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ABSTRACT

IMAGE GUIDED RESPIRATORY MOTION ANALYSIS:
TIME SERIES AND IMAGE REGISTRATION

by
Dan Ruan

Advisor: Jeffrey A. Fessler

The key feature of image guided radiation therapy (IGRT)}eays is improved effi-
ciency in conformal dose delivery by extracting, modeling aredicting tumor movement
with imaging techniques. To harvest the benefit of an IGRTesgstwo major problems
have to be solved: motion modeling and image processing thiesis investigates these
issues. In particular, we focus on the application of treggtumors in the thoracic and
upper abdominal region, where respiratory motion is the idamt factor for tumor move-
ment. The characteristics of respiration makes motion nagl€ifficult, as breathing tra-
jectories are semi-periodic with drifting in mean positidrequency and phase. Clinical
practice shows large variation of breathing patterns anufigrent individuals, making
it necessary to quantify the regularity/reproducibilityaorespiratory trace to determine
the applicability of certain treatment methods. To this,eme have proposed a subspace
projection method to quantitatively evaluate the semigakcity of a given observation
trace. Extracting tumor location from diagnostic imagiatieit informative and accurate,

incurs radiation dose, which may result in normal tissue giacation. To minimize diag-

Xii



nostic dose, it is desirable to obtain radiographic obsema at low frequency and use
external surrogates to infer internal tumor motion with@diation. The sparsity of the in-
ternal readout from diagnostic imaging together with thesideration of system latency
require methods that predict accurately over a long timgeanThese concerns intro-
duce additional challenges in applying classic time-saigalysis techniques, and special
structured models are needed to incorporate prior knovedelg, semi-periodicity in res-
piratory motion) for improved performance. Physiologibgkteresis further complicates
external-internal inference and proper modeling is désiceestimating such a relation-
ship. In this thesis, we have investigated regression tgqaks for real-time tracking and
prediction, shape modeling for robust tracking with minfmoebservation and external-
internal inference estimation.

Image processing is another crucial component of IGRT. ihqudar, accurate tracking
and monitoring of tumor evolution, and efficient propagataf dose assignment require
accurate image registration. The solution to the registngiroblem needs to reflect phys-
ical priors and constraints. Adopting a regularized optiion setup, we investigated a
penalty function design that accommodates tissue-typestent elasticity information.
To properly account for the sliding effects at motion inéeds, we have studied a class
of discontinuity-preserving regularizers that yield srtfosolutions in most regions, while
allowing discontinuities in the estimated motion field. Wesé further distinguished two
types of singularities in the deformation fielce., collision/vacuum generating flow v.s.
shear with the Helmholtz decomposition. Applying differeegularizers to each com-
ponent discourages the deformation from the first type ohyajgal singularities while
preserves large shear discontinuities.

The medical image registration field needs good validati@hgerformance evaluation

tools. A most general analytical evaluation for image regtgon is challenging. We have,

Xiii



however, during the course of this work, performed a pralany analytical study. We
proposed a set of statistical generative models and pravides and variance estimates for
certain estimators. In particular, we have investigatedabproximate performance of the
maximum-likelihood estimator corresponding to the getiegamodel and the commonly
adopted M-estimator. A simple example suggests that theoappation is reasonably
accurate.

Our studies in both time series analysis and image regmtratonstitute essential
building-blocks for clinical applications such as adagtikeatment. Besides their theoret-
ical interests, it is our sincere hope that with furtherificitions, the proposed techniques

would realize its clinical value, and improve the qualitylité for patients.
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CHAPTER |

Introduction

The two core components of image guided radiotherapy (IGR$)ems are image processing and radia-
tion delivery. The image processing module extracts turtaius information and feeds it into the treatment
delivery system. In particular, the motion of the tumor \akimust be tracked and predicted with high ac-
curacy for subsequent localized target treatment; the mewmt of the whole region under radiation should
be monitored to ensure proper dose delivery, to avoid raxfiab critical tissues such as heart and spine,
and to minimize normal tissue complication probability (GF). To this end, an accurate and efficientimage
registration method is critical. Registration between faoa sequence of) images estimates the deformation
among different image acquisitions, captures the evatuticthe region of interest (ROI), and dynamically
propagates treatment plans. Despite the vast literaturienage registration studies, a good quantitative
evaluation tool is unfortunately absent. A performancegtio the most generality is challenging, given the
nonlinear nature of the registration problem. Howeverstjoas then arise as to whether the performance of
image registration is limited by a model setup (objectivection design) or the behavior of the minimization
algorithms deployed (local minima issues). Furthermareninimize diagnostic radiation dose, only sparse
observations of the internal tumor location are availabléhe treatment delivery system. For an effective
real-time gating system, a reliable mean position estimaterucial to adaptively control the positioning of
the gating window. How to efficiently extract such contrdbinmation from a minimum amount of data is a
key issue. This thesis considers these various questidhsde parts.

The first part, dealing with the adaptive mean tracking problis the subject of Chapter Il. Given a
sparsely sampled respiratory trajectory that has drifth@an, frequency and phase, we aim to extract the
mean trace in real time. To solve this loosely defined problemresort to a data-based approach which
incorporates the semi-periodic nature of breathing motiniparticular, in the state space that is augmented
via time lagging, we model the observations as samples imjaesee of time varying ellipses and extract
the projection of the center of such ellipses as the reat-tistimate of mean position. Formulated as a
minimization problem with respect to the algebraic dis&ribe static ellipse fitting problem can be solved
by generalized eigen-decomposition. We introduce a re@sast squares (RLSE) structured algorithm
which naturally leads to a dynamic adaptive solution in avkldemporal-varying environment. Asymptotic
convergence of the proposed algorithm is derived. In amftjitive generalize the original least squares fitting
problem to a robust estimation setting so that the soluansensitive to reasonable amounts of outliers,
what may be caused by abrupt body movement or noisy data. bve hat the feasible region is a union
of two convex sets, analyze the geometry of both the feasdg®n and the functional value, and apply
gradient projection method to solve the adaptive problempeEimental results with both simulated and
clinical data demonstrate feasibility of the proposed rodth

The remainder of the thesis studies the image registratimiolgm - another key component in IGRT. We
discuss objective design, optimization issues and quivtt evaluation of registration performance; these
aspects are of interest for general image processing as well

Chapter 11l focuses on designing regularizers that convey information in optimization-based reg-
istration for thoracic images. We consider two types of fagmation design: one accounts for different
rigidity levels for various tissue types and the other acomdates sliding effects along motion boundaries.
Tissue-type-rigidity regularization is realized by pénizlg the deviation of local transformation Jacobian



from orthogonal; sliding regularization is studied by figgneralizing edge-preserving regularization from
image denoising problems, and then Helmholtz decompos$iedlow to differentiate between the colli-

sion/vacuum generating component and the shear discd@igmuBy regularizing the divergence and curl
components separately, we avoid the first type of unphysiisabntinuity, but preserve the latter one that
corresponds to shear flow.

Given any image registration method, its results shoulddtidated and the performance evaluated. Un-
fortunately, despite vast literature on image registratitgorithms, validation study mostly relies on either
simulation/phantom study or manually placed marker laceti The first approach completely ignores in-
trinsic information content of the input images, and mayleis unreasonably stringent requirement (such
as “correct” alignment of uniform areas - the null space of egistration operator). The latter one, on the
other hand, is biased towards high gradient regions whemeahuwbservers can identify reliable correspon-
dence and oblivious of the less obvious clues. As a first stegystematically studying the fundamental
performance limit of a registration model, Chapter |V présea statistical generative model and the cor-
responding maximume-likelihood (ML) estimator. The biaglarariance of this estimator is studied via
Cranér-Rao bound analysis. For the commonly employed energimization based approaches, the local
behavior of the corresponding M-estimate is analyzed usimglicit function theorem and Taylor expan-
sion. A simple example suggests reasonable accuracy ofitttead approximation and may lead to wider
generality upon further investigation.

The main contributions of this thesis can be summarized l&ss.

¢ Anovel data-driven mean tracking model for sparsely sathpéami-periodic data. More specifically, a
state augmentation setup and a formulation with algebiatarnktce that results in closed-form solution
from generalized eigen decomposition. An efficient ellipseking algorithm based on subspace
decomposition that dynamically adapts to slowly varyirantts. Conditions and proof for asymptotic
convergence of the proposed algorithm. Analysis of thectine of the feasible parameter set. A
robust extension of the least squared problem to achieugstobss to outliers, a gradient projection
algorithm for solving the optimization problem, and its ptiee generalization.

e Atissue-type dependent regularization that encouragesljorigid behavior, where appropriate.

e An original discontinuity preserving regularization foomrigid image registration that preserves mo-
tion boundaries.

e An original statistical generative model for image regifitn. Bias and variance analysis for the
maximum likelihood estimator. An M-estimate analysis & ttonventional energy based registration
methods. Empirical comparison with a simple example.

e A new subspace projection based method that quantifies pedecibility of a temporal trajectory
(Appendix A).

e A novel nonparametric local regression method in the augetkestate space for real-time prediction
of respiratory motion (Appendix B).

e A state space augmentation approach to account for hystdogsnferring internal tumor motion
from external surrogates (Appendix C).

The above remarks describe the major material in this th@sisnaintain the self-containedness of each
topic, we provide relevant background at the beginning oheznapter. In the course of this study, we came
to certain analyses and preliminary results that are maligimelated to the main theme of this thesis, but
have potential for integration upoon further developmeéfe provide them as optional sections and mark
the titles with an asterisk. These sections can be skipptbutiloss of continuity.



CHAPTER I

Adaptive Ellipse Tracking and its Application in Estimating
Respiratory Drifting 1

Good ellipse fitting methods are desirable in pattern reitimgrand computer vision. Simple low dimen-
sional shape models are often used to fit noisy high dimeakmservation data for increased robustness.
Ellipses, as the projection of circular shapes, are commuong observations from natural and artificial ob-
jects €.g, human faces, tires, etc), and are among the most integestape models [26,44,89]. In addition,
ellipses also have potential applications in describingadiyical systems that exhibit semi-periodicity and
hysteresis. Using algebraic distance as the data fittinganetlipse fitting problems can be formulated in
a convex optimization setting, with quadratic constraitts solution involves looking for the eigen vector
corresponding to the largest eigenvalue in a generalizgeheilecomposition problem. In this chapter, we
develop an adaptive method to dynamically fit the ellipse ehaahalyze the convergence of the proposed
algorithm, and discuss its application to estimating oitftin respiratory motion. Section 2.1 formulates the
ellipse fitting problem into the framework of generalizedem decomposition. Section 2.2 proposes an itera-
tive algorithm for solving the generalized eigen probleract®n 2.3 considers adaptivity with data stream.
Section 2.4 applies the proposed algorithm to tracking nar#ting of respiratory motion. Section 2.6
provides relevant proofs used in this chapter.

2.1 Ellipse Fitting Model for Static Data

We model ellipses using a general quadratic curve equdtien(x,y) denote the coordinates of a point
in the 2-dimensional state space, and define [x> xy ¥ x y 1]T, where superscript denotes transpose.
Then point(x,y) falls on the ellipse parameterized by= [ab c d e {7 if and only if it satisfies the following
guadratic curve equation:

(2.1) F(a,z) = a'z = ad+bxy+cy’ + dx+ey+ f =0,

with negative discriminant,e., b — 4ac < 0.
The centefXg, Yo) of the ellipse parameterized withis given by:

_ 2cd—bf
0 = W®_zac
2af —bd

From (2.1), a sample; lies on a given ellipse parameterized byif and only if F(a,z) = 0. This
motivates the use df?(a,z) as a measure of deviation of the sample from the ellipse. Bhisiown
as “algebraic distance” which coincides with Euclideantatise in the cas€ is a plane. It is computa-
tionally beneficial to adopt this discrepancy measure sbttiecollective distances fod samples can be
conveniently written in standard matrix form and manipethtvith classic least-squares approaches as in

1This chapter is based on materials from [97, 99].



(2.3). For observed samples of the fo(R,yi), i = 1,2,...,N, we want to find the ellipse parametethat
minimizes the following cost function:

(2.3) .in(a,zi) =a'Sa,

, . . o D
where we define the 86 empirical correlation matris§ = N | 22

The minimizer of (2.3) is invariant to a constant scaling lagabto a, so we impose the constraint that
b? — 4ac= —1, or equivalently in matrix forna” Ca = 1 with

c O3x3
2.4 C=
@4 { O3x3  Osx3 ]’
A 00 2
whereC=| 0 —1 O |, and Q«3 denotes a X 3 matrix of zeros. In other words, our ellipse fitting
2 0 O

requires minimizingz" Sa subject to the constraint that Ca = 1.
Introducing the Lagrangian multiplierand differentiating, we need to solve the system of equation

Sa—\NCa = 0,
(2.5) a'Ca=1

We solve this using the generalized eigen-decompositidhepair(.S,C). BecauseS has the form of a
covariance matrix, it is nonnegative semi-definite. We asstereafter that there are enough data samples
and S is full-rank, i.e., its eigenvalues are strictly positive. In particular, byebrem 1 ir? [31] , the pair

(S, C) has exactly one positive generalized eigenvalue and iespands to the unique local minimum of
the Lagrangian. The corresponding eigen vector is the @btgolution to the ellipse parameter in (2.3).
Let (A\,u) be the solution to the generalized eigenvalue probkn= ACa with A > 0, then(A,a* =

,/ﬁu) is the solution to the constrained minimization problem2rbj. The rank deficiency af’ can

cause instability issues if a conventional generalizedreidecomposition algorithm were appliedgy.[92]
without caution. If analyzed properly, however, its spgranay reduce computation.
For later convenience, we first introduce some notationan tiestate the corrected lemma 1 in [31]

and prove it. We denote the generalized spectra (@4, B) 2 {\: Av = ABv}. Analogous to the
case of a single normal matrix, we define the condition nunaber generalized eigen decomposition as

K(A,B)= |%\ whereAmax( 4, B), Amin(A, B) denote the maximal and minimal (by moduli) gener-

alized eigenvalues dfA, B). The signaturé i( A) of a real symmetric matrixd is the number of positive,
negative, and zero eigenvalues of the corresponding métrix

Lemmall.1. The number of positive, negative, and zero generalizedveidees of S, C), whereS € On«n
is a symmetri® positive definite matrix an@ € O, is symmetric, are the same as the signature of the
constraint matrixC.

Proof. Symmetric positive definite matri$ can be decomposed ' Q with Q invertible. We can sub-
sequently rewrite the generalized eigen probl§m = ACu asQ" Qu = A\Cu. Apply a change of basis
v =Qu and getv = A(Q1)TCQv. Thus,A is the eigenvalue of@Q2)TCQ . Leti(C) denote the
signature ofC, then by Sylvester’s law of inertia [131], which states ttta# signature of” is invariant
under congruence transform, we ha€) =i((Q1)TCQ™1). Therefore, the number of positive, negative
and zero eigenvalues of S, C) are the same as the signaturaCtf O

2Both the statement and the proof of lemma 1 in [31] are flawed Hautdsult in theorem 1 is correct.

3Signature is often defined with respect to a symmetric bilifgaadratic) form; they are the same objects, viewed from wdiffe
perspective.

“4In general, eigen decomposition (spectral theorem) appliesimal matrices, which may not necessarily require real synymetr
However, many applications deal with real symmetric matriceduiing the one under consideration here.

5This is the part missing from [31].



2.2 An lterative Algorithm for Solving the Generalized EigenProblem

It is desirable to have an adaptive algorithm in the presefsgstem variations. In particular, a rank-1
update is needed for the data covariance mafrigvery time a new observation becomes available. As-
suming sufficient initial data, new data should only mildigrjurb the system. Therefore, if we have an
iterative algorithm for the static system with enough tatere to the initial conditions, we shall be confident
in using the last state estimate of the one-time-step-latgayas the initialization for the iteration with the
new system. In this section, we provide such an iterativerétgm, prove its asymptotic convergence, and
discuss the region of attraction.

We first recall some observations from previous discussions

e a* is identical to the generalized eigenvectoup to a normalization factor that is easy to compute.
From now on, we focus on deriving an iteration on the geneedleigen vector, no longer distinguish-
ing betweeru anda, assuming no confusion would result from such notationail/eaience.

e Asimple eigen decomposition @ yields thato(C) = {2,0,0,0,—1,—2}. From lemma Il.1, and the
minimization setup, we are interested in tracking only teeeyalized eigen vector that corresponds
to the unique positive generalized eigen valug $fC). It is equivalent to finding the eigen vector
for the largest eigenvalue, in other words, tracking the ithamt eigen subspace.

We first discuss a method based on fixed-point analysis anerglered Rayleigh quotient to compute
the solution to generalized eigen problefus B) with both A, B full rank.
If (A, u) satisfy the generalized eigen decomposition relation:

(2.6) Au = ABu,

then we can generalize the Rayleigh-Ritz theorem and shevivédion provided in Section 2.6) that the
generalized eigen vectotscorrespond to the stationary points of the energy ratiotionc

T
u' Au
2.7 J(u) = ———
&7 (w) ul Bu’
and evaluating at the eigenvectors results in the corresponding genechbigenvalues.

In fact, the largest generalized eigenvaluis the global maximum aJ. Substitutingh = J(u) = %;E
in (2.6) yields

u' Au
Au=—— Bu.
YT WTBu Y
By assumptionA is full rank, we may multiply the above expression wdh® on both sides and obtain:
u' Au
2.8 = AlBu.
(2.8) Y= W Bu v
Equation (2.8) suggests that the generalized eigen vectofixed point for the iterative map
u' Au

2. f: A'Bu.
(2.9) i =7 u

Furthermore, the energy ratio function evaluated at thelfp@int is exactly the generalized eigenvalue that
corresponds to the fixed point
To use (2.9) to iteratively solve (2.5), we first separateetsgential subspace from the nuisance ones, by
decomposing the empirical correlation matfxnto block form as follows:
E B
We also define the Schur complement of the blézin matrix.S asS S E-BD'B". The decomposition
of the constraint matrixC is given by (2.4).

We provide an iterative scheme to compute the generalizgeheiectora and prove its asymptotic
convergence.



Theorem I1.2. Let the iteration ofa be given by

a'Wa
2.10 =n—a_"g1 1—
( ) ant1 ="Mn a'r';C'anS Can+(1—nn)an,
where
E 0
w=lo %)

andn, € (0,1) is asymptotically bounded above 9%—1 with K being the condition number QS’,C’) 6,
Thena, converges asymptotically to the eigen vector that corredpdo the unique positive eigenvalue of
(5,0).

Proof. We decompose the state estimateto the concatenation of two vectosis= [a1; az], and rewrite
(2.5) as:
Fai+Bay = Aéal
(2.11) B'ai+Da; = O.
Notice thatE is the autocorrelation matrix of the first three dimensiohshe observed data, and is

invertible by the assumption th&t is full rank. Being full rank,C is invertible as well. We can solve the
above equation as

a; = 7D_1BT0,1,
(2.12) (E-BD*B")a; = MACa.
In theorem 11.3, we will show that iteration:
G,T S'al‘ ~ ~
aintl = r]n-%n—~'nsilcal,n+(l—nn)al,n
al’nC’alyn
(2.13) = nNah(ayn,S,C)+axp,

whereh(x, S, C’) 2 “”Igf: §51Cx—«x, converges asymptotically to the solutian 7 of (2.12). Therefore,

x

by letting the covariant, evolve accordingly as:
(2.14) azn=-D"'BTai,

we have asymptotic convergence to the only stable stagig@nta = [a1; a2] of (2.12).
In Lemma 1.4, we show that the iteration given in (2.13) aBd 4) is identical to the update equation
in (2.10). O

Theorem I1.3. Iteration according to (2.13) converges to the generalieggn vector that corresponds to
the largest eigenvalue ¢85, C), whereS= [E — BD1BT] is the Schur complement of the blabkin S.

The second equation in (2.12) simply states #hats the generalized eigen vector for the pdiE —
BD'BT7],C). Observe thatE — BD 1BT] is exactly the Schur complemefitof the blockD in matrix
S. SinceS is symmetric positive definite, so i§ = [E — BD'BT|. As C is the only block inC that
contributes to the nonzero spectral components @f@) = {2,—1, -2}, the second equation in (2.12)
captures all the nontrivial components of the original galtized eigen decomposition problem (2.6). It

5We will see thats(S, C) c o(S, C) and it is the subset that contains all non-zero generaliigghealues. It is often possible to
obtain upper bound fat by utilizing either prior information or proper training. €hrole of stepsize (gaim), determines the trade-off
between convergence and convergence rate. The convergehaeior of vanishing gaimg >0  Y,Nn =+, ¥,N% < o for some
o > 1) is commonly studied in the literature [65, 93], but asymptotinstant gainr, > 0 n :=limp_»Nn > 0) is more desirable in
practice. The condition we have imposed includes that of dueahising gain, but also admits cases with asymptotic cdrgdan

"The eigen vector paired with the biggest eigenvalue wheardegl as a generalized eigen decomposition problem frometiend
equation. The original constrainf’ Ca = 1 translates ta; Ca; = 1, and prevents degenerated results.



immediately follows from Sylvester’s Law of Inertia [40]ahthe generalized eigen spectrun(S‘t C’) has
the formA; > 0> Ay > As. B B

Furthermore, since the generalized spectrum has no zerpament, the second equatida; = ACa;
can be rewritten as

)\_1.§'a1 = C~’a1,

which indicates that(C,S) = {A1|]A € o(S,€)} and the generalized eigen vector @, S) coincides
with that for(S’, C’) (up to possibly some positive scaling factor) with the pajriletermined by the element-
wise inversion relation of the spectrum. Again, since ttisra unique positive eigenvalue (thus the max-
imum) of (S,C), the generalized eigen decomposition(af, S) has only one positive element as well,
whose corresponding generalized eigen vector is of ourdste We will make use of the above observed
relationship in the proof of theorem I1.3.

Proof. We consider (2.13) in the framework of generic stochastjgreximation algorithms [4Ju1 nr1 =
a1n+nNnh(a1n). To apply the corresponding convergence analysis tecknige need to first justify several
assumptions. Viewing (2.13) in the classic adaptive forma,kmow precisely the mathematical conditions
relating to the objects, in particular, the gajp, the functionh and the statéS',C’) (in our case, since we
start with the update equation, there is no residual peatioh involved in the evolution, as opposed to the
more general form of adaptive updates). In general, the saepresented by a Markov chain controlled by
the parameter to be estimated, and it is assumed that for iecadneter, the state has to be asymptotically
stationary, and its limiting behavior regular in the pardéene In our setting, static collective daf (we
disregard the given constafit) is used, the duplicate of which can be regarded as the séinfdam of
Markov chain if preferred. Therefore, the stationarity aedularity condition with respect ta; [4] is
trivially satisfied. Furthermore, it is easy to check that thpdate funcnorh(aa,S C’) is continuously
differentiable with respect ta; and regular (locally Lipschitz). Therefore, we are allowteduse ODE
based approach as a tool to prove asymptotic convergerrweSIandC are both constant, we omit them
as argument dfi for notational brevity.

We link a continuous time ODE to the discrete time algoritt21.8) to a first order approximation by:

0

h(ai(s)) = 551 )ls=s, a1n=ai(s)

Q

—(a1n41—a1n)
n

ai(s)" Sai(s) g~
2.15 = ——=—-5"Cai(s)—ai(s).
( ) al(S)TCal(S) ay(s) —ai(s)
We represeni (s) as a linear combination of the generalized eigen vectot$of).
K
(2.16) a]_(S) = Z ek(S)’Uk.
K=1

Substituting this parameterization in (2.15) yields a dimate-wise (with respect to the ba$i$<}E:l) ODE
as:

0 SK1809° 1,

659() - Zk—l)\ek( 9)2 A k(s)—8k(s) Vv k=1,2...,.K

Sie1Bk(9® 1
2.17 = [ —1]6(s),
(2.17) [ZL1M9M$2 16k (s)

where(\, vk) are thekth generalized eigenvalue and eigenvectof&fC), and8y(s) is thekth time (itera-
tion) varying projection coefficient indicating the stréh@f a1(s) along directionwy.

We define aregio® = {6 =(01,...,6k)| |6k <4/ e 1A1|91| for k> 1}. InourcaseK =3 and

0> A2 > Az. Itis easy to check thath(z) >0foranyB € Q. Fork> 1,A¢ < 0, and (2.17) states that
k=1"k

agsek(s) = ak(s)0k(s)



with ak(s) < 0 for all k > 1. It follows from Lyapunov stability theorem [46] th8k(s) = 0 ass — o for
k > 1. On the other hand, sindg > 0 > A, > A3, we have

K
> AOk(9)? <AT01(5)° < AT Y Bk(9).
k=1

K=1
Subsequently,
0 Sk16k(9)? 1 Ski8k(9? 1
—Bq(s) = |-~ _— _1|01(8) > | &&= "~ _— _1|04(9).
2519 [zlerlkek(s)le 18:(9 [Aglzﬁzlek(s)zm J8u(9

Unlike the other modek( 1) where origin serves as a stable sink, the magnitudi @ increases as its

ODE behaves as 5
5361(3) = a1(5)8k(s),

with ay(s) > 0. Thereforea; — vy asymptotically.

We have thus far proved the asymptotic convergence if thetepfibllows the ODE. In other words,
when the step sizg is sufficiently small. Bigy values correspond to cruder discretizations of the ODE, and
may cause discrepancies between the convergence prgpaftiee ODE and the original update equation
(2.13). In order to reveal this effect, we need to exploregbke structure of the dynamic system in both
continuous and discrete time. We consider the behaviti@f(s)) in the neighborhood of the stationary
pointai(s) = vk, wherewy is thek-th generalized eigen vector 6§, C'). Local linearization results in

0

dai(s) h(ay(s)) lag=oy-

A=

It is easy to see that the eigenvaluesfgfare given byo(Ay) = )\—‘J‘ -1, je{1,2..K}\{k}}. These

are the Laplacian domain poles. The transformation in j2d&fines a map to Z-domain via= ns+ 1. We
list below all possibilities in mapping the pole patternd.aplacian domain and Z-dom&mn

1. When\, A are of the same sigs,= i—f —le(-1,k-1).

Whens > 0 (s-pole in RHP)z=ns+ 1 > 1 falls outside the unit circle, which corresponds to logall
unstable pattern. Whese (—1,0) (s-pole in LHP),—1 < z< 0 lies inside the unit circle, stable=0
corresponds ta = 1, for critical stability.

2. WhenA, A; are of opposite signs, arsd= ;‘—T —1e(-2,—1) CLHP.

In this casez=ns+1 € (—1,0) is inside the unit circle, corresponds to a locally stabligua.

3. WhenA, A are of opposite signs, arsd= ;‘—k —1<—-2CLHP.
]

In this case, the s-pole lies inside the LHP, correspondirigdal stability. To avoid discrepancy, we
want the mapped z-pole to fall inside unit circle. Recaltthith S andC both normalk(S,C) =

\?“r::((‘sgg)) | whereAmaxandAmin are maximal and minimal (by moduli) eigenvalues of the galieed

eigen decomposition. Therefore> —k — 1, and withn asymptotically bounded above %
ze (—1,1) corresponds to a local stable pattern.

Therefore, the local stability pattern of the stationaryng®for the ODE and the update equation (2.13)
agree. This links the convergence of the ODE to that of therelis-time equation, and asymptotic conver-
gence ofa; is thus proved. O

Lemma ll.4. lteration (2.10) is identical to the set of updates givendrig) and (2.14).

8This is very different than the commonly seen eigen decompasitf correlation matrices where spectrum is always positive



Proof. Recall thatSis the Schur complement of blodR in
E B

Performing matrix inversion in block form results in:

o—1 g1 -1
(2.18) S1= { S S "BD ]

-D'B'§! D'+D!B'SBD?!

Setting aside the generalized Rayleigh quotient in (2.48)pbserve that the major matrix operations in-
volved in the update can be “extracted from (2.18) as:

&1 _ a1
51 - [1 0]s [0}
(2.19) _DBE = [0 I}S‘l[é}
Notice that the sparse structure@hinduces the following relations:
o éal o I =
oo =[] [5]en
(2.20) a'Ca = aIéal

Therefore, we can rewrite the iteration in (2.13) as:
(221) a:7n+]_ = nnxnsilca:’n + (1— nn)a’:7n,

whereln, denotes the generalized Rayleigh quotient estimated in-theteration.
Furthermore, we rewrite the numerator of the generalizegldfgh quotient as:

alSa; = al[E—BD'BT]a;
= alEai—a1BDDD'B"a;
(2.22) = a]Eaj—azDasy,

by the dependence af on a; indicated in (2.14).
Putting the above ingredients back into the iteration el compact representation (2.10). O

2.3 Adaptive Ellipse Fitting

For ellipse fitting, the matrixC describes the shape prior (constraint) of the data, andinsncanstant.
When new data becomes available, the system dynamics aedfiéa changes in the empirical covariance
matrix S. Formulation (2.10) expresses the update of the state &gtim terms of sub-blocks and inverse
of S directly (with no hidden or intermediate transformatiossim (2.13)). This enables a straightforward
derivation for the update equations wh8nchanges upon the arrival of new data samples. NoticeShat
takes on the form of empirical covariance, so the diagonbitdacks E and D are empirical covariance
matrices with respect to their own subspaces and are coehpli¢coupled. In practice, the update of the
generalized Rayleigh quotient can be performed accorgiriglessence, the only quantity of real concern
in updating the state estimateSs?. To incorporate the time varying property of the system, ae simply
extend the previous results with a hyper-level evolvingetitag. To express the time varying property of the
system, we usen(i), Sn(i) etc. to denote the various quantities at a given acquisition timdAt. For a
giveni, we rewrite (2.10) as follows:

N an(i)T W (i)an(i)
any1(i) = nm
(2.23) ap(i+1) = an; (i),

(S() *Can(i) + (L—Nn)an(i), n=0,1,...,N—1,
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whereN; denotes the number of iterations used to compute the elfipsemeters at a given time The
challenge is to compute the inverse$fi + 1) efficiently, and we provide below efficient rank-one updates
for S~ for both the sliding window adaptation and exponential oist adaptation.

2.3.1 Sliding Window Adaptation

In the sliding window adaptation, we use a constant lengtlingl window to “mask out” the historical
data samples except the ones that are close enough to thénstaace of interest. We defing(i) =
zij:Hszij with L indicating the constant window size.

When a new sample patt 1 becomes available,

i+1 T
Z zjz;
=i T L1

(2.24) = S(i)— zi—L+12 L1 + 241211

S(i+1)

To computeS(i + 1)~ from S(i) %, we denoteQ (i) = S(i) — zi_L+12 | 4, so thatS(i+1) = Q(i) +
zi117], 1. We invoke the Woodbury matrix identity [39] to compusgi -+ 1) with two step rank one
updates:

Qi)™ = (S()-=- L+1ziT L)
= S(i) =Sz Lna(El S aa - ) e ST
Si+)t = (Q(I)+zu+1z.+1) -
(2.25) = Qi)'-Q Z|+1(zl+1Q() L2ip+1)” Z|+1Qfl-
For this procedure to be executable, invertibility(af” , ., S(t) @i +1— 1) and(z{ ,Q(t) 1z +
1) are required. The second one is obvious v@h- 0. We prove the first condition in Section 2.6. This pair

of properties (2.25) provides a recursion i ). Substituting into (2.10) yields a recursion in the estiorat
parameters(i).

2.3.2 Discounting Adaptation

As an alternative to a fixed-length sliding window, we can teseporal discounting to emphasize the
most recent data. In this case, we def#g) = 11%\} z'jzly'*lzjij, wherey € (0,1) is a user-selectable
discounting parameter. We can easily wié + 1) recursively as:

_ v+l
s =vi Y s+ aela

(2.26)

Invoking the matrix inversion lemma yields the recursion $ti + 1) *

1 yl+1
y y|+l y|+1

Substituting this in (2.23) yields an adaptive ellipseritalgorithm with temporal discounting.

1
(227)  S(i+1)? 5(')1—S(i)1zi+1{ 248(0) 1} 2118(0)

2.4 Application to Tracking Respiratory Mean Drift

Modeling and predicting tumor motion caused by respiratochallenging due to temporal variations
in breathing patterns. Treatment approaches such as gatimdaptive bed adjustment/alignment may not
require full knowledge of instantaneous position, but nhigénefit from tracking the general trend of the
motion. One simple method for tracking mean tumor positstio iapply moving average filters with window
sizes corresponding to the breathing periods. Yet reggirahotion is only semi-periodic, so such methods
require reliable phase estimation, which is difficult in ivesence of noise. As an alternative, we form a
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state vector from the respiration signal values at the atilirestant and at a previous time, and utilize the
algorithms discussed in Section 2.2 and Section 2.3 to digayfit ellipse models to the training data

and extract the mean position according to (2.2). Ellipseerticity and orientation potentially capture

hysteresis in respiratory motion. We test the proposed agkthith simulated breathing traces, as well as
with real time-displacement (RPM, Varian) signals. Estioratraces are compared with retrospectively
generated moving average results to illustrate the pedaoa of the proposed approach.

2.4.1 Application Background

Accurate modeling and prediction of tumor motion caused t@athing is a challenging problem. Pre-
vious studies [37, 53, 109, 125] have noted the difficultynstantaneous position tracking and prediction.
Given such limitations in accuracy, and considering theaaosimetric impact of small motion variations,
treatment approaches such as gating or adaptive bed adjugatignment may not require instantaneous
position, but might benefit from following trends of the naij in particular mean position drifting and/or
abrupt shifts. Current amplitude-based gating systemspeosnan instantaneous tumor location measure-
ment with a pre-determined gating window threshold andy&igthe treatment beam on/off. A potential
modification to such systems would incorporate real-timamndrifting information to (1) adjust bed posi-
tion to compensate for continuous mild drifting; (2) trigdiee treatment beam off upon detection of signif-
icant drift. Compensating for mean position drifting coimgrease effective delivered dose given a fixed
treatment margin, or alternatively, it could allow the u$smaller margins to achieve the same dose deliv-
ery. Previously, other investigators have shown that tkhetéd be only limited gains in trying to eliminate
breathing movement completely, and laid the groundworlkctmrsideration of the methodology described
here. Engelsman demonstrated that the margin needed far byeathing can be represented as a Gaussian
with standard deviation of.@ times the amplitude of motion [27]. Wolthaus demonstratedethod for
efficiently selecting a mean patient representation fronDeCA data set [132]. Evidence from these and
other investigations [52] hint at the possibility that attking’ system that estimates variation in position
such as the local mean may provide significant benefit by radwr eliminating non-periodic trends in mo-
tions, while reducing demands on temporal response andksatien of couch or multileaf collimator-based
adjustment systems.

Fig. 2.1 illustrates how real-time knowledge of mean drifthelps to reduce gating margin for the same
treatment dose delivery (90% in this simulation). In thisueple, mean compensation reduces the margin
by about 70% compared to traditional static gating approach

Furthermore, mean drift (or home position motion) is moebi, with slower temporal variation than
instantaneous position. This makes it more practical t& sgeestimator for this lower order quantity.
By imposing smoothness, a good estimator should be lesgstilde to noise than instantaneous position
trackers.

The seemingly intuitive moving average filter is impractit@ real-time application due to (1) the
absence of “future” observations at the instant of estiomtnd (2) the difficulty of estimating instantaneous
phase online from noisy observations.

