[α̂]+
1
2

E
{

(z− z̄)T∇2
zh(z̄)(z− ž)

}

= ᾱ+(1−n)
σ2

1

‖c̄‖22
ᾱ =

{

1+(1−n)
σ2

1

‖c̄‖22

}

ᾱ.

For n > 1 and reasonable signal-to-noise ratio,E(2)[α̂] implies shrinkage in magnitude, which WLOG, we
refer to as “negative bias” hereafter.
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(a1) bias approximationn = 5 (a2) variance approximationn = 5
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(b1) bias approximationn = 50 (b2) variance approximationn = 50

Figure 4.2: Bias and variance approximation for M-estimateobtained from expansion about(ᾱ, z̄).

Notice that the choice of ˇz = z̄ is mainly due to computation convenience (so thatz− ž is zero mean
Gaussian). It is feasible to perform the same routine for different data point ˇz. [50, 108] proved that under
certain regular conditions, the M-estimate is asymptotically normal with meanα̃ where

E[
∂

∂α
Φ(α̃,z)] = 0.

Under reasonable regularity conditions, we can exchange the order of expectation and differentiation, and
take

∂
∂α

E[Φ(α̃,z)]] = 0.

Note thatα̃ can be interpreted as a local minima for an “average” cost functionE[Φ(α,z)], i.e.,

(4.73) α̃ = argmin
α

E[Φ(α,z)].
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The expectation of the objective function with respect to the distribution of the observation noise

E[Φ(α,z)] = E[

∥

∥

∥

∥

[

−αI I
]

[

c̄+ ε1

ᾱc̄+ ε2

]∥

∥

∥

∥

2

2
]

= E[
[

c̄T + εT
1 ᾱc̄T + εT

2

]

[

−αI
I

]

[

−αI I
]

[

c̄+ ε1

ᾱc̄+ ε2

]

]

= (α− ᾱ)2‖c̄‖22 +n(α2σ2
1 +σ2

2)

= (‖c̄‖22 +nσ2
1)α

2−2ᾱ‖c̄‖22 α+ ᾱ2‖c̄‖22(4.74)

is convex quadratic inα and the minimizer reads

α̌ = argmin
α

E[Φ(α,z)]

=
‖c̄‖22

‖c̄‖22 +nσ2
1

ᾱ.(4.75)

For simplicity, letβ △= ‖c̄‖22+nσ2
1

‖c̄‖22
, thenα̌ = 1

β ᾱ. Sinceβ > 1, the expansion poinťα is a shrinkage with respect

to the true scalēα.
We can construct an expansion point ˇz = [βc̄; ᾱc̄]. Then the minimizer ofΦ(ž) = 1

β ᾱ = α̌, which satisfies
the requirement (4.73).

Evaluating (4.63) at(č, ž) results in:

∂
∂z

α(ž) = −‖z1‖−2
2 zT

[

2αI −I
−I 0

]

= − 1

β2‖c̄‖22

[

βc̄T α̌c̄
]

[

2α̌I −I
−I0

]

= − c̄T

β2‖c̄‖22

[

2β−1
β ᾱI −βI

]

.(4.76)

The approximated covariance ofα̂ evaluated at the point(α̌, ž) is given by:

Cov{α̂}|z=ž,α̂=α̌ =
∂

∂z
α(ž)Cov{z} ∂

∂z
αT(ž)

= β−4‖c̄‖−4
2 c̄T

[

2β−1
β ᾱI −βI

]

[

σ2
1I 0
0 σ2

2I

]

[

2β−1
β ᾱI
−βI

]

c̄

= ‖c̄‖−2
2 β−4((2− 1

β
)2ᾱ2σ2

1 +β2σ2
2).(4.77)

We know from previous analysis that the M-estimate is asymptotically unbiased, so its variance is to be
bounded below by Craḿer-Rao Boundasymptotically. Therefore, it is curious to find whether there exists a
consistent relationship between the pre-asymptotic variance in (4.77) and the Craḿer-Rao Bound,i.e.,

(4.78) ‖c̄‖−2
2 β−4((2− 1

β
)2ᾱ2σ2

1 +β2σ2
2) ≷ ‖c̄‖−2

2 (ᾱ2σ2
1 +σ2

2)?

The quantity on the right-hand-side is the Cramér-Rao Boundobtained from the statistical generative model
(to be shown later).

Claim IV.1. The covariance of the M-estimator is boundedaboveby the Craḿer-Rao Bound. Moreover, it
asymptotically approaches the Cramér-Rao Boundasσ1→ 0.

Proof. To compare the left and right hand sides in (4.78), it sufficesdetermine the sign of their difference:

RHS−LHS = ‖c̄‖−2
2 β−2(β6−4β2 +4β−1)ᾱ2σ2

1 +(β4−1)σ2
2.
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For simplicity, we drop the positive quantity‖c̄‖−2
2 in later analysis as it does not affect the sign. Let

A
△
= ᾱ2σ2

1, B
△
= σ2

2, and we want to determine the sign for:

π(A,B;β) = β−2(β6−4β2 +4β−1)A+(β4−1)B.

The polynomial(β6−4β2 +4β−1) factors into

β6−4β2 +4β−1 = (β−1)(β2 +β−1)(β3 +2β−1).

By construction,β > 1, thus(β6−4β2 + 4β−1) > 0, soπ is linear inA,B with positive coefficients.
Meanwhile,A,B are both positive, soπ(A,B;β) > 0. This result translates into the claim that in the nonde-
generative case (σ1 6= 0), the variance of the M-estimate is bounded above by the Cramér-Rao Bound. It is
easy to check that whenσ1 = 0, the variance equals the Cramér-Rao Bound.

Now we approximateE[α̂] with (4.65) and (4.66) by expanding corresponding terms about (α̌, ž).
The first order coefficient∇zh is obtained in (4.76), and the corresponding first-order approximation for

the mean is:

E(1)[α̂] = h(ž)+E∇zh(ž)(z− ž)

=
ᾱ
β

+E

{

− c̄T

β2‖c̄‖22

[

2β−1
β ᾱI −βI

]

[

c̄+ ε1−βc̄

ᾱc̄+ ε2− ᾱc̄

]

}

=
ᾱ
β

+
ᾱ

β3‖c̄‖22
c̄T(2β−1)(β−1)c̄

=
ᾱ
β

[1+
(2β−1)(β−1)

β2 ]

=
3β2−3β+1

β3 ᾱ.(4.79)

Sinceβ > 1, (β−1)3 = β3−3β2 +3β−1 = β3− (3β2−3β+1) > 0, and3β2−3β+1
β3 < 1. Equivalently,

E[α̂]
ᾱ < 1, indicating a shrinkage in magnitude, which agrees qualitatively with the result from exact solution.

Expression in (4.79) can be rewritten as:

E[α̂] =
3β2−3β+1

β3 ᾱ

= [1− (β−1)3

β3 ]ᾱ.(4.80)

Denote the signal-to-noise ratio inz1 ass
△
=
‖c̄‖22
nσ2

1
and

E[α̂]

ᾱ
= 1− 1

(s+1)3 .

To approximate the bias with second-order Taylor expansion, we use (4.68) and evaluate at(α̌ = ᾱ/β, ž).

∇2
zh(ž) = − 1

‖βc̄‖22

{

− 1

β2‖c̄‖22

[

βc̄

0

]

[

2β−1
β ᾱc̄T −βc̄T

]

. . .

− 1

β2‖c̄‖22

[

2β−1
β ᾱc̄

−βc̄

]

[

βc̄T 0
]

+

[

2ᾱ
β I −I
−I 0

]

}

.

To compute(z− ž)T∇2
zh(ž)(z− ž) in (4.66), it suffices to use only the diagonal blocks of∇2

zh(ž),

because the components ofz− ž =

[

c̄+ ε1−βc̄

ᾱc̄+ ε2− ᾱc̄

]

=

[

(1−β)c̄+ ε1

ε2

]

are independent. Partitionz−z
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into the deterministicψ and random partη so thatψ =

[

(1−β)c̄
0

]

andη =

[

ε1

ε2

]

. Then the quadratic

term in the second-order Taylor expansion in (4.66) can be written as:

E[(ψ+η)T∇2
zh(ž)(ψ+η)] = ψT∇2

zh(ž)ψ+E[ηT∇2
zh(ž)η],

where expectation of cross terms betweenψ andη are dropped sinceη is zero-mean.
The diagonal portion of∇2

zh(ž) reads:

(4.81) ∇2
zh(ž) =

2

β2‖c̄‖22

{

1

β2‖c̄‖22

[

β(2β−1)ᾱc̄c̄T

0

]

−
[ ᾱ

β I
0

]

}

.

It follows that

ψT∇2
zh(ž)ψ =

2(β−1)2

‖z1‖22

{

(β−1)‖c̄‖42
β2‖c̄‖22

ᾱ− ‖c̄‖
2
2

β
ᾱ

}

=
2(β−1)2

β3 [
(2β−1)

β
−1]ᾱ

=
2(β−1)3

β4 ᾱ.(4.82)

ηT∇2
zh(ž)η =

2

β2‖c̄‖22

{

β(2β−1)σ2
1‖c̄‖

2
2

β3‖c̄‖22
ᾱ− nσ2

1

β
ᾱ

}

=
2σ2

1

β6‖c̄‖22
[(2β−1)−nβ]ᾱ.(4.83)

Summing (4.82) and (4.83) yields:

(4.84) E[(z− ž)T∇2
zh(ž)(z− ž)] =

2(β−1)3

β4 ᾱ+
2σ2

1

β6‖c̄‖22
[(2β−1)−nβ]ᾱ.

Combining (4.84) with the first order estimation ofE[α̂], we obtain the second order approximation for
E[α̂] as:

E(2)[α̂] = h(ž)+E

{

∇zh(ž)(z− ž)+
1
2
(z− ž)T∇2

zh(ž)(z− ž)

}

= E(1)[α̂]+
1
2

E[(z− ž)T∇2
zh(ž)(z− ž)]

=

{

β3− (β−1)3

β3 +
(β−1)3

β4

}

ᾱ+
(2−n)β−1

β5

σ2
1

‖c̄‖22
ᾱ

=
β4− (β−1)4

β4 ᾱ+
(2−n)β−1

β5

σ2
1

‖c̄‖22
ᾱ.(4.85)

Recall thatβ =
‖c̄‖22+nσ2

1

‖c̄‖22
, so for reasonable SNR,(2−n)β−1

β ≈ 1−n. Using thes=
‖c̄‖22
nσ2

1
, we can rewrite

E(2)[α̂] approximately as:

(4.86) E(2)[α̂] = [1− 1
(s+1)4 +

(1−n)s3

n(1+s)4 ]ᾱ.
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Notice that when SNR is high (larges), then

E(2)[α̂] = [1− 1
(s+1)4 +

(1−n)s3

n(1+s)4 ]ᾱ

≈ [1+
1−n

n(1+s)
]ᾱ

= [1− 1−n
n

nσ2
1

‖c̄‖22 +nσ2
1

]ᾱ

≈ [1+(1−n)
σ2

1

‖c̄‖22 +nσ2
1

]ᾱ,(4.87)

which closely resembles the result (4.72) obtained from expanding about noiseless data ¯z. In fact, for high

enough SNR,‖c̄‖
2
2+nσ1

σ2
1
≈ ‖c̄‖

2
2

σ2
1

so that (4.87) and (4.72) are approximately equal. This relation is expected, as

for small SNR, ˇz≈ z̄ andα̌≈ ᾱ, the small error analysis is essentially performed on the same neighborhood!

0 0.2 0.4 0.6 0.8 1
−8

−7

−6

−5

−4

−3

−2

−1

0

1

2
x 10

−3

σ
1

B
ia

s 
fo

r 
th

e 
M

−
es

tim
at

e

 

 

1st−order Approx. with \check{z}
2nd−order Approx. with \check{z}
Numericical Result

0 0.2 0.4 0.6 0.8 1
1.5

2

2.5

3

3.5

4
x 10

−3

σ
1

V
ar

ia
nc

e 
fo

r 
th

e 
M

−
es

tim
at

e

 

 

Approx with \check{z}
Numerical Result
CRB

(a1) bias approximationn = 5 (a2) variance approximationn = 5

0 0.2 0.4 0.6 0.8 1
−12

−10

−8

−6

−4

−2

0

2
x 10

−3

σ
1

B
ia

s 
fo

r 
th

e 
M

−
es

tim
at

e

 

 

1st−order Approx. with \check{z}
2nd−order Approx. with \check{z}
Numericical Result

0 0.2 0.4 0.6 0.8 1
1.5

2

2.5

3

3.5

4

4.5
x 10

−4

σ
1

V
ar

ia
nc

e 
fo

r 
th

e 
M

−
es

tim
at

e

 

 

Approx with \check{z}
Numerical Result
CRB

(b1) bias approximationn = 50 (b2) variance approximationn = 50

Figure 4.3: Bias and variance approximation of M-estimate obtained from expansion about(α̌, ž).

ML Estimator for the Statistical Model

The maximum likelihood estimator from (4.23) aims to jointly estimatec andα via:

(4.88) [α̂, ĉ] = argmin
α,c

1

σ2
1

‖z1−c‖22 +
1

σ2
2

‖z2−αc‖22 .
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Note that conditioned onα, (4.88) is quadratic inc with the solution ˆc(α,z) given by:

ĉ =

{

[

I
αI

]T
[ 1

σ2
1
I 0

0 1
σ2

2
I

]

[

I
αI

]

}−1
[

I αI
]

[ 1
σ2

1
I 0

0 1
σ2

2
I

]

z

= (
1

σ2
1

+
α2

σ2
2

)−1(
1

σ2
1

z1 +
α2

σ2
2

z2)

=
1

α2σ2
1 +σ2

2

(σ2
2z1 +ασ2

1z2).(4.89)

Remark:

• In the limiting case whenσ1→ 0 (with non-vanishingσ2), z1 is a noise-free observation ofc, it is
natural to estimatec solely onz1 as (4.89) reduces to

lim
σ1→0

ĉ = z1,

which coincides with (4.47) in the conventional method. On the other hand, as the noise level inz2

becomes small relative to that inz1 (σ2→ 0 with non-vanishingσ1), the estimate reduces to:

lim
σ2→0

ĉ = z2/α,

which corresponds to the case of estimatingc solely fromz2.

More precisely,

lim ĉ = z1 asσ1/σ2→ 0;

lim ĉ = z2/α asσ1/σ2→ ∞.(4.90)

• It is easy to check that the estimator in (4.89) is unbiased with variance

Var{ĉ}=
σ2

1σ2
2

α2σ2
1 +σ2

2

I =
σ2

1

1+α2 σ2
1

σ2
2

I .

It immediately follows that this quantity is upper-boundedby the covarianceσ2
1I of the estimator for

c (4.47) resulting from conventional methods.