2.4.2 Experiment Setup

We simulated two sets of data so that we could have “grountti-tifor verification purposes. For the
first set of simulations, we used noise-free, strictly paigodata with both ideal sinusoid and modified
cosine models [69]. In particular, the discrete sinusoatad modified cosine waveforms were generated
respectively with

(2.28) SN = x(iAt) = xo -+ asin(TiAt /T — @)
(2.29) xmodified oS _ yiat) = x, — aco"(TiAL/T — @),
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Figure 2.1: Effect of drift compensation for gating systemaspiration trajectory (blue solid line); mean
position (red dashed line); gating with static window wit@% delivery coverage (magenta
dashdot line); mean drift compensated dynamic gate with 80%érage (black dotted line).

|IDVS.Parameteff 1 | 2 [ 3 | 4] 5 [ 6 | 7 [ 8 ] 9 [ 10 ] 11 ] 12 ]
Data Characterization
STD 291] 6.47 [ 13.05[2.83] 486 [ 2.78 [ 430 [ 7.61 | 2.08 | 7.72 | 13.04] 6.56
P-P 10.93] 25.03[ 48.91] 9.02 | 13.09| 11.47| 17.77| 26.93] 13.14| 37.44] 38.97[ 32.54
Period (sec) 45 | 46 | 72 | 56| 44 [ 54| 47 [ 97 | 47 | 41 [ 31 ] 52

Table 2.1:RPM Dataset information

where we used the value= 2. In the second test, we generated a semi-periodic sinfisoition with slow
frequency drifting by modulating thiecal frequency with random offset components, as follows

(2.30) ><.-Sin=xo+asin{TrAt IZ(l/T +6k)—(p}
k=1

(2.31) xmodified Cos_ y, _ 5cogn {TrAt i (1/T +8) — (p} ,
k=1

where thed values were randomly distributed via a Gaussian distrioutl (O, 02) with 0 < 1/T. In the
simulation, we set periodl = 5 secondsit = 1/30 corresponding to a sampling frequency of 30Hz, home
positionxg = 0, magnitudea = 5cm, and systematic phase offget 0. Fig. 2.2 shows typical simulation
traces.

For real clinical data, we used the Real-Time Position Managnt (RPM, Varian Medical Systems,
Palo Alto, CA) system to obtain the trajectories of extefidhicials placed on the chests of 12 patients. The
displacement-time relationship was recorded at 30Hz aaddsmed to be highly correlated with superior-
inferior diaphragm motion [125], which is a major source e$piratory motion for tumors in the chest or
lung area. We centered and scaled the unit-less RPM datatsthéir dynamic range corresponds to typical
S| motion for chest and lung tumors [107, 109]. We can theéeeaonsider the units to be on the order of
mmfor typical thorax tumor motion. Characteristic paramstier the RPM data used in our experiment are
reported in Table 2.1.
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2.4.3 Results

The fitting methods approximate data in the state spage by ellipses. Itis desirable to have the center
of such ellipse, which corresponds to the mean estimatdretmbust to missing data, spurious data, and
to input data lengths that differ from the ideal period cesdeat the time instant of estimation. Fig. 2.2
illustrates both data-abundant cases and the cases whgra segment ( 3 seconds worth) of arc data is
available for fitting. The fitted ellipses are overlaid witletobservation samples in the augmented state
space. The second column in Fig. 2.2 illustrates that eltigse reasonable approximations for the scattered
observations in the state space. The difference betweemmooB and 4 in Fig. 2.2 indicates the change
of parameters in the presence of scarce and/or non-cerdatad Not only does the ellipse fitting method
degrade gracefully with partial data, but also the meantjposestimated from this approach is reasonably
stable. This empirical study illustrates the feasibilifyusing the proposed method in mean tracking and
prediction.

Adaptive Estimation

We first test the case where we use a fixed interval of the moentealata. In the real time estimation
and prediction setting, all the input samples into the eatiiom algorithm precede the time instant of interest.
We also want to emphasize that the windowed history is usbélfpestimate the ellipse parameters; and it
need not have integer multiples of the period. We tested thdawed ellipse fitting with 5 second and 7
second local history length, and report the results in Fig. Discount adaptation yield very similar results
to the windowed fitting, resulting in virtually overlappinmgal-time mean tracking curves. We omit them
from the figures for visualization clarity. We also plot thatputs of two simple moving average filters with
fixed window lengths.

We constructed our simulations to have frequen@H2 for deterministic cases or centered around that
for the randomly frequency modulated realizations. Thaeefthe “ground-truth” mean motion was zero for
all the simulations. The clinical RPM data (Patient 1 in btable 2.1 and Fig. 2.6) also has approximately
the same frequency. Since both the simulated and clinidal ldak mean drifting, a good estimator for
the mean position should yield very stable (flat) output. Whenselect the training window size to be
the “oracle” (ground-truth value unknown to the algorithmajue ofL = 5 seconds, which coincides with
the signal period, outputs are stable from both the movireyaye operator and the proposed methd
as illustrated by the the left column in Fig. 2.3. On the othand, it is impossible to guarantee that the
history window size will always match the “true” period. Whistrate the effect of a disagreement, where
window sizeL = 7 seconds in the right column in Fig. 2.3. The moving averdtgr #xhibits undesirable
oscillations, whereas the ellipse fitting method providesmparable results as in the case of perfect period
match.

The size of the sliding window and the discount factor mustpgmmise between response speed (track-
ing efficiency) and robustness (tracking stability). Evieough the ellipse fitting method is not too sensitive
to the window size, it is helpful to choose window lengtland discount factoy from a short segment of
training data. Fig. 2.4 illustrates the effect of variousicles of window length parameteion mean estima-
tion performance with some RPM data and Fig. 2.5 illustrétteseffect of the discount factgr For RPM
data with relatively long period and slow drifting (as in F&y4(a) and Fig. 2.5(a)), it is desirable to use a
larger window size (and correspondingly weaker discountlargey) to take advantage of its robustness.
On the other hand, for breathing signals that have relatiskrbrt periods and rapid shifts in mean position,
such as the one illustrated in Fig. 2.4(b) and Fig. 2.5()rten window lengths and small discount factors
are preferable for prompt response to mean changes.

To automatically adjust the sliding window length and th&cdunt parameter, we take a short segment
of training data at the beginning of each treatment fractaord apply a subspace projection-based period
estimation method [101]. For the signals in Fig. 2.4, the@algn subplot (a) yields a period estimate of 9
seconds and the signal in subplot (b) yields a period estimia® 1 seconds. Using the estimated period as
the sliding window length and choosing the correspondisgalint factor appear to be reasonable based on
Fig. 2.4 and Fig. 2.5. We apply this scheme to automaticibose the adaptive parameters for all of the 12
RPM datasets and report the results in Fig. 2.6. For basedimparison, we collect the complete trajectory,

10A constant offset (as observed in the modified cosine casehheginal clinical effect, as long as it is consistent.
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Figure 2.2: lllustration of ellipse fitting performance dfet proposed method. Each row corresponds to a
different data source: rowl (aX) ideal sinusoid; row2 (b¥¢al modified cosine; (cX) locally
modulated (noisy) sinusoid; (dX) locally modulated (ngisyodified cosine; (eX) clinical RPM
trace scaled so that P42 10mm to mimic SI motion. Column-wise: X(1) time-displacerhe
graph; X(2) augmented state space with displacement ardkityy { = 0.5 seconds); X(3)
ellipse fitting (red dashed line) applied to complete ddtas@) ellipse fitting (red dashed line)

applied to partial dataset.

and apply a moving average filter with the “oracle” windoweslizto obtain a reasonable “ground-truth”.
The deviation of the two adaptive real-time mean positidmegtor from this “gold standard” (with constant
offset compensated) is reported in terms of mean squared(@WMSE) in Table 2.2. Both adaptive methods
demonstrate reasonable agreement with the retrospsctits&ined “ground-truth”.
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Figure 2.3: Comparison of moving average (MA) and ellipstnfit estimator for mean position tracking:
left column X(1): “oracle” history window length: = 5 seconds matches the underlying signal
periods exactly; right column X(2): history window lendth= 7 seconds disagrees with the sig-
nal periods. Rows correspond to different data source amir2R2. Blue solid line: observation
signal; black dotted line: moving average output; red dasth dutput from the ellipse fitting
algorithm.

Sensitivity to Sampling Rate

In some cases, it is preferable to obtain observations atdremjuency. This is particularly true when
internal tumor motion is extracted from real-time imagirgyites that would incur radiation dose. Sparse
sampling poses a particular challenge to the conventioealmestimator based on a moving average filter,
which is more vulnerable to miss calculation of period lénghen there are very few samples, resulting
in intolerably high variance in mean estimation. We testedluse of sparse real-time observations by sub-
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[(IDVS.Parameter] 1 | 2 [ 3 | 4 | 5 [ 6 | 7 | 8 | 9 [ 10 11 [ 12|
PeriodL (sec) || 45 46| 7.2 | 56 | 44 | 54 | 47| 97 | 47 ] 41| 31 5.2
Sliding Win RMSE || 0.35 | 0.77 0.96 | 0.23| 0.68| 0.36| 0.35| 0.90 | 1.09| 1.22| 1.21| 1.40
Discount factoy || .978 | .979| .986 | .982 | .978| .982 | .979| .990 | .979 | .976 | .968 | .981
Discounting RMSE]| 0.36 | 0.77 1.08 | 0.24| 0.71] 0.35| 0.44| 1.22| 1.54] 1.55] 2.18| 1.39

Table 2.2:Mean Estimation Performance

sampling from the 30Hz signal, applying both windowed arsgdinted adaptive algorithms to estimate the
mean target position, and comparing with the retrospdgtigenerated “true” mean from densely sampled
data. Fig. 2.7 illustrates how different observation ratffect overall RMS error across all patients. Both
adaptive approaches are quite robust to low sampling rat@atticular, as the windowed adaptation only
used historical samples that are within one period, whialoisnally about 4- 6 seconds, the observable
“break-down” at 1Hz in Fig. 2.7(a) corresponds to estintatime ellipse from 4- 6 samples only, which is
somewhat expected. On the other hand, the discounted éidapitilizes all previous samples in a weighted
fashion, and is naturally less affected by sparse sampéirgiawn in Fig. 2.7(b).

Setting the Temporal Scale

The size of the window width and the discount factorcontrol the trade-off between response speed
and smoothness of the tracking trace in each adaptive Higorespectively. Even though the ellipse fitting
method is robust to missing data.g, a partial period), it is still desirable to react more prdatppvhen
changes are more frequent (short underlying breathingpgerand/or rapid shifts in mean position) and
track stably otherwise. For fixed-length sliding window ptildty, it is preferable to choose a window size
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that roughly matches the “true” period of the signal. Theref we use a short segment of training data at
the beginning of each treatment fraction, find the closesbgi function to the training segment using a
subspace projection method [101] and use the derived pasidde fixed window length.
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We could choose the discount factosnalogously by usingffective memory lengttdefined by
P
(2.32) Li)y=S v,
=1

because the time unit has a more intuitive physical intéagicn. For largd, the efficient memory length
isl = 1—fy In other words, we expect the performance of an adaptivenrtreaker with discount factor
y=1- % to behave similarly to a sliding window estimator with windgsizeL. In general, however, the
discount method should be more stable, but less respomsiagds changes than the corresponding sliding
window approach with. = L because previous samples are never completely “forgotfmis, we use the
period estimated from projection as noted before [101] td fifrom 20 seconds of training data, then find

y such that

where the pair of parametefa, 3) adjusts the decay rate. It has the interpretation that fleeteff a given
sample decays t0 aftera periods. We found that in practiece= 1 andf3 = 0.05 is a reasonable choice and
we use these values in later investigations.

2.4.4 Discussion

Although we assumed uniform sampling for simplicity, theposed approaches easily generalize to
nonuniform sampling scenarios, thanks to the robustnethgeditting process. Lower sampling rates should
affect the estimation less than the partial datasets téstEdy. 2.2. Nearly uniform but sparse sampling
along the ellipse would increase estimator variance, baulshnot introduce bias, unlike the partial data
case where all the samples are concentrated along an aresegm

Unlike simple filtering methods, the ellipse fitting methedriore objective-oriented: it is specifically de-
signed for estimating time-variant mean of breathing diginehe ellipse model reflects the semi-periodicity
of respiratory motion. The fitting process is flexible enotgleapture changing trends yet is robust enough
to control noisy oscillations. The adaptive algorithmsvpde efficient updates of the ellipses and allow
the users to determine the update rates of the fitting. Fgstagamethods using either sliding window or
discounting factor, parameter selection involves thearafl between system response speed and stability.
We have suggested one way to adjust the sliding window lehdtased on the estimated nominal period
length, and discussed a connection between the discouat feand the “effective memory length”to pro-
vide some guidance about the choice of those parametensdiiffing sequences require a more responsive
system, and this should be reflected in the correspondirappeter settings. Even though the mean drifting
pattern and the respiratory frequency are very often closairelated, a slow (and regular) breathing pattern
may still exhibit abrupt changes, as observed in the upgfecorner of Fig. 2.6. Itis possible to resolve this
issue by applying the proposed method on a training segnmehttheen investigating the variation pattern of
the estimated mean position to further decouple the diffecauses of the mean position changes. As rela-
tion (2.32) only holds asymptotically, and the discountingthod is less forgetful than its sliding window
counterpart, the discount factor may need to be furtheraediio accommodate the more rapidly changing
trends.

Our algorithms generalize easily to non-uniformly sampdedervations and higher dimensional cases.
Commercial solvers for some intermediate steps, such asrgiered eigen-decomposition, are available.
Clinical experience and physical prior knowledge can heiljolg choosing either the proper sliding window
size or discount factor. In general, both the window size thieddiscount factor allow real-time adjustment
(at the possible cost of more complicated update rules)canttl even be tuned intra-fraction, if necessary.
The intuitive interpretation of the parameters in terms dfidow sizel, effective memory length. and
decaying paramete(si, 3) makes the control of those parameters practical.

Practical issues that are worth further investigationudel learning of mean position drifting rate, ab-
normal abrupt change detection, and proper adjustmeniechdaptivity pace. This concerns the clinically
significant question of “how far we can reliably extrapolat® future based on current observations”. For
clinical use, the proposed method needs to be further \elidan both external surrogate and internal tu-
mor trajectories, as they may bear different noise propertDose effect on various treatment methods and
software-hardware cooperation issues should also beestudi
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2.5 Generalized Fitting Cost for Robust Estimation

It is often desirable to use a potential function that is silio the presence of outliers. It is therefore,
natural to ask for extension of the squared algebraic distemrobust potential functions such as generalized
Gaussian, Huber, Hypergeometrate When a more general form of the potential function is to belute
problem can not be reduced to generalized eigen-decorigrgsiecause the potential is no longer quadratic.
General purpose optimization routines need to be studiede bhat this is not a dramatic sacrifice as [90]
shows that the generalized eigen decomposition problenbeanapped bijectively into determing whether
a matrix A— AB is copositive. Meanwhile, the problem of determing the cieeness is shown to be
NP-complete [82], so is the generalized eigen problem.

Proposition 11.5. The set defined by Ca > 1 is a union of two convex sets.

Proof. Recall the condition for defining the set can be rewrittenais-4b? > 1 wherea = [a,b,c,d, e, f]T.
It is straight forward thafd, e, f] € 03 is a convex subspace. We only need to test the subspdagood).
Observe that feasible points satisfgot> b® + 1 > 0, thusa andc would have the same sign. This naturally
split the whole set into two disconnected portiari€a > 1,a > 0 anda’Ca > 1,a < 0. Without loss of
generality, we concentrate on proving the convexity of #itls= {a’Ca > 1,a > 0} hereafter.

Let (a,b,c) and(x,y,z) are points insidéJ. SinceU is closed, its convexity is implied by “midpoint
convexity” [16]. It suffices to test midpoint convexity, vadhi we prove below:

4a;XC;Zf(bZ%271 = 1/4{dac+ 4xz+ daz+ Axc—b? — 2by—y? — 4}
(2.33) > 1/2{2az+2xc—by—1}.
Notice that
az+xc > 2azxc=2./(ac)(x2)
(2.34) = e,
However,

02+ 1) (Y2 +1) = b2 + b2+ Y2+ 1> b2y? + 2by+ 1 = (by+1)2,
thus/(b?2+1)(y2+ 1) > by+ 1 (This relation holds regardless of the signdaindy).
Plugging into (2.33) results in
4aH—xc+z_ b+y?
2 2 2
yielding midpoint convexity otJ. O

—1>0,

In principle, we could consider general-purpose optinidratechniques to solve a general objective
function of the form®(Z;a) = TN, @(zi;a), with 9= @ (-;8) oF (2i;a) = @ (a” 2i;8). @ may be chosen
to be a robust fitting function; it should be positive symrizetbout the origin, and equals zero if and only
if the argument is zero. Our goal is to solve the general caimgtoptimization problem:

a =argmin®(a),
acC
where( is a given constraint set.

We will start by considering a simple constrained minimizaimethod calledradient projectiorwhich
is essentially the gradient descent method with projeatiothe constraint set at the end of each iteration.

(2.35) a™V =P (a —a0d(aM)),

whereP - denotes the projector on to the convexgetf stepsizen is chosen appropriately, then for certain
families of cost function, the gradient projection meth@d36) converges, as established by Theorem 11.6
below. [6, p. 83] analyzes a generalization of the aboverilgo.
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Theorem I1.6. Let C denote a nonempty, convex, closed subset™sf Let® : 0" — [ be convex and dif-

ferentiable with gradient ge) 2 Od(x) satisfying a Lipschitz condition of the forifil®(a) — Od(a)|| <
Lla—al|, Va,a € C. Suppose the set of minimizexs = {a* € C: ®(a*) < ®(a), Ya € C} is
nonempty. If0 < a < 2/L, then the gradient projection algorithm (2.35) convergesdmea™ € X*.

In our case, the convex half cone is defined)'a > 1. Given a initial poiniag = a(" — add(a).
If ap ¢ C, then the projectiom = P -(aop) has to satisfy:

ap—a|Ca=ap—a=YyCa

(2.36) a'Ca=1,
00 2

whereC=| 0 —1 O | andits spectrp(C) = {—2,—1,2}. There are two scenarios to be considered:
2 0 O

1. Wheny € —p(C)~t = {1/2,1,-1/2}, the linear operatof +yC has a nontrivial null-space of di-
mension one. The solutiom in that case is obtained as the intersection between a twmesdiional
plane (co-dimension one equals the multiplicity of the esponding eigenvalue) and the cone shape.

2. Let Assumingay 2 [l +yC]tag fory¢ —p(C)~L. We need to fing such that
a@Cay =1
Let the eigen decomposition 6f be C = VAV’ and the above equality can be rewritten as:

agV [l +yA A +yA WV ao = 1.

Noting thatV is the “natural” coordinate system determined@yndV’ay is the representation afy
in that coordinate, we rewrite the problem in the generahfof y,/(y)yo = 1 where we can identify
yo = Vao andA(y) is the diagonal scalinf + yA] 2A[l +yA].

Without further manipulation, this corresponds to findihg toots to a 6th-order polynomial.

We usually desire the resulting projectiaro be close to the starting poiag. It follows fromag—a =yCa
that
lao— all5 = Y’a'C'Ca,

and it is straight forward to pick out thethat is closest tag in L, sense among several (up to 6) candidates.
As stated in Theorem I1.6, the stepsizén (2.35) needs to be upper-bounded by 20 ensure conver-
gence, wherg is the Lipschitz constant for the gradiegitc). In what follows, we will use Huber function
as an example to illustrate the procedure of obtaining areuuppund for the Lipchitz constaht We let
O(zi;a) = @(-;8) oF (zi;a) = gh(a' 2i;8) as the fitting measure, whegg is the huber function given by:

12 it] < &;
. _ 2 L]
(2.37) cpn(t,é)_{ St-12 =5

Notice that this is reasonable fitting measurepas 0 and the equality holds if and only # falls on the
ellipse parameterized hy.
The column gradieny(Z; a, d) is given by:

0
g(Z,a,é) = £¢>

(2.38) z%(aTzi;&zi,

A . . .
whereZ = [z1, z2,..., 2| is the collection of all data points.
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Our goal is to find the Lipchitz constahtsuch that
19(Z:a,8) —g(Z:;a,d); < Llla—all,,

for all @ anda on the feasible sef.

(2.39) l9(Z;a,8) —9(Z:a,9)[, = H Y [¢h(a'=i;8) — ¢ (" =i:9))=

2

Note that the derivative of huber function is nonnegativéhws slope bounded above by unity:

t [t| <o
@¢td)=¢ d t>d
-5 t< -0

Thus|d,(t;8) — g,(f;8)| < |t —f|. Substituting = a” zj andt = &' z yields:

(2.40) |d,(a”2i;0) — @ (@ 2;8)| < |a"z —a zi]

L T T T -4

Letc=[@ (a'z1),¢,(a" 22),...,¢ (a’ zn)] andE=
can be rewritten as:

[@,(@"21),¢,(@"22),...,4(a" zq)], then (2.39)

l9(Z;a,8) —9(Z;a, )|,

\/(c— )"z z(c—¢)
(2.41) = \/P(ZTZ)[le—¢,.

Subsituting the elementwise bound (2.40) ifito- ¢||, yields:

le—¢l

> (e—a)?

V(a—a)727Z(a—é)

VP(ZTZ)|la—al,.

(2.42)

Substituting (2.42) into (2.41) yields:
l9(Za,8) —9(Z;a,9)||; < Llla—adll,,

whereL = p(Z' Z). A loose upperbound fop(Z' Z) is trace{ 2" Z} = 1, 2 zi as 2" Z is nonegative
definite. This is a reasonable result considering the “gti€nof Od(a) incorporates the collective effect
of all the data points, and in in extreme cases whgeare “aligned” would scale as the number of sample
points, andp(2' 2) ~ trace{ZTZ}. This loose upperbound may be convenient to use when theadata
dynamically updated, as it does not require repetitivelfqrening eigen decomposition.

We remark on the structure of the generalized fitting withustlcost here.

e It is reasonable to assume that the general robust fittingctilee takes on the form ob(Z;a) =
s N, @& (2 a; ) where thep is some robust cost function adaontrols its shape and scale. Moreover,
the symmetry ofp about the orgin in its argumeiia" z;) translates naturally to the overall objective
@. This symmetry has an important geometric implication. &labat the feasible set of parameters
is the union of two convex cones distinguished by the sigrheffirst element ot:; together with
the above analysis about the geometry of the objective iumctve conclude that the graph of the
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objective is symmetric about the origth. Technicality aside, this clears the last bit of reservatioe
may have towards the applicability of the gradient prottmethod. Given an initiakg, one can
arbitrarily pick a cone (the natural choice would be the oftmse first coordinate has the same sign
as the element dp), and then perform gradient projection on the chosen comse® on whichever
minimizer a* we obtained , a simple reflection results-#w*: another minimizer with the same
objective function value that resides on the other convaeco

e Given the iterative structure of the gradient projectiortimoel, extension to adaptivity is natural. For
static data case, we alternate between two operationseghiaj onto the feasible setand gradient
descent in the direction dfid. Notice that the inclusion of a new data point only perturlss by
Og(znew), but does not affect the projection operafdr. The result from previous iterations should
be regarded as an initialization to the updated cost functiore specifically, the adaptive version
for the gradient projection algorithm is given by:

ant1(i) = Pelan(i) —ald(an(i))), n=0,1,...,N—1,
(2.43) ap(i+1) = an(i),

wherei indexes the data samples amohdexes the inner iterations.

e We used algebraic distance to implicitly represent thepgdlito obtain a convex formulation and
a simple solution. It is possible to modify the algebraic fittlee ellipses to drive it closer to the
geometric solution, which is the minimizer of geometrictdigce. The idea is to weigh the samples
based on a given estimation, leading to a simple iterativehaxgism. [11] provides the following
interpretation. The algebraic solutiarnis the least squares minimizer®f Leth(z) be the geometric
distance from the center of the fitted ellipSgto =

h(z) = [|z = Oell2,

and determing; by intersecting the ray from the ellipse’s centertand the ellipse. Then

h(z)?
o) = (- )
(2.44) ~ 2K7h(zir)](;3(pi), if 2 ~ pi,

for some constank. Thus one may interpret the algebraic solution as a fit to liigse with respect to
the relative distances, where distant points are weiglgesi than near points. This explains why the
algebraic solution tends to neglect points far from the eerithis is in fact, a desirable trait in many
applications where non-eccentric ellipses are favored.

If one prefers to minimize the absolute distance, then datan be weighted with(p;) for a given
estimated ellipse. The resulting estimated ellipse mag treeused to update the weight, thus itera-
tively solving the weighted least squares problem. Nalyr#lone is interested in solving the fitting

in least squared sense for the geometric distance, thendightfor dataz; may be set tal(z;)/@(z)
whered(z;) is the geometric distance of from the currently estimated ellipse. The advantage of such
iterative weighted least squares scheme is that the theenged to compute Jacobian or Hessian as
in the case of a direct nonlinear optimization with respeaggometric distance. The drawback is that
its solution generally differs from the minimizer of the geetric distance.

UThis is a bit sloppy, since the graph lies fliM(a)+1 dimension, so it should be ideally stated as symmetric witheetsimw
(0,9(z;0)). However is not a feasible point in the domain, @ds not defined on that point, which makes this statement illegiie.
A quick remedy would be to redefirk as:

B(a)— { P(a) acC

+o  a¢C.
and the graph o is symmetric with respect t0, ).
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To harvest the benefit of using robust objectives, we neethdose the parameters for those functions
properly. For instance, the threshold parameter for Hubection determines the transition fram cost to
L1 penalty. Without assuming prior knowledge about the mixarapability of normal samples against noise
outliers, we determine the parameter by considering thesiflaation sub-problem. In particular, we use the
Ostu’s method, aiming to best distinguish between the nbame noisy samples. More specifically, after
thenth iteration, we examine the distribution of the fitting eramd find the valu®&™? that minimizes the
within-class variance of the fitting error from the previdteration{g = @ (a" 2;;8")}. Mathematically,
the threshold parameter at thth iterationd" is selected as the minimizer to

0%(8) 2 i (8)02(8) +w2(8)33(3),

wherew; = P(g < 0) is the probability of normal samples (errors smaller thaeshold) under the assump-
tion of threshol®, w, = 1 —wsy; ciz is the empirical variance of each class.

We illustrate the robustness of the proposed method withmaullated example. Noisy samples were
uniformly distributed inside the computation region withoaighly elliptical object (the bone contour from
a head CT slice). Figure 2.5 illustrates the initial fittinglwguadratic minimization and the evolution of the
estimated ellipse with the gradient projection method.

Initialization from quad cost iteration2 iteration4

wd o, ol e wf o, ol e ] wd T ol e

o - o e — .-

af,” * . a0, ’; - % ., ] af,” .; A

.. L o. .. o : 1o .

00 + *20 o 60‘ o 0 o5 00 + *20 o 60‘ o 0 o5 00 * *20 = 60‘ o o0 o
intialization with quadratic solution iteration 2 iterati 4

Figure 2.8: Evolution of robust fitted ellipse with the grawli projection method: blue dots: observed sample
locations; green line: fitted ellipse.

2.6 Appendix

e Proof for the statement about stationary points of the gniextjo function in (2.7).

Claim 11.7. The generalized eigen vectors(ef, B) correspond to the stationary points of the energy
ratio function

B u' Au

 uBu’

J(u)

Proof. We compute the stationary point of the energy ratio funcfitm), i.e., we set:

(2.45) a%J(u) =o'

The derivative on the LHS of (2.45) turns out to be:

0
%J(u) ~ u"Bu

[Auu" Bu — Buu' Aul.

With A > 0, B > 0 as previously assumed, so thatAu andu' Bu are simply positive scalars,
setting the above expression to zero is equivalent to reguir

uw' BuAu = u' AuBu.
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This is exactly the condition for generalized eigen decositm:

Au=——Bu.
ul Bu
Therefore, the generalized eigen vectors are the statigraints for the energy ratio functiod(u).
Moreover, the evaluated functional values provide theexponding generalized eigenvalues. This
result can be considered as a generalization of the RayRigitheorem. O

Derivation for (2.17)

We make use of the relationship between the generalizea eigeomposition(.S,C) and (C, S).

Up to a constant gain, the set of generalized eigen vectotheofwo problems coincide, pairing
with element-wise inverted spectrum. Since we aim to prénedonvergence of the coefficients of
the eigen vectors either to zero or really large, the constealing can be neglected for the sake of
argument clarity. We use the alternative setug©f.S) in deriving (2.17) to take advantage of the
assumed positive definiteness.®f The generalized eigen decomposition(&f, B) with B being
symmetric positive definite indicates the existence of aegaized eigen matriy/ (with columns
being the generalized eigen vectors) that can simultamgdiggyonalizeA and B:

AV = ABV;
VIBV = TI;
(2.46) VIAV = A

WhereA is a diagonal matrix whose diagonal elements are the camebpg generalized eigenvalues
of (A, B). Indeed, the use of two-stage conventional eigen decotiprogo compute generalized
eigen decomposition reflects exactly this property. Wewatpé to(C, S) and call their eigen matrix
V. Again, V is also an eigen matrix faiS, C).

The linear representation in (2.16) can be rewritten as:

ay(s) = Ve(s),
where8(s) = [01(s),82(),...]".
Substituting in the relevant terms in (2.15), we have

a1(9)" Sai(s) =6(s) VT SVE(s) = § 6k(s)®

a1(s)"Cay(s) =0(s)"VTCVE(s) =0(s)TA16(s) Z)\ ok(s)

(2.47) S51Cay(s) z A t6k(s)

The second and third Iir~1e§ in the aNboye derivation also mag®fithe element-wise inversion relation
between the spectra 6€, S) and(S,C).

Representing both the LHS and RHS of (2.15) with respectedtisis{v k=12, .k, and we have
coordinate-wise equation (2.17).

Proof of invertibility in (2.25).
Proposition 11.8. LetQ(t) 2 S(t) — L1z 4. then(e | S(t) a1 —1) is invertible.

Proof. Proving the invertibility of a scalar quantity is the samesaswing that it is none-zero. We
rewrite the relation betweeS and Q as: S(t) = Q(t) + ;_ 12 | 4. Invoking the Woodbury
matrix inversion lemma, we get:

(2.48) SOT=QM) - QM) tw_La(rl L 1 QM) T+ D) el Q)T
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Plugging (2.48) intae! | S ta 1 —1yields:

ol S -1

= 2L 4 QMO) - QM) o (e 1 QM) e L+ D) el QM) w1 1+1) -1
1

|_+1Q() Ti Lt 1+1 Ty L+1Q

= o QM) e — 2l Q) Ta Ll )t — 1.

Let p x] L1 Q(t Y~ay_| 11, thenp > 0 asQ(t) > 0. We rewrite the expression in (2.49) in terms
of pand get

[p(p+1) — p?— (p+1)] <O.

pP—pPX pP—

p+1" " p+1

This result states thatt L1 S(t ) xi_+1 — 1 < 0, thus invertible. In fact, the negativity of this
term is not acmdental but a natural consequence of theigtens relation stated below. When
xl LSt Y~lay 11— 1+ 0, we could apply the matrix inversion lemma in two differerays (ex-
pressingS—1 with Q 1, and the other way around), and obtain:

QLS = Q) tm_rn(w L 1QM) e+ el ,Q1)
(2.49) = =St ez SO - D) el ST

Becaus& > 0, the RHS of line 1 in (2.49) is positive definite With the nmrsign in the front and
its quadratic form, line 2 in (2.49) indicates thBE Le1S( t) a1 — 1< 0if it is ever nonzero
(otherwise (2.49) cannot be established in the first place).

O



CHAPTER IlI

Regularized Nonrigid Image Registration: Local Elasticity Penalty,
Discontinuity Preserving Flow and Performance Analysist

In medical applications, spatial alignment is often regdito properly integrate useful information from
separate images [74, 138egistrationis the procedure of retrieving the transformation that nfaps the
target image’s coordinate space to the source image’s cwdes.

Registration algorithms can be classified according todah@lfy of transformations. Rigid/affine (global)
registration algorithms have only a few degrees of freedanile nonrigid registration algorithms often
have a very high dimensional space of feasible transfoonatiUsually, rigid registration methods provide
satisfactory matching results for individual bone struesy but are in general not descriptive enough for
elastic tissues that undergo more free-form deformations.

Nonrigid registration problems can be highly under-deiesd when transformations of high dimen-
sionality are used, resulting in ill-conditionednesstahdity of solutions as well as multiple local optima.
Regularizations are usually introduced to alleviate thesees and to effectively incorporate prior physical
knowledge into the problem formulation. Regularized ngiciimage registration algorithms usually involve
minimizing a cost function, consisting of a dissimilarityeasure and a penalty term that discourages un-
desirable transformations. Conventional regularizati@thods usually treat the region of interest (ROI) as
one single deformable body and homogeneously penalizatit@vé from smoothness or incompressibility
properties of the deformation field [55, 56, 96].

However, homogeneous smoothness regularization hasnitstions. In particular, ignoring the elas-
ticity differences between tissue types can cause nonigdlyesults, such as bone warping. Furthermore,
isotropic smoothing throughout the ROI blurs motion edgesulting in artifacts across motion interfaces
where sliding effects occur, which are commonly observad/een diaphragm and rib cage during respira-
tion.

To address the tissue-dependent elasticity issue, segtimenbased methods were proposed to treat
each segmented region of an image independently [51, 63, Tt8&se methods rely heavily on precise
segmentation and may incur boundary issues with overlggpicuum region in the deformed image. Em-
pirical spatial filtering was also used to “correct” the dafiation field as a post-processing step [112].
Unfortunately, its deviation from an optimization setuprggicates convergence assessment. To study dis-
continuities in deformation field, some recent researchrestets motion field discontinuity problem using
variation-based techniques for joint segmentation arichasion [24,134]. In these methods, smooth regions
and singularity set (edges) are devised according to imagasity, and registration aims to align each part
respectively. The smoothness and discontinuity in therd&tion itself is not addressed directly. We adopt
the regularized optimization framework, and propose ragzétion designs to address the tissue-dependent
elasticity and discontinuity preservation issues respelgt

Section 3.1 introduces the regularized registration seBgxtion 3.2 provides an approach to incorpo-
rating tissue-type-dependent rigidity information intannigid registratioR and Section 3.3 proposes a class
of discontinuity preserving regularizers to address tlieot$ of sliding along motion interfaces. Given the
general regularized optimization setup, various optiti@atechniques can be used. We adopted B-spline

1This chapter is based on material from [102].
2\We proposed this method in 2006 [102] while [113] and [114Ejmendently studied a similar penalty in 2006 and afterwards.
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parametrization in Section 3.2 for its natural smoothnassl, variational flow in Section 3.3 to better re-

veal the anisotropic filtering structure. These are specHimices for representing the deformation that are
independent of the regularizers themselves, and shouldenocbnsidered as limitations: in particular, the
variational flow solved on rectangular grids can be regaated special case of zero-th order B-spline with
its support equal to the pixel size. Preliminary resultscimonstrated with each approach.

3.1 General Optimization Formulation for Regularized Regstration

The goal of nonrigid registration is to find the optimal trioysnationT* such that the transformed source
image best matches the target. We disg: Q — [ to denote the intensity map for the source and target
images respectively, wherkis the image dimensionality, and the open et (19 denotes the physical
region of interest (ROI) for registration. L&t: Q — 09 be the transformation. Our goal is to find:

T = arg{nirnE(T, f.g)
S
(3.1) = argmin(Eq(g, foT) +E(f,gT)},

where the sef is the class of admissible transformatioiisis the overall objective function that we want
to minimize, consisting of two partEq(g, f o T) denotes the data dissimilarity measure, also called data
infidelity term, andg; (f,g; T) denotes the regularization term that is applied to penalimtesirable trans-
formations. In the general regularization settiigcan also depend on imagésandg.