Now we can plug in the expression of ˆc in (4.89) and (4.88) reduces to a minimization problem overα
only:

α̂ = argmin
α

Ψ(α,z)

= argmin
α

1

α2σ2
1 +σ2

2

‖αz1−z2‖22 .(4.91)

This functionΨ is nonlinear inα. Note thatΨ≥ 0. In the case of noise-free observationz = z̄, ᾱ achieves
the zero value and is the global minimizer (we will justify this more precisely later). Therefore, we can utilize
the techniques for M-estimate as before, and analyze the behavior of α̂ in the neighborhood̂α(z̄) = ᾱ.

Let α̂ be the minimizer of the functionΨ(α,z), then it is true that

∂
∂α

Ψ(α,z) =
∂

∂α
1

α2σ2
1 +σ2

2

∥

∥

[

αI −I
]

z
∥

∥

2 = 0 for ∀z.

∂
∂α

Ψ(α,z) =
1

(α2σ2
1 +σ2

2)
2
(αz1−z2)

T [2z1(α2σ2
1 +σ2

2)−2ασ2
1(αz1−z2)]

=
2

(α2σ2
1 +σ2

2)
2
zT
[

αI
−I

]

[

σ2
2I ασ2

1

]

z.(4.92)
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Let Q
△
=

[

αI
−I

]

[

σ2
2I ασ2

1

]

=

[

ασ2
2I α2σ2

1I
−σ2

2I −ασ2
1I

]

, then the derivative of∂∂α Ψ with respect toz is

given by:

∂2

∂α∂z
Ψ =

2

(α2σ2
1 +σ2

2)
2
zT(Q+QT)

=
2

(α2σ2
1 +σ2

2)
2
zT
[

2ασ2
2I (α2σ2

1−σ2
2)I

(α2σ2
1−σ2

2)I −2ασ2
1I

]

.(4.93)

Evaluating (4.93) atz = z̄ andα = ᾱ yields:

(4.94)
∂2

∂α∂z
Ψ(ᾱ, z̄) =

2

ᾱ2σ2
1 +σ2

2

c̄T [ ᾱI −I
]

.

Now we compute the derivative of∂∂α Ψ with respect toα and evaluate at the minimizerα̂ = ᾱ with
z = z̄:

∂2

∂α2 Ψ = 2
∂

∂α

{

(αz1−z2)
T(σ2

2z1 +ασ2
1z2)

(α2σ2
1 +σ2

2)
2

}

= 2
{

−2
2ασ2

1

(α2σ2
1 +σ2

2)
3
(αz1−z2)

T(σ2
2z1 +ασ2

1z2) . . .

+
1

(α2σ2
1 +σ2

2)
2
[zT

1 (σ2
2z1 +ασ2

1z2)+(αz1−z2)
Tσ2

1z2]
}

.

This is a convenient form to be evaluated atz = z̄, and we obtain:

(4.95)
∂2

∂α2 Ψ(z̄) =
2

ᾱ2σ2
1 +σ2

2

‖c̄‖22 .

To prepare for future use, we simplify the general form of (4.95) into:

(4.96)
∂2

∂α2 Ψ =
2

(α2σ2
1 +σ2

2)
3
zT
[

(−3α2σ2
1 +σ2

2)σ
2
2I (3σ2

2−α2σ2)ασ2
1I

(3σ2
2−α2σ2)ασ2

1I (3α2σ2
1−σ2

2)σ
2
1I

]

z.

Estimating ∂
∂z

α yields:

∂
∂z

α̂|z̄,ᾱ = − ∂2

∂α2 Ψ−1 ∂2

∂α∂z
Ψ

= − 1

‖c̄‖22
c̄T [ ᾱI −I

]

.(4.97)

The covariance evaluated at(ᾱ, z̄) is

Cov{α̂}|(z̄,ᾱ) =
∂

∂z
α(z̄)Cov{z} ∂

∂z
αT(z̄)

= ‖c̄‖−4
2 c̄T [ ᾱI −I

]

[

σ2
1I 0
0 σ2

2I

][

ᾱI
−I

]

c̄

= ‖c̄‖−2
2 (ᾱ2σ2

1 +σ2
2).(4.98)

Lower Bound for Covariance From Cramér-Rao Bound

The negative log-likelihood is given as the objective function in (4.88). It is straight-forward to compute
the sub-matrices for the Fisher-Information Matrix.

∂
∂α

Λ =− 1

σ2
2

(αc−z2)
Tc;
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∂2

∂α2 Λ =− 1

σ2
2

cTc;

∂2

∂α∂c
Λ =

−1

σ2
2

(2αcT −zT
2 ),

resulting in

E[
∂2

∂α2c] =
−1

σ2
2

αcT .

The Fisher-information matrix (FIM) is thus given by:

FIM =
1

σ2
2

[

cTc αcT

αc (α2 +
σ2

2
σ2

1
)I

]

.

Invoking block-matrix inversion, we obtain:

Cov{α̂} ≥ σ2[cTc−αcT(α2 +
σ2

2

σ2
1

)−1αc]

= ‖c‖−2
2 (α2σ2

1 +σ2
2).(4.99)

Since the ML estimator is known to be asymptotically unbiased, the coincidence between (4.98) and
(4.99) justifies the well-known fact that the ML estimator isasymptotically efficient (thus is asymptotically
a uniformly minimal variance and unbiased estimator (UMVUE)).

Approximate Bias of the ML Estimator

Not withstanding the value of asymptotic analysis for the MLestimator, it is often of great interest to
analyze the bias and variance before the the estimator enters the asymptotic zone. Hereafter, we focus on
deriving analytical approximation for the bias of the ML estimator. As in the covariance analysis previously,
we assume the estimate is over continuous parameter’sα and is computed by “completely” maximizing the
objective function (likelihood in this case) without “stopping rules” that terminates the iterations before the
maximum is reached. We derive the approximation using implicit function theorem, the Taylor expansion
(with different orders of approximation accuracy), and thechain rule.

The objective functionΨ in (4.91) implicitly defines the M-estimatêα as a function ofz. Yet the absence
of an explicit analytical expression of the form̂α = h(z) (as the one in (4.49)) makes it difficult to study the
mean ofα̂ directly. As in the previous section, we apply Taylor expansion, chain rules and implicit function
theorem to estimate the bias with the first and second order approximation given by:

(4.100) E[α̂]≈ h(ž)+E{∇zh(ž)(z− ž)} .

(4.101) E[α̂]≈ h(ž)+E

{

∇zh(ž)(z− ž)+
1
2
(z− ž)T∇2

zh(ž)(z− ž)

}

.

We now determine the point of expansion ˇz and the approximation for first (linear) and second order
(Hessian) coefficients∇zh, ∇2

zh. To obtain the best choice forα̌

(4.102) α̌ = argmin
α

E[Ψ(α,z)],

whereα̌ andž in the Taylor expansions are related byα̌ = h(ž). We computeE[Ψ(α,z)] as follows:

E[Ψ(α,z)] =
1

α2σ2
1 +σ2

2

n

∑
i=1

(αz1(i)−z2(i))
2.
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For each indexi,

E[(αz1(i)−z2(i))
2] = E[α2z1(i)

2−2αz1(i)z2(i)+z2(i)
2]

= α2(c̄2
i +σ2

1)−2αᾱc̄2
i + ᾱ2c̄2

i +σ2
2

= (α2−2αᾱ+ ᾱ2)c̄2
i +(α2σ2

1 +σ2
2),(4.103)

wherec̄i andᾱ are the underlying “true” parameter values.
Substituting (4.103) yields:

(4.104) E[Ψ(α,z)] =
1

α2σ2
1 +σ2

2

(α− ᾱ)2‖c̄‖22 +n.

Even thoughE[Ψ(α,z)] is nonlinear inα, its global minimizer is immediately observed asα = ᾱ, because
E[Ψ(ᾱ,z)] = n achieves the lower bound forE[Ψ(α,z)] as a function ofα. Thus we have found the proper
point to expand arounďα = ᾱ.

Note that when noise free data is observed,i.e., z = z̄, the minimizerα̂ in (4.91) is obtained as:

α̂(z̄) = argmin
α

1

α2σ2
1 +σ2

2

‖αz̄1− z̄2‖22

= argmin
α

1

α2σ2
1 +σ2

2

‖αc̄− ᾱc̄‖22

= argmin
α

(α− ᾱ)2‖c‖22
α2σ2

1 +σ2
2

.(4.105)

Note this function is nonnegative, its global minimizer is obtained atα = ᾱ, i.e., h(z̄) = ᾱ = α̌. This indicates
thatž = z̄ is the proper choice to expandh around, without requiring to know the precise value ofᾱ.

In this case, the bias analysis with first-order Taylor expansion as in (4.100) is simple by noting that

(z− z̄)∼N
(

0,

[

σ2
1I

σ2
2I

]

)

, so that

E[α̂] = h(z̄)+E{∇zh(z̄)(z− z̄)}
= ᾱ.(4.106)

This states that the estimator is unbiased if we approximateits first moment up to first order dependence on
the data.

The first order expansion is usually sufficient in practice and has been extensively used. However, there
are situations where (4.100) may be inadequate. We next derive a mean approximation based on the second-
order Taylor expansion (4.101) which is expected to be more accurate, but also computationally more inten-
sive.

The first two (0th and 1st order) terms in (4.101) are (4.100),so it suffices to study the Hessian∇2
z.

For scalarα, we follow the simplified expression in [30] to obtain the Hessian ofh(z) as:

(4.107) ∇2
zh = [− ∂2

∂α2 Ψ]−1
{

∂3

∂α3 Ψ∇zhT∇zh+
∂3

∂α2∂z
ΨT∇zh+∇zhT ∂3

∂α2∂z
Ψ+

∂
∂α

∇2
zΨ
}

.

Some of the key ingredients are already available:∇zh is given in (4.97) as well as∂2

∂α2 Ψ in (4.95)

(before evaluation) and∂2

∂α∂z
Ψ in (4.93). We still need to compute∂

3

∂α3 Ψ(ᾱ, z̄), ∂3

∂α2 ∂zΨ(ᾱ, z̄) and ∂
∂α ∇2

zΨ.
Evaluating (4.95) at(ᾱ, z̄) yields:

∂2

∂α2 Ψ(ᾱ, z̄) =
2‖c̄‖22

ᾱ2σ2
1 +σ2

2

.

Taking derivative of (4.96) with respect toz yields:

(4.108)
∂3

∂α2∂z
Ψ =

4

(α2σ2
1 +σ2

2)
3
zT
[

(−3α2σ2
1 +σ2

2)σ
2
2I (3σ2

2−α2σ2)ασ2
1I

(3σ2
2−α2σ2)ασ2

1I (3α2σ2
1−σ2

2)σ
2
1I

]

.
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Evaluating (4.108) at(ᾱ, z̄) yields:

(4.109)
∂3

∂α2∂z
Ψ(ᾱ, z̄) =

4

(ᾱ2σ2
1 +σ2

2)
3
c̄T [ (σ4

2− ᾱ4σ4
1)I 2ᾱσ2

1(ᾱ
2σ2

1 +σ2
2)I

]

Taking derivative of (4.95) with respect toα yields:

∂3

∂α3 Ψ =
−12ασ2

1

(α2σ2
1 +σ2

2)
3
zT
1 (σ2

2z1 +ασ2
1z2)+

2

(α2σ2
1 +σ2

2)
3

[

−4ασ2
1zT

1 (σ2
2z1 +ασ2

1z2)+ . . .

+2ασ2
1zT

1 (σ2
2z1 +ασ2

1z2)+2(α2σ2
1 +σ2

2)σ
2
1zT

1 z2

]

.(4.110)

Evaluating (4.110) at (4.110) at(ᾱ, z̄) yields:

(4.111)
∂3

∂α3 Ψ(ᾱ, z̄) =
−12ᾱσ2

1‖c̄‖
2
2

(ᾱ2σ2
1 +σ2

2)
.

The term ∂
∂α ∇2

zΨ is obtained by taking derivative of∂
2

∂α∂z
Ψ in (4.93) with respect toz as:

(4.112)
∂

∂α
∇2

zΨ = 2
( 1

α2σ2
1 +σ2

2

)2
[

2ασ2
2I (α2σ2

1−σ2
2)I

(ασ2
1−σ2

2)I −2ασ2
1I

]

.

Evaluating at̄α yields:

(4.113)
∂

∂α
∇2

zΨ(ᾱ) = 2(
1

ᾱ2σ2
1 +σ2

2

)2
[

2ᾱσ2
2I (ᾱ2σ2

1−σ2
2)I

(ᾱσ2
1−σ2

2)I −2ᾱσ2
1I

]

.

Substituting the expressions of all components into the right-hand-side of (4.107) yields:

∇2
zh(z̄) = − ᾱ2σ2

1 +σ2
2

2‖c̄‖22

{

−12ᾱσ2
1

(ᾱ2σ2
1 +σ2

2)
2‖c̄‖22

[

ᾱI
−I

]

c̄c̄T [ ᾱI −I
]

+ . . .

− 4

(ᾱ2σ2
1 +σ2

2)
3‖c̄‖22

[

(σ4
2− ᾱ4σ4

1)I
2ᾱσ2

1(ᾱ
2σ2

1 +σ2
2)I

]

c̄c̄T [ ᾱI −I
]

+ . . .

− 4

(ᾱ2σ2
1 +σ2

2)
3‖c̄‖22

[

ᾱI
−I

]

c̄c̄T [ (σ4
2− ᾱ4σ4

1)I 2ᾱσ2
1(ᾱ

2σ2
1 +σ2

2)I
]

+ . . .

+2(
1

ᾱ2σ2
1 +σ2

2

)2
[

2ᾱσ2
2I (ᾱ2σ2

1−σ2
2)I

(ᾱσ2
1−σ2

2)I −2ᾱσ2
1I

]

}

.(4.114)

The second order term in (4.101) depends on the Hessian∇2
zh(z̄) via (z− z̄)T∇2

zh(z̄)(z− z̄) since ˇz = z̄,

wherez− z̄ are exactly the noise componentε ∼ N
(

0,

[

σ2
1I

σ2
2I

]

)

. Because the elements ofε are

mutually independent,E
{

(z− z̄)T∇2
zh(z̄)(z− z̄)

}

only depends on the diagonal elements of the Hessian
∇2

zh(z̄).
When a component is located in thez1 portion of z, the noise componentε(i) ∼ N (0,σ2

1), and the
corresponding element in the Hessian is:

(4.115)
∂2

∂z1(i)2 h(z̄) =− 1

2‖c̄‖22

{

−12ᾱ3σ2
1c2

i

(ᾱ2σ2
1 +σ2

2)‖c̄‖
2
2

− 8ᾱ(σ4
2− ᾱ4σ4

1)c
2
i

(ᾱ2σ2
1 +σ2

2)
2‖c̄‖22

+4ᾱσ2
2

}

.