3.1.1 Data Dissimilarity (Infidelity) Measure

Let x € Q denote the coordinate (in vector form) of a specific spatiehtion. We usdy to denote the
local transformation at locationandy,(-) to denote the summation over a discrete lattice that is aesubs
of Q.

Sum of Squared Differences (SSD)

The sum of squared differences is a sensible data dissityifaetric when the reference and the homol-
ogous image are acquired with the same modality with cansigtarameters:

(3.2) Edsso= Y (9(x) — f(T(x))).
X
This metric has been considered by [58, 61,62, 85,115].

Mutual Information (MI)

When different modality images are to be registered, munfakiation (Ml) is a popular choice, since
it does not require explicit knowledge about the intensigpping between different modalities [20, 72, 75,
88,116,126, 130]:

Eami = —1(g,foT)
(3.3) = —H(@)—H(foT)+H(g,foT),

whereH (-) denotes the entropy of a random variable &hd,-) denotes the joint entropy of two random
variables.

In medical image data, we only have access to discrete saroplbe intensity. To both improve the
smoothness of the dissimilarity measure and approximsigeitivative, we use Parzen window to estimate
a differentiable entropy from the sample values [25]. Relfgy the setup in [116], the joint discrete Parzen
histogram is:

(34) hPaZF G;T) = 1ZW(F_ f(T(’—‘)))w(F_g(’—‘)),

&g
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for F € Bt andG € By, where B¢ and By are discrete sets of intensities associated with the saurde
target images respectively(-) is the Parzen window that integrates to unity, angdeg control the width of
Parzen window in each dimension of the joint histogram.

The data infidelity term (negative mutual information) isygqmuted using the normalized joint discrete
Parzen probabilityp(F,G; T) O hPaZ(F,G;T) as:

p(F,.G:T)
3.5 - p(F,G;T)log, ——————
&9 B == 2 2 PECTI% e
whereps (F; T) andpy(G) are obtained by marginalizing the joint probabilityF, G; T) over binsBgy and
Bgs respectively.

Other dissimilarity criteria used in image registratiorlide correlation coefficient and its variation;
and landmark matching based comparison. It is also commoartine two or more of the above metric
(e.g, SSD and landmark) depending on the applications.

3.2 Tissue-type Dependent Rigidity Regularization

For modeling efficiency, we parametrize the deformatiordfi(x) 2 T(x) — x instead of the transfor-
mationT itself. To improve the conditioning of the problem, a roughg penalty is incorporated in terms of
the gradients of the deformatiab, using the squared Frobenius noﬂﬁ@”émb. We define the local tissue
rigidity based regularization to be a weighted superpasitif local non-rigidity penaltyy , y(x)r(Tx). The
overall regularizer reads: -

Er(fag;T) = Enonrigid(f gaT) + EroughneséT)

(3.6) z{y r(Te) +a(x ||D¢X||Frob}'

Here, we focus on designinghonrigia » Where we will choose(Ty) to penalize the deviation of the local
transformations from being rigid, angdx) is the spatially varying weight that reflects local tissugidity
properties. In particulag(x) controls thdocal “trade-off” between intensity match and deformation rigid

It should be large within bone structures and small withirenglastic regionsg.g. muscle and fat. We call
it “local stiffness factor’to reflect this physical interpretation. Correspondintig spatially varyindlocal
smoothness factord (x) controls the local trade-off between intensity match anfdmeation smoothness.
Since we are mainly interested in spatially varying stiffaeroperty in this work, we set(x) to be a
constant throughout the ROI for simplicity.

3.2.1 Regularization Design
Local Rigidity Functional

The local rigidity functionat : (09 — 0%) — 02° quantifies how much the local transformation deviates
from being rigid. We desire the functionato have the following properties:

e 1(Tx) = 0if and only if Ty is a rigid transform3
e The functionak should be invariant to orthogonal coordinate transfororati
To satisfy the first property, we utilize the following argants:

Lemmalll.1. A necessary and sufficient condition for a transformation Be rigid at xis that its Jacobian
matrix DTx 2 OT (x) is orthogonal.

SHere, we equate rigid transformation with the isometrify which by formal definition also includes reflections. Howeveflec-
tion rarely occurs in practice. Moreover, the roughnessfigriescribed in (3.6) and our choice of a smooth basis faampatrization
the deformation field further decreases the chance of a leflaction in the transformation estimate.
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The proof follows from the group structure of the isometry [6f}, and the fact that the Jacobian op-
eration provides a group homomorphism between the isongetyp on09 and the orthogonal group in
d-dimension.

Lemma Ill.1 involves a matrix property, so it suffices to dgsi penalty that measures how “non-
orthogonal” the Jacobian matrix of the local transformafly is.

We use the following fact:

Lemmalll.2. Anecessary and sufficient condition for a matrixeNI19*¢ to be orthogonal is thatMMT — 14| =
0, where||-|| denotes any matrix norm.

If M is orthogonal MMT = I, and||MMT — I4|| = O for any norm. On the other hand, for any matrix
norm, |[MMT —I4|| = 0 impliesMMT = Ig, which is exactly the definition for a square mathk to be
orthogonal. O

Therefore, once we defingTy) based or| DT (DTy)" — I4||, the first required property is automatically
satisfied.

Lemma IIl.3. ||DTx(DTy)" — l4|| is invariant under isometric (rigid) transformations.

Isometric transforms on the coordinate system can be icated into the local transformatioly by
applying the inverse transform. By the chain rule of diffetation, it immediately follows thaD(Txog) =
DTxDg. If gis an isometry by assumption, thBg is an orthogonal matrix, and the invariance result follows
from a simple manipulation:

D(Txog)D(Txog)" = DTxDg(Dg)' (DTy)"
(3.7) = DT(DTY)".
Thus||DT(DTx)" — l4|| also satisfies the second property above. O

For simplicity and computation efficiency, we choose to Uieesquared Frobenius norm, and define the
following local rigidity regularization function:

1
(3.8) r(Ty) = > [DTx(DTy)" — |d|||2:rob'

Some previous work enforces tissue incompressibility byst@ining the Jacobian determinant to be
close to unity [55], but a unity valued transformation deterant is only a necessary but not sufficient
condition for local rigidity. The combination of Jacobiaatdrminant with its condition number may be a
possible alternative, but would require spectral analydigch is computationally demanding. We choose
the squared Frobenius norm because it satisfies the twontiepabove and yet is easy to compute.

Local Stiffness Factor

To design the spatially varying local stiffness fac{x), which determines the relative weighting be-
tween data infidelity and deviation from rigidity, it woula lesirable to have accurate knowledge about
mass, elasticity, as well as other mechanical propertiegottlnately, detailed information is rarely avail-
able. Instead, we infer the rigidity level of local tissuerfr observed CT values. The empirical design
could be improved given more precise/specific prior knogkedWe observe that in calibrated X-ray CT
images, pixel intensity (CT number) is highly correlatedhitissue type information, hence is a good infer-
ence source for local rigidity. Therefore, instead of dasig a direct magy : Q — O, we define the local
stiffness factor by applying a transfer functisf) to the image intensity map:

y(X) = s(f(x)),

wheres: 0 — O is a monotone increasing map from the domain of CT numbegtdity level. We choose

to use a scaled and shifted hyperbolic tangent functioniipplication due to its simplicity (two parameters
with clear shape meaning) and desirable mapping form: tbpepty placed sharp rising edge distinguishes
bone structures from more elastic tissues, while the s@uarbehavior is robust to small intensity variations
of the same tissue type.



30

Fig. 3.1 shows the empirical histogram taken from a ¥9B60x 60 breath-held thorax CT volume
with voxel size 02 x 0.2 x 0.5cn?. Observations for the tissue type v.s. CT number (in Houlastigit)
relationship agree with theoretical values [49] in that:

Air : —1000HU
Fat } . 100~ 60HU
Muscle
Bones : 250- 1000HU

We choose the location and shape parameters for the hypefbottion such that the non-rigidity
penalty dominates in the bony structures, and is relaxelinvétlastic tissues.

1 T
Scaled Histogram /’

— Stiffness Factor

muscle |

ar lung faymuscle bony structure
- +j
0 . .
—1000 -500 0 500 1000 -1000 -500 0 500 1000
Intensity Value {Hu) CT number (HU)

(@) (b)

Figure 3.1: lllustration of stiffness facta(-). (a) design of functionah based on theoretical tissue-type-to-
CT-number map; (b) scaled stiffness factor v.s. tissue igfsemation inferred from empirical

histogram.

Parametrization and Optimization

We adopt the widely used tensor product B-spline basis tarpatrize both the deformation fietd

[62] and the image intensity. In practice, we often use Bag{8"(x) of ordern = 3 for both purposes in
volumetric registration. B-splines are smooth functiorithvexplicit derivatives [118] and finite support.

They are piecewise polynomials and can be recursively oactsdd by convolution [120, 121].
The deformation for each directiaris represented independently with the corresponding setsfline

coefficientsd' = {6}} as follows:
(3.9) ?'(x,0) = 6l8i().

For volumetric cased = 3), | € {1,2,3} represents deformation direction alory andz coordinates re-
spectively, and separable B-spline basis is used:

B0 =B(5, ~1)B(5, ~1)B(x, ~¥)

wherei = (i, j,k) denotes the B-spline knot locatiofy, Ay, A, determines the scale of B-spline in each
direction,x = (X,Y,z) denotes the spatial location, and its neighborhdé(d) is determined by the support

of the B-spline basis.
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The image model provides a continuous representation ahage given by a set of samples. In fact,
only the source image requires interpolation in the forriataconsidered here:

(3.10) f=3 abix),
iEN(x)

where the expansion B-spline coefficientsire computed from the sample value<3by recursive digital
filtering [121].

We utilize a multi-resolution scheme in the registrationqass, and use gradient descent method at each
resolution level to evolve the overall cost function unthgergence.

For optimization, we used the derivative of the SSD enerdg®)(gjiven by:

(311) = Easso= 3 (00X) ~ F(T(X)0f br "X 1)

The derivative for negative mutual information from (3.8)given by [116]:

0 0 p(F,G;T)
3.12 9 By =— 2 p(F,G:T)log, 2> 1),
(3.12) 3, oM FezBfGeng o p( )log, pr(F:T)

The terms involved in evaluating the regularization are:

(3.13) 0= [ 5 018} (x— )]

(1,)e{1,2,3}x{1,2,3}

where,(-}'ij denotes the derivative of the basis functi@in the jth direction. Using the derivative property of
the B-spline, the derivative @ can be computed analytically [118]:

(314) 200 = B Hx+1/2) B Hx-1/2).
The local tissue rigidity based penalty term is similarlyided based on the fact that

The derivative of the penalty with respect to deformatiompaeterei can be written as:

0 B T 0 T 0 T
(3.15) a—eigy(x)r(Tx) = gy(z() trace {[DT(DT)" —Ig] [a—e{DT DT’ + DT@(DT) 1},
where we precompute and stoa% DT = B' for computation efficiency.

3.2.2 Experiment and Test Results
Experiment One: Geometry Validation by Thresholding

In the first experiment, we tested the proposed approachtwitithorax CT scans of the same patient:
one at 80% of the vital capacity inhale breath hold (deeplenbeeath hold, tidal breathing generally peaks
at about 40%) and one at exhale. The scans were<BlI2 x 148 with voxel size @ x 0.2 x 0.5cn?. We
used the deep inhale breath-hold thorax CT image as the targdurther cropped it to size 258175x 107
to reflect the region of interest. Sum of Squared Differef{&&3D) was used as dissimilarity metric. Fig. 3.2
shows typical data slices (different views) of the targeag®m, source image and the inferred stiffness map
(ho ). The inferred stiffness map captures rigid structuresoeably well.

We first show the registration results in slice views for pgtebal rigid, affine transformation, and
nonrigid registration with and without nonrigid regulaation. The deformed source image is displayed on
top of the target image for comparison purposes in Fig. 3.3.
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Figure 3.2: Different views of the original data and tisso®imation inferred from it. Top row [X(1)]:
coronal slices; middle row [X(2)]: sagittal slices; bottaow [X(3)]: axial slices. Left column
[a(#)]: slices from target image; middle column [b(#)]:c&ls from source image; right column
[c(#)]: slices from inferred stiffness map.

Fig. 3.3 illustrates that nonrigid registration outpenfarglobal rigid/affine model based registration on
matching intensity. The advantage is most obvious in regjigmere organs have undergone extremely elastic
deformations, such as the diaphragm. The different peidoa in the lung area is less noticeable due to
the overall low intensity level in lung region, so mismatotthat region is not emphasized in SSD setting.
Finally, the introduction of proposed tissue type depenhdegularization does not seriously deteriorate
intensity matching performance compared to conventionsplhe in general.

To better reveal the geometry of the deformation, we exthtione structures by thresholding the CT
numbers at 250 HU, because they are good indicators of tigpae Geometry extracted from both the target
and the deformed source volumes are overlaid to compareotie &tructure alignment in Fig. 3.4.

We can clearly observe nonphysical warping of bones in thierdeed source geometry using conven-
tional B-spline based nonrigid registration method withthe proposed regularization. This is a typical
local optimum situation. Upon localizing the occurrenceta$ particular‘bone warping”’phenomena, we
can observe that thgpseudo-periodic’structure of the ribs makes the resulted deformation andié&e
sired physical one having comparable intensity dissintylddata infidelity) value. On the other hand, since
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a(2)

b(2)

b(3)

c(2) d(2)

c(3) d(3)

Figure 3.3: Deformed source image (green) overlaid withetaimage (dark blue) for comparison of inten-
sity match. Different views are indicated with numbers: I)}(coronal view; [X(2)] sagittal
view; [X(3)] axial view [X(3)]. Different registration métod are distinguished with letters:
[a(#)] rigid transformation model; [b(#)] affine transfoation model; [c(#)] B-Spline registra-
tion with smoothness penalty only; [d(#)] B-Spline regasion with both proposed regulariza-
tion.

B-spline is a smooth local basis, together with smoothnegslarization to enforce continuity of the defor-
mation field, in regions close to diaphragm/lung region wetadeformation of more elastic nature occurs, the
deformation of bone structures are compromised to resethbtee of elastic tissues.

When the proposed regularization is applied, however, tifi@raation on the bone structures are given
an additional‘force” to conform to rigid transformation. Fig. 3.4 shows obviomprovements regarding
the bone-warping issue.

Experiment Two: Quantitative Validation with Bifurcation Landmarks

In the second experiment, we evaluate the registrationracgun soft tissue regions as it might be
adversely affected by the introduction of the proposed lsgation. Sequential thorax CT scans were
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b(2)

Figure 3.4: Geometry extracted from registration resulésget (blue) vs. deformed source (white). Left
column [a(#)]: B-spline based nonrigid registration with local rigidity regularization; right
column [b(#)] B-spline based nonrigid registration resuth proposed local tissue type depen-
dent regularization. Top row [X(1)]: whole ribcage view;tlmm row [X(2)]: local zoom-in
view around diaphragm neighborhood.

obtained on a helical CT scanner (CT/l, General Electriclwglukee, WI) for 11 patients. Two scans
were obtained from each patient, one at normal exhale feltbinmmediately by a scan at normal inhale
during coached voluntary breath-hold periods of 18-35 sdso Scans were obtained with a pitch of 2,
using a 5mm aperture. The total time spent from the start effitlst scan through the completion of the
second scan was less than 5 minutes. Images were reviewexpbyteto ensure that they were free of
breathing-related artifacts in reconstruction. To quatitiely analyze the registration accuracy, we compare
the position of known features in the target and source imagehuman observer chose six landmarks
within the right lung per patient [21]. Landmarks includeaseular and bronchial bifurcations, and were
nearly uniformly distributed in the ROI. Computed transfofrom registration algorithms was applied to
the landmark coordinate in the target image and compareletdandmark position in the source image
coordinate. Fig. 3.5 illustrates some of the manually pideadmarks.

We applied negative mutual information (Ml) as the dataidigarity metric to reflect the general appli-
cability of the proposed methods, even though X-ray CT insaaye used both as the source and the target
image to maximize the consistency of manually picked cpoading landmark pairs. Moreover, landmarks
picked at lung bifurcations should fairly characterize #ifect of the additional regularization on the soft
tissue regions. We compared thin-plate splines (TPS),erttianal B-splines and the proposed regularized
B-splines in this test. In TPS setup, control points wereg@iamanually on the source and the target dataset.
We used the TPS results from [21], where 30 control pointsewesed to align the inhale and exhale CT
model of the right lung, with 5 each on 6 specified Superidefior planes in the target dataset. Nelder-
Mead simplex algorithm was used to maximize MI for TPS. Far tlonventional and modified B-spline
registration, multi-resolution scheme was used to achiewvaputation efficiency. In each resolution level,
control knots were placed uniformly in the low-pass filteslirce image, and B-spline coefficients are
updated using gradient descent algorithm until convergenc
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Figure 3.5: lllustration of landmark data on thorax CT: (h)stration of volumetric data; (b) manual land-
mark positioning based on bifurcations

We computed the difference between the deformed landmaskigas on the source coordinate and
the corresponding manually picked target landmark pasitleig. 3.6 shows box plots illustrating median,
lower/higher quartile, data extent and outliers to chamaet the registration accuracy along each axis: right-
left (RL), anterior-posterior (AP), and inferior-superi@S). The regularized B-spline registration is com-
petitive against thin-plate splines or conventional sgdiinside the lung. Limitation of human observer due
to image resolution (voxel size®x 0.2 x 0.5cn?) and the dominant motion in inferior-superior direction
are also reflected in the registration performance.

We also calculated the Euclidean registration error betvasformed landmark locations and the man-
ually selected points. In Fig. 3.7, we ordered the patient®@ling to the mean Euclidean error for TPS
method, and used box-plot to illustrate the Euclidean edtistribution for different methods. Fig. 3.7(d)
shows the mean Euclidean error of landmark position eséirftateach patient, and a box-plot of the collec-
tive Euclidean error for each method is provided in Fig. 8)7Both conventional B-splines and regularized
B-splines uniformly outperform the manually assisted tplate splines method, whereas performance of the
two B-splines based registration methods are comparabls.afrees with the qualitative results in Fig. 3.3
where the proposed regularization appears to preservesttibifity of the conventional B-splines method in
soft tissues. The mean and standard deviation of Euclidearfer regularized B-spline iMr_gsp=0.5cm
andor_gsp= 0.48 cm respectively, on the same order as the slice thickaadssuperior tdlyps= 0.85 cm
andotps= 0.55 cm from TPS oMgsp= 0.56 cm andogsp= 0.55 cm from conventional B-spline.

We used three B-spline resolution levels which took aboit it€rations in the last (finest) resolution
level to converge. The computation time for both the coneeratl B-splines and the regularized B-spline
are both in the order of minutes on a standard PC (2.4 GHz CRlUW@&ninternal memory) running Linux.
All programming and visualization in this paper were cair@ut on the Advanced Visual Systems (AVS)
software platform with central modules implemented in G¥Cincluding the regularization increased the
registration time by less than 20% in most cases.

3.2.3 Discussions

We quantify local non-rigidity by the deviation of the locicobian from being orthogonal, measured
by a computationally efficient Frobenius norm. We considdreth mono- and multi- modality registrations
involving a CT image as either the source or target obsematLocal tissue rigidity level is inferred by
applying a smooth monotone function to the CT values, augidixplicit segmentation. The smoothness
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Figure 3.6: Registration error for different methods: TBSP and Regularized BSP. Left column [a(#)]:
Thin plate spline registration with manually picked cohfoints; middle column [b(#)] con-
ventional B-spline registration; right column [c(#)] Bise registration with proposed local
tissue type dependent regularization. Top row [X(1)]: titgft (RL) registration error in right-
left (RL) direction; middle row [X(2)]: registration erran anterior-posterior (AP) direction;
bottom row [X(3)]: registration error in inferior-supendS) direction.

of the inference function provides robustness to partifive effects caused by limited resolution and by
multi-resolution schemes deployed to speed up computation

The proposed regularization design is independent of tlee-sgecified dissimilarity metric and the
parametrization of the transformation field. We evaluatgistration accuracy using the popular B-spline
deformation parametrization, with two different dissiamity metrics: sum of squared differences (SSD)
and negative mutual information (MI). In the first case, weudlized bone geometry in the target and the
deformed source image for qualitative assessment. In ttensgecase, we compared deformed landmark
locations with manually specifietiround-truth” values for quantitative validation. Comparison among
thin-plate splines (TPS), conventional B-splines and tiop@sed method indicates minimal compromise of
registration accuracy in soft tissue regions, but signifiseimproved ribcage registration.

We have performed a preliminary study on incorporatingustype information into nonrigid registra-
tion framework essentially via the introduction of a sp#ti@arying stiffness coefficient map and use that
to adjust the local trade-off between intensity match aguiiy property. This allows inhomogeneous reg-
ularization throughout the deformation field estimatiore Wbuld like to extend this work in the following
aspects:
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Figure 3.7: Comparison of 3-dimensional Euclidean Errap Tow (left to right): TPS, BSP and Regular-
ized BSP. Bottom left: mean Euclidean error over all landtean the same patient; bottom
right: box plot of the Euclidean error distribution over Elhdmarks through all patients.

e We would like to extend the non-homogeneity that we intraglia this work further to non-isotropic
setting. In many situations, anatomical structures not damonstrate tissue-type dependent inhomo-
geneous deformation, but also directional variations.nipas are bending in head-neck region and
the dominant elongation/deformation in up-down direcffeertical direction in sagittal plan) related
to breathing motion. These information could be handledeuristic fashions by non-uniformly plac-
ing the B-spline knots and having different knot spacingiffecent directions. However, these ad-hoc
techniques could be tricky in practice and lacks certaiotbtcal justification. Furthermore, adjusting
B-spline knots can only strictly control the deformatiomdkin the 3 vertical plans, which may not be
sufficient for some clinical applications. We conjecturatthy introducing anisotropic regularization
into the optimization framework, we would be able to have aarftexible and straight-forward way
to accommodate direction related priors.

¢ In X-ray Computed Tomography, we designed the stiffness asafihe composition of a monotone
increasing function with the intensity map, taking advaetaf the fact that in this particular modality,
intensity is a very reliable reference source for tissuetiyfformation. This is not true in general. We
would like to explore approaches to address this issue f@rahodalities in future work.

3.3 Discontinuity-Preserving Regularization

Motivated by the common presence of sliding effects in madinaging,e.g, the discontinuous motion
between diaphragm and ribcage during breathing, we stigljagzation schemes that preserve discontinu-
ities in the deformation field.

Recent research on image registration that accounts fooulimuities can be classified into two cat-
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egories. The first class [23, 24, 134] is based on joint setption and registration. In these methods,
smooth regions and singularity sets (edges) are deviseitding to image intensity, and registration aims
to align each part respectively. The smoothness and discities in the deformation is not addressed
directly. The second category is motivated by edge-présgfivnage restoration [34, 35, 77]. Several au-
thors [10, 15, 33, 129] have tried to generalize total varatype regularization for vector valued functions.
These methods use regularization that combines the tatatieen from each deformation coordinate. Mean-
while, decomposition and representation of a vector fieldidlpcity potentials and stream functions [38]
have motivated flow regularizations with divergence and camponents [42, 135, 137]. Analogous to
image denoising, [136] has proposed a convex Hodge decatiopobased total variation regularization

method to denoise vector fields, resulting in piecewise baimflows. This paper is closely related to the
latter category, and intends to adapt such principles tgdeegularizations for medical image registration
applications.

There are many ways to extend regularizetg, Tikhonov or total variation (TV), originally developed
for scalar fields, to vector flow applications. However, madxtensions may violate the intrinsic structure
of the problem, and result in loss of desirable propertieskirlg total variation as an example, summing
over the total variation in each component direction [1Q,12®] compromises the rotational invariance
with respect to the coordinate system. Section 3.3.1 harttlie issue with care and proposes a class of
regularizers for vector fields that preserve discontiesitin the deformation field. We provide general
analysis of their functional forms, and define some desimegbgrties as a consequence. We derive the
descending flow for optimization based on variational daiswand discuss briefly some implementation
issues.

Section 3.3.2 further notes that only sliding or shear disicniity is physical in medical image regis-
tration, hence it is necessary to distinguish this classlafiasible discontinuity from collision or vacuum
creating singularities. To design a regularizer that déffgiates between these two types of discontinuities
and preserves only large shears, we take advantage of timehidkt decomposition, and regularize the
divergence and curl components of the vector field diffdyent

Preliminary result for this work in progress shows promgsiasults.

For clarity, we discuss the derivations for 2D case, yet adllgsis generalizes naturally to higher di-
mensions unless specified otherwise. We represent thendafion vector fieldd : Q — 02 as®(x) =
[u(x),v(x)]", whereu andv are directional deformation and assumed to be orthogomeldd not have to
align with the image coordinate,y)) in general. As we are mainly interested in geometric reggasion
for smoothness/discontinuity, the regularization teriaken to be independent of the image. It corresponds
to a special case of the regularized registration problémdiuced in Section 3.1 with

E (f,0;T) =E(P).

A constant weighh is adopted throughout the whole image to balance the dati#fided regularization
energy. We focus on designiifiy, and assume mono-modality images wigmetric as data fidelity measure
hereafter. Thus the goal of registration can be formulated a

(3.16) @ = argminE(f,g,®)
S
(3.17) = argéneirn{Ed(g,fo(l+¢))+)\Er(¢)}.
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3.3.1 Indiscriminate Discontinuity Preserving Regulariation

To encourage smooth deformations in most of the region efést (ROI), yet admitting some disconti-
nuities requires a “magnitude” measure of the local charigbeodeformation field, analogous to the norm
of image gradient in image restoration. The Jacobian of &ferchation® atx is given by:

oot = | 3 |

We propose to use the Frobenius norm of the mdddx(x) as the local measure of variation for the defor-
mation field:

(3.18) IDO|rrop = y/UZ+UZ+VZ+ V2
= /|0u3+|0Ov|3.

This matrix norm is independent of both the image coordisgistem(x,y) and the deformation vector
field direction(u,v). For simplicity, we assume that thkeandv components of the vector field correspond to
the deformation field irx andy directions respectively hereafter. In addition, this meaof “deformation
change” introduces coupling among the various directiorthé vector fields and reflects the intuition that
we observe a “jump” in the deformation field regardless ofghecific direction such change occur, unlike
the simple coordinate-wise sum used in traditional opfical regularization [3,8]. For simplicity, we make
matrix Frobenius norm the default notation f@r®| hereafter and drop the subscript.

We consider a class of regularizers with the form:

(3.19) E(®) = [ @(DP])dx

Applying variational analysis, and assuming Neuman bonndanditions,i.e., d,u = 0 andd,v = 0 onoQ,
we derive the descent flow [8}; = (u;, V) of E; to be as follows:

0
au?
¢(IDo))

DG

(3.20) uo= O

= O Ou).

The expression for the update flagvfor v is similar. For simplicity, we define the “influence functicas

W(s) = d(s)/s

To design a proper regularizatiapthat results in edge preserving flow, we interpret the proces
anisotropic filtering and decompose the effect of the flow ifiie normal and tangent directions feach
component of the deformation fieldhe derive the regularization flow in— direction as:

¢'(ID®]) — Y(|DP))
D&

(3.21) Ur = Y(|DP|) (Usx+ Uyy) + (UZ U+ 2UcUy Ly + UsUyy).

By convention, we denote the second derivativesi @f the tangent (T-) direction and normal (N-)
direction asurT anduyy respectively, with

1
1
unn = NTO2UN = ] (UZUyx + UTUyy + 2y Uy ).

Rearranging the terms in (3.21) yields:

'(IDD D® D®
(3.22) Ur = Y([DP]ur + 'D“'z(dgw') - LIJ|(E|>¢2|) i LIJ|(|mu|2))“NN
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For 2D case (higher dimension situations have similar aireg:

D® D®
e g —w(o®)

[Ov?
[D®|0uf?’

The coupling between andv in the flow motivates us to consider the contribution of Vvidmiain each

2 2
deformation direction inD®|. We defineB, 2 % andpy 2 %. By constructionf € [0,1] andfy +

By = 1. Then (3.22) can be rewritten as:

(3.23) ur = (¢'(s)Bu+W(s)Bv) unn + W(s)urT,

Now we are ready to discuss some desired properties for tiaifun ¢. This is more complicated than
image restoration problems gs intrinsically a function of botlu andv.

e In the presence of small variations in the deformatidBd| small implies|Ou|, |Ov| both small),
isotropic smoothing is desirable in each individual defation direction. It is reasonable to require
non-trivial smoothing along the tangent direction:

(3.24) ¢(0)=0. with lim y(s) > 0.

To have isotropic diffusion as— 0" is equivalent to:

, ¢'(s)

I =1

im B+ By oS
Together with the fact thd, + By = 1, isotropic diffusion for small deformation implies
3.25 lim Y(s) = lim ¢’(s) > 0.
(3.25) imw(s) = im ¢/(s)

Once the conditions (3.24) and (3.25) are satisfied, the fB@28{ for small variation reduces to:
ur ~ @' (0)Au.

The same analysis holds foy. We immediately recognize that this diffusion coincideshathe
isotropic flow from the heat equation.

¢ Inthe presence of large variations in deformation (IaR®|), it is desirable to diffuse the deformation
along the discontinuity, but not across it. We need to keepiid that the level of discontinuityp®|
takes into account deformation in all directions, and tHusiion process in a certain direction ér
V) is decomposed with respect to its own gradient field. In otherds, the diffusion process in
direction is the projection of the joint deformation flow orthat direction. To preserve discontinuity,
it suffices to annihilate the coefficients ofjy andvyy for large [ID®|, and assume non-vanishing
coefficients for the tangent flow components.

{ lims 10 @' (S)Bu+W(s)By = 0;

liMms e Y(s) > 0.

If one were to insist on the annihilation of the normal flow &irpossible combinations @By, By), it
would be necessary to require:

lim ¢’(s)=0 andsiimw(s):o.

S——4-00

On the other hand, iB, ~ 0, indicating that the variation ir—direction (Cu|) is relatively small,
isotropic diffusion in that direction would not result in @vsmoothing discontinuity and should be
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acceptable. Witlv being the major contributor to the overall discontinuity|d|, only vy has to
be annihilated. Unfortunately, this again results in a $§@i@mpatible conditions om:

i "(s) < i >0.
SL'TWCP( (s)<0 andsqllmo P(s) >0
One possible compromise is to let both terms approach zese-as-«, but at different rates:

i ! H .
(3.26) { ::E%Mo (g/_((s?)_ (;'m%+w¢(5) 0;
STt Ys) T
Many functions satisfy the above conditions (3.24),(3&% (3.26)e.g, the hypersurface minimal function
@(s) = \ﬂ1+ %) [3]. Due to the nonconvex nature of registration problemsane interested in finding only
reasonable local minima in general. In the usual case wWHgig nonconvex ind, it may be unnecessary to
insist ong being convex.
We make a quick comment here:

e @(s) = & corresponds to the regularization energy:
(3:27) i (®) = [ 10ul+ [0V dx

This is a natural generalization of Tikhonov regularizatio image restoration. It is the same energy
that Horn and Schunk [48] introduced in the optical flow st

e @(s) = scorresponds to the regularization energy:

(3.28) B (®) = [/ I0u+ 0w Pax

which can be regarded as a rotationally invariant genextidim of the total variation (TV) regulariza-
tion for flow fields [129].

A Test Setup with Truncated Quadratic Regularizer

For simplicity, we consider mono-modality registratiortivi, norm as the data fidelity measure,,

— 1 2
Ea = (000~ (x+ @(x)2
and the corresponding variational descent flow is given by:
Wa (X) = (9(x) — f(x+ @(x)) Of (x+ P(x)).
For the preliminary test, we use a truncated quadratic [#hasegularization function:

(578 I <a
ag otherwise.

(3.29) @o(s,a) = {

The disadvantage and benefit of this choice are both cledh &tfict “saturation” behavior above the scale
parameten, it poses a challenge for optimization. Graduated noncdfigation approaches can be utilized.
On the other hand, this formulation provides nice theoatiitterpretations. It is natural to introduce a line
process [35] which is equivalent to “labeling” the outliarthe robust estimation setting [7].
Notice that (3.29) also provides a simple recipe to extrmgjdarity setSof |D®| from the estimate®
by thresholding at levet:
S={x:[D®(x)| > a}.

This may be useful for extracting motion interfaces.

To alleviate the local minima issue due to nonconvexity, taet svith a large initiakx. This is equivalent
to use the conventional Tikhonov regularization (the vee@sion is more commonly known as Horn and
Schunk in optical flow) of the forri, = |Ou|?+ |0v|? asS= 0 for o large enough. Then the scale parameter
a is gradually decreased till the desired tolerance for diioaity. To speed up the implementation, a multi-
resolution scheme is applied.
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os,a)

Figure 3.8: Truncated quadratic regularization with vagyscale.

Preliminary Results

We apply the setup described in Section Section 3.3.1 to twonal CT slices obtained from deep
inhale and exhale phases. Proposed regularization resutsiooth deformation in homogeneous organ
(lung, heart and exterior of rib-cage) and correctly pressmotion interfaces on the boundaries between

the diaphragm, heart atria, rib cage and the lungs.
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(e) |IDD| with Tik. reg. (f) IDD| with TQ. reg.

Figure 3.9: Registration comparison between Tikhonov)(@ikd Truncated quadratic (TQ) regularizations.
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Figure 3.10: Comparison of deformation fields.
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3.3.2 Discriminative Shear Preserving Regularizer

The problem of designing regularizer to accommodate siidiifiects in medical registration has several
distinct traits. First, we prefer to pose the problem in atirojzation framework with a single energy func-
tional and obtain the deformation as its optimal, rathentiteuise regularization to post-process some initial
estimate or segmentation. Secondly, the deformation dhioeilfairly smooth except at the sliding sites.
Thirdly, dramatic local volume change seldom occurs in ptaldeformations; in particular, the deforma-
tion should neither create collision flow that maps difféqgirels to the same location (folding) nor generate
vacuums. Similarly, within the complement of the slidingfaue, shear should be fairly small. On the other
hand, we should preserve the large shear at the sliding laoiasd This requires our method to differentiate
among different types of discontinuities and regularizntraccordingly. Finally, medical image registration
involves tissues that are elastic with sliding motion, amdexpect nonvanishing divergence and curl compo-
nents from a physical deformation, so we are not interestatlidying the extreme cases of pure solenoidal
or irrotational flows. The above prior knowledge can be ipooated by devising a smooth regularization
on the divergence component and a regularization on thecoanponent that preserves large-magnitude.
Motivated by [136], we consider the following regularizatienergy:

(3.30) Er divour () = /Q o div ®|[2+ B | curl ] dx

The regularization on cur is reminiscent of total variation. It penalizes small cualues, yet is much
more forgiving to large values than the quadratic form. lctfaimilar to total variation, one could argue
that the proposed functional is unbiased towards shears.

As a simple sanity check, we examine how the proposed ragatem energy would drive an initial flow
field. We derive the variational direction to descdfid®d) and use it to evolve the flow. In the absence of
data fidelity term, one tradeoff parameter is sufficient, tunglequivalent to descend the following function:

(3.31) Er diveurl2d = /Q (ux+ Vy)2 +Y|uy — Vx|dx.

Both divergence and curl operators are linear and invat@mngid coordinate transformation, so it suffices
to check typical cases by aligning the flow to one of the cowatd.

e If ® = (u(x),0),then a large value iox would indicate a jump along the direction of the flow, which
would potentially causes folding or a vacuum. Locally, wandhave divd = uy # 0, yet curld = 0.
Penalizing thd_., norm of div® as in (3.30) discourages largg values, thereby this helps prevent
folding or vacuums.

e If ®=(u(y),0), then alarge value in, would indicate the presence of shear along the flow which we
want the regularization to preserve. In this case @i 0 and curl® # 0. Regularization with the;
norm of curl f achieves the desired effect of allowing this type of shear.