Similarly,

(4.116)
∂2

∂z2(i)2 h(z̄) =− 1

2‖c̄‖22

{

−12ᾱσ2
1c2

i

(ᾱ2σ2
1 +σ2

2)‖c̄‖
2
2

+
16ᾱσ2

1c2
i

(ᾱ2σ2
1 +σ2

2)‖c̄‖
2
2

−4ᾱσ2
1

}

.
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Combining the above yields:

E[εT∇2
zh(z̄)ε] = σ2

1

n

∑
i=1

∂2

∂z1(i)2 h(z̄)+σ2
2

n

∑
i=1

∂2

∂z2(i)2 h(z̄)

= − 1

2‖c̄‖22

{ −12ᾱ3σ4
1

(ᾱ2σ2
1 +σ2

2)
− 8ᾱ(σ4

2− ᾱ4σ4
1)σ

2
1

(ᾱ2σ2
1 +σ2

2)
2

}

. . .

− 1

2‖c̄‖22

{ −12ᾱσ2
1σ2

2

(ᾱ2σ2
1 +σ2

2)
+

16ᾱσ2
1σ2

2

(ᾱ2σ2
1 +σ2

2)

}

=
ᾱσ2

1

‖c̄‖22
.(4.117)

The second order approximation of the estimator yields:

E[α̂]/ᾱ = 1+
σ2

1

‖c̄‖22
,

which indicates a bias toward positive magnitude. Comparedwith the bias analysis for the conventional
M-estimate, the bias of the ML estimate is independent of thedata lengthn, which indicates that even
though both estimators are asymptotically unbiased, they approach the asymptotic region with different rate
(roughly 1 :n).
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(a1) bias approximationn = 5 (a2) variance approximationn = 5
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(b1) bias approximationn = 50 (b2) variance approximationn = 50

Figure 4.4: Bias and variance approximation of ML-estimateobtained from expansion about(ᾱ, z̄).

In summary, we have tested with a simple example the estimated bias and variance of the convention-
ally used M-estimate and the ML-estimator from the statistical generative model. With the particular form
of the example, the M-estimate can be obtained in closed form, and we have estimated bias and variance
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from the explicit solution. To reflect the more general scenario, where such explicit solution is unavailable,
we have used implicit function theorem and Taylor expansionto estimate bias and variance up to first and
second order. Numerical results demonstrate reasonable agreement of the theoretically predicted values and
empirical statistics. Qualitatively, all methods were able to capture the negative bias of the M-estimate,i.e.,
the estimated parameter is a shrinkage relative to the true value. Furthermore, it could be shown that as an
asymptotically unbiased estimator, the variance of the M-estimate is in fact upper bounded, and asymptoti-
cally approaches the Cramér-Rao Boundas the SNR increases. The ML-estimator according to the statistical
model, being asymptotically UMVUE, has positive bias yet approaches unbiasedness faster (proportional
to data length) than the M-estimate. The estimated covariance agrees with the CRB to second order. As a
work in progress, this investigation is far from conclusive. More specifically, the ML-estimate demonstrates
advantage in that it approaches the asymptotic unbiasedness with a faster rate; yet it has higher variance than
the M-estimate in general. This leads to the familiar issue in estimator selection: the (pre-asymptote) bias
and variance tradeoff needs to be studied carefully. Numerically, we observe that the M-estimate demon-
strates variance close to the Cramér-Rao Bound, so it is possible that by including higher order expansion
in estimating the variance, we could obtain an approximate rate at which the variance of the M-estimate ap-
proaches the Craḿer-Rao Bound. Such information would allow us to reach either a consistent conclusion
of the superiority between the M-estimate and the ML-estimate, or a partition of the parameter space so that
each estimate would be the method of choice over certain regions.



CHAPTER V

Summary and Future Work

5.1 Summary

We have conducted research addressing two key aspects of image guided respiratory motion analysis:
time series analysis to track semi-periodic signal structure from noisy observations and image registration
to model motion between inhale-exhale image pairs. To trackand predict the slowly varying mean position
of a breathing signal, we have proposed a dynamic ellipse tracking method in an augmented state space.
Formulated as a minimization problem in terms of algebraic distance, we provided a recursive algorithm
for solving the static data case, utilizing stochastic approximation techniques. Assuming slow variations,
we presented a natural extension of the recursion to an adaptive framework, to account for newly available
samples. To accommodate noisy samples and missing observations, we modified the objective using robust
fitting functions instead of the quadratic cost. Having shown that the feasible parameter region is the union of
two convex sets and noting about the symmetric structure of the solution, we applied the projection gradient
algorithm to solve the minimization problem. Analogous to the quadratic case, we took advantage of the
recursive structure of the algorithm and extended it to incorporate adaptivity. To our knowledge, our method
was the first to realize complete unsupervised tracking of respiratory motion in the presence of uncertainties
in basic pattern, magnitude and phase. It has the potential to improve significantly the performance of both
real-time adaptive treatment delivery and real-time gating systems.

For image registration, we focused on designing regularization to incorporate physical priors. In par-
ticular, we have proposed to use tissue-type rigidity regularization so that bone and soft tissue structures
are regularized differently according to their own elasticity. To account for the commonly observed sliding
effects along motion boundaries, we have first proposed a regularizer based on integrating some general
functional of the Jacobian magnitude. We derived axiomatically the conditions on such functionals so that
discontinuities are preserved. Then we further noticed thenecessity to distinguish among different types
of singularities, namely, folding and vacuum should be prevented yet shear should be preserved. With
this in mind, we utilized the Helmholtz decomposition and regularized the divergence and curl component
differently for the deformation field. The experimental results showed that the proposed decomposed regu-
larization effectively combines the advantage of isotropic smoothing as in conventional Horn and Schunk,
and discontinuity preserving regularizers such as total variation. Such efficient incorporation of prior knowl-
edge shapes the registration process towards more physicalsolutions, which leads to better planning and
treatment accordingly.

Furthermore, we have initiated a preliminary principled study on the fundamental performance limit
of image registration problems. We proposed a statistical generative model to account for the noise effect
in both the source and target images. The Cramér-Rao Boundfor the corresponding maximum-likelihood
estimator was computed. Meanwhile, we interpreted the conventional optimization based image registration
results as an M-estimate. Using the implicit function theorem and Taylor expansion to estimate the local
curvature of the objective function, we approximated its covariance accordingly. Noting that both the ML
and M-estimates are asymptotically unbiased, we studied the pre-asymptotic performance by estimating the
mean and covariance of each estimator with finite SNR. With a simple example, we have demonstrated
that the bias of the proposed ML estimator decreases faster than the M-estimate as the SNR increases.
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This result, unfortunately, is still insufficient to determine the relative superiority of the two estimators under
consideration; because both ML and M- estimators are biasedin the pre-asymptote region, and their variance
is not lower-bounded by the Cramér-Rao Bound. Further investigation is necessary to study the deviation
of the covariance from the Craḿer-Rao Bound, which can be possibly conducted with higher-order Taylor
expansion, similar to the bias analysis.

5.2 Future Work

• We have proposed a general framework for adaptive ellipse tracking. The adaptivity pace controls the
balance between response efficiency and output smoothness,and should be determined properly. To
this end, we have used a small segment of training data and retrospectively estimated the period with
subspace projection method. After that, a static adaptivity parameter value (the window length for
sliding adaptivity and the forgetting factor for exponential discounting) is used throughout the course.
This is based on the assumption that frequency drifts are slow and that the robustness from ellipse
fitting could tolerate the frequency variation. This presumption may be violated for long fractions,
since the training segment becomes less correlated with thestate as time progresses. An adaptive
frequency drifting model is desirable to cope with such situation.

• In robust ellipse fitting, we need to determine the scale parameter for robust objective,e.g., δ in the
Huber function. Without assuming prior knowledge about theproportion of outliers relative to the
normal samples or their distribution, we have used Otsu’s method to find a threshold value for the
residual error and selected the scale parameter accordingly. The scale selection problem falls into
the unsupervised classification category, where normal andabnormal samples are to be automatically
distinguished. This is worth further investigation.

• We have proved asymptotic convergence with stochastic approximation techniques. Recognizing the
similarity between the proposed iteration with the recursive least squares (RLS) algorithm, we believe
it is feasible to estimate the error statistics in our model,analogous to the performance analysis work
for linear filters.

• In the augmented state space, the distribution of the samples can be viewed as noisy observations of
some latent random process. The distribution depends on therespiratory phase and other parameters.
It is possible to consider robust statistical quantities such as rank order statistics to implicitly estimate
the “center” of the observed cluster in the augmented state space. A potential advantage with such
a statistical interpretation is that quantities such as confidence intervals and error distribution may be
derived to facilitate the detection of changes in system dynamics.

• We have developed a tissue-type-dependent regularizationmethod, which accounts for inhomogeneity
of elasticity among different tissue types. Physically, anatomies not only exhibit inhomogeneous, but
also anisotropic deformation properties, such as directional elongation of muscles. It would be desir-
able to properly incorporate such anisotropic physical prior as well. Furthermore, we have assumed
access to an X-ray CT image, and obtained local tissue elastic property subsequently. Alternative
methods to classify tissue types will be necessary for otherimage modalities.

• We have conducted preliminary discontinuity preserving registration for 2D images. We will further
investigate the quantitative aspect of the problem and the 3D implementation. In particular, we will
study possible solutions, such as introducing viscosity orsurface tension regularization, to alleviate
the rolling artifacts observed in 3D.

• We would like to further study unsupervised or semi-supervised schemes to choose the regularization
parameters in penalized image registration problems.

• In this thesis, we have focused on the pair-wise image registration problems. When multiple frames
are available over time, it is natural to extend the current work into a joint estimation setting where the
temporal sequence of deformation fields is to be estimated. In this case, temporal correlation should
be incorporated to encourage structured solution, such as smooth evolution. Moreover, for image
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sequences obtained mainly under respiration-induced motion, this corresponds to an integration of
our work in time series analysis that accounts for semi-periodicity and the regularized nonrigid image
registration methodology.

• To analyze the fundamental performance limits of image registration, it is necessary to study the pre-
asymptote variance for both the ML and M- estimates. The complexity of using high-order Taylor
expansion and the limitations of small error analysis givesrise to the question as to whether there are
more effective approximation tools for such tasks. This is achallenging topic, but one well worth
pursuit.

• It is desirable to utilize the performance analysis of imageregistration problems to predict the sta-
tistical properties of the solutions for a given objective function. Knowledge about the fundamental
limitations in image registration may help choose system parameters properly. For example, it is only
necessary to obtain images with resolution corresponding to acceptable uncertainty in registration
to avoid excessive imaging dose. The threshold for detecting abnormality should be set above the
predicted local variance from the performance analysis with normal noise distribution.

• Given the theoretical development in this study, it is our sincere hope that practical benefit could be
harvested. This will require thorough study of clinical implications, including effect on various dose
metrics, and predictive outcome statistics such as tumor control probability (TCP) and normal tissue
complication probability (NTCP).



APPENDIX

In speech proceesing, audio signal processing, and music synthesis, aquasiharmonicsignal refers to a
waveform that is virtually periodic microscopically, but not necessarily periodic macroscopically. In many
biological phenomena, in constrast, there widely exist signals that are virtually periodic, yet demonstrate
both miscroscopic and macroscopic variations. With a little abuse of notation, we use the term “semi-
periodic” to describe such class of signals. A typical example of a “semi-periodic” signal is respiraotry
motion. Respiration is an involuntary action, the cycle of which is regulated through chemoreceptors byt he
level of CO2, O2, and PH in the arterial blood. Anatomically, the lungs reside in the thoracic cavity, encased
by theliquid-filled intrapleural space. Inhalation requires active participation of respiration muscles, with
the diaphragm being the most important. As the diaphragm contracts, and descends, it forces the abdomen
inferiorly and anteriorly, increasing the superior-inferior (SI) dimension of the chest cavity. The intercostal
muscles pull the ribs superiorly and anteriorly, increasing both the lateral (LR) and anterior-posterior (AP)
diameters of the thorax. Exhalation is passive for quiet breathing. Due to the complex respiratory pressuure
volume relationship of the lung and chest wall, deflating lung volume is larger than the inflating volume at
the same transpulmonary pressue, and breath-in time is typically longer than breath-out time. This commony
observed phenomenon is calledhysteresis.

With the advent in targert conformal radiothrepy, such as Intensity Modulated Radiotherapy (IMRT), it
is important to monitor tumor movement with high precision in real-time. Internal tumor position can be
extracted from images obtained from electronic portal imaging detector (EPID) or orthogonally placed x-ray
flat panels, as in Integrated Radiotherapy Imaging System (IRIS) [54] or CyberKnife Robotic Radiosurgery
System (AccuracyTM Inc, Sunnyvale, CA), with or without implanted markers around the tumor regioin.
Moreover, it is desirable to minimize diagnostic imaging dose for safty concerns, and external surrogates
such as thermistors, thermocouples, strain gauges, pneumotachographs [60], and infrared skin markers are
utilized to infer internal tumor position. In either cases,it is important to characterize the complexity of
internal motion, track both instantanous and long term variation, and predict future tumor position to account
for system latency. When external surrogate is applied, it iscritical to accurately infer internal tumor postion
from external observations. Chapter A proposes a scalar complexity index to characterize the irregularity
level of a breathing trajectory [101]. Chapter B describes anonparametric predictio approach based on local
regression. Chapter C addresses the hysteresis issue in external-internal inference via state augmentation.

94



95

APPENDIX A

A Breathing Pattern Irregularity Index with Projection-based Method
1

Characterization of organ motion is important in radiationtherapy, including dose planning and treatment
delivery [12,18,36,37,53]. Tumor motion, especially in lung/liver regions, is highly correlated with breath-
ing patterns. Therefore, an index that characterizes breathing regularity can facilitate treatment planning for
tumors in those regions, particularly for individualized treatment planning.

Periodicity has been a major assumption in breathing trajectory analysis, as good reproducibility indi-
cates the potential for a simple structured treatment plan tailored towards the fundamental breathing pattern.
Harmonic analysis has been employed widely to characterizerespiratory patterns [43, 87, 94]. Peaks of the
Fourier spectrum are often used to determine the dominatingperiodic behavior of the temporal trajectory.
Such approaches lack a “goodness” measure,i.e., it is not clear how a periodic signal having the dominant
frequency differs from the true trajectory. Consequently,no fundamental periodic pattern is available to
judge the soundness of such a result.

We propose a rigorous general framework for periodicity analysis based on subspace projections. For
each period within a physiologically reasonable range, a measured breathing signal is projected onto the
subspace of all signals having that period to obtain the “best fit” periodic signal in the Least Sqaured Er-
ror (LSE) sense. Residual errors for each such period are then compared to yield the overall best periodic
approximation. The estimated trajectory obtained by this “projection” method is therefore the closest peri-
odic signal with respect to observed data. We derived the method in continuous signal space to account for
the sampling effect explicitly. We also allow temporal samples to be non-uniformly spaced to offer more
freedom for the data acquisition procedure.