In 3D, the deformatiorb = (u,v,w) is decomposed into its divergence and curl components asvial

(332) divd = Uy +Vy+WZ;
i j k
(3.33) culd=det | 5 = 2 |,
u \" W

wherei, j, k are the unit vectors for the—, y—, andz—axes, respectively.

Divergence is still a coordinate independent scalar fietlite @url component, however, is a vector field
with three coordinate® — 03, and its direction is determined by the right hand rule. Rerregularization
function to be rotationally invariant, we use thglength of the curl field pointwise and then integrate over
the spatial coordinatese.,

Er.divcurl,3d (CD)

/ (div )2+ y|curl ®||,dx
0

(3.34)

/Q(Ux +Vy+Wz)2 +V\/(Wy —Vz)? + (Uz — Wy)2 + (Vx — Uy)?dx
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Preliminary Experiment

To study the effect of proposed regularization, we firstitemt an initial flow field. The flow was evolved
along the energy descending direction, which is derivedgusariational calculus. We approximated the
absolute value term withuy — vy| ~ \/(Uy — Vx)? + € wheree is a small positive constant.

For image registration, the deformed source image needs toterpolated. We use the fast B-spline
interpolation scheme proposed by Unetal.[119-121] with a 4-level multi-resolution structure [122he
source image is represented as:

(3.35) ) = 3 0B (g DB (3, — )
]

wherep" is thenth-order B-spline basis.
For computational efficiency, we also use linear combimatiof tensorednth-order B-spline basis to
express the deformation field:

w9 = Fp BTG

(3.36) v(x) Zd Bm — i Bm(—— j)-

The finest level of B-spline deformation basis was chosereteeny narrowly supported (2 pixels)so that its

interpolating behavior does not compromise discontinpigservation within a given tolerance. It is straight

forward to generalize the notations in (3.35) and (3.36)ighér dimensions thanks to the tensor structure
of the B-spline basis adopted here.

¢ Regularizing Flow

In general, it is difficult to characterize the solution to @ntinear registration problem. To study
how the regularization energy would bias the registratesuits, we first examine its effect on a given
flow. In particular, we are interested in checking whetheoitld prevent collision/folding and vacuum
creation, yet preserve sliding (shear) discontinuitigec&the proposed penalty can be regarded as a
combination ofL, andL; regularization on the divergence and curl component rasedg we also
compare with the results of Horn and Schunk (3.27) and ta@aétion (3.28) regularization.

Fig. 3.11 and Fig. 3.12 test the regularization effects dhdiog flow and vacuum generating flow
respectively. Notice thdt; regularization preserves large divergence, and is vubiert®a such flow;
L, regularization successfully smooths the flow to prevenh lwatlision and vacuum. The proposed
regularization behaves like; on the divergence, and enjoys similar robustness. Fig. gréSents
the results on a pure shear flow. Homogenebgsegularization blurs the motion interface and is
inferior to thel; regularization. The proposed method is effectivelyfor curl and preserves big
shears as illustrated. Fig. 3.14 provides an example whadlision and sliding coexist. It is clear that
the proposed method successfully alleviates the colliaihpreserves the sliding component.

e 2D Sliding Block Registration

In the first registration test, we simulated two blocks slgdagainst each other over lightly textured
still background. As before, we compare the performancegulsi, L, and the proposed regulariza-
tion. The absence of a quantitative measure of performaasekvays been an issue in image regis-
tration, and a “fair” choice of parameter needs to be madenvdeseral models are to be compared.
Since the weighting parameters in the energy functionatrobthe tradeoff between data fidelity and
regularization, varying their values could lead to veryfetiént estimates. Indeed, all models would
coincide in the extreme case when the weight of the reg@toiz is set to be zero, as the result is
driven solely by data matching. In the absence of a rigoroag t@ choose the optimal parameters,
it is only fair that we compare the models over a range of w#dsarameter values. Fortunately, we
have access to the ground truth deformation with the siredldata* One may argue that there are

“Due to background occlusion, there is no deformation thaidomatch the target perfectly.
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original flow

Er,divcurl

Er,I 1 Er,I 2 Er,divcurl

Figure 3.11: Regularization results for a colliding/faidiflow. First row: (left to right) original image,
transformed image, original (unregularized) flow. Secomd:rresulting flow under different
regularizations. Third row: image transformed accordimgagularized flows.

infinitely many deformations that would generate the samecgoand target image pair in Fig. 3.15,
yet the uniform (within each block) sliding is the most command natural interpretation for physi-

cal motions. We expect this simple simulation to reasonadyyesent the major features of physical
sliding in medical applications.

Fig. 3.16 quantifies the tradeoff between image similanitgt eegularization, and their effect on esti-
mating the deformation field. For each method under compayise vary the tradeoff parameter, and
plot the error of estimated deformation map v.s. intensitgmatch. The horizontal axis is the sum
of squared difference of intensity values over the compatalomain and the vertical axis reports
the discrepancy between the estimated deformation andrtung truth flow, measured by sum of
squared distance of the error vectors. We observe that fada kange of data fitting error, the pro-
posed method outperforms the other alternative choicesring of real registration error. This makes
the proposed method appealing. Unlike the oracle grouitt;tthe data fitting metric is accessible in
practice, and people often choose registration resultsefprarization parameters) based on intensity
error. Since the proposed regularizer corresponds to artxgformation estimate for the same inten-
sity mismatch, it is a better choice given an fixed error budgelata matching. Furthermore, if one
has access to a good parameter choice for all regularizenagthe luxury of running a few trials and
then somehow rate the results), the proposed regulariagthesbest performance among all.
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regularizations. Third row: image transformed accordimgegularized flows.
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Figure 3.15: Simulated sliding blocks and the ground trigfocmation.
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e 2D CT Image Registration

Sliding is widely observed along the boundary of the rib cage internal organs. In this test, we ob-
tained two breath-hold X-ray CT images of a real oncologygpet scanned at deep inhale (80%vital
capacity) and exhale - a common procedure in radiationrreat planning. As a preliminary study,
we applied the proposed regularization to register the @la2D coronal slices shown in Fig. 3.3.2.
As in the sliding block experiment, we compare the proposethod with thel; andL; regularized
results. With real clinical data, there is no ground truthd ahe tradeoff parameters were chosen
experimentally. For each regularization method, we ramrd¢lgéstration using several different param-
eter values, and picked the one that achieves a reasondhiebdetween data fidelity and physical
feasibility via visual examination. Fig. 3.18 shows the $Bieegistration results of all regularization
methods. With the chosen parameters, all three regulareggstrations provide comparable intensity
agreement between the deformed template and the targeesmdgpis suggests the fairness of later
comparison, as the results can be interpreted as miniraizafieach regularization energy subject to
the intensity match constraint. The warped grid maps andequglots [Fig. 3.18(c#) & (d#)] illus-
trate the advantage of the proposed regularization. Iriqueat, the deformation on both interior and
exterior of the rib cage are fairly smooth, and the motionrimary in between is preserved. Interest-
ingly, the proposed regularization also naturally exsgabe motion boundary between the lung and
the mediastinum, which are affected differently by reqpira As breathing mainly induces motion
along superior-inferior direction (vertical in our presation), we examine that component closely in
Fig. 3.19. Inside the thorax, registration result with thegmsed regularization demonstrates good
continuity, which agrees with the physical interactionvioegn the lungs and diaphragms during res-
piration. Motion discontinuities are effectively reprased along the rib cage and the surface of the
mediastinum. Fig. 3.20,Fig. 3.21 and Fig. 3.22 illustragedeformation field overlain on image inten-
sity to reveal the agreement (or disagreement) of the etthdeformations with motion boundaries.
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Figure 3.18: Registration results of CT data with variougutarizations. Column-wise (left to right): (X1)
L1 regularization; (X2)L» regularization; (X3) Proposed regularization. Row-wisep(to
bottom): (a#) deformed source; (b#) intensity differenedween deformed source and the
target images; (c #) warp grid representation of defornmatid#) quiver plot of deformation.
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Figure 3.19: Vertical component of the deformation from @gistration. (a).; regularization; (b), reg-
ularization; (c) Proposed regularization.
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Figure 3.22: Quiver plot overlain with image intensity fasctiminately regularized image registration.
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e 3D CT Image Registration

Unfortunately, the proposed functional seems to be insefftdy itself in regularizing 3D registration.
In the neighborhood of sliding, the unphysical rolling etfeare widely observed. It is possible that
this phenomenon is related to the Kelvin-Helmholtz indighior shear flows. Since our algorithm
iteratively updates the deformation flow, it behaves as afsiphl process that evolves the shear flow.
In this case, the shear surface is subject to the Kelvin-Heltn instability and any small perturbation
in the normal direction of the shear surface incurs rollimgfact, singularities occur in finite time.
Also, this stability is more obvious in higher dimensiongiigh possibly explains the relative benign
behavior in the 2D cases. As indicated by generalized fluwd ftmdels, introducing material viscosity
and surface tension may help prevent such turbulence. Ikagamssible that decomposing the overall
deformation into a concatenation of small physical stepg aflaviate this rolling artifacts, as smaller
deformation requires relatively fewer iterations to resgland to reach a reasonable result before the

singularities form.
§

Figure 3.23 and Figure 3.24 illustrate the rolling artifact
i 4y )

l e

coronal sllce of source coronal slice of target

0

warped gnd deformed source

Figure 3.23: Coronal view for 3D discriminate registratidiine same slice from source, target and deformed
source volume. Since it is a full 3D registration, the defedhsource pulls information in all
(x,y,2) directions and the source slice is shown for reference @& poly.



58

coronal slice of target

warped grid deformed source
Figure 3.24: Sagittal view for 3D discriminate registratid he same slice from source, target and deformed

source volume. Since it is a full 3D registration, the defedsource pulls information in all
(x,Y,2) directions and the source slice is shown for reference mapoly.
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3.3.3 Discussions

In Section 3.3.1, we first analyzed the conditions for a galndass of regularizers of the form(3.19) in
an axiomatic fashion, in the sense that beginning from tlserasd behavior of a regularizer, we derived
the consequence of these assumptions and the correspdadatipnal form. Further noticing the necessity
of distinguishing among different types of singularitiegmely, folding/vacuum v.s. shear, with the latter
being the only physically admissible, we designed differegularizers for each component based on the
Helmholtz decomposition. In particular, we have used atmagic L, diffusion on the divergence component
to enforce volume compatibility (no folding or gap), and ptial anl_; regularizer on the curl component to
preserve large shear.

In fact, we can substitute a more general regularizationtfanal @ in place of the_; norm, and discuss
the conditions omp so that the regularized energy can preserve sliding, asisl|

(337) Ecqen(®) = [ alldiv & + By curl @] dx

The influence of the regularizatiagpshould be such that it penalizes weak curls, correspondiagimoother

deformation field, but preserves the curl if it is strong. Vémdtey(s) 2 @(s)/sfor se (0,0), and call it
the “influence function” as before.

Mimicking the works in image restoration [3], it is easy taoshthat@ needs to satisfy the following
conditions.

1. To suppress small curl values,

2. To preserve large shear,

9= i, £ =0 anc,_m 5 -

There are many functions that satisfy these propertiesisnstudy, we investigated the truncated quadratic
function, which was shown to be the discrete analogue of thenfdrd-Shah functional [13]; the abso-
lute value function, which corresponds to regularizing thenorm of the curl component; and the Huber
function, which can be regarded as the inf-convolutiohpandL, functionals [14].

Shear preserving regularization for three dimensionabtegtion needs further investigation.



60

3.4 Equivalence Between Twa. Div- L1 Curl Regularizations*

Section 3.3 considered discontinuity preserving imagéestesgion with energy of the form:
(3.38) E() = /(f _go®)da +>\div/ div ®[2dz + Aeur / curl ®|dz,

which behaves ak; regularizer on the divergence component to encourage hengmys smoothness in
volume change anld; regularizer on the curl component to preserve large shears.
It is immediate that another form has similar properties:

(3.39) E(®) :/(f-go¢)2dm+Adiv,//|div q>|2d:c+)\cur|/|curlq3|dw.

One may argue that regularization in (3.39) is one-homogan@ ® so that the coefficientsy;y, andAcy
have the same units. On the other hand, the setup in (3.38)it@point-wise structure, and direct opti-
mization is easier. |E has a unique minimizer, then the equivalence between tlisetups are trivally
true; however, the data fidelity term in intensity matchingage registration problems is nonconvex, and
uniqueness of the minimizer cannot be established in genera

In what follows, we show an approximate equivalence betwkese two formulations. The main idea
of the proof is to first transform the regularized optimipatiproblems into the corresponding constrained
version, and then establish equivalence in the constraatg.

For simplicity, we use the following formulation for energy

Ex(®)

(/(f —go¢)2dm+a/|curl¢|dw) +)\/|div o[2da
(3.40) = (|f —go®|3+alcurl ®|1)+Aldiv |3.

The equivalence between (3.40) and (3.38) is easily showddntifying A = Agiy anda = 1/A¢yy.

Given f, g and for a fixedo, we denoteA(®P) 2 |f —go®|3+acurl ®|; andB(P) 2 |div @3, so that
Ex(P) = A(P) +AB(®P). SinceE is not convex in general, there may exist multiple minimizeand we
denote the set of minimizers &, as:

C={P:E(®)<EW), YWerl},
and the corresponding energy valueggs= minE, (V).
Claim lll.4. For Ay < Az. IfC;NCy = 0, then B®;) > B(P2) for @1 € Gy, andd; € Gy,
Proof. Assume not. Tak@; € C,, and®; < C,, such thaB(®;) < B(®2)., then

Ev(®1) = A(®1)+AB(®y)
= A(®1) +7\15(¢1) +(A2—A1)B(®Py)

= E)\l ()\2 B(CD]_)
< Bry(®2) + (A2—A1)B(P2)
= E),(P2).

(3.41)

The third line follows from the fact thaw; € C,,; the fourth line from the assumption théb ¢ C,, and
B(®1) < B(®2). This contradicts the assumption ti&t minimizesE,, .

In fact, as long as we assurdg, ®; do not simultaneously belong @, NC,,, the contradiction would
hold.

We now argue that foky # Az, itis highly probable tha€,, NC,, = 0. The minimizer(s) for the energy
Ej)(P) = A(P) + AB(P) need to satisfy the Euler-Lagrange equation

dA(®) + AdB(®) = 0.
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If ®* simultaneously minimizeg,, andE,,, i.e., ® € C,, NC,,, then it must be true thatB(®*) = 0. It
immediately follows thatd A(d*) = 0 as well, so that* satisfies the Euler-Lagrange equation for\aéind
that it is the minimizer for alE,. In particular, it is a minimizer for

Ex—o(®) = A(®).

Meanwhile,dB(®*) = 0 implies dive = 0 andB(®d) = 0. This means tha®* is a divergence free
minimizer of the energyf — go ®|3 + a|curl ®|; (which does not penalize divergence at all!). This result
also holds the other way around: if there exist a divergdree-elementd in Cp, then® € C, VA. The
contrapositive of the original statement says thébihas no divergence-free elemer@ig, NC,, = 0 VA1 #

A2.
Now we are ready to state it as a theorem.

Theorem 111.5. If ®°is a divergence free minimizer of & | f —go @[3+ a|curl ®|, then it also minimizes
ExVA,andE =Ej = A(®O). If there is no such element, thep, € C,, = O for anyA; # A,. Moreover, for
A1 <Az and any®; € Gy, ®; € G, B(®1) > B(P2).

Recall the definitions of outer normals in [28], which is @bsrelated to sub-differential in functional
minimization.

Definition 111.6.  Givenp,v e ON, letH(p,v) denote the closed half space
H(p,v) = {xe O : (x—p)-v<0}.
Given a convex domai ¢ ON and a pointp € 0Q, the collection of outer normals @ at p is defined as:
No(p)={ve ON:Q c H(p,v)}.
Consider the 2-dimensional plaf&(®),B(d)), then for given\, E, = A(®) +AB(®) is constant along

lines of slope— 3. Assume the se 2 {(A(P),B(P))},P I to be convex iri1? (if not, we shall consider
its convex hull for now), then we have the following lemma.

Lemma lll.7. p e 0Q is a minimizer of k if and only if —(1,A) € No(p).

This is a direct application of the Karush-Kuhn-Tucker (KkDndition: the gradient of thE,, is (1,A).
To require thatdE, to “point away” from the feasible set is equivalent to the dition we stated with the
definition of outer normals.

Furthermore, note that #Q is differentiable atp, thenNg(p) contains a single direction, so this is
equivalent to the traditional requirement-eflf = —[g whereQ = {x: g(x) < 0}. If 0Q is differentiable
everywhere, then ang = (a,b) € 0Q minimizesa+ Ab for at most one\.

No(p)

case 1l case 2 case 3

Figure 3.25: lllustration for the three cases of feasibtgar: strictly convex and everywhere differentiable,
nonstrictly convex and everywhere differentiable, nofedléntiable.

e Case 1.If Qis strictly convex®, then the minimizer oE,, for eachA corresponds to exactly one point
p(A) = (a(A),b(A)) on0dQ, andb(A) is strictly monotonically decreasing as a functiomof
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Figure 3.26: Equivalence between unconstrained and @nstt formulation: Each in the unconstrained
formulation maps to a constrained optimization problem Afi®) over a circle (or ring).

e Case 2.If 0Q is everywhere differentiable, b@ is NOT strictly convex. In particular, #Q contains
line segments o&+ Ab = ¢, for A € Z, then the minimizer oE, for eachA ¢ X corresponds to
exactly one poinpp(A) = (a(A),b(A)) on dQ; the minimizer ofE, for eachA € X corresponds to a
line segment 0@Q, and the corresponding second coordindi@g form a continuum ord. In other
words,b(A) (now a multiple valued function) has the property thatiif< Az, thenb(A1) > b(A2); and
if by,b € b(A), thenb € b(A) for anyb; <b < by.

e Case 3.If there existsp wheredQ is nondifferentiable, and suppose that there existad, € O such
that —(1,A1),—(1,A2) € No(p), thenp = (a,b) simultaneously minimize&,, andE,,. Combine
with our previous argument with the specific definitionEyf, it must be true thap minimizes all
E,. In other wordsQ € H(p,v) for v= —(cosB,sinB) for 6 € [0,11/2] (since we are only interested
in A € [0,o]). This corresponds to the situation where a divergencesigestration arises as the
minimizer to|f — gocD|§+or\curI ®|1, which is highly unlikely in practice, we omit discussiortzoat
this case to avoid too much technicality.

In summary, ifQ is convex, thel¥, B(®) is either a constant or a continuum fore C, for each fixed\.
WhenoQ is differentiable b(A) is a strict monotone (potentially multi-valued) functiohX For better

presentation, we definl (A) andbn(A) as the lower and upper bounds g : a(A) +Ab(A) = mina+

Ab, (a,b) € Q}. Therefore, if® € C,, thenB(®) € [b;(A),br(A)] and we have the following equivalence:

Theorem [11.9. ® minimizes = A(®) +AB(®) if and only if it solves

minA(®)
st.B(®)=b, for someve(b (A),bn(M)]

Proof. Quite straight-forward from previous argument.
If ®is a minimizer forE,, then takeb = B(®), and it must be a minimizer for

minA(®P).
st.B(®)=b
On the other hand, & minimizes
minA(®P),
st.B(®)=b
find theA such thab € [b(A),bn(A)], and® minimizesE,. O

Definition 111.8. A set of pointsSin N-dimensional space is strictly convex if for every two poirisandx, belonging toS such that
X1 # Xg, the straight line segment joining the two points belongSbait does not belong to the boundary3ii.e. all the points on the
interior of the straight line must be strictly in the interioir S): that is, a seBis strictly convex if and only if for every, xo € S, and

scalarv such that 0< v < 1 we havevx; + (1—v)xz € the interior ofS.

6Wwith the exception of the rare case whé@b) has a divergence-free minimizer
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Sinceby (A),br(A) are positive quantities, the constrained setup can bettews:

mMIinA(P) .
st./B(®)=b, for somebe[,/by(A),1/on(A)]

Replicating all previous argument, we can show that thisteamapped to the unconstrained formulation
minE, = A(®) +yy/B(®) = (| f — go ®|3 +alcurl ®|1) +y|div ®|,

for somey.

WhenQ is not convex, its convex hull will contain one or more lingsents, corresponding to case
2. The optimum will be achieved at the end points of such legnsents, which is the intersection between
the originalQ and its convex hull. This will affect the results in that fanse A, b(A) may be the union
of continuum (or possibly continua) and single value(s)t the constrained formulation, this corresponds
to not solving the optimization if the constraibttakes on values in the complementwfb(A). In that
scenario, the minimizefa,b) lies in the interior of the convex hall d, and does not corresponds to the
minimizer of unconstrained probleax- Ab. This is O.K., as we are interested in showing the equivaerfc
the unconstrained formulations finally, and the missindipos of the constrained space does not contribute
to the optimal solutions.



CHAPTER IV

Fundamental Performance Analysis in Image Registration Problems:
Cramér-Rao Bound and its Variations

Image registration, as a special form of signal warping,nsmaportant task in image processing. In
contrast to the rapid development of algorithmic study imdgm registration, a standard performance evalu-
ation tool is in general absent, except [95] where the tamsétion is assumed to be a global translation. It
is important to investigate fundamental performance Gdti a principled manner to compare the overall
optimality of different estimators for nonrigid registian problems. This chapter presents an observation
model for image registration that accounts for image noiseemealistically than most formulations, and
describes performance analysis based on @raRao Bound(CRB) and its related variant Modified Ceam
Rao Bound(MCRB). We interpret the result of the commonlydugptimization based registration as the
M-estimate of the objective function and derive its biagamce behavior.

4.1 Model - the Ideal v.s. Commonly Used

Generally, image registration methods aim to find the matiam image sequendg; }, wherez denotes
theith observation (frame) of an underlying image. In realityyosampled observations are available, with
spatial sample spaciny. Therefore, it is natural to use a discrete spatial indexeferrto the sampled
location. Without loss of generality, we talzgn] = z°(nA) wherez® notates the underlying continuous
intensity map. Accounting for additive observation noise,formulate the generative model as:

4.1) z[n] = f(n+Ti(n)) +¢&i[n],

where itis standard to assumeo be independent identically distributed (i.i.d) Gaussiaise. In principle,
the task of registering the observation sequence is to fieddfiormation sequence of continuous méps$

for all i. We adopt the parametric setting, and represent the undgipntinuous image intensity as a linear
combination of a finite number of basis functiomsvith coefficientse = {c}, i.e,, f(X) = K ; cb(x,k).
For simplicity, we focus on pairwise registration which végs estimating one deformation fieldand drop
the subindex irtj. Furthermore, we assume the deformation field is propeuiffi¢sently) parametrized with
a, so the estimation performance for deformation and imatgnaity may be characterized by that of the
parameter s€fc, a). For simplicity, we formulate our problem in one dimensibuat the analysis generalizes
to higher dimensions. The two observed images are modeled as

K
zn] = ZCkb(n,k)Jrsl[n],
K=1
4.2) N = %ckb(nJrrq(n),k)Jrsz[n] n=12,...,N,
K=1

where{b(-,k)} are common intensity bases, angarametrized byx captures the pointwise deformation.
The components of additive noisgare zero mean I.1.D Gaussian with variamde
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The formulation in (4.2) captures the spatial sampling efdbservation, the finite representation of the
underlying “true” intensity{ck}E:l and the dense pointwise deformation

For comparison purposes, we formulate the estimator intiomel registration setup as the optimal
transformatiori” such that

(4.3) [ =arg rr;inD(zz,zloF),

whereD is some difference measureg, sum-of-squared-difference (SSD) or mutual informatigh)( and
I" indicates the transformation. In this setting, it is imjthcassumed that; (also known as the “source®)
is a noise-free version of the true intensity imaigeandz, (also called the “target ") is a deformed image
whose noise properties determines the proper choice of iffezethce metric. Clearly there is a lack of
symmetry regarding the presence of noise in this formutatio

For simplicity, we use sum-of-squared-difference (SSDy@msdefault choice of the error metria for
(4.3) hereafter, corresponding to the Gaussian noise gggamas adopted in many practical cases.

4.2 Cramér-Rao Bound and its Asymptotic Behavior

We first reformulate (4.2) in a compact vector form as follows

(2] [£ e 2] e

wherez 2 [z(1),...,21(N), 2(1),...,z(N)]T € ON ande 2 [cy,..., k] € 0K, are column vectors by
stacking the corresponding elements. The concatenatedmanoise vectoe ~ A (0, Z = a2l ). Ag, Ar €
MN<K have elementdy(i, j) = b(i, j) andAc(i, j) = b(i +1(i),j) fori=1,2,...,N,j=1,2,...,K. The
overall system matrix2 = [A],AT]". The Cranér-Rao Bound(CRB) is a fundamental lower bound on
the variance of any unbiased estimator [123] and serves aséhimark for estimator performance. When
maximum-likelihood (ML) estimators are applied, which knewn to be asymptotically unbiased, it is often
useful to bound their variance with CRB. In [45], it is suggekthat when inverting the Fisher information
matrix (FIM) corresponding to the parameter of interestyaslnot straight-forward, it is feasible to use
“complete-parameter” Fisher information matrices. Fellog a similar logic, we can write (4.4) in a more
general form,

z = h(tg,¢)+e
(4.5) = h(6)+e,

whereh(tq,c) 2 4c and6 = [0, c] denotes the “complete-parameter” vector. It follows imiaggly from

the i.i.d Gaussian assumption of noisghat the ML estimatoBy minimizes thel, distance between
observationz and system respon$¢0) as follows:

OwL = arg rrgin||z —h(6)[2.-

Before we delve into the detailed computation, we clarify goal and the structure of FIM here. We
are ultimately interested in the performance of estimatordhe deformation parameter, and the image
intensity parametee is chosen to augment the data to simplify expression. \&ithONtK  the FIM
corresponding t® takes on the form:

. 0?
F(0") = E;jp-s0- {—W/\(ﬂe)ee*} ,

1There is a slight abuse of notation here. The more precise fatinn would be: " = argmir D(z,P(Z o)), whereZ the
underlying intensity map that agrees withon sampling grids, ang is the sampling function such thBtz®)(n) = z°(nA). Even so,
the cost function is still incomplete, as ordyis observed and the interpolatorz; — 7z needs to be specified. The de facto objective
function is thuD(z, P(l(z1) oI")).
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whereA is the log-likelihood function\(z|0) 2 log f(z16).
Moreover, if we definglyy = E { [%(/\(z)]T [%/\(z)]}, then the complete-data FIM can be decomposed
into block form as:
‘](X a JG.C
4.6 = ; e |
( ) Fe |: Jc,a \]c,c :|

The sub-blockl; ; is the FIM with respect to the quantity of interest - the defation parameters. As
CRB is the inverse of the FIM, we can invoke the formula fortpianed-matrix inverse [39] to obtain:

CRB(A) = [Juo—Jduedoidea) ™
(4.7) CRB(c) = [ee—Jeadugdacl ™

This form can be further simplified using its symmetry - a féztt we will utilize later in our computation.
The likelihood function with respect fis :

f(z;0) = }eTzle),

1
(2m)2N/2|5|1/2 eXp<_2

wheree = z —h(8) = z — 4(14)c.
The log-likelihood turns out to be:

N = logf(z;0)
1 2
(4.8) = —Nlog(2m) —2Nlogo — 252 Iz —A(ta)c||”-

Now we compute each term of the FIM.

A = —i%ﬂmz—ﬂﬁ@ﬂz
4.9) = (e Ao T(At)e)
Notice that
L{A [n,:le} = 9 S c(k)Ac(n, k)
ar(h) VT - Mmé; T
0 s k)b K
= 5ﬂﬁkﬂ§()(n+TmL)
7 5K c(kb(h+1(n),k), |=n;
(4.10) - Ok ' else

whereb(-,-) denotes the derivative f -, -) with respect to the first variable.
Plugging (4.10) into (4.9), we obtain

0 K.
(4.12) F(I)A = é(zz(l) —Al,]e) k=lb(I +1(1),k)c(k).
Therefore, the gradient df with respect ta is:
#.12) I A= Sl Ae) o (Do) = S ldiag{De) (22~ Adle)].

whereD is the matrix whose elements d&i, j) = b(i +1(i),}),1 <i <N,1< j <K, and ‘©” denotes the
Schur/Hadamard product.
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By chain rule, the gradient &% with respect tax is given by:

0 0
Oah = S5t
(4.13) = Liz-age oo Ly
. - 0_2 2 v C & 60( ’

where 221 € M~ is the derivative matrix with elemeri2.](i, j) = z7;7(i), andL corresponds to the

length of the deformation parameter
Now we compute the FIMq o with

{2} - e{i2arin)
o - e
1dt’

= 5% E{diag{Dc}(zzArc)[;'z(ZZArc)Tdiag{Dc}]T} %

1dt’ |, dt

To calculatel. ; andJ. ., we take the derivative of with respect ta:

0 1 0

AN = =2

de 202 ac|
1

?(z — ﬂC)Tﬂ

|z—Aac||?

(4.16)

It is now straight forward to compute the entries for the ctetgFIM:

(4.17) E{aié&}éﬂ”ﬂ
2
E{m(&c(m/\} = éE{—Ar“vm]D“,Z]c+€2(|)D[|,m]}
(4.18) = —éAr[l,m]D[l,:]c.

The matrixJq . can be represented in compact form as:

02 1at’ .
(4.19) E{aaac/\} —— o disg{De} A

With symmetry, the complete FIM is obtained:

T .. T,
(4.20) Fo 1 [g—; diag?{Dc} & 4" diag{Dc} A

~ 0% | Aldiag{Dc} & aa

As a special case, whatis parametrized with rect functionise., t(n) = afn], we haveg—; =1. The FIM
for (1,¢) is then given by:

1

(4.21) Fro = — diag?{Dc}  diag{Dc} A }
)c 0 .

Al diag{Dc} ara

At this point, we make the following observations:
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1. With the commonly used model (4.3), it is assumed that tiseived source imagae corresponds
to the ground trutke. In other words, most existing methods solve for the ML eatnt with the
generative model:

K
(4.22) = z ckb(n+1(n),K) +€2(n),
K=1

by plugging in thecy’s that best fitsz;. It is easy to derive the CRB for the log-likelihood function
ACOM(zy;1) = —N/2log(2m) —Nlogo — % ||z — Acc||2. The FIM matrixFE0™M = J; ; as we derived
in (4.15). Therefore, CRE’™(1) = J;1. Notice that ask .J;1J.: > 02, CRB®O™M(1) < CRB(1) as
extra information (knowr{c}) is assumed in the case of (4.22). In other words, the plugpération
provides a “looser” bound for the variance than the “true”’BC€drresponding to model (4.2).

2. For asymptotically large SNR.e., 02 — 0, we do expect a decent estimatecoflirectly from the
source image, assuming no model mismatch in the generatsis.ldn this case, the plug-in estimator
as used in the traditional model, even though not a true Mimesor, is expected to perform similarly
to the real ML estimator. Indeed, [76] shows that the “fakelibd approximates the true CRB

3. The above points may be interpreted better with a slightifivation of the model in (4.2). Instead of
i.i.d noise, we may assume that noise level in the two images@ symmetric, more specifically, we
assume; ~ N((0,0%ly) andez ~ AL(0,031).

The log-likelihood is given by:

1 1
(4.23) A= —2—0% llz2 — Aocl|, — E |z — Acc||, + some constant

The partial derivatives of the log-likelihood with respéet ( thusa) is not affected by target image
model, and the second-order derivative the log-likelihadtth respect tac is given by:

02 1 1 1
E { acac/\} =g ?Ar A
We thus obtain the complete FIM with respec{toc) as:

(4.24) o (71% diag®{Dc} (71% diag{Dc} A
. (te) U—lgAIdiag{Dc} ci'ngAO‘*‘U—lgAIAT. .

Wheno; — 0, corresponding to high SNR in the template image, then— « and

CRB(1) = [Jr1 — Jredondea] " — it

1,00

which reduces to the CRE™.

4. To compute CRE) exactly could be challenging, @' 4 may not be easy to invert for arbitrary
1. Notice that the sub-matrify of 4 has nice shift-invariant structure, y&t depends on the defor-
mation. In special cases, such as when the whole image [s&xperience uniform transformation
1(i) = constfori =1,2,...,N, thenJ. . is block-shift-invariant, and efficient inversion is pdsgsi

5. As a special case, we consider when the whole image erpgesainiform transformation, where a
natural parametrization is to useto describe the global transformatiare., 14 (i) = a for Vi.

2In most cases, we assur:ﬂ\(;:Jg_%:Jc,T to be nonsingular, so it is in fact positive definite.
3In particular, the parameter of interasis decoupled from the nuisance parametén this case, and the asymptotic behavior of
the bound can be shown with ease.
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Under the uniform transformation assumption, we have

&y

da ’
wherel indicates a column vector (of lenghhin our case) with all unity elements.
Substituting this relation into (4.15), (4.19) respedinand we obtain:

1 [ 17diag?{Dc}1 1T diag{Dc} A
Fo = 32| Aldiag{De}1 T
g{Dc} a'a
1[ c"DDTe [De|™A

4.3 Relating to MCRB

The modified Crarar-Rao Bound(MCRB) was first introduced [22] to resolve trechironization issues
in decoding systems. Rather than seeking the variance duherestimator for the “true” augmented data
(“complete data”) which includes both the quantity of it&rand the nuisance parameter®MCRB choose
to look on the other parameters as “unwanted”. Instead ofgusie true CRB, the MCRB may be regarded
as an approximation via “marginalizing” over the nuisanaegmeters. In fact, MCRB is always lower than
CRB, thus a looser bound. In some cases, MCRB approachasi¢h€RB [76].

The central idea is the following. Instead of computing ttue 1M

F= EZ{[% |ng(Z;T)]2},

it uses
(4.26) Ezﬁc{[:—Tlogf(z;r,c)]z}.
The rationale for MCRB is the following:
Ere {{(@-1°} = Ec{Elt(@-17}

Ezel(%l0gf(z7,¢))?)

> 1
Ee {Ezel(Zlog(zT,0))}

1

(4.27)

Eze {[5’—T log f (z;t,c)]z}
The first inequality comes from the application of CRB to tlstireatori(z) for a fixed ¢ and second is

Jensen’s inequality.

4.4 An Alternating Minimization Algorithm

For registration purposes, we want to minimize the negdtigelikelihood in (4.23). We adopt the
frequentist perspective and consider the the underlyiragarintensityf (and thusc) as fixed unknown. It
is natural to ask for the solution of the augmented problem:

(T,¢é) = argmin—A.
T,c

We describe an alternating minimization algorithm to sdhie problem as follows.
We make the following remarks:
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Algorithm 1 Alternating minimization of the nagetive log-likelihood {4.23).
1: Initialize €
2: repeat
3:  For givenc = ¢, minimize ||z — Acc||, overT. This step coincides with conventional registration
methods by assumingknown. Obtairt.
4:  Forgivent =1, minimizez%% llzs — Aoc||§+ 2%% llz2— ATc||§. This is a typical quadratic minimization
problem, and the solution is given by:

R 1 1 t,1 1
(4.28) = [SA0M+ SAA] (SA 2+ S5A 22),
01 03 01 02
where(-)" indicates the pseudo-inverse operator for the Gram matrix.
5. until Some convergence condition is satisfied.

e Aso; — 0, the contribution oAy andz; dominates (4.28), and the solution reduces to

(4.29) é= [ASAo]'AY 21,

which corresponds to the conventional method wieris considered to be a highly reliable “tem-
plate” and the image intensity is solely obtained by fittmg

e More generally, alternating descent may be used insteagbpining the achieving minimizer at each
iteration. This could be particularly beneficial for the i@ updatingt conditioned one,” as the
quadratic form in the other step makes the minimization avéivial. Relaxing conditional maxi-
mization to increment in log-likelihood may has potentiahputational advantage as well as better
behavior to local maxima.

e As g1 — 0, the alternating descent algorithm reduces to exactlycamyentional descent algorithm
in solving (4.3) withl, difference metric. In the asymptotic case, the conditionadimization ofc
given by (4.29) is independent ofand the whole alternating descent algorithm reduces tqukia
plug-in estimator (4.29) and descend\ with respect ta.