A.1 An Irregularity Index based on Projection Distance

Given a set of discrete samples of a breathing trajectory, wewant to find the periodic signal that best
matches the observation data. This is equivalent to reconstructing a periodic signal of unknown period from
its noisy discrete samples. For this problem to be feasible,we assume that there is some maximal frequency
component in the signal. This assumption is physiologically reasonable. We thus focus on the subspace of
band-limited periodic signals. We formulate the problem ina multilayer optimization setup where we search
over all possible periods for the “best-fit” signal. For eachperiod within a reasonable range, the observed
breathing trajectory is projected onto the subspace of all band-limited signals having that period to obtain
the closest matching periodic function. Projections from each such subspace are then compared to yield the
overall best periodic approximation. This method accountsfor the discrete temporal sampling explicitly, and
allows for the possibility of nonuniform sampling.

We model the observation datayi as a temporal trajectory sampled at{ti}Ni=1 with additive noise:

(A.1) yi = f (ti)+ni , i = 1,2, . . . ,N,

where f is the unknown ground-truth continuous periodic function whose spectrum has finite support be-
tween[−γ,γ] andni denotes the additive noise.

1This chapter is based on materials from [101]
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If f (t) is a band-limited function with periodT, then we follow [29] to rewrite it as linear combination
of Fourier harmonics:

(A.2) f (t) =
K

∑
k=−K

cke
j 2π

T kt, K = ⌊T
2
⌋,

whereck’s are the coefficients for Fourier harmonics, and⌊·⌋ denotes the floor function.
Evaluation of the above representation at{ti}Ni=1 can be compactly rewritten in vector form as:

(A.3) f = GTc,

wheref = [ f (t1), f (t2), . . . , f (tN)] denotes the discrete samples of the underlying functionf ; c= [c−K ,c−K+1, . . . ,cK ]
is the concatenation of Fourier coefficients; and the matrixG is defined as

(A.4) GT(i,k) = ej 2π
T kti .

Therefore, given the observed sample trajectoryy = [y1,y2, . . . ,yN]T , the optimal periodT∗ is the solu-
tion to the following optimization problem:

(A.5) T∗ = argmin
T

min
c∈C2K+1

||y−GTc||2,

whereC
2k+1 is the set of vectors of length(2k+1), and||y||2 = ∑N

i=1 |yi |2. The closest periodic signal to the
sampled trajectory in LSE sense is then given by:

(A.6) f ∗(t) =
K

∑
k=−K

ĉke
j 2π

T∗ kt.

whereK = ⌊T∗
2 ⌋ andĉk are obtained as the components of solution to (A.7) below when T = T∗.

For a given candidate periodT, the bandwidth parameterK = ⌊T
2 ⌋ is a constant, and the inner optimiza-

tion problem becomes an ordinary least-squares minimization:

(A.7) c∗T = argmin
c∈C2K+1

||y−GTc||2.

From classical optimization theory [68], the optimalc∗T of (A.7) satisfies the normal equation:

(A.8) (G∗TGT)y = G∗Tc∗T ,

whereG∗T is the conjugate transpose ofGT andG∗TGT is known as the Gram matrix.
Moreover, when the sample size is large enough, specificallyN ≥ 2K + 1, which we assume hereafter,

GT has full column rank, and the(2k+ 1)× (2k+ 1)Gram matrixG∗TGT is invertible [41]. The optimal
solution for equation (A.8) can be written explicitly as:

(A.9) c∗T = (G∗TGT)−1G∗Ty.

At this point, we have solved the inner optimization problemin (A.5) in closed form. The feasible range
of periodsT in the outer minimization can be designed by incorporating physical knowledge. For instance,
normal breathing is expected to have a period between 1 to 10 seconds. Moreover, even though the peak of
the Fourier spectrum is not informative enough by itself, itturns out to be a reasonably good initialization
for our method. Notice that if exhaustive search overT is to be applied in A.5, we need to evaluate (A.9) and
(A.6) for eachT of interest. Thus the computation cost depends both on how finely we sample the period
parameterT and the range of search. Using a good initial guess forT∗ can reduce the search range and thus
reduce computation substantially . Also, reasonable initialization helps to prevent the algorithm from falling
into nonphysical local minima. Since it is now a simple 1-dimensional optimization problem to findT∗, we
use an exhaustive line search over a relatively small interval thanks to a good Fourier-based initialization.
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Alternative optimization approaches like multi-resolution or incremental refinement could be used to speed
up the process. Due to the use of superposition of harmonics to describe periodic functions, projection to the
subspace corresponding to periodic functions with period 2T would naturally yield a better data fit than the
projection onto the subspace for periodT. In other words, a function of periodT is certainly a function of
period 2T, but not vice versa. However, the additional descriptive power may not always be desirable, since
this could cause over-fitting introduced by noise. Initialization by detecting the peak of the Fourier Spectrum
picks out the dominant harmonic component and the algorithmonly needs to search over a relatively small
neighborhood around that initialization point, with the confidence that the local minimal obtained would be
physiologically optimal.

Finally, our proposed irregularity index is the Root Mean Squared Error (RMSE) between the overall
optimal periodic signal and the measured trajectory:

(A.10) RMSE=

√

1
N

N

∑
i=1
|| f ∗(ti)−yi ||2.

A.2 Material and Verification Design

We used the Real-Time Position Management (RPM, Varian Medical Systems, Palo Alto, CA) system to
obtain the trajectory of an external fiducial placed on each patient’s chest wall. This fiducial tracking system
records data in time-displacement pairs that are generallyassumed to be highly correlated with superior-
inferior diaphragm motion [125]. This system is most usefulfor treating patients with tumors in the chest or
lung area without compromising their breathing.

Twelve such clinical breathing signals were used in this study. The characteristic parameters of this
population of data are listed in Table A.1 .

ID V.S. Parameter 1 2 3 4 5 6 7 8 9 10 11 12

Data Characterization2

STD (cm) 0.158 0.210 0.266 0.242 0.206 0.259 0.242 0.267 0.283 0.313 0.335 0.202
Breathing Trajectory Fitting with Modified Cosine Model

period (sec) 4.7 4.6 4.9 5.3 5.3 4.3 4.9 6.4 9.5 5.6 3.0 5.3
RMSE (cm) 0.138 0.171 0.216 0.139 0.193 0.224 0.145 0.208 0.153 0.096 0.337 0.169

dose error (%) 1.667 2.793 3.527 2.092 3.217 3.580 2.402 3.293 2.496 1.454 6.144 2.161
PTV margin (cm) 5.940 5.900 5.523 5.723 5.727 5.859 5.646 5.338 5.724 5.522 5.951 5.835

95% dose coverage 0.909 0.887 0.850 0.904 0.878 0.851 0.906 0.858 0.890 0.938 0.811 0.888
Breathing Trajectory Fitting with Projection Method

period (sec) 4.7 4.4 4.5 5.4 4.1 4.6 4.7 7.2 9.7 5.6 3.1 5.2
RMSE (cm) 0.135 0.155 0.102 0.132 0.162 0.127 0.115 0.075 0.148 0.090 0.328 0.166

dose error (%) 1.595 2.440 1.638 1.983 2.352 1.721 1.832 1.210 2.471 1.431 6.137 2.066
95% dose coverage 0.915 0.903 0.934 0.903 0.876 0.910 0.924 0.949 0.905 0.942 0.836 0.895

Result for 20sec Training, 10sec Testing

period (sec)3 4.2 4.2 4.5 5.2 4.3 4.8 4.8 7.3 9.0 5.7 3.0 5.0
RMSEtrain (cm)4 0.153 0.151 0.089 0.126 0.082 0.075 0.121 0.042 0.116 0.078 0.228 0.049
RMSEtest (cm) 5 0.177 0.256 0.150 0.231 0.318 0.283 0.141 0.147 0.290 0.150 0.580 0.3062

Table A.1: Dataset information and Experiment Results

Under Institutional Review Board (IRB) approved protocol,we have used the RPM system (Varian, Palo
Alto, CA) to obtain breathing trace data recorded at 10Hz with duration 30secfrom 12 different patients .
The recorded RPM data have relative units. To better illustrate the major idea in this paper, we normalize the
all the breathing trace data to have uniform zero mean and 1cmpeak-to-peak variation. Shifting the mean
does not introduce any bias into any treatment simulation since it is a global quantity; while normalizing
the amplitudes makes the data more representative of typical tumor motion induced by respiratory motion.
The standard deviations of these normalized data are listedin Table A.1. To justify the soundness of the
proposed irregularity index, we have virtually simulated a1-dimensional phantom object of size 5cm that
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move according to the observed trajectories, to mimic the behavior of a 5cm size tumor with peak-to-peak
motion about 1cm, which is realistic in clinical situations. A single ideal 1-dimensional treatment beam, or
in fact, delivery pattern of the same size (5cm) is designed for dose delivery simulations. It has no penumbra,
and completely covers the simulated target with uniform radiation intensity. This idealized energy deposition
model will be used hereafter to illustrate the potential impact of motion patterns and how they influence
energy deposition.

To verify that the proposed “irregularity index” and the fundamental pattern obtained from the the pro-
jection model are clinically significant, we have designed three sets of experiments.

First, we show that the Root Mean Squared Error (RMSE), whichis a mathematical criterion, is well
correlated with clinically critical metrics. In this paper, we use dose error, Planning Target Volume (PTV)
margin and 95% dose coverage to characterize performances.In particular, dose error is computed in per
cent as the normalized difference between received dose andthe ideal dose that corresponds to a perfect
overlap between the target and treatment beam throughout the whole treatment procedure; PTV margin is the
expansion needed to ensure that the entire clinical target volume receives the prescribed dose; and 95% dose
coverage is computed as the portion of the target that receives no less than 95% of the designated dose with
no margin. To account for the interplay between target motion and treatment beam adjustment, the phantom
object is moved conforming to the observed breathing trace and the treatment beam is scheduled accroding to
a designated pattern. We evaluate both the periodic fundamental pattern extracted with the projection model
in A.6 and the one obtained with the optimal commonly used modified cosine model [70, 71] to control the
movement of the treatment plan. The modified cosine model assumes that the breathing trajectory conforms
to the following formula:

(A.11) z(t) = z0−acos2n(πt/τ−φ),

wherez0,a,n,τ,φ are assumed to correspond to exhalation position, motion amplitude, asymmetry degree,
period and phase offset respectively, and are parameters tobe optimized;z(t) represents the breathing trace
index by time.

Dose error, PTV margin and 95% dose coverage are compared against RMSE in both setup to demon-
strate the correlation.

Second, we compare the projection-based model with the modified cosine model (A.11) to test the feasi-
bility of the obtained fundamental pattern. RMSE as well as dose error, PTV margin and 95% dose coverage
are used for this comparison.

Third, we illustrate the potential clinical use of the proposed method to predict motion induced by respi-
ration. We partitioned the breathing trace into two parts: atraining part of duration 20secand a testing part
of duration 10sec. For each breathing trace, the projection model is learned with the training trajectory only,
and it is used to “predict” the breathing behavior for the testing portion. This is essentially a test of temporal
variance.

A.3 Results and Discussions

Fig. A.1 shows one patient dataset to illustrate the role Fourier-initialization plays in avoiding suboptimal
local minima. An exhaustive evaluation for RMSE was carriedout over a large range of candidate periods
in Fig. A.1 (a). Fig. A.1(b) illustrate the non-physiological optimal obtained without proper prior informa-
tion, due to reason we discussed previously: harmonic analysis has an inherent bias toward large period.
Fig. A.1(c) shows that initializing with peak location of Fourier Spectral (in this example corresponding to
T = 4.3s) helps to correctly capture the physiologically sound optimal period and enables us to restrict the
period search to an even smaller candidate set for further computation efficiency.

To validate the correlation between the root mean squared error (RMSE) and the clinically critical met-
rics, we plot the performance characteristic parameters (dose error, PTV margin, 95% dose coverage) vs.
RMSE in Fig. A.2 for both projection model based motion compensated treatment and modified cosine
model based motion compensated treatment. Quantitative results are listed in Table A.1. In both treatment
plan simulations, dose error and PTV margin demonstrate an increasing trend as RMSE becomes larger
while the 95% dose coverage decreases. This validates the soundness of using RMSE as the index for
“performance indicator”.
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Figure A.1: Proper initialization helps to avoid suboptimal (nonphysical) local minimum: (a) Exhaustive
evaluation of RMSE for difference candidate periods; (b) estimated pattern atT = 8.2s, this is
nonphysical even though it corresponds to slightly better fitting in RMSE sense; (c) estimated
pattern atT = 4.1s, the physiologically sound optimal period.
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Figure A.2: Clinical significant performance metrics v.s. Root Mean Squared Error (RMSE). Different met-
rics are indicated with letters [(a#)] dose error (%); [b(#)] PTV margin (cm); [c(#)] 95% dose
coverage. Different motion models for conmoving the treatment beam are indicated with num-
bers: [X(1)] projection based model (treatment beam trajectory described as linear combinations
of harmonics); [X(2)] modified cosine model.

Moreover, we carry out a comparison between the projection-based model with the commonly used mod-
ified cosine model described in Equation (A.11). Fig. A.3 shows the RMSE of the best fit modified cosine
model versus the proposed index (RMSE derived from projection model), and it demonstrates that not only
does our index capture how well the signal can be approximated by a well-recognized physical model, but
the fundamental pattern obtained via the projection model uniformly outperforms the modified cosine model
in the LSE sense. For further clinically meaningful justification, we calculate the performance characteristic
parameters corresponding to a modified cosine model in TableA.1, and we can observe that our projec-
tion model yields lower RMSE, dose error, PTV margin and higher dose coverage than the modified cosine
model overall (Fig. A.3). Furthermore, the problem of fitting the data to the model described by Equation
(A.11) is higly non-convex with respect to its parameters which incurs two issues: it is extremly sensitive
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to initialization due to the numerous local minima; and it iscomputationally expensive as a nontrivial high
dimensional search problem. In contrast, the proposed projection approach offers a closed form solution
for the inner optimization problem in (A.5) and is thus simplified to a 1-D line search, it has an obvious
advantage in computation efficiency over the modified cosinemodel.
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Figure A.3: RMSE, Dose error(%), PTV margin (cm), 95% dose coverage of modified cosine model v.s.
projection model.