4.5 Comparison with Conventional Methods: CRB v.s. M-estirate

As we have commented briefly in the previous sections, thgestional method estimate the intensity
f from the source image, only. With I, difference metric, we can write the solution to the convemei
method as:

C

argminj|z, — Aocl3;
(4.30) 1 = argn;insz—ATéHg,
wherez;, z are discrete observations for the source and target imagecior form,Ag andA; are defined
asin (4.4).
The first equation in (4.30) can be solved in closed form gitequadratic form:
C= A;r)Zl,
and we can rewrite (4.30) as:

2
(4.31) T=arg nginsz—ATAgzluz.

We can also stack the expression as before, and d@fiée[fATAg I] and write the objective as:

(4.32) T=arg ngintb(t,z) = Hd(r)z”%.
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In the following derivations, we will choose the most coniegm form and use the above equivalent expres-
sions interchangeably.

Our goal is to derive the covariance of the minimizer definbdva and we use similar philosophy as
in [30]. By implicit function theorem, the partial derivaé of ® with respect ta are uniformly zero:

(4.33) %(i)q)(T,Z)hf =0, V spatial location,

for any given data.
Differentiating (4.33) again with respect t@nd applying the chain rule yields:
(4.34) 02%0(1(2),2)) 04 (2) + 01 d(i(2),2) = 0.

Where, the components 6f°d(1(2), 2) areﬁ;m ®(1(2),2), and the elements af'! areﬁsz(j) ®(1(2),2).

We consider the case whéit°®(1(z), 2) is invertible, or more precisely positive definite. This quévalent
to require®(1(z),z) to belocally strictly convex. This assumption is true if the followingyréarity condi-
tion is satisfiedthere3 a compact neighborhod¥ (1) such thatb(t,z) > ®(1(2),z) forallt # 1 . Then we
have:

vi(2) = [-0%(1,2) 10" (1, 2),

and the covariance matrix férwould beCov{z} transformed by local linearization [91i]e.,
Cov{1} ~ O;1(2) Cov{z}[O1(2)]".
By substitution, we obtain
(4.35) Cov{t} ~ [0%d(%,2)) t0MD(%,2) Cov{z} [0 (1, 2)] [0%D(T,2)] .

We assume the covariancezib be:

(4.36) Cov{z} =

O'%|N 0
0 o3y |’

so it remains to derive the expressions f5Pd(T,z) and 1M d(1, 2).
We first adopt the objective function form in (4.31) to takeigkgive with respect ta(l).

N 2
(4.37) %U)CD(T,Z) = 3 (Aln gz - zz(n))ﬁ{Ar(n)Agzl}.
Similar to (4.10),
0 K
ey (A | = (] 2, A 0A K
K
_ %(I)kl(Agzl)(k)b(n+T(n),k)
- K (Alz)(Kb(n+1(n),k), 1=n;
(4.38) = { gk 1Az else

whereb(-,-) denote the derivative df(-,-) with respect to the first variable.
Plugging (4.38) into the expression in (4.37) yields:

K

(4.39) i O02 = (AL A7 - 2(0) 5 (W) (9B(+T(1).K)

k=1
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To obtain[?°®, we take derivative with respect ton). Noticing that 7@ depends on only viat(l),
we obtain:

92 {zkleZl()( }+
s DT =) AL IAZ - 20 ))zk (ATZ) (0B +1(1),k), T =n;

0 else

whereby(-,-) denotes the second-order partial derivative with respetttd first argument i, -).

To computed*d(1,2), we need to take derivative of (4.39) with respect to eachetd ofz. We
perform this by d|fferent|at|ng with respect to the elenseintz; andz, respectively.

Noting thaty; [Aozl]( k) = Ag[k,n],we obtain:

2
mq)('[,z)p\r“,:]ﬁ%[:, ]Z(Aozl)( ) ( +T(|) k)+

(4.40) +(AdL A —22(1) S Al nlb(1 +1(1),K).

M=

=
Il

1
@ —SK Az (0b( +1(1),K), 1 =n;
6T(|)022(n)q)(T7Z) N { o else

We assume that at the point of evaluatidrez), the samples of the warpetl approximates the observa-
tion zo, more specifically:

—+

AANZ ~ 2.
This is a reasonable assumption for most registration teskibr simplicity, we denote éA(T)Zl, I5(i, i) 2
b(i +1(i), j), and the warping map’ 2 Ang, then we can rewrite in matrix form:
0%¢(1,2) = diag?{Dc}
(4.41) 019,20 = | diag{Dc} W —diag{Dc} |.
Plugging (4.41) and (4.36) into the expression@or{1} in (4.35), we obtain:
(4.42) Cov{t} 1t ~ diag{De} ‘(o2 WWT +03l] diag{De} *

Remark: asa? — 0, z approaches the noise-free observation of the source irhaged the conven-
tional method should yield the same estimate as the moristieahodel. In fact,

Covg,o{T} = ngiagz{bg},

which agrees with our previous analysis in (4.24) B&B1) — J{Il asz; becomes asymptotically noise-
free.

It makes sense to compare the covariance prediction for Hestihate of the conventional method and
the Cran&r-Rao Boundobtained from the more realistic model fror@)4-or simplicity, we assume thap
to be invertible so thaA\gl = A;F) and consequently the warping méag = ATA(j1 to be invertible.

To studyCRB(1), we plug inJ; ¢, J... from (4.24) and obtain:

CRET) = [Ji—diedoided]™
1. 5 1 . 1 1 7.l 7, -1
{ g7 diae*{De) — 5 diag {De} Al 5A3 Ao + ATA™ AT diag(De) }
o5 a5 a5 a5

1

(4.43)

. _ l
o5diag{Dc} 1{| - [ A;I)-AoJr 7 AT B dlag{Dc}
With A; = WA, we can write:

1 1 1
A0+ ATA = —AGAo+ TQ
1 2 1 03
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The middle part of (4.43) can be rewritten as:

{1- Avo+ AT}

= {| GlAT02A0A0+01AOWTWA0 AT}

= {I- AR + W WA TAT
(4.44) = {I- W02I+01‘WT‘W gyt

By Woodbury-Sherman-Morissey identity:

2
081+ @W)or W) = Sl - Zatwl+ BT,
o3 o5 03

_ -1
thusop{! —Oi%AT[G—lgAng+ 0—1%AIAT} AT =03l W
Substituting into (4.43) yields:

(4.45) CREBT) = diag{De} (03l + a2 WWT)diag{Dc} .

This result coincides with the covariance estimate for thesiimate evaluated D, ) in (4.42).

4.6 A Simple Example

This section uses a simple example to illustrate the refalts previous sections and also to motivate
discussions about performance comparison. In particitlés,expected that the proposed model in (4.4)
has advantage over the traditional model in (4.3) as thenasiin forc which parametrizes the underlying
image intensity should be more reliable, because it conshiine information from both the source and the
target observations. Consider a simple model

| a | | €1
(4.46) z_{zz}_[al}ﬁ[sz]’
where we assume both andz, are vectors of the same size as the underlying (unknewmhe scaling
parametel which relatesz; andz in the noise-free case is the quantity of interest~ A((O, ofl) and
€2 ~ N(0,03l) are independent Gaussian additive noise.
M-estimator for the Conventional Method
In the conventionally method, the parametés estimated solely from observatien
(4.47) d(z) = argmin||zy — ¢||5 = z.
c

Sincez; ~ A((e,031), éis an unbiased estimator fewith covarianceo?| .
The objective function that minimizes is

A
(4.48) ®(a,2) = |lal  —1]z|5= [z —azlf3.

a(z) = argr‘r&inq)(mz)
= argmin|zz - aé|

= argmin||z —az|;

'z

(4.49) = .
|23
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Hereafter, we discuss two approaches in approximating tbannand variance daf: a direct method
based on the explicit solution in (4.49); and an indirectrapph that relies on implicit function theorem and
M-estimate. The explicit method is straightforward, regailess manipulation, and should be reasonably
accurate. On the other hand, explicit solutions are notlavai in general (as we will see for the ML
estimator), so the implicit method is more universally aggdble. In this study, the direct method serves as a
good baseline reference for approximation performance tla@ derivation based on indirect approach is of
didactic value.

Direct Approximation of Mean and Variance for the M-estimate

First, we directly approximate the mean and covariana@ lbfised on the explicit solution in (4.49).
The expected value @ from (4.49) is given by:

o o[ (c+e)T(ac+ep)
Elal= E{ (ErenT(crer) } ’

whereg; ~ A((0,021) ande, ~ A((0,031 ). We compute the above expression using conditional expiecta
El6] = Ee{Ee[d]ler}

o (ct+e)Te
(4.50) = ok, {m}

where the second line follows from the independence betwgande,.

Let ¢; denote thath element ofc'andg denote théth element of;. Thenc; are constants ang are
scalar i.i.d Gaussian variables~ A((0,0%).

We can rewrite (4.50) as:

(4.51) El6]/a@=E {;?;11((212);‘ } .

Define functionf : 0" — 0O via f(x) = % We perform second-order Taylor expansionfadround
the pointz = ¢ and then take expectation with respecicte- ¢+ €;:

E6)/d = Ef(@)+ 5@ B(@@ -3
R A
(4.52) = 1+%E[e{ﬂ§f(5}al].

Now we focus on the terr&[e] 02f,(c)e1] whose sign determines the bias. The gradigpt and the
Hessiari12 f of f are derived as follows:

0o f = lz]3%e" —2[|z]5* (2T e)2T.

Theith element of 1. f is
[Oufli = llzll* - 2/l 5" (27 ).

Taking derivative with respect tq yields:

0 _ _ — _ o
o Ol =2l oy — 2 { a7 axq + el * sci + 27Dl — ]

whered is the Kronecker impulse function defined as

1 x=0;
5[)(]:{ 0 otherwise
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The equivalent matrix representation of the Hessian isrgine
(4.53) (2 f = 8|z|,°x caxa’ —2||x|,* (xc” +ca’)—2(x" ) ||| ;1.

We evaluate the Hessianaand note thakE [e,02f (c)e1] = 05 trace{ 0?f(c) } depends only on the diagonal
elements of the Hessian, because the noisgi.i.d. We obtain:

021(@) — 201z 2 - 3 ).
2

so that
n
Ele{05f(c)ea] = GEZ[Dif@]n
i=
(4.54) = 20|l (2-n),
which is negative for alh > 2.
Subsequently,
(4.55) E[6]/a ~1— (n—2)c?|cl|,>.

As (4.54) describes the difference betw&ga /a] and unity, this indicates that for> 2, & is an estimate
of a that biases towards smaller magnitude.
Similarly, we computé/ar{G} via E[G?] — E[d]?. The correlation reads:

c { (c+€1)T (Ae+e)(ac+e)T (c+¢€1) } |
le+el3

As before, we first use conditional expectation to sepanatéhe uncertainty i, via:

(c+e1)T(0Pcc’ +031)(c+er)
le+e1l3

E[dz] = Eg Ee, [az|sl] = E{

Define a deterministic symmetric matrik = (ace’ + o3l) and a functionf (z) = ’Tf“f, and we aim
Zli2

to find E[f ()] for = c+&;. We expand the functiof(z) aroundz = ¢ and approximat& [G?] via:

. c'He 1
Eld? ~ =7 +3El@-3 Bi(@(@-2)
lellz
c'He 1
(4.56) = — 4+ ZE[E]2f()e).
lelz 2
The deterministic ternf(c) simplifies to:
b N 2
f(c) =< Hf:a_2+ 022.
eIl llellz

Sinceg; is componentwise independeBt(?] only depends on the diagonal elementiff (c), which
we derive as follows.
0o f(x) = —4[|z];° 2" (zTHz) + 2||z|,*2TH.

Theith element of],, f () reads—4|x||,®x (€ THa) + 2||z||;* TH(:,i)., whereH ;i) indicates the

ith column ofH. We may explicitly writezTH(:,i) = 5 ; xj[acicj + 030]i — j]]. The second-order derivative
is given by:
2
&f(m) = —4|x|° [ He+ 262 TH(:,i)] + 24| 2|, P Ha
i

(4.57) +2|z]|,* (a2 + 03) — 8|z, xz TH ().
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To evaluate(% f(x) atx = ¢, we use the following relations:

o

H(:,i) = ci(a?]|€ll3 + 03);

cTHe = ||ell3 (€3 +03).

Substituting these relations into the expression (4.5r7g§_pf (z), we obtain:

62

3 | (®le=c= 8]l ~°c?(0||ell3 + 03) — 4]le] ~* (@ [|€ll3 + 03) + 2] 1€l ~* (a®c? + o).

By the independence of the elementginwe obtain:

o &
Glzﬁf(a
|

lell~? (10— 4n)a®0% + [le]]~* (8~ 2n)003.

Ele] 05 f(c)ed]

(4.58)
Substituting this quantity into (4.56) provides:
E[6°) ~ a®+ ||l 203+ ¢ ~* (5—2n)a’0] + |le] ~* (4—n)oios.

Together with the estimation fdE[&] obtained in (4.55), this equation yields an approximation f
Var{G} as:

Var{d} = E[6% —E[a)?
(4.59) = |lell "2 (0®0i+03) — |le] ~*oil(n—4)05 — (n—2)%0%a]].

Expressions (4.55) and (4.59) reveal some interestingtstrel For large enough (in fact forn > 6),
the variance estimat@.59) becomes upper-bounded b ~2 (6202 + 03), which we will show later is the
Cranér-Rao Boundfor the statistical model. This implies thatitnot be unbiased. In fact, the bias quantity
measured by2 — n) ||c—||‘20§o_( also increases accordingly.

Alternatively, we can follow [30], and use implicit functidcheorem and Taylor expansion to approxi-
mate the bias and variance @fas the minimizer of (4.48). The data poiatat which to perform Taylor
expansion is mainly a choice of convenience rather thaniderations of asymptotic behavior. One natural
choice of the expansion point would be the noiseless dathz ldenote the noiseless observatioand o
denote the true parameter values, witandd denoting the resulting estimates in (4.47) and (4.49) when —
is observed. Thes = [c;a¢], and

¢ = ¢é2)=c
A
(4.60) & = a(g):“c_zcza.
lell2
As the minimizer for (4.48){ satisfies:
0 T
EGJ(O( 2)|a—a = 22 [ 0 } [al -l ]z=0 Vz.

Taking derivative with respect te and invoking the chain rule, we obtain:

2 0 92
3a2%3:% " 300z ® =0
where
02 2 1o
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Figure 4.1: Bias and variance approximation obtained fraplieit solution for conventional M-estimate.

and
92 ([ al —I al 0 [ 2al -1
(462) aaazq):z{[o 0]+[—I 0”:2z {—| o}'
Therefore,
d . 2 4 02 o 1 201 —I
(4.63) 5:0%) = "52® a5z ® = ~2l2"2 [ 1o }

Evaluating (4.63) at = z, we obtain an estimate of covarian€ev{a} atd = Gz as

Cov{@(z)} =~ a%a(z_)Cov{z}a%GT(z_)
_ larg A 1l al |-
GHk ] o3 ] a3 { - ]
(4.64) — 0‘1‘%2"5

This quantity (4.64) coincides with the CrémRao Boundobtained from the statistical model as we will
show later.

To estimate the bias fdr, we present the first and second-order Taylor expansiok fidf as:
EW 4] Elh(z)]

E{h(2)+0:h(2)(z - 2)}

h(Z) +E{0:h(%)(z — %)}

Q

(4.65)
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Q

E@Ia] E {h(é) +0.h(E2)(z-2)+ %(z —2)T2h(2)(z - z)}

(4.66) = h(Z)+E{0.h(2)(z—2)}+3 E{z—z )TO2h(2)(z - 2)} .

Notice that where is chosen to be, the quantity(z — 2) is zero mean Gaussian. It follows that the
first order termE {0.h(2)(z — 2)} = 0in (4.65) and (4.66). Therefore, the first order Taylor @pgmation
yields:

(4.67) EWa] =h(2) =h(z) =a,

corresponding to zero bias.
The second-order approximation (4.66) requires compuififig ), which can be obtained up to second
order [30] via:

(4.68) Dzh—[—a—zqarl a—3<DD h'O,h+ —— o o'O,h+0,h" —— o q>+imzq>
' =1 a2 0 * * " 9020z 0020z  oda * [’
Terms involved in the above expression are computed asfsilo
63
WdeO.

Taking derivative of (4.61) with respect toyields

0 I 0
3029, = 2T[0 0}:2[4 0].

Taking derivative of (4.62) with respect toyields

a3 2a1 —I
6(16z2¢_2[ 10 ]

Evaluating atz = Z = z and substituting into (4.68) yields:
(4.69)
2h(z) = { ol a5 S 02| X —0'}}.
2)jel} lellz L =€
Sincez —z ~ 9\[{ GOI gl } } the second-order term in (4.66) only involves the diag@teinents

of 02h(2). We extract the corresponding blocks from (4.69) as:

02 1 -4 _ | .
(321(i)2h(z_) a _2||a|§{ﬁaci2+4a}’

62
(4.70) 2" = ©
Thus
2
E{(z—2)TO2N(3) (- 5)} = ,Z"?aza
2
= 2 2
Ha\z(“ n)
2
(4.71) — 2(1-n)a
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It follows that the second-order estimation #[d] is

(4.72) E@[a] = EW[a] + %E {(z—2)T02h(2)(z— %)} =a+(1—n) %

Forn > 1 and reasonable signal-to-noise rai? [@] implies shrinkage in magnitude, which WLOG, we

refer to as “negative bias” hereafter.

2 2
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Figure 4.2: Bias and variance approximation for M-estinwdttained from expansion abo{d, z).

Notice that the choice of = z is mainly due to computation convenience (so that Z is zero mean
Gaussian). It is feasible to perform the same routine fderkht data point.”[50, 108] proved that under
certain regular conditions, the M-estimate is asymptdticeormal with meand where

0

E[ﬁ

®(d,2)] =0.

Under reasonable regularity conditions, we can exchang@tier of expectation and differentiation, and
take

~E[®(8,2)]] =0.

Note thati can be interpreted as a local minima for an “average” costtfanE[®(a, z)], i.e.,

(4.73) a=arg rr&inE[CD(a,z)].
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The expectation of the objective function with respect ®distribution of the observation noise

)

= E[[ & +e] a?+s;]{|°”}[—a| |}{_E_+51 }]

cown - elfi-a [ 28

2
= (a—a)?|e]3+n(a’0f+0%)

2 202 _ o 1512 1 5211512
(Iellz+no)a” —2a[cllza+ o[l

(4.74)

is convex quadratic it and the minimizer reads

a = arg n&inE[qb(a,z)]
2
(4.75) = ”2‘37'26.
€]z +not
For simplicity, letp = 2 HaHml thenda %o_(. Sincef > 1, the expansion poirt is a shrinkage with respect
2

to the true scale.

We can construct an expansion paint [Bc; ac]. Then the minimizer ofb(z) = %6: d, which satisfies
the requirement (4.73).
Evaluating (4.63) afc, 2) results in:
0 .
2a@) = -l 2
1 . — 2al -l
_ [ B ac]{ }
Rl 10
i
c 281 =
(4.76) = — | £Zal —pl |.
anaé[ ’ |
The approximated covariance @fevaluated at the poirfti, 2) is given by:
Cov{@}|.ez6-6 = i(:((z)cov{z}ioﬁ(z)
SR, P 0z
2 2B—1
_ Ay A B1n ol O =g-al |~
- R [ Bt p ]| % 05'H ek
2 1
(4.77) = |lelz?B (2~ 5)%a%0} +pPo3).

B

We know from previous analysis that the M-estimate is aswpiigally unbiased, so its variance is to be
bounded below by Craér-Rao Boundasymptotically. Therefore, it is curious ta fivhether there exists a
consistent relationship between the pre-asymptotic neean (4.77) and the CraanRao Boundi.e.,

(4.79) la2 (2~ é)zﬂoﬂ 02) = |&ll32 (@202 + 63)?

The quantity on the right-hand-side is the C&rRao Boundobtained from the statistical generative hode
(to be shown later).

Claim IV.1. The covariance of the M-estimator is boundsgibveby the Crarér-Rao Bound. Moreover, it
asymptotically approaches the CrarmRao Boundas; — 0.

Proof. To compare the left and right hand sides in (4.78), it suffdetermine the sign of their difference:
RHS— LHS = |¢]|;? B 2(B° — 4B + 4B — 1)a’0? + (B* — 1)0%.
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For simplicity, we drop the positive quantilij/c—ng2 in later analysis as it does not affect the sign. Let
AZ a202, B2 62, and we want to determine the sign for:
(A, B;B) = B?(B® - 4B?+ 4B — 1)A+ (B* — 1)B.
The polynomial(B® — 432 + 4B — 1) factors into
B°—4p*+4B—1=(B-1)(B°+B-1)(B*+2B-1).

By construction > 1, thus(B® — 4B% 4 4B — 1) > 0, sortis linear inA, B with positive coefficients.
Meanwhile,A,B are both positive, sa(A, B; ) > 0. This result translates into the claim that in the nonde-
generative caseof # 0), the variance of the M-estimate is bounded above by them&r&ao Bound. It is
easy to check that whes, = 0, the variance equals the CrarrRao Bound. O

Now we approximat& [a] with (4.65) and (4.66) by expanding corresponding termsiafin 2).
The first order coefficientl his obtained in (4.76), and the corresponding first-orderaxmation for
the mean is:

EDE] = h(2)+E0NE)(z—2)
c' B c+¢& —PBc
E{ i32||—||2{ 21310” —Bl } { o_(c_—i—slz—&c_]}
2 1 1

pe ||i|2 € @B-1E-1z
(2B-1)(B-1)

BZ
3PZ-3B+1_
%a,
Sincep > 1, (B—1)3 =R —3p2+3B—1=p3— (332 —3B+1) >0, and% < 1. Equivalently,

%ﬁ‘] < 1, indicating a shrinkage in magnitude, which agrees catalély with the result from exact solution.
Expression in (4.79) can be rewritten as:

a,
B
o_(
B
o
= 6[14‘ ]

(4.79) =

E[a) = %a
(4.80) = [1—(Bg31)3io_i.

. . .. A 2
Denote the signal-to-noise ratiomass= ”n—i? and
1

E[6] 1
T L (s+1)3

To approximate the bias with second-order Taylor expansieruse (4.68) and evaluate(at= o/, 2).

0T N S =
e ma%{ Fiapl o [ e ]

2B-1-~ ay  _
B?llelz | —Be -0
To compute(z — 2)T02h(2)(z — 2) in (4.66), it suffices to use only the diagonal blocks[dfh(2),

c+e&—Pc } _ { (1-B)c+&r

Oc+¢& —0c &

because the components0f z = { } are independent. Partition— z
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into the deterministiag) and random pam so thaty) = (1708)6 andn = { 2 ] Then the quadratic

term in the second-order Taylor expansion in (4.66) can higemras:
E[(W+n)T0Zh(Z)(w+n)] = W' OZh(2)Y+EN"OZh(2)n],

where expectation of cross terms betwgeandn are dropped sincg is zero-mean.
The diagonal portion ofi2h(Z) reads:

. 2 1 B(2B— 1)ace’ aj
8 Zh(z) = _| B ,
- = anaé{sznaé[ o] 0”
It follows that
4 2
T oh s 2(131)2{<131>|a|2— ||a|2—}
VEREY T T U e B
—1)2 _ _
_ 2(3331) [(ZBB by
(4.82) = 2(58_41)36.
2 2
N s<2s—1>o%|a2—nol—}
T ana@{ CIE
(4.83) - S[(28—1)— nBla.
BS 213

Summing (4.82) and (4.83) yields:

4.84 El(z—)T2h(3) (2 — > :2([3—1)3_ 202
(4.84) [(z—2) OZh(z)( )] 5 G+BGHC—H§

Combining (4.84) with the first order estimation®fd], we obtain the second order approximation for
E[d] as:

(28— 1) —nBja.

E@[a] = h(2)+E {Dzh(é)(z —2)+ %(z —H)T2h(2)(z - z)}

= E®(@]+ZE(z — 9T TAN(E) (= - 3]

O (B-(B-1® (B-1%\- (2-nB-1 d? _
SRS i e
B (B-1*. (2-nB-1 o _

e - et

2 2 2
Recall thaf3 = ”ﬂ‘ﬁ% so for reasonable SNF&% ~ 1—n. Using thes= % we can rewrite
cljz 1

E()[a] approximately as:

(4.86) EQa] =[1-
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Notice that when SNR is high (larg, then

@ oL (1-n)s _
e TSuAS e
~ 1 1-n _
~ s
_opoln Mg
N lell3+no?
(4.87) ~ iran—%1 &

— A
el +na?

which closely resembles the result (4.72) obtained fromaagiing about noiseless data In fact, for high
2 2
enough SNR% ~ ”(‘3—2‘2 so that (4.87) and (4.72) are approximately equal. Thidicelas expected, as
1_ J1 L . .
for small SNR 2= z anda =~ a, the small error analysis is essentially performed on tieesaeighborhood!

Figure 4.3: Bias and variance approximation of M-estimdtimimed from expansion abo(, 2).
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The maximum likelihood estimator from (4.23) aims to joyndistimatec anda via:

(4.88)

~ A 1 2
[G&,¢] =arg g?'cno? |21 —cll3+

1 2
llzo—acl3.
o2 22 2
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Note that conditioned oa, (4.88) is quadratic i with the solutionc{a, z) given by:

(a3 &1l o a[3 4]

1 o2 _ a?
= (5+=) l(—221-|-—222)
01 03 01 03

o
I

1
4.89 = — (0%z1+00%).
(4.89) a20§+0§( 221+ 0072)

Remark:

¢ In the limiting case whem; — 0 (with non-vanishings,), z; is a noise-free observation ef it is
natural to estimate solely onz; as (4.89) reduces to

lim =1z,
O'l~>0

which coincides with (4.47) in the conventional method. ®a other hand, as the noise levelzin
becomes small relative to that (o2 — 0 with nhon-vanishingr1), the estimate reduces to:

lim é=2z/a,
ap,—0

which corresponds to the case of estimatirgplely fromz.
More precisely,

Iim&:zl 3.50'1/0'2—>O;
(4.90) limé=2z/a asoj/op — oo.

e Itis easy to check that the estimator in (4.89) is unbiased variance
olof ,_ _ o

262 2 2
2

Var{é} = l.

It immediately follows that this quantity is upper-boundadthe covariancerfl of the estimator for
c (4.47) resulting from conventional methods.

Now we can plug in the expression efiri (4.89) and (4.88) reduces to a minimization problem aver
only:

a = arg rr(}inLIJ(a, z)

. 1 2
491 = argmin———— |0z — z||5.
(4.91) 9min 757 o7 o7 =l
This functionW is nonlinear ina. Note that¥ > 0. In the case of noise-free observation- z, a achieves
the zero value and is the global minimizer (we will justifygtimore precisely later). Therefore, we can utilize
the techniques for M-estimate as before, and analyze thevimtof & in the neighborhood(2) = a.
Let & be the minimizer of the functiok(a, z), then it is true that

0 0 1

a—aw(a,Z):a—amH[ al —I :IZHZZO forvz.
ill—'(O( z) = ;(azl—zz)T[Zzl(azo?rog) —200%(az; — 2)]
oa (0202 4 0%)2
_ 2 7| al 2 2
(492) = WZ |: ] [ UZI GO‘l ]Z.
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Al al aodl o206l L . .
LetQ= [ O } [ 03l ao? | = _GZ%I —orclfl } then the derivative O%LP with respect toz is
given by:
Lw oo 2 e+
0adz  (a20%+03)?
B 2 T 2003 (0202 — a3l
(4.93) T (020210227 | (a20?2—02)l  —20a02
(0201 +0%) 1—0% 1
Evaluating (4.93) at = z anda = a yields:
62 2 [

Now we compute the derivative oj;LIJ with respect too and evaluate at the minimizér = a with
zZ=2z.

a—zw _ 50 (az1—2,)" (0521 + 00322
002 da (020% 4 0%)?
2002 ) )
= {7 m(azl—zzf(ozzﬁraolzz)...
1702
1 T (2 2 T2
+m (21 (05214 0012) + (01 — 22) ' 0722 }

This is a convenient form to be evaluatectat z, and we obtain:

02
=5 ¥(2) = = |12l

1+02

(4.95)

To prepare for future use, we simplify the general form 098} .into:

2 2 [ (30202 +0%)03l (305 —a20?)ac?l

(4.96) 32" (a20?+02)% (30%—0(202)0(01I (3020% — 05)02l

Estimating,Z o yields:

Qg = Py @

9z % T 902 000z
1 _

(4.97) = ———c'[al -I].
EE

The covariance evaluated @, z) is

Cov{a}|iza)

3 a(2) Covfz) 2aT(2)
2
et e ]| %

(4.98) = |cll2%(a%0% +03).

e

Lower Bound for Covariance From Cramér-Rao Bound

The negative log-likelihood is given as the objective fumein (4.88). It is straight-forward to compute
the sub-matrices for the Fisher-Information Matrix.
? 1 T
a—a/\ = _()'_%(GC_ZZ) C,
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02 1.
a2\ = g2 @

(@]
NN

92 -1
AN=—(2ac" -2}
d0de 05( ¢ 2)

resulting in

02 -1 4
——c]=—0c .
00 03

El

The Fisher-information matrix (FIM) is thus given by:

1 [ ce ac’
_ 2
FIM 02| ac (aP+ B |

2
01

Invoking block-matrix inversion, we obtain:
. 03
Cov{@} > o?[c'e—ac’(a?+ é)fluc]
-2
(4.99) = Jellz*(a’0f +03).

Since the ML estimator is known to be asymptotically unbiagbee coincidence between (4.98) and
(4.99) justifies the well-known fact that the ML estimatoasymptotically efficient (thus is asymptotically
a uniformly minimal variance and unbiased estimator (UMVJWJE

Approximate Bias of the ML Estimator

Not withstanding the value of asymptotic analysis for the BHtimator, it is often of great interest to
analyze the bias and variance before the the estimatorsetterasymptotic zone. Hereafter, we focus on
deriving analytical approximation for the bias of the MLigsdtor. As in the covariance analysis previously,
we assume the estimate is over continuous parametensl is computed by “completely” maximizing the
objective function (likelihood in this case) without “stuipg rules” that terminates the iterations before the
maximum is reached. We derive the approximation using icitdiinction theorem, the Taylor expansion
(with different orders of approximation accuracy), and ¢hain rule.

The objective functioM in (4.91) implicitly defines the M-estimateas a function ok. Yet the absence
of an explicit analytical expression of the foiim= h(z) (as the one in (4.49)) makes it difficult to study the
mean oftt directly. As in the previous section, we apply Taylor expanschain rules and implicit function
theorem to estimate the bias with the first and second orgepajmation given by:

(4.100) E[] ~ h(2) + E {0,h(2)(z — %)} .

(4.101) E[6] ~ h(Z) + E{Dzh(z)(z -2+ %(z —2)T2h(2)(2 —2)}.
We now determine the point of expansiermarid the approximation for first (linear) and second order

(Hessian) coefficientS.h, 02h. To obtain the best choice fér

(4.102) G = argminE[W(a, z)],

whered andz’in the Taylor expansions are related ®y= h(z). We computeE[W(a, z)] as follows:

E9(0.5)] = Gz 3. (0m() ~20)
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For each index,

El(az(i) - 2())] Ela®21(i)? — 2az.(i)z2(i) + 22(i)?]

= a?(+0%) —2a0C + a°C + 05
(4.103) = (a?—20a+0%)c + (a20? 4 03),

wherec; anda are the underlying “true” parameter values.
Substituting (4.103) yields:

(4.104) E[W(a,z2)] = (a—o)?| )5 +n.

0202 + 03
Even thougE[W(a, z)] is nonlinear ina, its global minimizer is immediately observedas- a, because
E[W(a,z)]=n ach|eves the lower bound f&{¥(a, z)] as a function ofi. Thus we have found the proper
point to expand around = a.

Note that when noise free data is obseniaa, z = z, the minimizerd in (4.91) is obtained as:

X 1 o
G(z) = argmin——— |0z —z
(2) g o (XZO'E—FO'%H 1 2”2
1 o,
= argmin———— |lac—ac
¢ o (120'%—1—0'%” —”2
201112
. (a—a
(4.105) = argmm(z?incznz.
o o20%+03

Note this function is nonnegative, its global minimizergained att = a, i.e., h(z) = a = d. This indicates
thatz' = z'is the proper choice to expamcaround, without requiring to know the precise valuenof
In this case, the bias analysis with first-order Taylor exgiam as in (4.100) is simple by noting that

(z—z_)~f7\£<0, ofl GZID’SOthat
2

El] = h(2)+E{0.h(Z)(z—2)
(4.106) = .

This states that the estimator is unbiased if we approxitafeest moment up to first order dependence on
the data.

The first order expansion is usually sufficient in practicd has been extensively used. However, there
are situations where (4.100) may be inadequate. We nextederinean approximation based on the second-
order Taylor expansion (4.101) which is expected to be mocerate, but also computationally more inten-
sive.

The first two (Oth and 1st order) terms in (4.101) are (4.160)i suffices to study the Hessial.

For scalai, we follow the simplified expression in [30] to obtain the Kies ofh(z) as

02 93 93 0 0
2n_ [ -1 T T T 2
(4.107) Och=] aGZLIJ] {a S sW¥0:h 0, h+a 292 W' O.h+0,h 352 azkluraamzw}.
Some of the key ingredients are already availalilgh is given in (4.97) as well a{i Y in (4.95)

(before evaluation) angu—lP in (4.93). We still need to computﬁvgklJ (a,z), 7azLP(cx z) and g 0 Dﬁw.
Evaluating (4.95) ata, z) yields:

2 = 2|lel3
—W(A,2) = =512
ooz V(@2 020% + 0%

Taking derivative of (4.96) with respect toyields:

? 4 7| (=8a%0f+03)a3l (303 —a*0?)actl
0020z = (a202 +03)3 (303 —a?0?)acsl  (30%0% —0%)0?l

(4.108)
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Evaluating (4.108) ata, z) yields:

e 4 -

41 AN . S
(4.109) 507z T2 = G2z 4 o7

[ (03—a’o})l  2a0%(0%0f+03)! |

Taking derivative of (4.95) with respect toyields:

Ll = ﬂZT(0221+a0222> + 2 [—40(022T(0221+0(0222) + ...
oas (0202 + 03312 ! (020% +0%)3 12 !
(4.110) +200%2Z) (0521 + 00322) + 2(0%0% + 02)052122}

Evaluating (4.110) at (4.110) &t, z) yields:

E —12002 | c]|3
4.111 —WY(a,z) = — 1102
( ) 5o (@) (0202 + 03)

The terma [2W is obtained by taking derivative %%LP in (4.93) with respect te as:

a 1 2 2003 (a20% —ad)l
4.112 —PY=2(——— 2 1220 |,
( ) Jda = (QZG%JFO%) { (GO%—G%)I —2G0§|
Evaluating atr yields:
1 2003l (0?03 —a3)l
4.113 —D2 (a =) =52 1= 72
( ) e = _20§+o§) [ (ao?—03)l  —2a03l

Substituting the expressions of all components into thiet+igand-side of (4.107) yields:

_2 2 N2 oy
2h _ o’ 2+ 0% —1200% [ al }_T Al ]
" AEE {(_202+02) gl - et
4 (GA—@h | -
_(0720§+0§)3||E||§ [ ZOTGEZ(EZOEJrlog)I }cc [ab =1 ]+

G oI | | a2t ap ..