To further justify the above claims, Fig. A.4 shows some of the fitted trajectories with “optimal” cosine
model parameters with their counterparts from the projection-based approach. The fundamental patterns
obtained by the projection method do indeed offer a better match than the cosine model. This is a result of
the intrinsic “nonparametric” nature of the projection based approach. Described as a linear combination of
harmonics, the fundamental pattern has essentially(2K +1) degrees of freedom whereK is determined by
the imposed band limit of the physical signal. The modified cosine model, on the other hand, has explicitly
assumed no more than 5 degrees of freedom, which has restricted its descriptiveness. For the same reason,
our method imposes no symmetry on the fundamental pattern; in particular, the trajectory of inhalation does
not have to be the inverse of exhalation, unlike the modified cosine model.

A “good” fit of the breathing trace with a periodic pattern is obtained (lowRMSE by the proposed irreg-
ularity index) indicates that the breathing trace under examination is highly regular, and vice versa. Similar
argument holds for the relationship between “bad” fit (high RMSE) and high irregularity. Instead of examin-
ing the combination of a whole bunch of quantities, such as standard deviation of amplitude, mean positions,
periods of breathing cycles, etc, this single number (the RMSE) serves as the irregularity index, since it is
designed specifically for this purpose. Therefore, observing a low RMSE increases the confidence and fea-
sibility for potential dynamic treatment for the mobile target. In particular, Synchronized Moving Aperture
Radiation Therapy (SMART) [84] and similar motion compensation based treatment schemes are potentially
applicable. Moreover, the fundamental pattern, which is obtained as a free side-product during the process
of estimating period and computing the irregularity index,is a good indicator of what the radiation beam
pattern should be, serving the same purpose as average tumortrajectory (ATT) introduced in [84]. In other
words, it can be regarded as an alternative derivation of ATTwithout having to examine individual cycles
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Figure A.4: Trajectory fitting with projection model and modified cosine model. Left column: projection
model vs. true trajectory; right column: modified cosine model vs. true trajectory.

too closely. A potential merit of the proposed method for extracting ATT is that it is much less sensitive
to additive noise due to its global nature - every sample on the observed breathing trace contributes to the
estimation of the fundamental pattern.

To show the potential application of the proposed projection based scheme to predict target motion, we
derive the fundamental pattern with the first 20secof breathing trace (the training portion) and apply it to the
remainder of the data - the next 10secof breathing trajectory is called “testing portion” since it is not seen
by the projection model. We illustrate some examples in Fig.A.5. The irregularity indexes derived from
the learning portion, the corresponding optimal period andthe evaluation of its fit to the the ground-truth
trajectory for the testing portion using RMSE are provided in Table A.1.

The quality of the prediction depends on how repetitive the true breathing trajectory is, which again
can be measured by the proposed regularity index. When we examine closely the RMSE computed from
training portion and test portion, we will see that the latter is uniformly larger, which is expected (since
optimization is applied only to training data). Moreover, when we examine across cases, there is a positive
correlation between RMSE computed during training and RMSEcomputed from testing. This indicates
RMSE during recent historical trajectory is a good predictor for RMSE, and thus irregularity level for near
future. Generally, being a global regularity measure, the proposed index may not capture time varying
properties of the breathing signal. This limitatioin can beovercoome by applying the proposed method to
smaller sliding time intervals instead of the whole trace. Despite this limitation, the projection model based
prediction appears to provide reasonable predictions within approximately a 2 second response window
given a sufficiently regular breathing trace. Even though this number is significantly larger than the 0.4
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Figure A.5: Prediction of breathing trajectory with projection model.

second discussed in [125], we arenot claiming that the proposed algorithm is preferable to adaptive filtering,
since regularity in breathing trace is a pretty stringent assumption. Modeling of free form breathing is a hard
and unsolved problem in general. It is often desirable to have a simple and descriptive model even if some
conditions need to be checked in the first place. Moreover, the proposed irregularity index is a convenient
tool for such a sanity check. By examining this single index,we can determine whether the breathing trace is
regular enough for the periodicity assumption to hold, hence the corresponding prediction or synchronized
motion compensation with ATT may be applied.

A.4 Summary

We have derived a general framework to find the closest periodic signal that best matches the temporally
sampled observation of breathing trajectory. Experimental results have shown good consistency with physi-
cal knowledge and clinically critical parameters as dose percentage error, PTV margin and 95% dose volume.
Comparison between the popular modified cosine breathing model and the projection-based approach shows
that being consistent with the residual error from fitting the modified cosine model, our approach offers
additional computation efficiency and robustness in the optimization process. Furthermore, we get the fun-
damental breathing pattern which helps to justify the soundness of the results and can serve as a valuable
reference in further treatment planning. Potential applications of the fundamental pattern to dynamic motion
compensation and prediction are illustrated with preliminary experiments. It is also likely that knowledge of
the periodic signal can aid in reconstruction of 4-dimensional computed tomographic models.

In this study, we have focused on finding the optimal periodicsignal in the LSE sense. As future work,
we would like to investigate alternative metrics that are potentially more tolerant to transient pathological
breathing patterns. Also, for a particular treatment planning scheme, some choice of matching metrics could
be more suitable than others, and the design of plan-dependent irregularity indexes would be interesting.
Finally, we have used in this study the RMSE resulting from the projection method as an irregularity index.
Potential variants, for instance, a normalized version, may be more desirable in some applications.
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APPENDIX B

Real-time Prediction of Respiratory Motion based on Nonparametric
Local Regression Methods1

Current developments in radiotherapy such as Cyberknife and Intensity Modulated Radiotherapy (IMRT)
offer the potential of precise radiation dose delivery for moving objects. Accurate target volume tracking
is necessary for conformal treatment plans to fully utilizetheir capacity. Image-guided radiotherapy needs
to consider system latencies resulting from image acquisition, communication delay, data processing, and
mechanical processing. For treatment over multiple fractions, or long procedures, the diagnostic radiation
dose can be significant, so it is desirable to reduce the imageacquisition rate. To address this issue, hybrid
tumour tracking approaches that combine episodic radiographic imaging and continuous monitoring of ex-
ternal surrogates have been investigated [80,81,86,104,105]. There are two active areas of research related
to hybrid tracking: (1) study of feasibility and effective use of external surrogates (including the place-
ment mechanism) such as thermistors, thermocouples, strain gauges, pneumotachographs and infrared skin
markers [1, 47, 57, 59, 73, 117, 124]; (2) prediction algorithms [109, 125, 133]. In particular, even if perfect
information about the current state is assumed, the lag between observing tumour location and treatment
delivery still necessitates having predictors that can “look ahead” enough, yet behave reasonably well even
for relatively low input sampling frequencies.

This study belongs to the second category where we are interested in predicting target motion located
in the lung area or its vicinity. Such motion is mainly causedby breathing, and exhibits semi-periodicity as
observed in normal breathing signals. This is a very active research area [37,53,109,125]. The semi-periodic
structure of the breathing signals make explicit modeling challenging, since parametric models often fail to
capture local variations. On the other hand, overly flexiblemodels that depend only on temporally local
information fail to use correlated historical information. Among the most investigated methods are linear
predictors with various covariate lengths, neural networks, and Kalman filters.

We propose a prediction method based on local weighted regression. Adopting a classic approach in
modeling dynamical systems, we first generate an augmented state with the most current observation and
one or more preceding samples. This augmented state is designed to capture the local dynamics about the
time point of interest, and it is used as the covariate for thepredictor system. For a pre-specified “look-ahead”
length, the target response pattern of the predictor is obtained from the training data. Those state-response
pairs form a scatter-plot in a high-dimensional space wherewe apply locally weighted regression. Intuitively,
the predictor infers its response map from the behavior of its neighbors in this state space, since it is probable
that they are. The regression weights are designed to reflectthe “distance” between the state of interest and
the training samples.

For the purpose of real-time tracking and prediction, we adaptively adjust the inference weights to in-
corporate the decaying temporal correlation among response patterns with longer time lags2.

We discuss the proposed methods in detail in Section B.1. Themethod is applied to clinical RPM data
(RPM Varian Medical System, Palo Alto, CA) that is describedin Section B.2. We report the test results and
the comparison to alternative methods in Section B.3. Finally, we discuss future directions in Section B.4.

1This chapter is based on materials from [98]
2In fact, this corresponds to augmenting the state with the timeindex as an extra dimension.
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B.1 Methods

In this section, we propose a prediction method based on locally weighted regression. For simplicity, we
describe the model in terms of scalar locations,i.e., 1-D observation. The extension to vector observation
is straightforward. Section B.1.2 first introduces a primitive version that ignores the change of temporal
correlation with time lag, and Section B.1.3 and Section B.1.3 extend it to include time indexing.

B.1.1 Model Setup and General Notations

Let the continuous scalar functionf : ℜ→ ℜ denote a motion index signal. At time instantτ, we
are given a set of discrete samples{si = f (t(i)), i = 1,2, . . . ,k} of the breathing trajectory prior toτ, with
t(k) < τ. For simplicity, we assume that the observed signal is sampled uniformly with frequencyψ Hz,
i.e., t(i + 1)− t(i) = 1/ψ. We assume that the look ahead length is an integer multiple of the sampling
interval 1/ψ seconds, and for later convenience, we represent it in the discrete unit,i.e., a look-ahead length
L indicates aL/ψ seconds prediction. We usep to denote the state dimension used to capture system
dynamics. To draw an analogy to ordinary differential equation (ODE) based system,p = 2 corresponds
to first order difference system with location and approximate velocity; andp = 3 corresponds to a second
order difference system with the addition of acceleration.

B.1.2 Basic Local Weighted Regression

At current time instantτ, the available observations ares1, . . . ,sK , whereK ≤ τ×ψ. Then for any
i ≤ K−L we construct lengthp state vectorxi = [si−(p−1)∆, . . . ,si ], and response variableyi = si+L. The
parameter∆ is an integer that indicates the “lag length” used to generate the augmented state. It should be
chosen to properly reflect system dynamics: small lags are more sensitive to dynamical change as well as
noise; big lags are more robust to the presence of noise yet average out the system dynamics at the same
scale. The set of hyper-pairs(xi ,yi) form a scatter plot in thep+1 dimensional space. Assuming that the
state thus constructed conveys all the information about system dynamics, then the scatter-plot summarizes
the noisy realizations of the prediction map:g : ℜp→ℜ:

(B.1) ŷi = g(xi),

where the predictorg is a smooth function. This is a reasonable model as we do expect the prediction to vary
smoothly with the historical trajectory. Our goal is to predict the target location at time(τ+L/ψ) seconds,
which is equivalent to estimating ˆyK .

Respiratory motion is not stationary, in fact, both the system dynamics and its local statistics vary in a
semi-periodic fashion. Unfortunately, most existing methods in estimating the prediction mapg fail to take
this “phase-dependent” phenomena into account, with the exception of [103] and [133] where a discrete set
of stage-wise models are constructed and updated adaptively. The idea is to train (or infer) a predictor at a
given state with (only) those historical data samples that behave similarly, or vaguely speaking, belong to a
similar respiratory stage. Yet the existing stage-wise models require predetermining the number of discrete
stages and often involve segmentation-based training. To circumvent these difficulties, we hereafter provide
a means to locally estimateg in the state-space neighborhood ofxK , based on local regression (LOESS)
from nonparametric methods in the statistical literatures[19].

Let r be a pre-determined constant3 that specifies the size of the neighborhood whose members affect
the estimate in the scattered(p+ 1)-dimensional space. LethK be the distance fromxK to therth nearest
neighbor in terms of Euclidean distance in thep-dimensional subspace,i.e., hK is therth smallest number
among the distance betweenxi , i = 1,2, . . . ,K − L to xK . Let κ(·) be a symmetric kernel function that
satisfies:

1. κ(x) > 0 for |x|< 1 andκ(x) = 0 for |x| ≥ 1;

2. κ(−x) = κ(x);

3. κ(x) is a non-increasing function forx≥ 0.

3Equivalently, it could also be specified as a ratio with respect to the total number of data points.
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We select local inference weight according to:

(B.2) wi = κ(h−1
K ||xi−xK ||).

Figure B.1 illustrates the idea of weighting based on distance in state space. For simplicity, one delay
tap is used(p= 2), so the statexi = [si−∆,si ]. The goal is to estimate the responseyK for current state vector
xK , from available covariate-response pairs(xi ,yi) for i ≤ K−L. Notice thatK−L < i ≤ K are not used
in the regression, since their response valuesyi are not yet available at time instantK. Distances between
current statexK andxi are computed and the kernel function is used to determine theregression weights
wi as in (B.2). The assigned weights emphasize those training samples that share similar dynamics as the
current state of interest as shown in the lower part of FigureB.1.
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Figure B.1: State-space distance and local regression weight assignment. Upper subfigure: Illustration of
prediction quantities with 1st order dynamicxi = [si−∆,si ], current data pointsK , prediction
locationyK = sK+L, available covariant-response pair(xi ,yi)i≤K−L; lower subfigure: distance
map (blue dash-dot line)) in the state spacedi = ||xi −xK || and inferred regression weightswi

(green solid line).

We subsequently estimateg locally using a polynomial of degreed, i.e., we use a predictor of the

form g(x) = ∑Q
q=1 βqzq(x), whereQ = (d+1)p andzq(x) = ∏p

j=1x
d j
j and(d1, . . . ,dp) ∈ {0,1, . . . ,d}p that

corresponds to the base-d representation ofq.
We estimate the coefficients of the local polynomial by minimizing the weighted local squared error:

β̂ = argmin
β

K−L

∑
i=1

wi(yi−
Q

∑
q=1

βqzq(xi))
2

= (ZTWZ)−1ZTWY,(B.3)

whereZ is the K − L by Q matrix with elementsziq = zq(xi). The weighting matrixW is a diagonal
matrix with W(i, i) = wi . Since the local weightw has a limited bandwidthhK as designed in (B.2), there
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are onlyr nonzero diagonal elements in the weighting matrixW. Correspondingly, the outer summation
∑K−L

i=1 can be equivalently written as supported only on a local neighborhood of radiush, i.e., ∑i:||xi−xK ||<h.
Therefore, the data vectors involved have lengthr ≪ K−L rather thanK−L. It is desirable to choose a
small neighborhood sizer to decrease computation cost, yet not overly small to sacrifice the regularity of
(B.3), i.e., the invertibility ofZTWZ.

For subsequent prediction from a given observationxK , we use the estimated polynomial coefficientβ̂:

ŷK =
Q

∑
q=1

β̂qzq(xK).(B.4)

The algorithmic flow chart is as follows:

Algorithm 2 PredictŷK from (xi ,yi)i≤K−L,xK with local regression.

Selectr (size of regression neighborhood), obtainhK from order statistics of||xi−xK ||.
Select kernelκ and compute regression weightswi according to (B.2).
Compute prediction model coefficientŝβ according to (B.3). For lag-one state augmentation with sec-
ond order polynomial prediction model,p= 2, d = 2, andQ= 9, so computingβ̂ requires the inversion
of a 9×9 matrixZTWZand then multiplying it by a 9×1 vector.
predict the response ˆyK using (B.4).

B.1.3 Variations that Potentially Improve Prediction Performance

We now describe two design variations that have the potential to improve prediction performance: using
an iterative weighting scheme to increase robustness to outliers in regression (Section B.1.3), and dynami-
cally updating the training atlas to account for temporal variations and/or trends (Section B.1.3 and Section
B.1.3).

Robust Local Weighted Regression with Iterative Weight Assignment

It is possible that the training set based on state space distance includes abnormal covariate-response pairs
due to noisy observation, or abrupt (and non-repetitive) changes such as patient coughing, and thus they may
not be “representative” of the predictor pattern for the given state. To help the local regression method to be
robust to such outliers in the(xi ,yi) pairs, we can diminish the weight of a sample covariate-response pair
whenever it is inconsistent with the smooth regression fromits neighbors. To quantify such inconsistency,
we can compare each response valueyi with its predicted value ˆyi = g(xi). Intuitively, the distance between
the observed responseyi and its estimate ˆyi indicates how different the particular covariate-response pair
behaves than its neighbors. Cleveland [19] has suggested a robust weighting scheme based on a bi-square
functionB defined as follows:

B(x) =

{

(1−x2)2, for |x|< 1
0, for |x| ≥ 1.

Let ei = yi − ŷi be the residual of the observed response from the current fitted value. Lets be the median
of the|ei | for i = 1,2, . . . ,K−L. Define the robustness weights by

(B.5) δi = B(ei/6s).

The original weightwi(x j) that determines the “contribution” of theith sample covariate-response pair in
estimating thejth response ˆy j is then modified to bewi(x j) := δiwi(x j), reducing the effect of outliers
in fitting the other data points. We apply this re-weighting procedure several times, and use the robust
adjustedwi(xK) in place ofwi in (B.3) for estimating the local polynomial coefficientβ̂. This is practical
since theδi values involved in adjusting the local weight depend only onthe ith sample fitting quality, and
are independent of the predictor. Pluggingβ̂ in (B.4) results in a predicted response value ˆyK . Since the
estimation of local polynomial coefficients discounts the effect of outlier samples, the result predictor is
expected to be robust to outlier behavior in the “training set” as well. Note that robust local regression could
be combined with other methods if needed.
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Modified Weight Assignment with Exponentially Discounted Temporal Correlation

Fading memory is present in many natural processes. In breathing trajectories, temporally adjacent
sample points tend to be more similar than the sample points further away from one another. To incorporate
this property in prediction, we adjust the weights by applying an exponential discount as a function of the
temporal distance. Specifically, we modify the weights as follows:

(B.6) wi(x j) := exp(−α|i− j|)wi(x j).

The positive constantα determines the decaying rate of influence of one sample on another one as their
temporal distance increases. As a special case,α = 0 corresponds to no temporal discounting for the sample
contributions, but dynamically adds the new samples into the training atlas as they become available.

Temporally Windowed Training Samples

Alternatively, we can modify the weights using a temporal moving window as follows:

(B.7) wi(x j) :=

{

wi(x j) |i− j|< Γ
0 otherwise,

whereΓ is the window size. Here only samples that are close enough intime contribute to the local regression
with weights determined by (B.2). The length of the window needs to be chosen long enough to guarantee
enough samples for the local regression.

B.1.4 Baseline Methods for Comparison

It is desirable to decrease radiation dose due to imaging in image-guided radiotherapy (IGRT). This
means we would prefer to predict with low-frequency observation samples (smallψ). On the other hand, it
takes time to acquire each observed sample, process it and move the hardware (linac, MLC or cyberknife)
accordingly. Thus a system capable of large lookahead lengths is preferable. These two requirements are
challenges in prediction, and trade-offs between them needto be considered. More specifically, with looka-
head length determined by the limitation of system response, we want to determine the smallest measurement
rate that still guarantees certain prediction accuracy. Wewill study the performance of the proposed method
when lookahead lengths and sampling rates are varied, and compare that with some baseline approaches
described as follows.

Following [109], we use some commonly used predictors for baseline comparison. We briefly describe
their setups and optimization for free parameters in this section.

• Most Recent Sample

This method simply uses the last sample value:

ŷK = sK .

There are no parameters to be estimated.

• Linear Predictor4

The response is predicted as a linear combination of the previously known positions. This corresponds
to a simple model:

ŷK = βTxK +β0.

Given a training set, and for a fixed history length the optimal coefficientsβ,β0 in terms of mean
squared error can be obtained by solving a linear system.

4The “linear extrapolation” method described in [109] is a special case of linear prediction.
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• Artificial Neural Networks (ANN)

We investigate a multilayer perception (MLP) with two feed-forward layers as the ANN predictor [63].
The first layer takes in a fixed history of samples and a constant value 1, linearly transforms the inputs
and then uses a sigmoid function to generate the hidden values. The equation for the first layer is

h j(x) =
1

1+exp
(

−γT
j x+γ j,0

) .

The second layer is chosen to be a simple linear system, and the output is given by

ŷi = ηTh(xi).

Parametersγ andη are estimated from the training set. We use Netlab toolbox [83] to implement
ANN in Matlab.

We have also implemented a Kalman Filter for comparison, using Expectation-maximization (EM)
method for parameter selection [78], and applied those values for prediction. Our results agree with [109]
that the Kalman Filter provides inferior performance compared to ANN. For conciseness, we skip reporting
them in this paper. A related research worth noting is the adaptive linear filter model introduced in [125],
which can be interpreted as Kalman Filter not in the state, but in linear regression coefficient vector. Unsur-
prisingly, it shares the limitation of Kalman Filter due to the nonstationarity of respiratory signal.

B.2 Materials

We used the Real-Time Position Management (RPM, Varian Medical Systems, Palo Alto, CA) system
to obtain the trajectory of an external fiducial placed on thepatient’s chest wall. The recorded displacement-
time relationship is believed to be highly correlated with superior-inferior diaphragm motion [125], which is
the major source of respiratory motion for tumours in the chest or lung area (the displacements in left-right
and anterior-posterior direction are normally on the orderof one magnitude lower). To better reflect the
behavior of physical superior-inferior motion, the unit-less RPM data were centered and scaled so that their
dynamic range matches that with typical SI motion for chest and lung tumours. Table B.1 summarizes the
RPM data used in our experiment5 . Figure B.2 illustrates two typical breathing trajectories.

Subject ID 1 2 3 4 5 6 7 8 9 10

STD 4.96 4.99 3.01 1.99 3.16 1.73 6.27 5.65 2.74 5.29
P-P 25.36 23.65 12.67 11.24 18.72 9.70 28.79 21.89 12.19 21.55

Table B.1:RPM Dataset information.

B.3 Results and Discussions

B.3.1 Scatter Plot in Augmented Space

We first consider a simplep = 2 dimensional state vectorxi = [si ,si−∆]. The response variable is of the
form yi = si+L. Figure B.3 shows a 3-dimensional scatter plot of(xi ,yi) with the base-line X-Y coordinate
reflecting the covariatexi and the Z coordinate indicating the corresponding responsevariable valueyi . The
covariate-response structure is rather smooth, motivating our use of local regression to predict a response
from the samples in the neighborhood of the projection onto the X-Y plane. Roughly speaking, the pattern
suggests the existence of a conceived functionalg that maps the covariate to the response.

We started with a fine sampling rate ofψ = 30Hz and used onlylag− one delay with ∆ = 12 that
corresponds to 0.4 second to augment the state space. We investigate a lookahead length ofL = 30, which

5The data are adjusted to have globally zero mean; average periods are estimated with subspace projection method [101].
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Figure B.2: Typical breathing trajectories: (a) rapid yet regular breath; (b) slow yet irregular breath.
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Figure B.3: Covariate-response relationship with lag-oneaugmented state: (a) 3-dimensional Delaunay tes-
sellation plot; (b) 2-dimensional scatter plot with color indicating the response value.

is equivalent to a 1 second prediction. We used these parameters as defaults in later experiments (e.g., in
Section B.3.4). This lookahead length is reported to be difficult by [125] and [109] with a wide spectrum
of common prediction techniques. In particular, in the comparative study in [109], the best performance
among linear predictors, Kalman filter and artificial neuralnetworks yields a RMSE of about 5mm, with
similar data statistics to our rescaled RPM data6. Lag-one augmentation corresponds to regression based on
the most current samplesi and one preceding observationsi−∆, which is the most compact model possible.
The temporal lag∆ for augmentation should be chosen to reflect the system dynamics properly and robust
enough in the presence of observation noise, and does not have to be unity.

B.3.2 Local Weighted Regression without Temporal Discounting

To illustrate the performance of the simple local weighted regression method described in Section B.1.2,
we conduct two simple experiments with the following configurations: we used the “tricube” function [19]
as the weighting kernelκ and chose the effective bandwidth so that the local regression is supported on half
of the samples. Specifically, we used

κ(x) =

{

(1−|x|3)3, for |x|< 1
0, for |x| ≥ 1.

6The research conducted in [109] uses 3-dimensional position, which is presumably more complex than this study. However, since
motion in SI direction dominates the overall respiratory variation in general, we expect the prediction error to be the major contributor
to the overall tracking/prediction performance. Rescalingthe RPM data to have similar statistics as typical SI motion, wefeel it fair
and illuminating to compare quantitatively the performance ofour predictor to that of the general 3D predictors.
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The neighborhood sizer was chosen to be 200, which is equivalent to about 7 seconds worth of samples.
Accordingly,hK is the 200th smallest number among||xi−xK ||.

B.3.3 Robust Local Regression with Iterative Weighting

We investigated the robust iterative weighting of Section B.1.3, but found that iterative weighting did not
significantly change the prediction errors in this experiment. This suggests the absence of dramatic outliers
in our experimental data.

B.3.4 The Effect of Dynamically Updating the Training Set

If the training set is determined before the treatment process, and is kept the same thereafter, the corre-
sponding local regression structures are also fixed. This isthe “static” inference scenario. It is also possible
to “add” (or “substitute” the oldest sample with) new samples into the training set during the treatment pro-
cess, as new responses become available. We refer to the latter approach as “dynamically updating of the
training set”.

The computation for simple local regression is the same regardless of whether we update the training
atlas or not, as it uses only the training samples that fall into the neighborhood of the target. On the other
hand, when robust local regression with iterative weighting is applied, choosing between static training and
dynamic training makes a difference. In the static scenario, the robust weights can be computed offline upon
the availability of all the training samples, and are kept the same thereafter. However, if we use dynamic
updates, not only does the size of the “atlas” grow with time,but there would also be changes in the robust
weights, since the newly available covariate-response samples can potentially change the regression weights
for those existing samples whose supports overlap with those of the new ones. This effect can propagate
through the whole atlas.

At the cost of possible additional computation, dynamically updating the training atlas admits new infor-
mation as the time proceeds. This is particularly valuable when the underlying system dynamics demonstrate
strong temporal variation, such as frequency change or homeposition drifting, which are both commonly
observed. New samples can either be added to the training setas either simple addition, which corresponds
to a collective history case, or substituted for the oldest training sample, as in the windowed training history
case. In both cases, experiment results indicate that dynamically updating the training set yields overall su-
perior prediction performance in terms of root mean squarederror (RMSE) and mean absolute error (MAE),
as we report in Section B.3.4 and Section B.3.4.

Dynamically Expanding the Training set

Using a discount factorα = 0 in (B.6) to adjust weight for the training samples up to the most currently
available one is equivalent to building a collective atlas that includes all previous covariate-response pairs.
Of course, new training pairs are entered into the the atlas as time proceeds. Table B.2 reports the prediction
performance for one second lookahead with 5Hz sampling using this dynamic training structure as opposed
to a static 20 second training at the beginning of the fraction.

Table B.2: Comparison of Prediction Performance among Static Training, Dynamic Expanding Training,
and Updating Training with Moving Window

Subject ID 1 2 3 4 5 6 7 8 9 10 Average
Root Mean Squared Error (RMSE)

static 9.7 3.6 2.2 1.9 10.8 5.6 4.9 4.2 2.8 4.4 5.0
expand 3.4 2.8 1.6 1.4 2.5 1.3 4.8 2.6 2.1 3.7 2.6
update 2.7 2.5 1.4 1.4 2.6 1.3 4.8 2.5 2.1 3.5 2.5

Mean Absolute Error (MAE)
static 7.5 2.6 1.7 1.4 3.9 2.6 3.7 2.5 2.1 3.1 3.1

expand 2.6 2.1 1.2 1.1 1.7 1.0 3.5 1.7 1.6 2.6 1.9
update 2.0 2.0 1.1 1.0 1.7 1.0 3.4 1.7 1.4 2.5 1.8
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Figure B.4 illustrates improved prediction performance bydynamically expanding the training set for
breathing traces that either exhibit mean drifting or pattern changes. There is minimal benefit when the
breathing pattern is already fairly regular or irregular with no “trend”, and new observations simply add to
the already sufficiently dense training atlas. Change detection may be used to locate some local variations,
but this imposes extra complexity7.

Dynamically Updating Training Set with Windowed History

Alternatively, a moving window can be used to update the sample set. This corresponds to substituting
the oldest samples with the newly available covariate-response pairs, as discussed in Section B.3.4. We
illustrate the effect of this dynamic updating method in Table B.2 and Fig. B.5. A dynamic window of
length 20 second is used in all of our experiments. We used theperformance of dynamic expansion as a
baseline for the windowed study.

For the 20sec training window, the overall prediction performance improves upon the previously dis-
cussed dynamic expansion. The level of improvement, though, is much smaller than the one we obtained
by going from static training to dynamic expansion. Some trade-offs are expected: for long fractions, it
is more likely that the later samples are decoupled from the samples acquired at the very beginning of the
procedure, thus moving window method should be favorable; on the other hand, dynamic expansion does
not require choosing a window length, and it is almost free ofthe risk of running into insufficient samples
for the local inference, thus has the advantage of being simple and stable. There is little difference in the
prediction performance between the two methods from Fig. B.5 except that in the mean drifting case, the
windowed update may be slightly better, which is also reflected quantitatively in Table B.2.