(0202 + 0%
1 2003 (0202 — a3)l
(4.114) i e %1 2502 .

The second order term in (4.101) depends on the Hegga(z) via (z — z) T 02h(2)(z — Z) sincez’=z,

wherez — z are exactly the noise component- 9\[(0,

2
ofl
1 o2l ]) Because the elements ofare

mutually independen€ {(z — z)"02h(z)(z —Z)} only depends on the diagonal elements of the Hessian
[2h(z).

When a component is located in tige portion of z, the noise componergt(i) ~ A((0,02), and the
corresponding element in the Hessian is:

02 1 —120302¢? 8a(o3 —a*cf)c?
4.115 _h(z)=— L 2 Vi 44003 ).
@19 G 2||a|§{<*202+oz>|a2 @3+ a2 el 02}
Similarly,

92 1 —12002%¢? 16002¢2 _
4.116 _h(z) = — L L i
@118 @ 2||a|§{<702+oz>||a|2 @a2+03) [l Gl}



89

Combining the above yields:

n 2
2h _
[SD (Z_)E] - zla | _)+ ZZlaZ
_ { —120%07  8a(o3—a’o})of }
2||C‘| 0% +03) (0207 +0%)?
{ 120(0202 160020% }
EEE 0f+03)  (0%0%+03)
(4.117) _ aof
Ieli3
The second order approximation of the estimator yields:
2
- o
E[6]/@0 =1+ —L;,
B

which indicates a bias toward positive magnitude. Compavrithl the bias analysis for the conventional
M-estimate, the bias of the ML estimate is independent ofdéa lengthn, which indicates that even
though both estimators are asymptotically unbiased, thpyoach the asymptotic region with different rate
(roughly 1 :n).
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Figure 4.4: Bias and variance approximation of ML-estin@itained from expansion abo(d, z).

In summary, we have tested with a simple example the estiti@ges and variance of the convention-
ally used M-estimate and the ML-estimator from the statigtgenerative model. With the particular form
of the example, the M-estimate can be obtained in closed,fanmd we have estimated bias and variance



90

from the explicit solution. To reflect the more general secenavhere such explicit solution is unavailable,
we have used implicit function theorem and Taylor expansioestimate bias and variance up to first and
second order. Numerical results demonstrate reasonatderagnt of the theoretically predicted values and
empirical statistics. Qualitatively, all methods wereeatd capture the negative bias of the M-estimate,

the estimated parameter is a shrinkage relative to the &gy Furthermore, it could be shown that as an
asymptotically unbiased estimator, the variance of theskihte is in fact upper bounded, and asymptoti-
cally approaches the CramRao Boundas the SNR increases. The ML-estimator acaptdithe statistical
model, being asymptotically UMVUE, has positive bias yepraaches unbiasedness faster (proportional
to data length) than the M-estimate. The estimated covegiagrees with the CRB to second order. As a
work in progress, this investigation is far from conclusiiore specifically, the ML-estimate demonstrates
advantage in that it approaches the asymptotic unbiasgetsa faster rate; yet it has higher variance than
the M-estimate in general. This leads to the familiar issuestimator selection: the (pre-asymptote) bias
and variance tradeoff needs to be studied carefully. Nwaklyj we observe that the M-estimate demon-
strates variance close to the CramnRRao Bound, so it is possible that by including higher oedeansion

in estimating the variance, we could obtain an approximaite at which the variance of the M-estimate ap-
proaches the Craen-Rao Bound. Such information would allow us to reach eitheonsistent conclusion
of the superiority between the M-estimate and the ML-edtmar a partition of the parameter space so that
each estimate would be the method of choice over certainmegi



CHAPTER V

Summary and Future Work

5.1 Summary

We have conducted research addressing two key aspects g iguaded respiratory motion analysis:
time series analysis to track semi-periodic signal stmgcftom noisy observations and image registration
to model motion between inhale-exhale image pairs. To teakpredict the slowly varying mean position
of a breathing signal, we have proposed a dynamic ellipsiitig method in an augmented state space.
Formulated as a minimization problem in terms of algebrastaghce, we provided a recursive algorithm
for solving the static data case, utilizing stochastic agjpnation techniques. Assuming slow variations,
we presented a natural extension of the recursion to anisddmmework, to account for newly available
samples. To accommodate noisy samples and missing olieas/atre modified the objective using robust
fitting functions instead of the quadratic cost. Having shélnat the feasible parameter region is the union of
two convex sets and noting about the symmetric structureen$tplution, we applied the projection gradient
algorithm to solve the minimization problem. Analogous he fuadratic case, we took advantage of the
recursive structure of the algorithm and extended it toipocate adaptivity. To our knowledge, our method
was the first to realize complete unsupervised tracking ggiratory motion in the presence of uncertainties
in basic pattern, magnitude and phase. It has the poteatialgrove significantly the performance of both
real-time adaptive treatment delivery and real-time gpsiystems.

For image registration, we focused on designing reguliam&ao incorporate physical priors. In par-
ticular, we have proposed to use tissue-type rigidity regehtion so that bone and soft tissue structures
are regularized differently according to their own elasficTo account for the commonly observed sliding
effects along motion boundaries, we have first proposed alagger based on integrating some general
functional of the Jacobian magnitude. We derived axioma#l{iche conditions on such functionals so that
discontinuities are preserved. Then we further noticednheessity to distinguish among different types
of singularities, namely, folding and vacuum should be pntgd yet shear should be preserved. With
this in mind, we utilized the Helmholtz decomposition andularized the divergence and curl component
differently for the deformation field. The experimentalukts showed that the proposed decomposed regu-
larization effectively combines the advantage of isottagnoothing as in conventional Horn and Schunk,
and discontinuity preserving regularizers such as totaatian. Such efficient incorporation of prior knowl-
edge shapes the registration process towards more phgsikalons, which leads to better planning and
treatment accordingly.

Furthermore, we have initiated a preliminary principleddst on the fundamental performance limit
of image registration problems. We proposed a statistieakgative model to account for the noise effect
in both the source and target images. The GaRao Boundfor the corresponding maximum-likelihood
estimator was computed. Meanwhile, we interpreted theeational optimization based image registration
results as an M-estimate. Using the implicit function tleeorand Taylor expansion to estimate the local
curvature of the objective function, we approximated itgaz@ance accordingly. Noting that both the ML
and M-estimates are asymptotically unbiased, we studieegiti-asymptotic performance by estimating the
mean and covariance of each estimator with finite SNR. Withrele example, we have demonstrated
that the bias of the proposed ML estimator decreases fdsaer the M-estimate as the SNR increases.
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This result, unfortunately, is still insufficient to detdma the relative superiority of the two estimators under
consideration; because both ML and M- estimators are biagbe pre-asymptote region, and their variance
is not lower-bounded by the Cra&nRao Bound. Further investigation is necessary to sthdydeviation

of the covariance from the Cra&nRao Bound, which can be possibly conducted with highéemTaylor
expansion, similar to the bias analysis.

5.2 Future Work

e We have proposed a general framework for adaptive elligszkiing. The adaptivity pace controls the
balance between response efficiency and output smootrarasshould be determined properly. To
this end, we have used a small segment of training data aruspetctively estimated the period with
subspace projection method. After that, a static adaptpatrameter value (the window length for
sliding adaptivity and the forgetting factor for exponahtiscounting) is used throughout the course.
This is based on the assumption that frequency drifts ane afud that the robustness from ellipse
fitting could tolerate the frequency variation. This pregtion may be violated for long fractions,
since the training segment becomes less correlated witlstiie as time progresses. An adaptive
frequency drifting model is desirable to cope with suchatitn.

¢ In robust ellipse fitting, we need to determine the scalematar for robust objectives.g, o in the
Huber function. Without assuming prior knowledge about phaportion of outliers relative to the
normal samples or their distribution, we have used Otsu'thotkto find a threshold value for the
residual error and selected the scale parameter accoydifigle scale selection problem falls into
the unsupervised classification category, where normabandrmal samples are to be automatically
distinguished. This is worth further investigation.

e We have proved asymptotic convergence with stochasticoappation techniques. Recognizing the
similarity between the proposed iteration with the reargdeast squares (RLS) algorithm, we believe
it is feasible to estimate the error statistics in our modehlogous to the performance analysis work
for linear filters.

¢ In the augmented state space, the distribution of the sancple be viewed as noisy observations of
some latent random process. The distribution depends amrsipératory phase and other parameters.
It is possible to consider robust statistical quantitieshsas rank order statistics to implicitly estimate
the “center” of the observed cluster in the augmented sfadees A potential advantage with such
a statistical interpretation is that quantities such agidence intervals and error distribution may be
derived to facilitate the detection of changes in systenmadyios.

e We have developed a tissue-type-dependent regularizagdimod, which accounts for inhomogeneity
of elasticity among different tissue types. Physicallyatamies not only exhibit inhomogeneous, but
also anisotropic deformation properties, such as diraatielongation of muscles. It would be desir-
able to properly incorporate such anisotropic physicabpais well. Furthermore, we have assumed
access to an X-ray CT image, and obtained local tissue elpsiperty subsequently. Alternative
methods to classify tissue types will be necessary for dthage modalities.

e We have conducted preliminary discontinuity preservingjseation for 2D images. We will further
investigate the quantitative aspect of the problem and Ehéhlementation. In particular, we will
study possible solutions, such as introducing viscositgusface tension regularization, to alleviate
the rolling artifacts observed in 3D.

e We would like to further study unsupervised or semi-supaEgischemes to choose the regularization
parameters in penalized image registration problems.

¢ In this thesis, we have focused on the pair-wise image magish problems. When multiple frames
are available over time, it is natural to extend the curremtivinto a joint estimation setting where the
temporal sequence of deformation fields is to be estimatethi$ case, temporal correlation should
be incorporated to encourage structured solution, suchma®th evolution. Moreover, for image
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sequences obtained mainly under respiration-inducedomothis corresponds to an integration of
our work in time series analysis that accounts for semieaicity and the regularized nonrigid image
registration methodology.

To analyze the fundamental performance limits of imagestegfion, it is necessary to study the pre-
asymptote variance for both the ML and M- estimates. The dexity of using high-order Taylor
expansion and the limitations of small error analysis gives to the question as to whether there are
more effective approximation tools for such tasks. This shallenging topic, but one well worth
pursuit.

It is desirable to utilize the performance analysis of imaggistration problems to predict the sta-
tistical properties of the solutions for a given objectivmétion. Knowledge about the fundamental
limitations in image registration may help choose systerampaters properly. For example, it is only
necessary to obtain images with resolution correspondingcteptable uncertainty in registration
to avoid excessive imaging dose. The threshold for detg@hbnormality should be set above the
predicted local variance from the performance analysik witrmal noise distribution.

Given the theoretical development in this study, it is oncere hope that practical benefit could be
harvested. This will require thorough study of clinical ilieptions, including effect on various dose

metrics, and predictive outcome statistics such as tumatraioprobability (TCP) and normal tissue

complication probability (NTCP).



APPENDIX

In speech proceesing, audio signal processing, and musihesis, aquasiharmonicignal refers to a
waveform that is virtually periodic microscopically, bubtmecessarily periodic macroscopically. In many
biological phenomena, in constrast, there widely exishaig that are virtually periodic, yet demonstrate
both miscroscopic and macroscopic variations. With aelitbuse of notation, we use the term “semi-
periodic” to describe such class of signals. A typical exkngd a “semi-periodic” signal is respiraotry
motion. Respiration is an involuntary action, the cycle diieh is regulated through chemoreceptors byt he
level of CGy, Oy, and PH in the arterial blood. Anatomically, the lungs residthe thoracic cavity, encased
by theliquid-filled intrapleural space. Inhalation re@sractive participation of respiration muscles, with
the diaphragm being the most important. As the diaphragnracts, and descends, it forces the abdomen
inferiorly and anteriorly, increasing the superior-iriter(Sl) dimension of the chest cavity. The intercostal
muscles pull the ribs superiorly and anteriorly, incregdooth the lateral (LR) and anterior-posterior (AP)
diameters of the thorax. Exhalation is passive for quieatirieg. Due to the complex respiratory pressuure
volume relationship of the lung and chest wall, deflatingglmolume is larger than the inflating volume at
the same transpulmonary pressue, and breath-in time ajyplonger than breath-out time. This commony
observed phenomenon is callbgsteresis

With the advent in targert conformal radiothrepy, such dsngity Modulated Radiotherapy (IMRT), it
is important to monitor tumor movement with high precisionréal-time. Internal tumor position can be
extracted from images obtained from electronic portal imggletector (EPID) or orthogonally placed x-ray
flat panels, as in Integrated Radiotherapy Imaging Syst&i8jI[54] or CyberKnife Robotic Radiosurgery
System (Accuracy™ Inc, Sunnyvale, CA), with or without implanted markers ardithe tumor regioin.
Moreover, it is desirable to minimize diagnostic imagingedor safty concerns, and external surrogates
such as thermistors, thermocouples, strain gauges, priaahographs [60], and infrared skin markers are
utilized to infer internal tumor position. In either casdésis important to characterize the complexity of
internal motion, track both instantanous and long termatemn, and predict future tumor position to account
for system latency. When external surrogate is appliedgitiical to accurately infer internal tumor postion
from external observations. Chapter A proposes a scalapkaxity index to characterize the irregularity
level of a breathing trajectory [101]. Chapter B describesaparametric predictio approach based on local
regression. Chapter C addresses the hysteresis issue@malxinternal inference via state augmentation.
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APPENDIX A

A Breathing Pattern Irregularity Index with Projection-based Method
1

Characterization of organ motion is important in radiatiberapy, including dose planning and treatment
delivery [12,18, 36, 37,53]. Tumor motion, especially inddliver regions, is highly correlated with breath-
ing patterns. Therefore, an index that characterizes hirgategularity can facilitate treatment planning for
tumors in those regions, particularly for individualizeddatment planning.

Periodicity has been a major assumption in breathing tr@jg@nalysis, as good reproducibility indi-
cates the potential for a simple structured treatment @ldored towards the fundamental breathing pattern.
Harmonic analysis has been employed widely to charactesz@ratory patterns [43,87,94]. Peaks of the
Fourier spectrum are often used to determine the domina@ngpdic behavior of the temporal trajectory.
Such approaches lack a “goodness” meadwe,it is not clear how a periodic signal having the dominant
frequency differs from the true trajectory. Consequently,fundamental periodic pattern is available to
judge the soundness of such a result.

We propose a rigorous general framework for periodicitylgsia based on subspace projections. For
each period within a physiologically reasonable range, asueed breathing signal is projected onto the
subspace of all signals having that period to obtain thet“bggperiodic signal in the Least Sgaured Er-
ror (LSE) sense. Residual errors for each such period aredbmpared to yield the overall best periodic
approximation. The estimated trajectory obtained by tpi®jection” method is therefore the closest peri-
odic signal with respect to observed data. We derived théoakih continuous signal space to account for
the sampling effect explicitly. We also allow temporal sdespto be non-uniformly spaced to offer more
freedom for the data acquisition procedure.

A.1 Anlrregularity Index based on Projection Distance

Given a set of discrete samples of a breathing trajectoryywaset to find the periodic signal that best
matches the observation data. This is equivalent to reagistg a periodic signal of unknown period from
its noisy discrete samples. For this problem to be feasitdeassume that there is some maximal frequency
component in the signal. This assumption is physiologicaasonable. We thus focus on the subspace of
band-limited periodic signals. We formulate the problera multilayer optimization setup where we search
over all possible periods for the “best-fit” signal. For egariod within a reasonable range, the observed
breathing trajectory is projected onto the subspace ofalddimited signals having that period to obtain
the closest matching periodic function. Projections framnlesuch subspace are then compared to yield the
overall best periodic approximation. This method accotortthe discrete temporal sampling explicitly, and
allows for the possibility of nonuniform sampling.

We model the observation dagaas a temporal trajectory sampled{ai}i’“: 1 with additive noise:

(Al) Yi:f(ti)+ni7 i:1>27-"7Na

where f is the unknown ground-truth continuous periodic functiolmose spectrum has finite support be-
tween[—y,y] andn; denotes the additive noise.

1This chapter is based on materials from [101]
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If f(t)is a band-limited function with period, then we follow [29] to rewrite it as linear combination
of Fourier harmonics:

(A.2) £(t) % Gl P K= [T
. = k 9 = L5
k=—K 2

wherecy’s are the coefficients for Fourier harmonics, gnfidenotes the floor function.
Evaluation of the above representatior{a}iN: , can be compactly rewritten in vector form as:

(A.3) f=Gre,

wheref =[f(t1), f(t2),..., f(tn)] denotes the discrete samples of the underlying fundtien= [c_k,C_k+1,.--,Ck
is the concatenation of Fourier coefficients; and the maitis defined as

(A.4) Gr(i,k) = e THi,

Therefore, given the observed sample trajectpry [y1,y2,...,yn]", the optimal period * is the solu-
tion to the following optimization problem:

_ . . . 2
(A.5) T *arng'”ce’Qz'PH”y Grcl)?,

whereC?1 is the set of vectors of lengit2k + 1), and||y||?> = N, |yi|?. The closest periodic signal to the
sampled trajectory in LSE sense is then given by:

K on
(A.6) =y aetv
k=—K

whereK = LT—Z*J andc are obtained as the components of solution to (A.7) belownithe: T*.

For a given candidate peridd, the bandwidth parametér = L%J is a constant, and the inner optimiza-
tion problem becomes an ordinary least-squares mininoiaati

(A7) i = argmin||y — Gre||%.
ccC2K+1

From classical optimization theory [68], the optinagl of (A.7) satisfies the normal equation:
(A.8) (G+Gr)y = G,

whereG7 is the conjugate transpose @ andG7 G is known as the Gram matrix.

Moreover, when the sample size is large enough, specifibally2K + 1, which we assume hereafter,
G has full column rank, and th&k + 1) x (2k+ 1)Gram matrixG; Gt is invertible [41]. The optimal
solution for equation (A.8) can be written explicitly as:

(A.9) i = (G1Gr) 'Gry.

At this point, we have solved the inner optimization problienfA.5) in closed form. The feasible range
of periodsT in the outer minimization can be designed by incorporatihgsical knowledge. For instance,
normal breathing is expected to have a period between 1 teddhsls. Moreover, even though the peak of
the Fourier spectrum is not informative enough by itselfuins out to be a reasonably good initialization
for our method. Notice that if exhaustive search oves to be applied in A.5, we need to evaluate (A.9) and
(A.6) for eachT of interest. Thus the computation cost depends both on halyfime sample the period
parameteil and the range of search. Using a good initial guesd fotan reduce the search range and thus
reduce computation substantially . Also, reasonableilitition helps to prevent the algorithm from falling
into nonphysical local minima. Since it is now a simple 1-dimional optimization problem to fink, we
use an exhaustive line search over a relatively small iatehanks to a good Fourier-based initialization.
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Alternative optimization approaches like multi-resoduttior incremental refinement could be used to speed
up the process. Due to the use of superposition of harmomibedcribe periodic functions, projection to the
subspace corresponding to periodic functions with peribdvduld naturally yield a better data fit than the
projection onto the subspace for peridd In other words, a function of periodl is certainly a function of
period 2T, but not vice versa. However, the additional descriptiverggomay not always be desirable, since
this could cause over-fitting introduced by noise. Inigation by detecting the peak of the Fourier Spectrum
picks out the dominant harmonic component and the algorihin needs to search over a relatively small
neighborhood around that initialization point, with thenfidence that the local minimal obtained would be
physiologically optimal.

Finally, our proposed irregularity index is the Root Mearu&ad Error (RMSE) between the overall
optimal periodic signal and the measured trajectory:

N
(A.10) RMSE= \/%iZHf*(ti)—yiHZ.

A.2 Material and Verification Design

We used the Real-Time Position Management (RPM, Varian déé&iystems, Palo Alto, CA) system to
obtain the trajectory of an external fiducial placed on eaatfept’s chest wall. This fiducial tracking system
records data in time-displacement pairs that are geneaabymed to be highly correlated with superior-
inferior diaphragm motion [125]. This system is most usédutreating patients with tumors in the chest or
lung area without compromising their breathing.

Twelve such clinical breathing signals were used in thiglgtuThe characteristic parameters of this
population of data are listed in Table A.1 .

| IDV.S. Parameter|| 1 | 2 | 3 | 4 | 5 | 6 \ 7 | 8 | 9 | 10 | 11 | 12 \
Data Characterization
STD (cm) || 0.158| 0.210\ 0.266| 0.242| 0.206| 0.259\ 0.242| O.267| 0.283| O.313| 0.335\ 0.202
Breathing Trajectory Fitting with Modified Cosine Model
period (sec) 4.7 4.6 49 5.3 5.3 4.3 4.9 6.4 9.5 5.6 3.0 5.3

RMSE (cm) 0.138| 0.171| 0.216| 0.139| 0.193| 0.224| 0.145| 0.208| 0.153| 0.096 | 0.337| 0.169
dose error (%) || 1.667| 2.793| 3.527| 2.092| 3.217| 3.580| 2.402| 3.293| 2.496 | 1.454| 6.144| 2.161
PTV margin (cm) || 5.940| 5.900| 5.523| 5.723| 5.727 | 5.859| 5.646 | 5.338| 5.724| 5.522| 5.951| 5.835
95% dose coverage 0.909 | 0.887 | 0.850| 0.904| 0.878| 0.851| 0.906| 0.858| 0.890| 0.938| 0.811| 0.888
Breathing Trajectory Fitting with Projection Method

period (sec) 4.7 4.4 4.5 5.4 4.1 4.6 4.7 7.2 9.7 5.6 3.1 5.2

RMSE (cm) 0.135| 0.155| 0.102| 0.132| 0.162| 0.127| 0.115| 0.075| 0.148| 0.090| 0.328| 0.166
dose error (%) || 1.595| 2.440| 1.638| 1.983| 2.352| 1.721| 1.832| 1.210| 2.471| 1.431| 6.137| 2.066
95% dose coverage 0.915| 0.903| 0.934| 0.903| 0.876| 0.910| 0.924| 0.949| 0.905| 0.942| 0.836| 0.895
Result for 20sec Training, 10sec Testing

period (secf 42 | 42 | 45 | 52 | 43 | 48 | 48 | 73 | 90 | 57 | 30 | 50
RMSEyain (cm)* || 0.153| 0.151| 0.089| 0.126] 0.082| 0.075| 0.121] 0.042| 0.116| 0.078| 0.228| 0.049
RMSEes (cm)5 || 0.177] 0.256| 0.150| 0.231| 0.318 0.283] 0.141| 0.147| 0.290| 0.150| 0.580 | 0.3062

Table A.1: Dataset information and Experiment Results

Under Institutional Review Board (IRB) approved protocet have used the RPM system (Varian, Palo
Alto, CA) to obtain breathing trace data recorded at 10HA wliiration 38ecfrom 12 different patients .
The recorded RPM data have relative units. To better istthe major idea in this paper, we normalize the
all the breathing trace data to have uniform zero mean anddeak-to-peak variation. Shifting the mean
does not introduce any bias into any treatment simulatiopesit is a global quantity; while normalizing
the amplitudes makes the data more representative of typizer motion induced by respiratory motion.
The standard deviations of these normalized data are list@dble A.1. To justify the soundness of the
proposed irregularity index, we have virtually simulated-dimensional phantom object of size 5¢cm that
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move according to the observed trajectories, to mimic thebier of a 5cm size tumor with peak-to-peak
motion about 1cm, which is realistic in clinical situatios single ideal 1-dimensional treatment beam, or
in fact, delivery pattern of the same size (5cm) is desigoeddse delivery simulations. It has no penumbra,
and completely covers the simulated target with uniformagoh intensity. This idealized energy deposition
model will be used hereafter to illustrate the potential awipof motion patterns and how they influence
energy deposition.

To verify that the proposed “irregularity index” and the flamental pattern obtained from the the pro-
jection model are clinically significant, we have designeeé sets of experiments.

First, we show that the Root Mean Squared Error (RMSE), wischh mathematical criterion, is well
correlated with clinically critical metrics. In this papeve use dose error, Planning Target Volume (PTV)
margin and 95% dose coverage to characterize performamecgmrticular, dose error is computed in per
cent as the normalized difference between received dosehanidieal dose that corresponds to a perfect
overlap between the target and treatment beam througheutttble treatment procedure; PTV margin is the
expansion needed to ensure that the entire clinical tagjeme receives the prescribed dose; and 95% dose
coverage is computed as the portion of the target that reseie less than 95% of the designated dose with
no margin. To account for the interplay between target nmodgiiod treatment beam adjustment, the phantom
objectis moved conforming to the observed breathing traddlae treatment beam is scheduled accroding to
a designated pattern. We evaluate both the periodic fundi@ingattern extracted with the projection model
in A.6 and the one obtained with the optimal commonly usedifremticosine model [70, 71] to control the
movement of the treatment plan. The modified cosine modehass that the breathing trajectory conforms
to the following formula:

(A.11) z(t) = zp— acoS" (1t /T — @),

wherezy, a,n, T, are assumed to correspond to exhalation position, motigulitutde, asymmetry degree,
period and phase offset respectively, and are parametées eptimizedz(t) represents the breathing trace
index by time.

Dose error, PTV margin and 95% dose coverage are compar@usaB&ISE in both setup to demon-
strate the correlation.

Second, we compare the projection-based model with thefraddiosine model (A.11) to test the feasi-
bility of the obtained fundamental pattern. RMSE as well@sederror, PTV margin and 95% dose coverage
are used for this comparison.

Third, we illustrate the potential clinical use of the prgpd method to predict motion induced by respi-
ration. We partitioned the breathing trace into two partgaming part of duration 28ecand a testing part
of duration 1@ec For each breathing trace, the projection model is learnédtive training trajectory only,
and it is used to “predict” the breathing behavior for theitegsportion. This is essentially a test of temporal
variance.

A.3 Results and Discussions

Fig. A.1 shows one patient dataset to illustrate the rolaioinitialization plays in avoiding suboptimal
local minima. An exhaustive evaluation for RMSE was carigetl over a large range of candidate periods
in Fig. A.1 (a). Fig. A.1(b) illustrate the non-physiologloptimal obtained without proper prior informa-
tion, due to reason we discussed previously: harmonic aizahas an inherent bias toward large period.
Fig. A.1(c) shows that initializing with peak location of &ger Spectral (in this example corresponding to
T = 4.39) helps to correctly capture the physiologically sound miati period and enables us to restrict the
period search to an even smaller candidate set for furthepatation efficiency.

To validate the correlation between the root mean squared @MSE) and the clinically critical met-
rics, we plot the performance characteristic parametassgaerror, PTV margin, 95% dose coverage) vs.
RMSE in Fig. A.2 for both projection model based motion congated treatment and modified cosine
model based motion compensated treatment. Quantitatudtseare listed in Table A.1. In both treatment
plan simulations, dose error and PTV margin demonstrateareasing trend as RMSE becomes larger
while the 95% dose coverage decreases. This validates thelisess of using RMSE as the index for
“performance indicator”.
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Figure A.1: Proper initialization helps to avoid suboptini@onphysical) local minimum: (a) Exhaustive
evaluation of RMSE for difference candidate periods; (linested pattern af = 8.2s, this is
nonphysical even though it corresponds to slightly betténdj in RMSE sense; (c) estimated
pattern aflf = 4.1s, the physiologically sound optimal period.
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Figure A.2: Clinical significant performance metrics v.ad®Mean Squared Error (RMSE). Different met-
rics are indicated with letters [(a#)] dose error (%); [RA@YV margin (cm); [c(#)] 95% dose
coverage. Different motion models for conmoving the treattrbeam are indicated with num-
bers: [X(1)] projection based model (treatment beam ttajgalescribed as linear combinations
of harmonics); [X(2)] modified cosine model.

Moreover, we carry out a comparison between the projedbased model with the commonly used mod-
ified cosine model described in Equation (A.11). Fig. A.3wetithe RMSE of the best fit modified cosine
model versus the proposed index (RMSE derived from prajaatiodel), and it demonstrates that not only
does our index capture how well the signal can be approxiinayea well-recognized physical model, but
the fundamental pattern obtained via the projection modigbrmly outperforms the modified cosine model
in the LSE sense. For further clinically meaningful justtion, we calculate the performance characteristic
parameters corresponding to a modified cosine model in T&aldleand we can observe that our projec-
tion model yields lower RMSE, dose error, PTV margin and bigiose coverage than the modified cosine
model overall (Fig. A.3). Furthermore, the problem of fitfithe data to the model described by Equation
(A.11) is higly non-convex with respect to its parametersolitincurs two issues: it is extremly sensitive



100

to initialization due to the numerous local minima; and it@nputationally expensive as a nontrivial high
dimensional search problem. In contrast, the proposedgtion approach offers a closed form solution
for the inner optimization problem in (A.5) and is thus siifiptl to a 1-D line search, it has an obvious
advantage in computation efficiency over the modified cosindel.
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Figure A.3: RMSE, Dose errgi%), PTV margin (cm), 95% dose coverage of modified cosine model v
projection model.

To further justify the above claims, Fig. A.4 shows some effitted trajectories with “optimal” cosine
model parameters with their counterparts from the propgebased approach. The fundamental patterns
obtained by the projection method do indeed offer a bettacimthan the cosine model. This is a result of
the intrinsic “nonparametric” nature of the projection bdspproach. Described as a linear combination of
harmonics, the fundamental pattern has essentiaky+ 1) degrees of freedom whekeis determined by
the imposed band limit of the physical signal. The modifiesiice model, on the other hand, has explicitly
assumed no more than 5 degrees of freedom, which has redtiistdescriptiveness. For the same reason,
our method imposes no symmetry on the fundamental patteparticular, the trajectory of inhalation does
not have to be the inverse of exhalation, unlike the modifisiree model.

A “good” fit of the breathing trace with a periodic pattern istained (IowRMSE by the proposed irreg-
ularity index) indicates that the breathing trace unden@ration is highly regular, and vice versa. Similar
argument holds for the relationship between “bad” fit (high $E) and high irregularity. Instead of examin-
ing the combination of a whole bunch of quantities, suchasdsrd deviation of amplitude, mean positions,
periods of breathing cycles, etc, this single number (theSEMserves as the irregularity index, since it is
designed specifically for this purpose. Therefore, obsgra low RMSE increases the confidence and fea-
sibility for potential dynamic treatment for the mobiledat. In particular, Synchronized Moving Aperture
Radiation Therapy (SMART) [84] and similar motion compeimabased treatment schemes are potentially
applicable. Moreover, the fundamental pattern, which isioled as a free side-product during the process
of estimating period and computing the irregularity indexa good indicator of what the radiation beam
pattern should be, serving the same purpose as average ttajeatory (ATT) introduced in [84]. In other
words, it can be regarded as an alternative derivation of Without having to examine individual cycles
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model vs. true trajectory; right column: modified cosine mlogs. true trajectory.

too closely. A potential merit of the proposed method foraeting ATT is that it is much less sensitive
to additive noise due to its global nature - every sample erottserved breathing trace contributes to the
estimation of the fundamental pattern.

To show the potential application of the proposed projechiased scheme to predict target motion, we
derive the fundamental pattern with the firss2@of breathing trace (the training portion) and apply it to the
remainder of the data - the nextsérof breathing trajectory is called “testing portion” sind¢és not seen
by the projection model. We illustrate some examples in Bi§. The irregularity indexes derived from
the learning portion, the corresponding optimal period Hrelevaluation of its fit to the the ground-truth
trajectory for the testing portion using RMSE are providedable A.1.

The quality of the prediction depends on how repetitive tluie tbreathing trajectory is, which again
can be measured by the proposed regularity index. When weiegattosely the RMSE computed from
training portion and test portion, we will see that the latteuniformly larger, which is expected (since
optimization is applied only to training data). Moreovehen we examine across cases, there is a positive
correlation between RMSE computed during training and RM8BEputed from testing. This indicates
RMSE during recent historical trajectory is a good prediéts RMSE, and thus irregularity level for near
future. Generally, being a global regularity measure, th@ppsed index may not capture time varying
properties of the breathing signal. This limitatioin candwercoome by applying the proposed method to
smaller sliding time intervals instead of the whole tracespite this limitation, the projection model based
prediction appears to provide reasonable predictionsinviéipproximately a 2 second response window
given a sufficiently regular breathing trace. Even though tiumber is significantly larger than the40
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Figure A.5: Prediction of breathing trajectory with pradjien model.

second discussed in [125], we aret claiming that the proposed algorithm is preferable to agafiitering,
since regularity in breathing trace is a pretty stringestasption. Modeling of free form breathing is a hard
and unsolved problem in general. It is often desirable teetemgimple and descriptive model even if some
conditions need to be checked in the first place. Moreoverptbposed irregularity index is a convenient
tool for such a sanity check. By examining this single inde&,can determine whether the breathing trace is
regular enough for the periodicity assumption to hold, leetie corresponding prediction or synchronized
motion compensation with ATT may be applied.

A.4  Summary

We have derived a general framework to find the closest piergignal that best matches the temporally
sampled observation of breathing trajectory. Experimaetults have shown good consistency with physi-
cal knowledge and clinically critical parameters as doseqretage error, PTV margin and 95% dose volume.
Comparison between the popular modified cosine breathirdghamd the projection-based approach shows
that being consistent with the residual error from fitting tmodified cosine model, our approach offers
additional computation efficiency and robustness in théxapation process. Furthermore, we get the fun-
damental breathing pattern which helps to justify the soesd of the results and can serve as a valuable
reference in further treatment planning. Potential agpions of the fundamental pattern to dynamic motion
compensation and prediction are illustrated with prelanynexperiments. It is also likely that knowledge of
the periodic signal can aid in reconstruction of 4-dimenalcomputed tomographic models.

In this study, we have focused on finding the optimal periaitinal in the LSE sense. As future work,
we would like to investigate alternative metrics that aréeptially more tolerant to transient pathological
breathing patterns. Also, for a particular treatment plagischeme, some choice of matching metrics could
be more suitable than others, and the design of plan-depeidegularity indexes would be interesting.
Finally, we have used in this study the RMSE resulting fromhojection method as an irregularity index.
Potential variants, for instance, a normalized versiory bemore desirable in some applications.
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APPENDIX B

Real-time Prediction of Respiratory Motion based on Nonparametric
Local Regression Methods

Current developments in radiotherapy such as Cyberknifelatensity Modulated Radiotherapy (IMRT)
offer the potential of precise radiation dose delivery fapvimg objects. Accurate target volume tracking
is necessary for conformal treatment plans to fully utilizeir capacity. Image-guided radiotherapy needs
to consider system latencies resulting from image acguisicommunication delay, data processing, and
mechanical processing. For treatment over multiple foastj or long procedures, the diagnostic radiation
dose can be significant, so it is desirable to reduce the iraegeisition rate. To address this issue, hybrid
tumour tracking approaches that combine episodic radpfgcamaging and continuous monitoring of ex-
ternal surrogates have been investigated [80, 81, 86, D84, There are two active areas of research related
to hybrid tracking: (1) study of feasibility and effectiveses of external surrogates (including the place-
ment mechanism) such as thermistors, thermocouplesy gfaaiges, pneumotachographs and infrared skin
markers [1,47,57,59,73,117,124]; (2) prediction aldoris [109, 125,133]. In particular, even if perfect
information about the current state is assumed, the lagdmivobserving tumour location and treatment
delivery still necessitates having predictors that camKlahead” enough, yet behave reasonably well even
for relatively low input sampling frequencies.

This study belongs to the second category where we are atéelén predicting target motion located
in the lung area or its vicinity. Such motion is mainly caudgdcoreathing, and exhibits semi-periodicity as
observed in normal breathing signals. This is a very acégearch area [37,53,109,125]. The semi-periodic
structure of the breathing signals make explicit modelihgllenging, since parametric models often fail to
capture local variations. On the other hand, overly flexiledels that depend only on temporally local
information fail to use correlated historical informatioAmong the most investigated methods are linear
predictors with various covariate lengths, neural netwpdand Kalman filters.

We propose a prediction method based on local weightedssigire Adopting a classic approach in
modeling dynamical systems, we first generate an augmetdtslsith the most current observation and
one or more preceding samples. This augmented state isnéelsig capture the local dynamics about the
time point of interest, and it is used as the covariate foptieelictor system. For a pre-specified “look-ahead”
length, the target response pattern of the predictor isimddiafrom the training data. Those state-response
pairs form a scatter-plot in a high-dimensional space wiverapply locally weighted regression. Intuitively,
the predictor infers its response map from the behaviosaiétighbors in this state space, since itis probable
that they are. The regression weights are designed to réflectistance” between the state of interest and
the training samples.

For the purpose of real-time tracking and prediction, weptiglaly adjust the inference weights to in-
corporate the decaying temporal correlation among resppaterns with longer time lags

We discuss the proposed methods in detail in Section B.1.nTéthod is applied to clinical RPM data
(RPM Varian Medical System, Palo Alto, CA) that is descrilie8ection B.2. We report the test results and
the comparison to alternative methods in Section B.3. Binak discuss future directions in Section B.4.

1This chapter is based on materials from [98]
2|n fact, this corresponds to augmenting the state with the ititiex as an extra dimension.
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B.1 Methods

In this section, we propose a prediction method based ofiyogaighted regression. For simplicity, we
describe the model in terms of scalar locatiors, 1-D observation. The extension to vector observation
is straightforward. Section B.1.2 first introduces a privaitversion that ignores the change of temporal
correlation with time lag, and Section B.1.3 and SectionBektend it to include time indexing.

B.1.1 Model Setup and General Notations

Let the continuous scalar functioh: 0 — O denote a motion index signal. At time instantwe
are given a set of discrete samples= f(t(i)),i = 1,2,...,k} of the breathing trajectory prior to, with
t(k) < t. For simplicity, we assume that the observed signal is sathphiformly with frequencyd Hz,
i.e, t(i+1)—t(i) = 1/W. We assume that the look ahead length is an integer multipleeosampling
interval 1/ seconds, and for later convenience, we represent it in 8wete unitj.e., a look-ahead length
L indicates aL /Y seconds prediction. We ugeto denote the state dimension used to capture system
dynamics. To draw an analogy to ordinary differential eqpra{ODE) based systenp = 2 corresponds
to first order difference system with location and approxenglocity; andp = 3 corresponds to a second
order difference system with the addition of acceleration.

B.1.2 Basic Local Weighted Regression

At current time instant, the available observations asg ...,s«, whereK < 1 x . Then for any
i <K —L we construct lengttp state vectorri = [S_(p_1)a,---,S], and response variabg = s ;.. The
parametel\ is an integer that indicates the “lag length” used to geeettat augmented state. It should be
chosen to properly reflect system dynamics: small lags ame mensitive to dynamical change as well as
noise; big lags are more robust to the presence of noise yeag® out the system dynamics at the same
scale. The set of hyper-paifg;, y;) form a scatter plot in th@+ 1 dimensional space. Assuming that the
state thus constructed conveys all the information abastesy dynamics, then the scatter-plot summarizes
the noisy realizations of the prediction map: 0P — [O:

(B.1) Ui = g(xi),

where the predictog is a smooth function. This is a reasonable model as we do etpeprediction to vary
smoothly with the historical trajectory. Our goal is to pieidhe target location at timer 4+ L/W) seconds,
which is equivalent to estimatingg”

Respiratory motion is not stationary, in fact, both the sgstdynamics and its local statistics vary in a
semi-periodic fashion. Unfortunately, most existing noeth in estimating the prediction mayfail to take
this “phase-dependent” phenomena into account, with thepon of [103] and [133] where a discrete set
of stage-wise models are constructed and updated adgptMat idea is to train (or infer) a predictor at a
given state with (only) those historical data samples tieaialve similarly, or vaguely speaking, belong to a
similar respiratory stage. Yet the existing stage-wise ef®dequire predetermining the number of discrete
stages and often involve segmentation-based trainingirdomvent these difficulties, we hereafter provide
a means to locally estimatpin the state-space neighborhoodagf, based on local regression (LOESS)
from nonparametric methods in the statistical literatyiey.

Let r be a pre-determined constarthat specifies the size of the neighborhood whose membaesst aff
the estimate in the scatteréd+ 1)-dimensional space. Lék be the distance fronkk to therth nearest
neighbor in terms of Euclidean distance in ghelimensional subspacee., hk is therth smallest number
among the distance between, i =1,2,... K —L to k. Letk(-) be a symmetric kernel function that
satisfies:

1. K(x) > 0 for x| < 1 andk(x) = O for |x| > 1;
2. K(—=X) =K(X);

3. K(X) is a non-increasing function for> 0.

SEquivalently, it could also be specified as a ratio with respe the total number of data points.
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We select local inference weight according to:
(B.2) wi = K (| — k] )-

Figure B.1 illustrates the idea of weighting based on distan state space. For simplicity, one delay
tap is usedp = 2), so the state;; = [5_a,S]. The goal is to estimate the resporygefor current state vector
xk, from available covariate-response pdiss,yi) for i <K —L. Notice thatK — L < i <K are not used
in the regression, since their response valyeare not yet available at time instakit Distances between
current statecx andx; are computed and the kernel function is used to determineetiression weights
w; as in (B.2). The assigned weights emphasize those traimimgples that share similar dynamics as the
current state of interest as shown in the lower part of Fidhude
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Figure B.1: State-space distance and local regressionhtvagsignment. Upper subfigure: lllustration of
prediction quantities with 1st order dynamig = [S_a,S], current data poinsc, prediction
locationyk = sk+L, available covariant-response pé&ii, yi)i<k—L; lower subfigure: distance
map (blue dash-dot line)) in the state spdce- ||x; — x« || and inferred regression weighis
(green solid line).

We subsequently estimatglocally using a polynomial of degreg, i.e, we use a predictor of the
formg(x) = Zqul BgZq(x), whereQ = (d+1)P andzg(x) = ﬂ?zlx?j and(dy,...,dp) € {0,1,...,d}P that
corresponds to the baskrepresentation o).

We estimate the coefficients of the local polynomial by mizing the weighted local squared error:

~ . Kt 2 2
B = argﬂmmi;W.(yl—q;Bqu(xl))
(B.3) = (Z'W2'ZTwy,

where Z is the K — L by Q matrix with elementszq = z(xi). The weighting matrixW is a diagonal
matrix withW(i,i) = w;. Since the local weightv has a limited bandwidthk as designed in (B.2), there
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are onlyr nonzero diagonal elements in the weighting matkix Correspondingly, the outer summation
ZiKglL can be equivalently written as supported only on a locallteighood of radiu$, i.e., 3.z —a | <h-
Therefore, the data vectors involved have lengtkt K — L rather tharK — L. It is desirable to choose a
small neighborhood sizeto decrease computation cost, yet not overly small to seertfie regularity of
(B.3),i.e., the invertibility of ZTW Z A

For subsequent prediction from a given observatignwe use the estimated polynomial coefficight

Q .
(B.4) g =Y Bozalax).
d=1

The algorithmic flow chart is as follows:

Algorithm 2 Predictyk from (i, yi)i<k—L, k With local regression.
Selectr (size of regression neighborhood), obthinfrom order statistics ofjx;i — xk||.
Select kernek and compute regression weighisaccording to (B.2).
Compute prediction model coefficiensaccording to (B.3). For lag-one state augmentation with sec
ond order polynomial prediction modgd,= 2, d = 2, andQ = 9, so computing3 requires the inversion
of a 9x 9 matrixZ"W Z and then multiplying it by a & 1 vector.
predict the responsg using (B.4).

B.1.3 \Variations that Potentially Improve Prediction Performance

We now describe two design variations that have the potentienprove prediction performance: using
an iterative weighting scheme to increase robustness tieisuin regression (Section B.1.3), and dynami-
cally updating the training atlas to account for temporaiateons and/or trends (Section B.1.3 and Section
B.1.3).

Robust Local Weighted Regression with Iterative Weight Asgnment

Itis possible that the training set based on state spa@disincludes abnormal covariate-response pairs
due to noisy observation, or abrupt (and non-repetitivenges such as patient coughing, and thus they may
not be “representative” of the predictor pattern for theegistate. To help the local regression method to be
robust to such outliers in thee;, y;) pairs, we can diminish the weight of a sample covariatearse pair
whenever it is inconsistent with the smooth regression fitsmeighbors. To quantify such inconsistency,
we can compare each response vajueith its predicted valug; = g(x;). Intuitively, the distance between
the observed respongg and its estimatey; indicates how different the particular covariate-resgopair
behaves than its neighbors. Cleveland [19] has suggest@uatrweighting scheme based on a bi-square
functionB defined as follows: -

B(X) = { (L—x2)2, for|x| <1

0, for x| > 1.

Let g = y; — 5; be the residual of the observed response from the curresd fittlue. Let be the median
of the|g| fori=1,2,...,K — L. Define the robustness weights by

(B.5) 0 = B(g/6s).

The original weightw; (xj) that determines the “contribution” of théh sample covariate-response pair in
estimating thejth responsey;”is then modified to bevi(xj) := &w;(x;), reducing the effect of outliers

in fitting the other data points. We apply this re-weightinggedure several times, and use the robust
adjustedwi(xk) in place ofw; in (B.3) for estimating the local polynomial coefficie@it This is practical
since thed; values involved in adjusting the local weight depend onlyttanith sample fitting quality, and
are independent of the predictor. Pluggifign (B.4) results in a predicted response valye Since the
estimation of local polynomial coefficients discounts tiffle@ of outlier samples, the result predictor is
expected to be robust to outlier behavior in the “trainintj as well. Note that robust local regression could
be combined with other methods if needed.
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Modified Weight Assignment with Exponentially Discounted Temporal Correlation

Fading memory is present in many natural processes. InHingatrajectories, temporally adjacent
sample points tend to be more similar than the sample paintiser away from one another. To incorporate
this property in prediction, we adjust the weights by appdyan exponential discount as a function of the
temporal distance. Specifically, we modify the weights diefs:

(B.6) wi () := exp(—ali — j|) wi(a)).

The positive constartt determines the decaying rate of influence of one sample a@none as their
temporal distance increases. As a special aasep corresponds to no temporal discounting for the sample
contributions, but dynamically adds the new samples inédrthining atlas as they become available.

Temporally Windowed Training Samples

Alternatively, we can modify the weights using a temporakving window as follows:

ooy wilmg) il <T
(B.7) W'(xl)'_{o : otherwise

wherel is the window size. Here only samples that are close enouginécontribute to the local regression
with weights determined by (B.2). The length of the windoved®to be chosen long enough to guarantee
enough samples for the local regression.

B.1.4 Baseline Methods for Comparison

It is desirable to decrease radiation dose due to imagingnage-guided radiotherapy (IGRT). This
means we would prefer to predict with low-frequency obstovasamples (smalb). On the other hand, it
takes time to acquire each observed sample, process it anel tme@ hardware (linac, MLC or cyberknife)
accordingly. Thus a system capable of large lookaheadherigtpreferable. These two requirements are
challenges in prediction, and trade-offs between them t®bd considered. More specifically, with looka-
head length determined by the limitation of system respomeevant to determine the smallest measurement
rate that still guarantees certain prediction accuracywillestudy the performance of the proposed method
when lookahead lengths and sampling rates are varied, angare that with some baseline approaches
described as follows.

Following [109], we use some commonly used predictors faeline comparison. We briefly describe
their setups and optimization for free parameters in thisice.

e Most Recent Sample
This method simply uses the last sample value:

YK = X-
There are no parameters to be estimated.

e Linear Predictof

The response is predicted as a linear combination of theqarely known positions. This corresponds
to a simple model:

gk = B xK + Po.
Given a training set, and for a fixed history length the optiswefficients3, 3y in terms of mean
squared error can be obtained by solving a linear system.

4The “linear extrapolation” method described in [109] is acipkcase of linear prediction.
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o Atrtificial Neural Networks (ANN)

We investigate a multilayer perception (MLP) with two fefeaward layers as the ANN predictor [63].
The first layer takes in a fixed history of samples and a cohstdune 1, linearly transforms the inputs
and then uses a sigmoid function to generate the hiddens:alle equation for the first layer is

1

hj(x) = .
1+exp( -] +70)

The second layer is chosen to be a simple linear system, araltput is given by
G =" h(w).

Parametersy andn are estimated from the training set. We use Netlab toolb8&% {8 implement
ANN in Matlab.

We have also implemented a Kalman Filter for comparisonpgu&xpectation-maximization (EM)
method for parameter selection [78], and applied thoseegalar prediction. Our results agree with [109]
that the Kalman Filter provides inferior performance congplato ANN. For conciseness, we skip reporting
them in this paper. A related research worth noting is theptada linear filter model introduced in [125],
which can be interpreted as Kalman Filter not in the stateirblinear regression coefficient vector. Unsur-
prisingly, it shares the limitation of Kalman Filter due teetnonstationarity of respiratory signal.

B.2 Materials

We used the Real-Time Position Management (RPM, Varian 8&dystems, Palo Alto, CA) system
to obtain the trajectory of an external fiducial placed onpghgent’s chest wall. The recorded displacement-
time relationship is believed to be highly correlated witipsrior-inferior diaphragm motion [125], which is
the major source of respiratory motion for tumours in thesthog lung area (the displacements in left-right
and anterior-posterior direction are normally on the ordieone magnitude lower). To better reflect the
behavior of physical superior-inferior motion, the uréss RPM data were centered and scaled so that their
dynamic range matches that with typical SI motion for chest lang tumours. Table B.1 summarizes the
RPM data used in our experiméntFigure B.2 illustrates two typical breathing trajectstie

[SubjectiD 1 [ 2 [ 3 [ 4 [ 5 [ 6] 7 | 8 [ 9 [ 10 |
STD 496 [ 499301 1.99[316[1.73] 627 | 565 2.74 | 5.29
P-P 25.36| 23.65[ 12.67| 11.24] 18.72] 9.70 | 28.79[ 21.89| 12.19| 21.55

Table B.1:RPM Dataset information.

B.3 Results and Discussions

B.3.1 Scatter Plot in Augmented Space

We first consider a simplp = 2 dimensional state vectas, = [s,5_a]. The response variable is of the
form yi = s4. Figure B.3 shows a 3-dimensional scatter plofaf, yi) with the base-line X-Y coordinate
reflecting the covariate; and the Z coordinate indicating the corresponding respeasable valuey;. The
covariate-response structure is rather smooth, motigatimr use of local regression to predict a response
from the samples in the neighborhood of the projection ohéoX-Y plane. Roughly speaking, the pattern
suggests the existence of a conceived functigribht maps the covariate to the response.

We started with a fine sampling rate @f= 30Hz and used onlyag — one delay withA = 12 that
corresponds to0.@ second to augment the state space. We investigate a laakédregth oflL = 30, which

5The data are adjusted to have globally zero mean; averagslperie estimated with subspace projection method [101].
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Figure B.2: Typical breathing trajectories: (a) rapid yegular breath; (b) slow yet irregular breath.
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Figure B.3: Covariate-response relationship with lag-angmented state: (a) 3-dimensional Delaunay tes-
sellation plot; (b) 2-dimensional scatter plot with colndicating the response value.

is equivalent to a 1 second prediction. We used these pagesnast defaults in later experimenésd, in
Section B.3.4). This lookahead length is reported to beadiffiby [125] and [109] with a wide spectrum

of common prediction techniques. In particular, in the camagive study in [109], the best performance
among linear predictors, Kalman filter and artificial neuratworks yields a RMSE of about 5mm, with
similar data statistics to our rescaled RPM dathag-one augmentation corresponds to regression based on
the most current sampke and one preceding observatigna, which is the most compact model possible.
The temporal lag\ for augmentation should be chosen to reflect the system dgsagroperly and robust
enough in the presence of observation noise, and does netha&e unity.

B.3.2 Local Weighted Regression without Temporal Discouiinig

To illustrate the performance of the simple local weightegression method described in Section B.1.2,
we conduct two simple experiments with the following confagions: we used the “tricube” function [19]
as the weighting kernad and chose the effective bandwidth so that the local regressisupported on half
of the samples. Specifically, we used

_ [ @=x®)2, for|x <1
k() = { 0 for |x| > 1.

)

6The research conducted in [109] uses 3-dimensional positibith is presumably more complex than this study. Howevecesin
motion in Sl direction dominates the overall respiratory atian in general, we expect the prediction error to be the nmagatributor
to the overall tracking/prediction performance. Rescatimg RPM data to have similar statistics as typical SI motionfeegit fair
and illuminating to compare quantitatively the performancewfpredictor to that of the general 3D predictors.
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The neighborhood sizewas chosen to be 200, which is equivalent to about 7 secondbk wbsamples.
Accordingly, hg is the 200th smallest number amoffg; — x|

B.3.3 Robust Local Regression with Iterative Weighting

We investigated the robust iterative weighting of Sectioh.B, but found that iterative weighting did not
significantly change the prediction errors in this expentd his suggests the absence of dramatic outliers
in our experimental data.

B.3.4 The Effect of Dynamically Updating the Training Set

If the training set is determined before the treatment pgscand is kept the same thereafter, the corre-
sponding local regression structures are also fixed. ThiwiSstatic” inference scenario. It is also possible
to “add” (or “substitute” the oldest sample with) new sansgleo the training set during the treatment pro-
cess, as new responses become available. We refer to thedpfiroach as “dynamically updating of the
training set”.

The computation for simple local regression is the samerdéggs of whether we update the training
atlas or not, as it uses only the training samples that f&dl ihe neighborhood of the target. On the other
hand, when robust local regression with iterative weigitsapplied, choosing between static training and
dynamic training makes a difference. In the static scengrmrobust weights can be computed offline upon
the availability of all the training samples, and are ket #ame thereafter. However, if we use dynamic
updates, not only does the size of the “atlas” grow with tilme,there would also be changes in the robust
weights, since the newly available covariate-respons@kenean potentially change the regression weights
for those existing samples whose supports overlap withettoddghe new ones. This effect can propagate
through the whole atlas.

At the cost of possible additional computation, dynamicafidating the training atlas admits new infor-
mation as the time proceeds. This is particularly valualiiemthe underlying system dynamics demonstrate
strong temporal variation, such as frequency change or hmosgion drifting, which are both commonly
observed. New samples can either be added to the trainirag sther simple addition, which corresponds
to a collective history case, or substituted for the oldeshing sample, as in the windowed training history
case. In both cases, experiment results indicate that dgafiynupdating the training set yields overall su-
perior prediction performance in terms of root mean squareat (RMSE) and mean absolute error (MAE),
as we report in Section B.3.4 and Section B.3.4.

Dynamically Expanding the Training set

Using a discount factax = 0 in (B.6) to adjust weight for the training samples up to thestcurrently
available one is equivalent to building a collective atlasttincludes all previous covariate-response pairs.
Of course, new training pairs are entered into the the aldisree proceeds. Table B.2 reports the prediction
performance for one second lookahead with 5Hz samplinggukis dynamic training structure as opposed
to a static 20 second training at the beginning of the fractio

Table B.2: Comparison of Prediction Performance amongcSTaining, Dynamic Expanding Training,
and Updating Training with Moving Window
SubjectiD[| 1 [ 2 [ 3[4 [ 5 | 6] 7] 8] 9 |10][ Average
Root Mean Squared Error (RMSE)

static 9.7/36|22]19|108|56(49|4.2|28|44 5.0
expand || 3.4|28(16|14| 25|13(4.8|26|21]|3.7 2.6
update || 2.7]25(14|14| 26 (1.3|4.8|25]|21|35 2.5
Mean Absolute Error (MAE)
static 75(26|17|14| 39 |26|3.7|25|21|3.1 3.1
expand ||26]21]1211| 1.7 |1.0[{35|1.7|16]|26 1.9
update || 2.0/20(1.1(10| 1.7 {1.0/34|1.7|14|25 1.8
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Figure B.4 illustrates improved prediction performancedynamically expanding the training set for
breathing traces that either exhibit mean drifting or pattehanges. There is minimal benefit when the
breathing pattern is already fairly regular or irregulatiwno “trend”, and new observations simply add to
the already sufficiently dense training atlas. Change tetemay be used to locate some local variations,
but this imposes extra complexity

Dynamically Updating Training Set with Windowed History

Alternatively, a moving window can be used to update the $arsgt. This corresponds to substituting
the oldest samples with the newly available covariatearse pairs, as discussed in Section B.3.4. We
illustrate the effect of this dynamic updating method in [€aB.2 and Fig. B.5. A dynamic window of
length 20 second is used in all of our experiments. We usegéhiermance of dynamic expansion as a
baseline for the windowed study.

For the 20sec training window, the overall prediction parfance improves upon the previously dis-
cussed dynamic expansion. The level of improvement, thoisgimuch smaller than the one we obtained
by going from static training to dynamic expansion. Someeraffs are expected: for long fractions, it
is more likely that the later samples are decoupled from #memes acquired at the very beginning of the
procedure, thus moving window method should be favoraliethe other hand, dynamic expansion does
not require choosing a window length, and it is almost freéhefrisk of running into insufficient samples
for the local inference, thus has the advantage of beinglsigpd stable. There is little difference in the
prediction performance between the two methods from Fi§.éxcept that in the mean drifting case, the
windowed update may be slightly better, which is also reflécjuantitatively in Table B.2.

B.3.5 The Effect of Measurement Rate and Lookahead Length

We compared the local regression (LOESS) method using ekpgutraining atlas with the baseline
approaches described in Section B.1.4. In particular, wepawed with most recent sample (MRS), linear
prediction (Linear), Kalman Filter (KF) and Artificial NealrNetworks (ANN) when lookahead length and
sampling rates are varied. Figure B.6 and Fig. B.7 reportréiselts in terms of the collective root mean
squared error (RMSE) and mean average error (MAE) acrogmt#nts. In general, the prediction errors
increase as sampling frequengydecreases and/or lookahead lengihcreases, as expected. Interestingly,
the proposed local regression method is insensitive todh#plng rate, and performs almost consistently
across different lookahead lengths. Unlike the most resamiple, linear model or Kalman filter, which not
only make assumptions about the underlying model strudtinearity), but also try to explicitly solve for
the model parameters, LOESS makes none of the above aseumptieffort. The nonparametric nature
of the regression avoids assuming a fixed model structur@lda@e solving for it. The only requirement
is consistent behavior (aexistenceof an underlying functional form). A polynomial of sufficienrder
approximates this underlying function via fitting sampleshe neighborhood of the point of interest. This
also explains, to some extent, why ANN outperforms the adipproaches [79], as itis a combination of local
linear perceptrons, with extra nonlinearity provided bg gigmoid activation function. When lookahead
length is short and sampling rate is high, linearity holdgragimately, and all methods provide reasonably
good prediction. However, when we need to look further ah&adar models are not sufficient to capture
the dynamics, even though the response pattern may stititgistent, and that is where LOESS (and ANN)
demonstrates its advantage. Figure B.6 reports the rakdtip between collective prediction error (across
all testing subjects) and lookahead length for samplingat 5Hz and Fig. B.7 illustrates how collective
prediction error change with different sampling rates. [S3approach performs competitively with ANN
for lookahead length.6 seconds, in particular for low sampling frequency, anceihdnstrates an obvious
advantage for lookahead length 1 second.

"Segmentation based tracking/prediction model [133] folleimsilar logic, yet requires further research to improve rahass and
automation.
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Figure B.4: Effect of dynamically updating the trainingeat! actual signal time history (blue solid line), pre-
diction from static training (black dash-dot line) and gegidn from dynamic expanding atlas
(red dashed line). (a) breathing with mean drifting (PatiEx (b) In the presence of chang-
ing breathing pattern (Patient 6); (c) with complicatedhsiant interrupting regular breathing
(Patient 8); (d) quasi-regular breathing pattern (Patlét
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Figure B.5: Comparison of prediction performance usingatygit update with moving windowed and ex-
panding training atlas: actual signal time history (blubidstine), dynamic expanding training
(black dash-dot line), moving window adaptive trainingiciashed line).

B.4 Conclusion and Future Work

In this paper, we have proposed a local regression basedchéthpredict respiratory motion. We
compared the proposed method and conventional approaabhsas most recent sample, linear model,
Kalman filtering, and artificial neural networks. The propdsnethod had lower prediction error than the
others for tasks requiring long lookahead prediction. Weehalso discussed extensions and variations of
the basic method to provide robustness to outliers that neagalised by low SNR or miss-tracking. We
studied the prediction performance with different errortrioes (RMSE and MAE) for various combinations
of lookahead length and sampling frequency. The proposeaticdeshowed the most advantage for long
lookahead lengths and low sampling rates.

We have discussed the challenge of choosing a good discaatar ffor weight adjustment in local
regression in Section B.1.3 and discussed the two simplescesrresponding to either no forgetting or
inference from windowed historical sample. The proper chaif the temporal discount factor depends on
the variation of the underlying breathing pattern, and engtic schemes should be investigated.

As observed in our experiment, various phases of respyratation are predicted with different ac-
curacies. Respiratory motion demonstrates obvious ratsarity: the system variation at the transition
phase could be very different than that during extreme titiadjes (end-inhale or end-exhale). From an-
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Figure B.7: Collective performance comparison for diffareampling rategy. Left column [a#] RMSE,
right column [b#] MAE. Top row [X1] illustrates the resultsoin a lookahead length of.®
second and bottom row [X2] shows the results when lookaheragth is 1 second.

other perspective, if we examine the signal-to-noise ré@NR) over a windowed portion of the signal,
SNR would change as the window covers different stages obthathing: SNR would be relatively high
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during transition stage, as the signal variation is bigtiedato noise, while SNR is low at the plateau stages,
which correspond to end of inhale or exhale. These obsenstnotivate a potential research topic: if we
aim at homogeneous prediction performance throughoutréegithing trajectory, it may be necessary to use
adaptive sampling. More precisely, denser sampling may Whkere prediction uncertainty is big whereas
sparser sampling should suffice where prediction is morabig. This is a topic for future study.

The dynamics of respiratory motions change over variougestaf breathing, and makes general pre-
diction difficult. Models using state dependent transifiwababilities have been investigated for stochastic
tracking [103], and explicit segmentation was also studlie&dB]. Our proposed method uses local kernel
regression to capture this variation implicitly by essalhgilimiting inference to a neighborhood of training
samples that are expected to behave similarly. Intuitjwbig is almost equivalent to training a local model
at each state of interest. Since the state distance (andh@uisference weight) is assigned with respect to
Euclidean distance in state space, it is important thateting with this distance reflect dynamic similarity.
This is expected in most cases, except when home (mearnpgigthigh both in frequency and displacement
value. In the exceptional case of dramatic mean drift, sampélonging to different breathing stages may
be clustered together. One straight-forward remedy woelddbincorporate mean drifting compensation
in the inference weight. A robust mean tracking algorithmrispiratory motion is provided in [99] that
outputs mean position estimates for both the training sasn@hd the state of interest. We expect improved
accuracy by accounting for mean position drifting. We plaeanduct further experiments and analyze this
effect in more detail in the future.
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APPENDIX C

Inference of Internal Respiratory Tumor Motion from External
Surrogates: A State Space Augmentation Approach in Modeling
Hysteresis?

Respiratory motion affects tumours in the thorax and abdomeparticular, breathing is the major reason
for intrafractional tumour motion for lung cancer patieritss important to monitor such motion during ra-
diotherapy treatment to ensure the accurate delivery édtiath dose in motion-compensated Intensity Mod-
ulated Radiotherapy (IMRT). Fluoroscopic imaging or pbirteaging can monitor tumour motion during the
treatment process. To reduce x-ray exposure, hybrid turmacking approaches that combine episodic ra-
diographic imaging and continuous external surrogates haen investigated widely [80, 81, 86, 104, 105].
Using external surrogates to infer internal tumour motisauames that there is consistent relationship be-
tween internal and external motion.

Hysteresis is typical in lung tumour movements, with the dumtaking a different path during inhale
and exhale. Inhalation normally takes longer than extmiatand the deflating lung volume exceeds the
inflating volume at the same trans-pulmonary pressure [RB&kpiratory hysteresis makes inferring internal
tumour locations from external surrogate signals challegmgMost of the external surrogate systems, such
as thermistors, thermocouples, strain gauges, pneunageaphs [60], and infrared skin markers as applied
in the Varian Real-time Position ManagemB&ht(RPM) system (Varian Medical Systems, Palo Alto, CA),
provide one-dimensional signals, whose instantaneouditandg (or displacement) alone does not provide
sufficient information about the specific breathing stages.

Previous studies about correspondence between intemalutumotion and external surrogates can be
classified into two categories. One class of studies inyat&s the correlation between the two signals to
justify the feasibility of using certain types of surrogater compare different surrogate options (including
the placement mechanism) [1,47,59,73,117,124,127]ridtevely, some other studies assum@riori the
existence of a strong correlation between internal andreateignals, and aim to estimate the correspon-
dence map [106]. We adopt the latter perspective and stuttyangeneral setup the correspondence maps
that take the external surrogate trace as input and outpatates of the internal tumour location, including,
but not restricted to linear relations as reflected by theetation coefficient and its variants. The pres-
ence of respiratory hysteresis makes this a challenginiglgno, as the same external surrogate position can
reflect different internal tumour locations during diffatgphases. Existing methods address hysteresis by
first separating empirically the breathing trajectorie® itwo distinct “directions” (inhale v.s. exhale), and
then constructing a piecewise phase-dependent map [68)6,/107]. However, subdividing the breathing
into inhale and exhale phases often requires manual intBore and is infeasible for real-time application,
because a breathing “peak” or “trough” can be only be idettifetrospectively.

In this study, we propose to use a simple state augmentdtibe external surrogate signal. Augmenting
the state space with self-delayed observation bestows tduelmvith “memory”, which is an alternative
way to characterize the “path-dependence” property ofdrgsit systems. This procedure captures system
dynamics, and embeds the breathing phase informationditiplinto the framework. We then provide the
solution to a general class of parametric inference modighstive augmented observations. As special cases,

1This chapter is based on materials from [100]
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we derive optimal solutions for the parameters of linear qmaldratic correspondence models. Furthermore,
given a training internal/external dataset, we demorstsatomputationally efficient approach to choose
a patient-specific (or fraction-dependent) augmentatitresie. Generalization to adaptive correspondence
models follows naturally. We test the proposed approactynatgonized recordings of internal gold marker
trajectories and external fiducial marker locations [5].

Section C.1 describes the clinical data used for this téstudses the challenges caused by hysteresis
in converting the external surrogate position directlyriternal tumour location and presents the proposed
method. A general correspondence model is formulated witinmmial models as an example. Optimal
model parameters are derived and generalization is givert¢dommodate adaptivity. Section C.2 reports
testing results followed by discussions. Section C.3 ages this study with a brief summary.

C.1 Methods and Materials

C.1.1 Data Description

To study the internal/external motion correspondence, ltained synchronized recordings of internal
tumour motion trajectories and external fiducial markemtians. The paired trajectories from eight lung
cancer patients were collected with a Mitsubishi real-tradiation therapy (RTRT) system at the Radiation
Oncology Clinic at the Nippon Telegraph and Telephone Caiian (NTT) hospital in Sapporo, Japan.
Two to four 15mm diameter gold ball bearings (bb’s) were implanted in eamthe tumour [111] and
these internal markers were tracked in real time with diatjnx-ray fluoroscopy [110]. External surrogate
signals were obtained with the AZ-733V external respinagating system (Anzai Medical, Tokyo, Japan)
integrated with the RTRT system. It uses a laser source anetextdr, both attached to the treatment
couch with the beam placed orthogonal to the patient’s alislinskin surface. The device calculates the
change in the surface amplitude by measuring the relatigétipo of the reflected light [5] and outputs a
one dimensional relative position measurement of the aliwiraurface. The data acquisition rate for the
entire system is 30 frames per second. Table C.1 describestuly participants. All patients included in
this analysis had peak-to-peak marker motion greater tbem The KV fluoroscopy + Anzai system took
multiple readings for each fraction from several treatnfaaitl configurations to account for obscured x-ray
views as the gantry rotated. The recording lengths varidégdrn 20 and 250 seconds with an average of 82
seconds. There are in total 128 readings, 46 of which wemgelothan 100 seconds.

Patient| Gender| Age Tumour Pathology # of bb's | Tumour Site| Prescribed Dose (Gy) # of Fractions
1 F 47 Adenocarcinoma 4 R S7 N/A 1
2 F 70 Adenocarcinoma 3 L S6 N/A 1
3 F 71 Adenocarcinoma 2 R S5 N/A 1
4 F 47 Adenocarcinoma 3 R S4 48 8
5 M 81 | Squamous cell carcinoma 3 R S6b 48 4
5 40 8
6 M 61 small cell lung cancer 3 R S10 40 8
7 M 68 | Squamous cell carcinoma 3 R S6 48 4
8 M 85 Adenocarcinoma 3 R S8 48 4

Table C.1:Description of study participants. Patients 1-3 were bhaiig for data acquisition purposes only,
so there is no prescription dose. Patient 5 was treated tatitke same site, with two months
between treatments. The tumour site is indicated usingdgh@won anatomical notation for lung
segmentation: S1-3 is upper lobe, S4-5 is middle lobe anti(56-1ower lobe.

C.1.2 A General Correspondence Model

To minimize diagnostic imaging dose in IGRT systems, it ipamant to infer internal tumour location
from external surrogates. In principle, we could use a gpoadence model that observes a trajectory
of the scalar external surrogateup to time instann to infer the 3-dimensional internal tumour position
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p= (X, y, 2). We denote the collective surrogate information availabiémen asr(n) 2 {r(m:0<m<
n}. However, it is challenging to estimate such a map that eséimthe internal tumour position from the
complete collection of historical surrogate data, sinedémgth of the input variable grows to infinity as time
progresses. A more practical choice is to use some much noonpact quantity- that captures sufficient
information fromr for inference. With internal and external motion both besmgooth, it is reasonable to
approximatep(r) using polynomials. Therefore, we focus on estimating asctdsorrespondence models
that are linear in their coefficients as follows:

(C.1) p(r)=Af(r),

where f is a vector function of external surrogate all model parameters to be optimized are contained
in the coefficient matrixA. In particular, two simple correspondence modeks, a linear model and a
guadratic model introduced in [106] are special cases ofdim given in (C.1).