B.3.5 The Effect of Measurement Rate and Lookahead Length

We compared the local regression (LOESS) method using expanding training atlas with the baseline
approaches described in Section B.1.4. In particular, we compared with most recent sample (MRS), linear
prediction (Linear), Kalman Filter (KF) and Artificial Neural Networks (ANN) when lookahead length and
sampling rates are varied. Figure B.6 and Fig. B.7 report theresults in terms of the collective root mean
squared error (RMSE) and mean average error (MAE) across allpatients. In general, the prediction errors
increase as sampling frequencyψ decreases and/or lookahead lengthL increases, as expected. Interestingly,
the proposed local regression method is insensitive to the sampling rate, and performs almost consistently
across different lookahead lengths. Unlike the most recentsample, linear model or Kalman filter, which not
only make assumptions about the underlying model structure(linearity), but also try to explicitly solve for
the model parameters, LOESS makes none of the above assumptions or effort. The nonparametric nature
of the regression avoids assuming a fixed model structure, let alone solving for it. The only requirement
is consistent behavior (orexistenceof an underlying functional form). A polynomial of sufficient order
approximates this underlying function via fitting samples in the neighborhood of the point of interest. This
also explains, to some extent, why ANN outperforms the otherapproaches [79], as it is a combination of local
linear perceptrons, with extra nonlinearity provided by the sigmoid activation function. When lookahead
length is short and sampling rate is high, linearity holds approximately, and all methods provide reasonably
good prediction. However, when we need to look further ahead, linear models are not sufficient to capture
the dynamics, even though the response pattern may still be consistent, and that is where LOESS (and ANN)
demonstrates its advantage. Figure B.6 reports the relationship between collective prediction error (across
all testing subjects) and lookahead length for sampling rate ψ = 5Hz and Fig. B.7 illustrates how collective
prediction error change with different sampling rates. LOESS approach performs competitively with ANN
for lookahead length 0.6 seconds, in particular for low sampling frequency, and it demonstrates an obvious
advantage for lookahead length 1 second.

7Segmentation based tracking/prediction model [133] followssimilar logic, yet requires further research to improve robustness and
automation.
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Figure B.4: Effect of dynamically updating the training atlas: actual signal time history (blue solid line), pre-
diction from static training (black dash-dot line) and prediction from dynamic expanding atlas
(red dashed line). (a) breathing with mean drifting (Patient 1); (b) In the presence of chang-
ing breathing pattern (Patient 6); (c) with complicated transient interrupting regular breathing
(Patient 8); (d) quasi-regular breathing pattern (Patient10).
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Figure B.5: Comparison of prediction performance using dynamic update with moving windowed and ex-
panding training atlas: actual signal time history (blue solid line), dynamic expanding training
(black dash-dot line), moving window adaptive training (red dashed line).

B.4 Conclusion and Future Work

In this paper, we have proposed a local regression based method to predict respiratory motion. We
compared the proposed method and conventional approaches such as most recent sample, linear model,
Kalman filtering, and artificial neural networks. The proposed method had lower prediction error than the
others for tasks requiring long lookahead prediction. We have also discussed extensions and variations of
the basic method to provide robustness to outliers that may be caused by low SNR or miss-tracking. We
studied the prediction performance with different error metrics (RMSE and MAE) for various combinations
of lookahead length and sampling frequency. The proposed method showed the most advantage for long
lookahead lengths and low sampling rates.

We have discussed the challenge of choosing a good discount factor for weight adjustment in local
regression in Section B.1.3 and discussed the two simple cases corresponding to either no forgetting or
inference from windowed historical sample. The proper choice of the temporal discount factor depends on
the variation of the underlying breathing pattern, and automatic schemes should be investigated.

As observed in our experiment, various phases of respiratory motion are predicted with different ac-
curacies. Respiratory motion demonstrates obvious non-stationarity: the system variation at the transition
phase could be very different than that during extreme tidalstages (end-inhale or end-exhale). From an-



114

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2.5

3

3.5

4

4.5

5

5.5

6

Lookahead Length (seconds)

R
M

S
E

 E
rr

or
 (

ac
ro

ss
 a

ll 
su

bj
ec

ts
)

 

 

MRS
Linear
ANN
LOESS

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1.5

2

2.5

3

3.5

4

4.5

Lookahead Length (seconds)

M
A

 E
rr

or
 (

ac
ro

ss
 a

ll 
su

bj
ec

ts
)

 

 

MRS
Linear
ANN
LOESS

(a) RMSE (b) MAE

Figure B.6: Collective performance comparison for different lookahead lengths. With sampling rateψ =
5Hz, (a) root mean squared error (RMSE), (b) mean absolute error (MAE).
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Figure B.7: Collective performance comparison for different sampling ratesψ. Left column [a#] RMSE,
right column [b#] MAE. Top row [X1] illustrates the results from a lookahead length of 0.6
second and bottom row [X2] shows the results when lookahead length is 1 second.

other perspective, if we examine the signal-to-noise ratio(SNR) over a windowed portion of the signal,
SNR would change as the window covers different stages of thebreathing: SNR would be relatively high
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during transition stage, as the signal variation is big relative to noise, while SNR is low at the plateau stages,
which correspond to end of inhale or exhale. These observations motivate a potential research topic: if we
aim at homogeneous prediction performance throughout the breathing trajectory, it may be necessary to use
adaptive sampling. More precisely, denser sampling may help where prediction uncertainty is big whereas
sparser sampling should suffice where prediction is more reliable. This is a topic for future study.

The dynamics of respiratory motions change over various stages of breathing, and makes general pre-
diction difficult. Models using state dependent transitionprobabilities have been investigated for stochastic
tracking [103], and explicit segmentation was also studied[133]. Our proposed method uses local kernel
regression to capture this variation implicitly by essentially limiting inference to a neighborhood of training
samples that are expected to behave similarly. Intuitively, this is almost equivalent to training a local model
at each state of interest. Since the state distance (and thusthe inference weight) is assigned with respect to
Euclidean distance in state space, it is important that clustering with this distance reflect dynamic similarity.
This is expected in most cases, except when home (mean) drifting is high both in frequency and displacement
value. In the exceptional case of dramatic mean drift, samples belonging to different breathing stages may
be clustered together. One straight-forward remedy would be to incorporate mean drifting compensation
in the inference weight. A robust mean tracking algorithm for respiratory motion is provided in [99] that
outputs mean position estimates for both the training samples and the state of interest. We expect improved
accuracy by accounting for mean position drifting. We plan to conduct further experiments and analyze this
effect in more detail in the future.
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APPENDIX C

Inference of Internal Respiratory Tumor Motion from External
Surrogates: A State Space Augmentation Approach in Modeling

Hysteresis1

Respiratory motion affects tumours in the thorax and abdomen. In particular, breathing is the major reason
for intrafractional tumour motion for lung cancer patients. It is important to monitor such motion during ra-
diotherapy treatment to ensure the accurate delivery of radiation dose in motion-compensated Intensity Mod-
ulated Radiotherapy (IMRT). Fluoroscopic imaging or portal imaging can monitor tumour motion during the
treatment process. To reduce x-ray exposure, hybrid tumourtracking approaches that combine episodic ra-
diographic imaging and continuous external surrogates have been investigated widely [80,81,86,104,105].
Using external surrogates to infer internal tumour motion assumes that there is consistent relationship be-
tween internal and external motion.

Hysteresis is typical in lung tumour movements, with the tumour taking a different path during inhale
and exhale. Inhalation normally takes longer than exhalation, and the deflating lung volume exceeds the
inflating volume at the same trans-pulmonary pressure [57].Respiratory hysteresis makes inferring internal
tumour locations from external surrogate signals challenging. Most of the external surrogate systems, such
as thermistors, thermocouples, strain gauges, pneumotachographs [60], and infrared skin markers as applied
in the Varian Real-time Position ManagementTM (RPM) system (Varian Medical Systems, Palo Alto, CA),
provide one-dimensional signals, whose instantaneous amplitude (or displacement) alone does not provide
sufficient information about the specific breathing stages.

Previous studies about correspondence between internal tumour motion and external surrogates can be
classified into two categories. One class of studies investigates the correlation between the two signals to
justify the feasibility of using certain types of surrogates, or compare different surrogate options (including
the placement mechanism) [1,47,59,73,117,124,127]. Alternatively, some other studies assumea priori the
existence of a strong correlation between internal and external signals, and aim to estimate the correspon-
dence map [106]. We adopt the latter perspective and study with a general setup the correspondence maps
that take the external surrogate trace as input and output estimates of the internal tumour location, including,
but not restricted to linear relations as reflected by the correlation coefficient and its variants. The pres-
ence of respiratory hysteresis makes this a challenging problem, as the same external surrogate position can
reflect different internal tumour locations during different phases. Existing methods address hysteresis by
first separating empirically the breathing trajectories into two distinct “directions” (inhale v.s. exhale), and
then constructing a piecewise phase-dependent map [66, 67,106, 107]. However, subdividing the breathing
into inhale and exhale phases often requires manual intervention, and is infeasible for real-time application,
because a breathing “peak” or “trough” can be only be identified retrospectively.

In this study, we propose to use a simple state augmentation of the external surrogate signal. Augmenting
the state space with self-delayed observation bestows the model with “memory”, which is an alternative
way to characterize the “path-dependence” property of hysteretic systems. This procedure captures system
dynamics, and embeds the breathing phase information implicitly into the framework. We then provide the
solution to a general class of parametric inference models with the augmented observations. As special cases,

1This chapter is based on materials from [100]
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we derive optimal solutions for the parameters of linear andquadratic correspondence models. Furthermore,
given a training internal/external dataset, we demonstrate a computationally efficient approach to choose
a patient-specific (or fraction-dependent) augmentation scheme. Generalization to adaptive correspondence
models follows naturally. We test the proposed approach on synchronized recordings of internal gold marker
trajectories and external fiducial marker locations [5].

Section C.1 describes the clinical data used for this test, discusses the challenges caused by hysteresis
in converting the external surrogate position directly to internal tumour location and presents the proposed
method. A general correspondence model is formulated with polynomial models as an example. Optimal
model parameters are derived and generalization is given toaccommodate adaptivity. Section C.2 reports
testing results followed by discussions. Section C.3 concludes this study with a brief summary.

C.1 Methods and Materials

C.1.1 Data Description

To study the internal/external motion correspondence, we obtained synchronized recordings of internal
tumour motion trajectories and external fiducial marker locations. The paired trajectories from eight lung
cancer patients were collected with a Mitsubishi real-timeradiation therapy (RTRT) system at the Radiation
Oncology Clinic at the Nippon Telegraph and Telephone Corporation (NTT) hospital in Sapporo, Japan.
Two to four 1.5mm diameter gold ball bearings (bb’s) were implanted in or near the tumour [111] and
these internal markers were tracked in real time with diagnostic x-ray fluoroscopy [110]. External surrogate
signals were obtained with the AZ-733V external respiratory gating system (Anzai Medical, Tokyo, Japan)
integrated with the RTRT system. It uses a laser source and a detector, both attached to the treatment
couch with the beam placed orthogonal to the patient’s abdominal skin surface. The device calculates the
change in the surface amplitude by measuring the relative position of the reflected light [5] and outputs a
one dimensional relative position measurement of the abdominal surface. The data acquisition rate for the
entire system is 30 frames per second. Table C.1 describes the study participants. All patients included in
this analysis had peak-to-peak marker motion greater than 1cm. The KV fluoroscopy + Anzai system took
multiple readings for each fraction from several treatmentfield configurations to account for obscured x-ray
views as the gantry rotated. The recording lengths varied between 20 and 250 seconds with an average of 82
seconds. There are in total 128 readings, 46 of which were longer than 100 seconds.

Patient Gender Age Tumour Pathology # of bb’s Tumour Site Prescribed Dose (Gy) # of Fractions
1 F 47 Adenocarcinoma 4 R S7 N/A 1
2 F 70 Adenocarcinoma 3 L S6 N/A 1
3 F 71 Adenocarcinoma 2 R S5 N/A 1
4 F 47 Adenocarcinoma 3 R S4 48 8
5 M 81 Squamous cell carcinoma 3 R S6b 48 4
5 40 8
6 M 61 small cell lung cancer 3 R S10 40 8
7 M 68 Squamous cell carcinoma 3 R S6 48 4
8 M 85 Adenocarcinoma 3 R S8 48 4

Table C.1:Description of study participants. Patients 1-3 were brought in for data acquisition purposes only,
so there is no prescription dose. Patient 5 was treated twiceat the same site, with two months
between treatments. The tumour site is indicated using the common anatomical notation for lung
segmentation: S1-3 is upper lobe, S4-5 is middle lobe and S6-10 is lower lobe.

C.1.2 A General Correspondence Model

To minimize diagnostic imaging dose in IGRT systems, it is important to infer internal tumour location
from external surrogates. In principle, we could use a correspondence model that observes a trajectory~r
of the scalar external surrogater up to time instantn to infer the 3-dimensional internal tumour position
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p = (x, y, z). We denote the collective surrogate information availableat timen as~r(n)
△
=
{

r(m) : 0≤m≤
n
}

. However, it is challenging to estimate such a map that estimates the internal tumour position from the
complete collection of historical surrogate data, since the length of the input variable grows to infinity as time
progresses. A more practical choice is to use some much more compact quantityr that captures sufficient
information from~r for inference. With internal and external motion both beingsmooth, it is reasonable to
approximatep(r) using polynomials. Therefore, we focus on estimating a class of correspondence models
that are linear in their coefficients as follows:

(C.1) p̂(r) = Af(r),

wheref is a vector function of external surrogater; all model parameters to be optimized are contained
in the coefficient matrixA. In particular, two simple correspondence models,i.e., a linear model and a
quadratic model introduced in [106] are special cases of theform given in (C.1).

Linear models assume each coordinate of internal motion is affine in r = r(t). This corresponds to the
case where

(C.2) f(r) =

[

r
1

]

andA =





bx cx

by cy

bz cz



 .

Quadratic models map the external surrogate to each coordinate of internal motion via a quadratic rela-
tion. It can be expressed in (C.1) with

(C.3) f(r) =





r2

r
1



 andA =





bx cx dx

by cy dy

bz cz dz



 .

The expression in (C.1) is linear in the model coefficientsA and yields a closed form optimal solution
in the least squared error (LSE) sense. GivenN sample points(rn,pn), n = 1,2, . . . ,N, the solution to the
LSE problem:

(C.4) Â = argmin
A

E(A),

whereE(A) = ∑N
n=1 ||pn−Af(rn)||2, is given by solving the normal equation [68], and

(C.5) Â = P TF (F TF )−1,

whereF =







f(r1)
T

...
f(rN)T






andP =







pT
1
...

pT
N






. The corresponding residual is given by:

∆P
△
= P −FÂT

= (I−F (F TF )−1F T)P ,(C.6)

with overall residual error (summed over all 3-dimensions)as:

E(Â) = trace
{

∆P T∆P
}

= trace
{

P T(I−F (F TF )−1F T)P
}

.(C.7)

It may be preferable to have simpler models (with fewer free parameters) over more complicated models
at the cost of small sacrifice in data fitting performance. This model selection preference can be incorporated
into the optimization setting by modifying the objective function as:

(C.8) Ẽ(A) = E(A)+λR(#A),
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where #A denotes the number of free parameters in the coefficient matrix A, andR is a monotonically
increasing function that assigns higher costs to more complicated models. The regularization weightλ
controls the tradeoff between the data fittingE(A) and the preference for lower-order models. A simple
example ofRwould be the linear functionR(#A) = #A, which directly penalizes the number of components
in A; this is equivalent to the Akaike Information Criterion [2]. Using the closed form optimal solution (C.5)
and the expression for optimal residual error (C.7) for a given fixed model structure, the modified objective
function can be minimized in two layers. We say two inferencemodels have the same“model structure”
if they only differ in parameter values. It follows immediately that all models with the same structure has
equal number of degrees of freedom, thus the same complexityregularizationR(#A) in (C.8). Therefore,
to minimizer over models of different complexity, it is natural to choose the “best” parameter setting within
each model structure (with fixed degrees of freedom thus a constant complexity penalty), and then compare
across structures. Within each class, minimizer of the complexity penalized objectivẽE(Ã) is the same as
that ofE(Ã), and can be solved and evaluated efficiently using the closedform optimal solution (C.5) and
expression for optimal residual error (C.7). This motivates the two-layer hierarchical algorithm shown below
for finding the optimal solution withinK candidate model structuresC = ∪K

i=1{Ci}.

Algorithm 3 Two-layer Optimization Routine for SolvinĝA = argminẼ(A) (C.8).

1: Ẽ←+∞; iopt← 0; Ã← [].
2: for i = 0 toK do
3: Choose model structureCi from the collection of modelsC ,
4: ComputeRi = R(#A) for structureCi ;
5: ComputeÂi within classCi according to (C.5) and its residual errorE(Âi) from (C.7).
6: if E(Âi)+Ri < Ẽ then
7: Ẽ← E(Âi)+Ri ;
8: iopt← i;

9: Ã← Âi .
10: end if
11: end for

C.1.3 Hysteresis and State Augmentation

Conventional methods that explicitly segment the breathing process into inhale and exhale phases have
their limitations, as physical phase transitions (and delays) occur continuously rather than as discrete jumps.
To circumvent the intrinsic difficulty of estimating breathing phases, we study the system dynamics di-
rectly, expecting them to sufficiently convey phase information. In a discretely observed system, one usually
captures the system dynamics with time-lagged samples. Forthe sake of simplicity and to avoid over-
parameterization, we restrict this study to a single lag. The proposed method generalizes to multiple-lag
models naturally.

Given a discrete-time external surrogater(n), n = 1,2, . . . ,N, we augment each external surrogate state

with a timeτ (in discrete unit) delayed sample,i.e., r(n)
△
= (r(n), r(n− τ)). This augmentation captures

first-order system dynamics, as the difference betweenr(n) andr(n− τ) can be regarded as a measure of
average local velocity. Asr is uniquely determined by~r, it fits into the general formulation (C.1). We apply
the methods provided in Section C.1.2 to estimate the coefficients for the augmented model. To demonstrate
the idea, we establish a linear model that is comparable to (C.2) and a quadratic model analogous to (C.3).

The augmented linear model (inr) represents each internal coordinate as a linear combination of r(n),
r(n− τ) and a constant offset, corresponding to:

(C.9) p̂ = Af(r), where f(r) =





r(n)
r(n− τ)

1





with a 3×3 coefficient matrixA.
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The augmented quadratic model (inr) estimates each internal coordinate as a linear combination of
r2(n), r(n)r(n− τ), r2(n− τ), r(n), r(n− τ),1, corresponding to:

(C.10) p̂ = Af(r), where f(r) =

















r2(n)
r2(n− τ)

r(n)r(n− τ)
r(n)

r(n− τ)
1

















with a 3×6 coefficient matrixA.
In both cases, linearity inA results in the closed form solution given by (C.5) with the correspondingF

respectively.

C.1.4 Choice of Lag Length

The delayτ should be chosen properly, since too long a lag provides minimal local dynamic information
and too short a lag makes the estimation sensitive to observation noise. For inference purposes, we desire
a lag that maximally resolves the ambiguity in the estimatedcorrespondence map. We choose the lag that
minimizes the fitting error for training data:

(C.11) τ̂ = argmin
τ

E(Â(τ)),

with the objective functionE defined in (C.4). The coefficientŝA and the errorE depend onτ becausef
contains both the current external surrogate displacementr(n) and its lagged stater(n− τ).

Equations in (C.6) and (C.7) provides a closed-form expression for E(Â(τ)) for each givenτ. The
optimization problem (C.11) simplifies to a simple one-dimensional line search that we solve by searching
over an interval with the corresponding delay time between 0(no lag) and about half of an average breathing
period.

C.1.5 Adaptivity of the Correspondence Map

Adaptivity may be useful to accommodate gradual changes in the correspondence models, due to drifting
or variations in patients’ breathing. In the case of linear and quadratic models, the operation in (C.5) involves
inverting fairly small matrices (3× 3 and 6× 6 respectively), so direct inversion is numerically feasible.
However, when more complicated models with higher degrees of freedom are used, it is desirable to reduce
computation by applying recursive algorithms that modify current estimates based on newly available data.
The key to recursively updating (C.5) is to avoid recomputing (F TF )−1 from scratch every time. This is
effectively the inversion of empirical correlation matrixwith observationfi . [99] provides rank-one update
equations for sliding window and exponential discount adaptivities.

C.2 Results and Discussions

To illustrate the challenges caused by hysteresis, Fig. C.1shows an example of the relationship between
internal tumour location obtained by fluoroscopic imaging and an external surrogate from an abdominal
surface measurement as described in Section C.1.1. We depict only the anterior-posterior (AP) coordinate
against the surrogate signal, as this axis demonstrates thestrongest hysteresis for this test subject. The opti-
mal linear and quadratic correspondence maps [106] providereasonable inference of internal tumour motion
from external surrogates, yet they fail to describe the breathing-phase dependency of an ideal correspon-
dence map. In fact, any function that tries to map the scalarr(n) to p would experience the same problem,
since this is a one-to-multiple relation with hysteresis.

Figure C.2 illustrates the internal tumour location in the anterior-posterior (AP) direction v.s. the state
augmented external surrogates forτ = 45, which corresponds to a 1.5 second delay for 30Hz sampling rate.
The scatter-plot in Fig. C.2(a) represents each data samplein the (r(n), r(n− τ)) space with a circle, and
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Figure C.1: Example of a breathing trajectory with respiratory hysteresis.
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Figure C.2: Scatter plot showing the data samples in augmented external state space with the colors indi-
cating internal AP value. Locally consistent colored samples suggests the potential of resolving
hysteretic ambiguity by distinguishing among different respiratory phases implicitly with state
augmentation.

uses color (or intensity if viewed in gray-scale) to depict the internal AP coordinate values (in mm) from
fluoroscopic readout. The one-to-multiple discrepancy appears largely resolved as different colored circles
are not overlaid on each other, suggesting the existence of asingle-valued inference map.

To illustrate the idea of model fitting in augmented state space, we first apply the simple linear model in
(C.9) to the dataset shown in Fig. C.1 with a lag length of 1.5 seconds (which may not be optimal), and illus-
trate the results in Fig. C.3. Even though there are still noticeable differences between the observed internal
coordinates in the upper row of Fig. C.3 and their linear fit inthe bottom row, the aggregated estimation error
(across all patients and fractions) reduced to 1.74 mm from 2.01 mm with direct linear fitting as in (C.2) and
1.93 mm with direct quadratic fitting as in (C.3). In particular, we observe noticeable decreases in estimation
error in the AP direction, where hyesteretic ambiguity is the most significant. Table C.2 reports the Root
Mean Squared Error (RMSE) in each direction respectively for the linear and quadratic model, with and
without state augmentation2. Figure C.4 reports the paired (across patient/fraction) differences between the
RMS error of the direct methods and the augmented methods. The RMSE difference between direct linear
and augmented linear methods has mean 0.14mm and a median of 0.11mm; the RMSE difference between
direct quadratic and augmented quadratic method has mean 0.17mm and a median of 0.15mm. To assess sta-
tistical significance, we performed a paired student-t testwith the null hypothesis that the performance of the

2For comparison purposes, we have also computed estimate from the 5th-order polynomial model with direct method, which has the
same degrees of freedom (18 parameters) as the augmented quadratic model. Its estimation error is 0.75, 1.25 and 1.11 (mm) in LR, SI
and AP direction respectively, with a 3D RMSE equals 1.83mm. A paired student t-test between the RMSE for the 5th-order polynomial
model and the augmented quadratic model yields ap-value of 1.06×10−10, which indicates statistically significant error reduction by
the augmented quadratic model. This shows that the improved performance of the proposed method is not a direct consequence of
increased degrees of freedom, but should rather be attributed to its capability of resolving hysteretic ambiguity via state augmentation.
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Figure C.3: Correspondence relations in augmented state space and their linear fittings. Upper row: internal
tumour coordinate v.s. augmented state for observed samples with colors indicating internal AP
value; bottom row: estimates of tumour coordinate via linear fit with hollow circles depicting
modeled hypersurface evaluated at regular grid points and solid circles for the evaluation at the
sample locations, with colors indicating estimated AP value.

direct and augmented methods do not differ. Thep values for the linear method and the quadratic method
are 4.96× 10−13 and 4.08× 10−18 respectively, demonstrating that the error reductions were statistically
significant.

LR (mm) SI (mm) AP (mm) 3D (mm)
Direct Linear 0.80 1.45 1.13 2.01
Direct Quadratic 0.79 1.35 1.13 1.93
Aug. Linear 0.75 1.30 0.87 1.74
Aug. Quadratic 0.74 1.18 0.84 1.63

Table C.2: Estimation Error Table

Figure C.5 shows the estimated time series of these four approaches for converting external surrogates
to internal tumour locations. The higher-order models weremore descriptive with the extra degrees of
freedom, as demonstrated by the relative performance of quadratic models and linear models within each
class respectively. State augmentation enables varying response patterns during different stages of breathing
as indicated implicitly by the system dynamics.

As discussed in Section C.1.4, to properly choose the lag length , we use a short training set with
internal-external pairs to compute offline the estimation performanceE(Â(τ)) defined in (C.4) as a function
of the lag lengthτ. In practice, the lag length does not have to be the exact optimum in (C.11); values
near that optimum should sufficiently convey system dynamics. Reasonable insensitivity in the choice of
lag lengthτ is desirable as this value is determined prior to the treatment and remains fixed subsequently.
Figure C.6 illustrates that the estimation error is a smoothfunction of the lag length, which suggests the
desired robustness. For both the linear correspondence model (C.9) and the second-order polynomial model
(C.10) with state augmentation, the optimalτ corresponds to about 1.7−1.8 seconds delay. Without this
knowledge, our previous experiments used 1.5 seconds delay to augment the state space (Fig. C.2-Fig. C.5),
and still yielded plausible results. The asymmetric slopesin Fig. C.11 around the optimalτ̂ suggests that it
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Figure C.4: Histogram of paired differences between the RMSerrors of the direct and the augmented meth-
ods: (a) difference between the RMSE of the direct linear approach and augmented linear
approach; (b) difference between the RMSE of the direct quadratic approach and augmented
quadratic approach.

may be preferable to use a relatively small time delay in the absence of precise information.
Assuming that the choice of lag length is robust to inter-patient and inter-fraction variations, we used a

fixed lag length equivalent to 1.5 seconds delay for simplicity, and illustrate in Fig. C.7 the beam-wise 3D
RMSE for patients 4,5 and 6, whose treatment extended over multiple days. The minimum RMS error for
non-compensated treatment, which corresponds to a constant estimate at the retrospective mean value, is
also shown for reference purposes. These results confirm that the augmented methods consistently exhibit
lower error.

Adaptivity is most beneficial for irregular respiration traces. Our test data had relatively regular breathing
patterns, so inclusion of adaptivity improved the estimation accuracy only slightly.

C.3 Conclusion and Future Work

We have proposed a method to map external surrogate signals to internal tumour positions. Breathing-
phase dependent response patterns due to hysteresis are incorporated implicitly by using a simple state
augmentation technique to capture system dynamics. We introduced a general class of correspondence
models that are linear in model parameters, with linear and quadratic (in external surrogate) models as special
cases. We described closed-form expressions for both the optimal model parameters and the corresponding
error value. Based on the latter, we further investigated the proper choice of lag length in state augmentation,
and argued its relative robustness. Test results on clinical data demonstrated reduced inference error over the
direct linear and polynomial models.

The number of degrees of freedom in a correspondence model determines the trade-off between flexibil-
ity and robustness. We seek a model that is descriptive enough to fit the data without undesired sensitivity
to observation noise, also known as “overfitting”. The proposed method may have more degrees of freedom
than previous methods due to state augmentation. On the other hand, because it incorporates breathing-stage
information implicitly, it can use all available internal-external correspondence pairs, without subdividing
the training data as required for piecewise models [66, 67, 106]. In principle, using all the data may com-
pensate for the possible increased sensitivity caused by the extra flexibility. The choice among different
complexity levels in augmented models is still open. Both the number of augmentations and the model de-
gree contribute to the overall complexity. Further studiesshould investigate methods for properly penalizing
model complexity based on information criteria as explained in Section C.1.2.

Many research groups have observed phase shifts between external surrogate signal and internal tumour
motions [17,32]. Typically, this phase shift was to be avoided to obtain higher internal-external correlation.
However, it is possible to compensate for consistent phase shift, to simplify and improve the correspondence
map estimation. In particular, we can artificially synchronize the internal-external phase by shifting one
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Figure C.5: Estimation performance comparison among different methods. Red-solid line depicts the in-
ternal tumour position obtained from fluoroscopic imaging,and dashed blue like provides es-
timated quantities from external surrogates. Each column represents one internal motion co-
ordinate. Each row indicates the time series generated withone estimation method: (1st row)
direct linear; (2nd row) direct polynomial; (3rd row) augmented linear; (bottom row) augmented
polynomial.

of them according to a constant offset estimated from training data. We will further study phase-offset
estimation and its use in external-internal inference in the future.

This work is a preliminary study to validate the existence ofa reasonably simple correspondence map and
the possibility to estimate it with high accuracy. In practice, internal-external pairs are obtained at a much
slower rate. Correspondence maps must be extracted from sparse imaging data and applied to continuously
obtained external surrogate signals to estimate the internal tumour locations. Our method can serve as a
critical module in this overall framework, yet intensive simulations and validations are further required.

Even though our test data did not exhibit dramatic improvements when using adaptive model estima-
tion, model updates in response to changes are necessary in general. Pursuing this direction requires more
thorough analysis of breathing motion variations, change detection and model adaptive rate.
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Figure C.7: Beam-wise 3D RMSE (mm) for patients 4-6: minimumnon-surrogate (blue circle-dashed);
linear inference (green square-dashed); polynomial inference (red star-dashed); augmented lin-
ear inference (cyan triangle-dashed); augmented polynomial (magenta diamond-dashed). Non-
uniform tick locations along the x-axis indicate the numberof beams applied each individual on
treatment day.
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