Linear models assume each coordinate of internal motioffireean » = r(t). This corresponds to the
case where

. by
(C.2) f(r):{l} andA= | by ¢

b, ¢

Quadratic models map the external surrogate to each caiedof internal motion via a quadratic rela-
tion. It can be expressed in (C.1) with

rz bx CX dx
(C.3) fr)y=1|r andA=| by ¢ dy
1 b, ¢ d

The expression in (C.1) is linear in the model coefficieAtand yields a closed form optimal solution
in the least squared error (LSE) sense. Gikesample pointgrn, pn), N=1,2,... N, the solution to the
LSE problem:

(C.4) A =arg minE (A),

whereE(A) = SN, ||pn — Af(n)||?, is given by solving the normal equation [68], and

(C.5) A=P F(FTF)?,
fr)’ pi
whereF = : andP = . | . The corresponding residual is given by:
GO Py
AP 2 P_FAT
(C.6) = (I-F(F'F)'FT)P,

with overall residual error (summed over all 3-dimensioas)

E(A) = trace{APTAP}
(C.7) = trace{P"(I-F(F'F)'F")P}.
It may be preferable to have simpler models (with fewer fraemeters) over more complicated models

at the cost of small sacrifice in data fitting performance sthodel selection preference can be incorporated
into the optimization setting by modifying the objectivenfilion as:

(C.8) E(A) = E(A)+ARH#A),
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where #4 denotes the number of free parameters in the coefficientimadtr andR is a monotonically
increasing function that assigns higher costs to more cioateld models. The regularization weight
controls the tradeoff between the data fittiBgA) and the preference for lower-order models. A simple
example oRwould be the linear functioR(#A) = #A, which directly penalizes the number of components
in A; thisis equivalent to the Akaike Information Criterion [2]sing the closed form optimal solution (C.5)
and the expression for optimal residual error (C.7) for agifixed model structure, the modified objective
function can be minimized in two layers. We say two inferenuadels have the sanfenodel structure”

if they only differ in parameter values. It follows immedihit that all models with the same structure has
equal number of degrees of freedom, thus the same complegtyarizationR(#A4) in (C.8). Therefore,

to minimizer over models of different complexity, it is naéito choose the “best” parameter setting within
each model structure (with fixed degrees of freedom thus ataahcomplexity penalty), and then compare
across structures. Within each class, minimizer of the derily penalized objectivé(,&) is the same as
that ofE(A), and can be solved and evaluated efficiently using the clfised optimal solution (C.5) and
expression for optimal residual error (C.7). This motiattee two-layer hierarchical algorithm shown below
for finding the optimal solution withitk candidate model structurezd= UK  {Ci}.

Algorithm 3 Two-layer Optimization Routine for Solviné =arg minE(A) (C.8).
1: E — 4w iopt< 0; A 1.
2: fori=0toK do

3:  Choose model structuf@ from the collection of modelg’,

4. ComputeR = R(#A) for structureC;; .

5. ComputeA; within classC; according to (C.5) and its residual er6(A;) from (C.7).
6: if E(Ai))+R <Ethen

7: E —E(A)+R;

8: iOpt —1i;

9: A “— Ai.

10  endif

11: end for

C.1.3 Hysteresis and State Augmentation

Conventional methods that explicitly segment the breatipirocess into inhale and exhale phases have
their limitations, as physical phase transitions (andy®laccur continuously rather than as discrete jumps.
To circumvent the intrinsic difficulty of estimating breath phases, we study the system dynamics di-
rectly, expecting them to sufficiently convey phase infatiora In a discretely observed system, one usually
captures the system dynamics with time-lagged samples.théosake of simplicity and to avoid over-
parameterization, we restrict this study to a single lage Phoposed method generalizes to multiple-lag
models naturally.

Given a discrete-time external surrogate), n=1,2,...,N, we augment each external surrogate state

with a timeTt (in discrete unit) delayed samplieg., r(n) 2 (r(n), r(n—1)). This augmentation captures
first-order system dynamics, as the difference betwé&ahandr(n— 1) can be regarded as a measure of
average local velocity. As is uniquely determined by, it fits into the general formulation (C.1). We apply
the methods provided in Section C.1.2 to estimate the casifiefor the augmented model. To demonstrate
the idea, we establish a linear model that is comparable.®) @d a quadratic model analogous to (C.3).

The augmented linear model (i) represents each internal coordinate as a linear combmafir (n),
r(n—1) and a constant offset, corresponding to:

r(n)
(C.9) p=Af(r), where f(r)=| r(n—1)
1

with a 3x 3 coefficient matrixA.
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The augmented quadratic model @) estimates each internal coordinate as a linear combmatio
r2(n),r(nr(n—1),r>(n—1),r(n),r(n—1),1, corresponding to:

(C.10) p=Af(r), where f(r)=

with a 3x 6 coefficient matrixA.
In both cases, linearity i results in the closed form solution given by (C.5) with therespondingF’
respectively.

C.1.4 Choice of Lag Length

The delayr should be chosen properly, since too long a lag providesmahiocal dynamic information
and too short a lag makes the estimation sensitive to olts@mvaoise. For inference purposes, we desire
a lag that maximally resolves the ambiguity in the estimataadespondence map. We choose the lag that
minimizes the fitting error for training data:

(C.11) t = argminE(A(1)),

with the objective functiorkE defined in (C.4). The coefficientd and the erroE depend ort becausef
contains both the current external surrogate displacentaingand its lagged statdn—1).

Equations in (C.6) and (C.7) provides a closed-form exjwesfor E(A(1)) for each givent. The
optimization problem (C.11) simplifies to a simple one-disienal line search that we solve by searching
over an interval with the corresponding delay time betweémdag) and about half of an average breathing
period.

C.1.5 Adaptivity of the Correspondence Map

Adaptivity may be useful to accommodate gradual changdeindrrespondence models, due to drifting
or variations in patients’ breathing. In the case of lingat guadratic models, the operation in (C.5) involves
inverting fairly small matrices (& 3 and 6x 6 respectively), so direct inversion is numerically fedesib
However, when more complicated models with higher degré&gedom are used, it is desirable to reduce
computation by applying recursive algorithms that modifiyrent estimates based on newly available data.
The key to recursively updating (C.5) is to avoid recompyiti#@ " F')~* from scratch every time. This is
effectively the inversion of empirical correlation matmith observationf;. [99] provides rank-one update
equations for sliding window and exponential discount dgdjes.

C.2 Results and Discussions

To illustrate the challenges caused by hysteresis, Figskofvs an example of the relationship between
internal tumour location obtained by fluoroscopic imagimgl &n external surrogate from an abdominal
surface measurement as described in Section C.1.1. Wet daybycthe anterior-posterior (AP) coordinate
against the surrogate signal, as this axis demonstratesrtregest hysteresis for this test subject. The opti-
mal linear and quadratic correspondence maps [106] prae@sonable inference of internal tumour motion
from external surrogates, yet they fail to describe the thiag-phase dependency of an ideal correspon-
dence map. In fact, any function that tries to map the scéfarto p would experience the same problem,
since this is a one-to-multiple relation with hysteresis.

Figure C.2 illustrates the internal tumour location in tmegior-posterior (AP) direction v.s. the state
augmented external surrogates ter 45, which corresponds to aSlsecond delay for 30Hz sampling rate.
The scatter-plot in Fig. C.2(a) represents each data sampke (r (n),r(n—1)) space with a circle, and
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Figure C.1: Example of a breathing trajectory with respirathysteresis.
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Figure C.2: Scatter plot showing the data samples in augrdesternal state space with the colors indi-
cating internal AP value. Locally consistent colored saa@uggests the potential of resolving
hysteretic ambiguity by distinguishing among differerépiatory phases implicitly with state
augmentation.

uses color (or intensity if viewed in gray-scale) to dephe internal AP coordinate values (in mm) from
fluoroscopic readout. The one-to-multiple discrepancyeapp largely resolved as different colored circles
are not overlaid on each other, suggesting the existencsiofje-valued inference map.

To illustrate the idea of model fitting in augmented statecspave first apply the simple linear model in
(C.9) to the dataset shown in Fig. C.1 with a lag length.6fseconds (which may not be optimal), and illus-
trate the results in Fig. C.3. Even though there are stiliceatble differences between the observed internal
coordinates in the upper row of Fig. C.3 and their linear fitia bottom row, the aggregated estimation error
(across all patients and fractions) reduced.@Imm from 201 mm with direct linear fitting as in (C.2) and
1.93 mm with direct quadratic fitting as in (C.3). In particylae observe noticeable decreases in estimation
error in the AP direction, where hyesteretic ambiguity ie thost significant. Table C.2 reports the Root
Mean Squared Error (RMSE) in each direction respectivelytlie linear and quadratic model, with and
without state augmentatidnFigure C.4 reports the paired (across patient/fractidgifi@rénces between the
RMS error of the direct methods and the augmented methods RMISE difference between direct linear
and augmented linear methods has medd®m and a median of D1mm; the RMSE difference between
direct quadratic and augmented quadratic method has mé@mth and a median of 15mm. To assess sta-
tistical significance, we performed a paired student-tiétt the null hypothesis that the performance of the

2For comparison purposes, we have also computed estimate feoBtrtforder polynomial model with direct method, which has the
same degrees of freedom (18 parameters) as the augmentedtiguadidel. Its estimation error is©5, 125 and 111 (mm) in LR, SI
and AP direction respectively, with a 3D RMSE equaB3mm. A paired student t-test between the RMSE for the 5thr@algnomial
model and the augmented quadratic model yielgsvalue of 106 x 10~1°, which indicates statistically significant error reductioy
the augmented quadratic model. This shows that the improvddrpemce of the proposed method is not a direct consequence of
increased degrees of freedom, but should rather be attdatiés capability of resolving hysteretic ambiguity viatstaugmentation.
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Figure C.3: Correspondence relations in augmented stateesd their linear fittings. Upper row: internal
tumour coordinate v.s. augmented state for observed samiie colors indicating internal AP
value; bottom row: estimates of tumour coordinate via lirfgavith hollow circles depicting
modeled hypersurface evaluated at regular grid points ald circles for the evaluation at the
sample locations, with colors indicating estimated AP galu

direct and augmented methods do not differ. Thealues for the linear method and the quadratic method
are 496 x 1012 and 408 x 1018 respectively, demonstrating that the error reductionsevetatistically
significant.

LR (mm) | SI (mm) | AP (mm) | 3D (mm)
Direct Linear 0.80 1.45 1.13 2.01
Direct Quadratic| 0.79 1.35 1.13 1.93
Aug. Linear 0.75 1.30 0.87 1.74
Aug. Quadratic 0.74 1.18 0.84 1.63

Table C.2: Estimation Error Table

Figure C.5 shows the estimated time series of these fouoappes for converting external surrogates
to internal tumour locations. The higher-order models waiere descriptive with the extra degrees of
freedom, as demonstrated by the relative performance alrgtia models and linear models within each
class respectively. State augmentation enables varygmprese patterns during different stages of breathing
as indicated implicitly by the system dynamics.

As discussed in Section C.1.4, to properly choose the lagttenwe use a short training set with
internal-external pairs to compute offline the estimatierfgrmanceE (A (1)) defined in (C.4) as a function
of the lag lengtht. In practice, the lag length does not have to be the exactaopti in (C.11); values
near that optimum should sufficiently convey system dynamReasonable insensitivity in the choice of
lag lengtht is desirable as this value is determined prior to the treatraad remains fixed subsequently.
Figure C.6 illustrates that the estimation error is a smdotittion of the lag length, which suggests the
desired robustness. For both the linear correspondencelrf®@®) and the second-order polynomial model
(C.10) with state augmentation, the optimatorresponds to about?— 1.8 seconds delay. Without this
knowledge, our previous experiments usefldeconds delay to augment the state space (Fig. C.2-Fig. C.5
and still yielded plausible results. The asymmetric sldpdsig. C.11 around the optimélsuggests that it
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Figure C.4: Histogram of paired differences between the RIt&rs of the direct and the augmented meth-
ods: (a) difference between the RMSE of the direct linear@ggh and augmented linear
approach; (b) difference between the RMSE of the direct matadapproach and augmented
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may be preferable to use a relatively small time delay in theeace of precise information.

Assuming that the choice of lag length is robust to inteigrdatand inter-fraction variations, we used a
fixed lag length equivalent to.8 seconds delay for simplicity, and illustrate in Fig. C.@ theam-wise 3D
RMSE for patients 4,5 and 6, whose treatment extended ovkiptewdays. The minimum RMS error for
non-compensated treatment, which corresponds to a cdregimate at the retrospective mean value, is
also shown for reference purposes. These results confirntitbaugmented methods consistently exhibit
lower error.

Adaptivity is most beneficial for irregular respirationt¢es. Our test data had relatively regular breathing
patterns, so inclusion of adaptivity improved the estimraticcuracy only slightly.

C.3 Conclusion and Future Work

We have proposed a method to map external surrogate signaietnal tumour positions. Breathing-
phase dependent response patterns due to hysteresis angoirated implicitly by using a simple state
augmentation technique to capture system dynamics. Wedimted a general class of correspondence
models that are linear in model parameters, with linear aradicptic (in external surrogate) models as special
cases. We described closed-form expressions for both t@a&pmodel parameters and the corresponding
error value. Based on the latter, we further investigatedtioper choice of lag length in state augmentation,
and argued its relative robustness. Test results on clidata demonstrated reduced inference error over the
direct linear and polynomial models.

The number of degrees of freedom in a correspondence motighaaes the trade-off between flexibil-
ity and robustness. We seek a model that is descriptive éntuufit the data without undesired sensitivity
to observation noise, also known as “overfitting”. The pregbmethod may have more degrees of freedom
than previous methods due to state augmentation. On thelahd, because it incorporates breathing-stage
information implicitly, it can use all available internakternal correspondence pairs, without subdividing
the training data as required for piecewise models [66,88].1In principle, using all the data may com-
pensate for the possible increased sensitivity caused dsttra flexibility. The choice among different
complexity levels in augmented models is still open. Bothrilamber of augmentations and the model de-
gree contribute to the overall complexity. Further studiesuld investigate methods for properly penalizing
model complexity based on information criteria as expldimeSection C.1.2.

Many research groups have observed phase shifts betwesmadurrogate signal and internal tumour
motions [17, 32]. Typically, this phase shift was to be aeodido obtain higher internal-external correlation.
However, it is possible to compensate for consistent phaiftete simplify and improve the correspondence
map estimation. In particular, we can artificially synchimenthe internal-external phase by shifting one



124

E13 a =S
3 E 3
3 £
] @ o
212 T g
£ e £
B S B2
o S o
o o
o 11 S IS
g @ ke
g10 g g
g g g
£ £ 10 B ] <
9 ' !
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
Time (sec) Time (sec) Time (sec)
E13 — z
E E 3
" £
2 @ o
S1z g g
S = i<l
o ‘6 o
Su IS I3
% @ %
£10 g g
2 2 ]
= = =
9
¥ 10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
Time (sec) Time (sec)
€13 = 10 2
£ £ E -6
Y E
g g2 5 £
£12 g e -g|
S = S
8 S o 8
O 11 S O -10
g @ E
g 10 g 5 g -12
g g g |
kS £ _ £
o 10 ! -14
9
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
Time (sec) Time (sec)
13 T 10M% B
£ E E -6
) Y )
£12 g 5 £ g
B2 S s
3 S 8
o o
O 11 8 o O -10
% 7 S
€ 10 g 5 T-12
o] ) )
2 E g
9 -10 14
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
Time (sec) Time (sec) Time (sec)

Figure C.5: Estimation performance comparison among riffemethods. Red-solid line depicts the in-
ternal tumour position obtained from fluoroscopic imagiagd dashed blue like provides es-
timated quantities from external surrogates. Each coluepmesents one internal motion co-
ordinate. Each row indicates the time series generatedam¢hestimation method: (1st row)
direct linear; (2nd row) direct polynomial; (3rd row) augnted linear; (bottom row) augmented
polynomial.

of them according to a constant offset estimated from tngirdata. We will further study phase-offset
estimation and its use in external-internal inference aftture.

This work is a preliminary study to validate the existenca ofasonably simple correspondence map and
the possibility to estimate it with high accuracy. In praetiinternal-external pairs are obtained at a much
slower rate. Correspondence maps must be extracted frorsesipaaging data and applied to continuously
obtained external surrogate signals to estimate the iateéamour locations. Our method can serve as a
critical module in this overall framework, yet intensivergilations and validations are further required.

Even though our test data did not exhibit dramatic improveimevhen using adaptive model estima-
tion, model updates in response to changes are necessagpénay Pursuing this direction requires more
thorough analysis of breathing motion variations, changiection and model adaptive rate.



125

—Aug Linear
1.95¢ - - -Aug Quadratic

=
©
@
\
.

3D RMSE (mm)
=
o P
(%) (o2
.
J

=
o
.

[y
o2}
a
/
.
AN

[
=)

0.5 1 1.5 2 2.5 3
Delay Time (sec)

Figure C.6: Estimation error as a function of lag length feats augmentation: linear fit (solid line);
guadratic fit (dashed line).



126

35
[o] .
" Patient 4

\
Q. ©OT oq o
@ \Q / \/ © o

ol Y og®a

N
N a1
T T
[
[}
]
s

3D RMSE (mm)
=
o
H

=
T

I
5
T

3 6 10 14 18 22 26 30 34 38
Day/Beam

Patient 5

3D RMSE (mm)

0.5F
0 , , , - , , , , , , ,
4 7 9 1213 15 17 19 21 23 25 27
Day/Beam
5 5 —
\ .
a5 N Patient 6 |
. o 10
N ®
4+ ® | \\ ! \Q // \\ 7
35 // ' ,/ ! /’ \ I
L . |
£ 09 o ¢ \ ° B
L TP \ het A |
3 A 0 e o ©
% /Q\ QD/ :H\ : i \gﬂ o °
0 259 Iy i
! \
[a)] 2r oy )
™ | \
1.5F | i
I \ B
1+ # g B8 e-w 3% a}?’éd&% A i
] s 4 L2 e TN B
05l ) Ny g & ]
0 , , , , , , ,
4 9 14 19 21 23 28
Day/Beam

Figure C.7: Beam-wise 3D RMSE (mm) for patients 4-6: minimoon-surrogate (blue circle-dashed);
linear inference (green square-dashed); polynomial émfee (red star-dashed); augmented lin-
ear inference (cyan triangle-dashed); augmented polyaigimiagenta diamond-dashed). Non-
uniform tick locations along the x-axis indicate the numbfElbeams applied each individual on

treatment day.



BIBLIOGRAPHY

127



128

BIBLIOGRAPHY

[1] S. Ahn, B.Yi, Y. Suh, J. Kim, S. Lee, S. Shin, and E. Choi. éasibility study on the prediction of
tumour location in the lung from skin motiofr. J. Radiol, 77:588-96, 2004.

[2] H. Akaike. A new look at the statistical model identificat. IEEE Trans. Auto. Controll9(6):716—
23, December 1974.

[3] G. Aubert and P. KornprobstMathmatical Problems in Image Processingpplied Mathematical
Sciences. Springer, 2004.

[4] A. Benveniste, M. Metivier, and P. PriouretAdaptive algorithms and stochastic approximation
Springer-Verlag, 1990.

[5] R. I. Berbeco, S. Nishioka, H. Shirato, G. T. Y. Chen, andBSJiang. Residual motion of lung
tumours in gated radiotherapy with external respiratonyayates. Phys. Med. Biol.50(16):3655—
68, August 2005.

[6] D. P. BertsekasConstrained optimization and Lagrange multiplier methodsademic-Press, New
York, 1982.

[7]1 M. J. Black and A. Rangarajan. On the unification of linegasses, outlier rejection, and robust
statistics with applications in early visiomtl. J. Comp. Vision19(1):57-91, July 1996.

[8] M. J. Black, G. Sapiro, D. H. Marimont, and D. Heeger. Rstanisotropic diffusionIEEE Trans.
Im. Proc, 7(3):421-32, March 1998.

[9] A. Blake and A. ZissermarVisual ReconstructionMIT Press, 1987.

[10] P. Blomgren and T. F. Chan. Color TV: total variation hmds for restoration of vector-valued
images.[EEE Trans. Img. Pro¢.7(3):304-9, Mar 1998.

[11] F. Bookstein. Fitting conic sections to scattered d&amp. Vision, Graphics and Image Processing
9:56-71, 1979.

[12] T. Bortfeld, K. Jokivarsi, M. Goitein, J. Kung, and Sagrj. Effects of intra-fraction motion on IMRT
dose delivery: statistical analysis and simulatiBhys. Med. Bio|.47:2203-2220, 2002.

[13] A. Chambolle. Image segmentation by variational mdthaMlumford and Shah functional and the
discrete approximationsSIAM J. Appl. Math.55(3):827—63, June 1995.

[14] A. Chambolle and P. L. Lions. Image recovery via totaiaton minimization and related problems.
Numer. Math. 76(2):167-88, 1997.

[15] T. F. Chan and J. Sheimage processing and analysiS@ambridge Univ. Press, 2005.
[16] E. W. Cheneylntroduction to approximation theoryAmerican Mathematical Society, 1999.

[17] P. M. Chi, P. Balter, D. Luo, R. Mohan, and T. Pan. Relatid external surface to internal tumor
motion studies iwth cine CTMed. Phys.33(9):3116-23, Sep. 2006.



129

[18] C. S. Chui, E. Yorke, and L. Hong. The effects of intradtion organ motion on the delivery of
intensity-modulated field with a multileaf collimatdvled. Phys.30:1736-46, 2003.

[19] W. S. Cleveland. Robust locally weighted regressioth smoothing scatterplots. Amer. Stat. Assp.
74(368):829-36, 1979.

[20] A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, et8ns, and G. Marchal. Automated mul-
timodality image registration using information theoryn Y. Bizais, C. Barillot, and R. D. Paola,
editors,Information Processing in Medical Inpages 263—-74. Kluwer, Dordrect, 1995.

[21] M. M. Coselmon, J. M. Balter, D. L. McShan, and M. L. Kessl Mutual information based CT
registration of the lung at exhale and inhale breathingestasing thin-plate splinesMed. Phys.
31(11):2942-8, November 2004.

[22] A. D’Andrea, U. Mengalia, and R. Reggiannini. The maglifiCramer-Rao bound and its application
to synchronization problems$EEE Trans. Commun42(234):1391-99, Feb-Apr. 1994.

[23] M. Droske and W. Ring. A Mumford-Shah level-set appiofar geometric image registratio®IAM
J. Appl. Math, 66(6):2127-48, 2006.

[24] M. Droske and M. Rumpf. Multiscale joint segmentatiomdaregistration of image morphology.
IEEE Trans. Patt. Anal. Mech. IntelR9(12):2181-2194, Dec. 2007.

[25] R. O. Duda, P. E. Hart, and D. G. StofRattern classificationWiley, New York, 2001.

[26] T. Ellis, A. Abbood, and B. Brillault. Ellipse detecticand matching with uncertaintymage and
vision computing10(2):271-6, 1992.

[27] M. Engelsman, G. C. Sharp, T. Bortfeld, R. Onimaru, an&Hirato. How much margin reduction is
possible through gating or breath hol&hys. Med. Bio].50(3):477-90, February 2005.

[28] S. Esedogluand S. J. Osher. Decomposition of imagesdsrisotropic Rudin-Osher-Fatemi model.
Comm. Pure. & Appl. Math57:1609-26, 2004.

[29] H. G. Feichtinger, K. Gichenig, and T. Strohmer. Efficient numerical methods in-aoiiorm sam-
pling theory.Numerische Mathematik9(4):423-40, February 1995.

[30] J. A. Fessler. Mean and variance of implicitly defineddgid estimators (such as penalized maximum
likelihood): Applications to tomographyEEE Trans. Im. Prog.5(3):493-506, March 1996.

[31] A. Fitzgibbon, M. Pilu, and R. B. Fisher. Direct leastusage fitting of ellipses.IEEE Trans. Patt.
Anal. Mach. Int, 21(5):476-80, May 1999.

[32] E. C. Ford, G. S. Mageras, E. Yorke, and C. C. Ling. Regjmn-correlated spiral ct: a method of
measuring respiratory-induced anatomic motion for radirtreatment planningMed. Phys.30:88—
97, 2003.

[33] C. Frohn-Schauf, S. Henn, and K. Witsch. Multigrid béi$etal variation image registratiorCom-
puting and Visualization in Scienc&l1(2):101-13, March 2008.

[34] D. Geman and G. Reynolds. Constrained restorationtaaceicovery of discontinuitiesEEE Trans.
Patt. Anal. Mach. In{.14(3):367—-83, March 1992.

[35] S. Geman and D. Geman. Stochastic relaxation, Giblshiifons, and Bayesian restoration of
images.IEEE Trans. Patt. Anal. Mach. Int6(6):721-41, November 1984.

[36] R. George, P. Keall, V. Kini, S. Vedam, J. Siebersand @, M. Lauterbach, D. Arthur, and R. Mohan.
Quantifying the effect of intrafraction motion during be¢dMRT planning and dose deliveried.
Phys, 30:552—-62, 2003.



130

[37] D. P. Gierga, G. T. Y. Chen, J. H. Kung, M. Betke, J. Lontthaand C. G. Willett. Quantification
of respiration-induced abdominal tumor motion and its istpan IMRT dose distributionsint. J.
Radiat. Oncol. Biol. Phys58(5):1584—95, April 2004.

[38] V. Girault and P. A. RaviartFinite element methods for navier-stokes equati@psinger, 1986.
[39] G. H. Golub and C. F. Van LoamMatrix computationsJohns Hopkins Univ. Press, 2 edition, 1989.

[40] I. S. Gradshteyn and |. M. RyzhikTables of integrals, series and productdcademic Press, 6th
edition, 2000.

[41] K. Grochenig. A discrete theory of irregular samplirignear Algebra and its Applicationd93:129—
50, November 1993.

[42] S. Gupta and J. Prince. Stochastic models for div-cptical flow methods. Sig. Proc. Letters.
3(2):32-4, 1996.

[43] R. P. Hamalainen and A. Kettunen. Stability of Fourieefficients in relation to changes in respira-
tory air flow patternsMed. Eng. and Phy22(10):733-739, Dec 2000.

[44] R. Haralick and L. ShapirocComputer and Robot Visio\ddison-Wesley, Reading, MA, 1992,

[45] A. O. Hero and J. A. Fessler. A recursive algorithm fomqumuting Cramer-Rao-type bounds on
estimator covariancdEEE Trans. Info. Theory40(4):1205-10, July 1994.

[46] M. Hirsch, S. Smale, and R. Devandifferential equations, dynamical systems, and an intctigun
to Chaos Academic Press, 2003.

[47] J.D. Hoisak, K. E. Sixel, R. Tirona, P. C. Cheung, and Pignol. Correlation of lung tumor motion
with external surrogate indicator of respiratioimt. J. Radiat. Oncol., Biol., Phys60(4):1298-306,
Nov 2004.

[48] B. Horn and B. G. Schunck. Determining optical floutif. Intell., 18(1-3):185-203, August 1981.

[49] J. Hsieh.Computed tomography: Principles, design, artifacts, amcknt advancesSPIE, Belling-
ham, 2003.

[50] P.J. HuberRobust statisticsWiley, New York, 1981.

[51] R. H. Huesman, G. J. Klein, J. A. Kimdon, C. Kuo, and S. Majlar. Deformable registration of
multimodal data including rigid structurelEEE Trans. Nuc. S¢i50(3):389-92, June 2003.

[52] G. D. Hugo, D. Yan, and J. Liang. Population and patspecific target margins for 4D adaptive
radiotherapy to account for intra- and inter-fraction a#ion in lung tumour position.Phys. Med.
Biol., 52(1):257-74, January 2007.

[53] S. Jiang, C. Pope, K. Al Jarrah, J. Kung, T. Bortfeld, &dChen. An experimental investigation
on intra-fractional organ motion effects in lung IMRT treents. Phys. Med. Biol.48:1773-1784,
2003.

[54] S. Jiang, G. Sharp, R.Berbeco, G.Chen, H. Mostafawd,AanJeung. Development of an integrated
radiotherapy imaging system (IRIS9nt. J. Radiat. Oncol., Biol., Phys60(1, Suppl1):S611, 2004.

[55] B. Karetali and C. Davatzikos. Topology preservation and regiylamiestimated deformation fields.
In Information Processing in Medical Inpages 426-37, 2003.

[56] B. Karacali and C. Davatzikos. Estimating topology gaeving and smooth displacement fields.
IEEE Trans. Med. Imag23(7):868-80, July 2004.



131

[57] P.J. Keall, G. S. Mageras, J. M. Balter, R. S.Emery, KHgkster, S. B. Jiang, J. M. Kapatoes, H. D.
Kubo, D. A. Low, M. J. Murphy, B. R. Murray, C. R. Ramsey, M. BuirvHerk, S. Vedam, J. W. Wong,
and E. Yorke. The management of respiratory motion in réatiadncology. Technical report, AAPM
Task Group 76, 2006.

[58] G. J. Klein, B. W. Reutter, and R. H. Huesman. Four-digiemal affine registration models for
respiratory-gated PETIEEE Trans. Nuc. Sgi48(3):756—-60, June 2001.

[59] N. Koch, H. H. Liu, G. Starkschall, M. Jacobson, K. FersZ. Liao, R. Komaki, and C. W. Stevens.
Evaluation of internal lung motion for respiratory-gatetliotherapy using mri: Part i-correlating
internal lung motion with skin fiducial motiorint. J. Radiat. Oncol., Biol., Phys60(5):1459-1472,
2004.

[60] H. D. Kubo and B. C. Hill. Respiration gated radiothgrageatment: a technical studphys. Med.
Biol., 41:83-91, 1996.

[61] J. Kybic, P. Thevenaz, A. Nirkko, and M. Unser. Unwaigpof unidirectionally distorted EPI images.
IEEE Trans. Med. Imag19(2):80-93, February 2000.

[62] J. Kybic and M. Unser. Fast parametric elastic imageistegfion. IEEE Trans. Im. Prog.
12(11):1427-42, November 2003.

[63] R. P. Lippmann. An introduction to computing with nelunats. IEEE ASSP Mag4(2):4-22, April
1987.

[64] J. A. Little, D. L. G. Hill, and D. J. Hawkes. Deformatisrincorporating rigid structuresComp.
Vision & Im. Understanding66(2):223—-32, May 1997.

[65] L. Ljung and T. Soderstim. Theory and practice of recursive identificatiodIT Press, Cambridge,
1983.

[66] D. A. Low, P. J. Parikh, W. Lu, J. F. Dempsey, S. H. WahalR. Hubenschmidt, M. M. Nystrom,
M. Handoko, and J. D. Bradley. Novel breathing motion moaelradiotherapy. Int. J. Radiat.
Oncol., Biol., Phys.63(3):921-9, Nov. 2005.

[67] W. Lu, P. J. Parikh, I. M. E. Naga, M. M. Nystrom, J. P. Hobehmidt, S. H. Wahab, S. Mutic,
A. K. Singh, G. E. Christensen, J. D. Bradley, and D. A. Low. a@titation of the reconstruction
quality of a four-dimensional computed tomography prodesdung cancer patientsMed. Phys.
32(4):890-901, April 2005.

[68] D. G. LuenbergerOptimization by vector space methodfgiley, New York, 1969.

[69] A. E. Lujan, J. M. Balter, and R. K. T. Haken. A method focorporating organ motion due to
breathing into 3D dose calculations in the liver: Sendifiwd variations in motion. Med. Phys.
30(10):2643-9, October 2003.

[70] A. E. Lujan, J. M. Balter, and R. K. Ten Haken. A method focorporating organ motion due
to breathing into 3D dose calculations in the liver: sewmgjtito variations in motion.Med. Phys.
30(10):2643-2649, Oct 2003.

[71] A. E. Lujan, E. W. Larsen, J. M. Balter, and R. K. Ten Hakekh method for incorporating organ
motion due to breathing into 3D dose calculatiohted. Phys.26(5):715-20, May 1999.

[72] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, @ &uetens. Multimodality image registra-
tion by maximization of mutual informatioEEE Trans. Med. Imag16(2):187-98, April 1997.

[73] G. S. Mageras, A. Pevsner, E. D. Yorke, K. E. Rosenzweid;. Ford, A. Hertanto, S. M. Larson,
D. M. Lovelock, Y. E. erdi, S. A. Nehmeh, J. L. Humm, and C. rd.i Measurement of lung tumor
motion using respiration-correlated Clnt. J. Radiat. Oncol., Blol., Phys60:933-41, 2004.



132

[74] J. B. A. Maintz and M. A. Viergever. A survey of medical age registration. Med. Im. Anal,
2(1):1-36, March 1998.

[75] D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellen, aidEubank. PET-CT image registration in
the chest using free-form deformationEEE Trans. Med. Imag22(1):120-8, January 2003.

[76] M. Moeneclaey. On the true and the modified Cramer-Rambs for the estimation of a scalar
parameter in the presence of nuisance parameteEBE Trans. Comm46(11):1536—44, November
1998.

[77] D. Mumford and J. Shah. Optimal approximations by pigise smooth functions and associated
variational problemsComm. Pure Appl. Math42(5):577—-685, May 1989.

[78] K. Murphy. Kalman filter toolbox for matlab. http://wweai.mit.edu/ mur-
phyk/Software/Kalman/kalman.html.

[79] M. Murphy and S. Dieterich. Comparative performancdiméar and nonlinear neural networks to
predict irregular breathing?hys. Med. Bi0].51:5903-14, Oct. 2006.

[80] M. J. Murphy. Tracking moving organs in real timemin. Radiat. Oncgl14(1):91-100, 2004.

[81] M. J. Murphy, J. Jalden, and M. Isaksson. Adaptive filtgito predict lung tumor breathing motion
during image-guided radiation therafy6th International Congress on Computer-assisted Radiolo
and Surgery (CARS2002.

[82] K. G. Murty and S. N. Kabadi. Some NP-complete problemguadratic and nonlinear program-
ming. Math. Programming39:117-29, 1987.

[83] I. Nabney and C. Bishop. Netlab neural network softwdutdp://www.ncrg.aston.ac.uk/netlab/, 2003.

[84] T. Neicu, H. Shirato, Y. Seppenwoolde, and S. B. JiangncBronized moving aperture radiation
therapy (smart): average tumour trajectory for lung pasieRhys. Med. Bio).48(5):587-598, 2003.

[85] V. Noblet, C. Heinrich, F. Heitz, and J-P. Armspach. 3i€formable image registration: a topology
preservation scheme based on hierarchical deformatioretm@hd interval analysis optimization.
IEEE Trans. Im. Prog.14(5):553-66, May 2005.

[86] C. Ozhasoglu and M. J. Murphy. Issues in respiratoryiomtompenstation during external beam
radiotherapy.nt. J. Radiation Oncology Biol. Phy$2(5):1389-1399, 2002.

[87] R. Peslin, C. Gallina, C. Saunier, and C. Duvivier. Feuanalysis versus multiple linear regression
to analyse pressure-flow data during artificial ventilati&ar. Respir J.7:2241-45, 1994.

[88] J. P. W. Pluim, J. B. A. Maintz, and M. A. Viergever. Muttiaformation-based registration of
medical images: a survelEEE Trans. Med. Imag22(8):986—1004, August 2003.

[89] J. Porrill. Fitting ellipses and predicting confidenesvelopes using a bias corrected kalman filter.
Image and Vision Computing(1):37—41, 1990.

[90] J. C. Preisig. Copositivity and the minimization of gwatic functions with nonnegativity and
guadratic equality constraintSIAM J. Cont. Opt.34(4):1135-50, July 1996.

[91] C. R. Rao.Linear statistical inference and its applicatiangd/iley, New York, 1973.

[92] Y. N. Rao, J. C. Principe, and T. F. Wong. Fast RLS-likgoaithm for generalized eigendecomposi-
tion and its applications]. VLSI Sig. Pro¢.37:333-344, 2004.

[93] P. A. Regalia Adaptive IIR Filtering in signal processing and contréllarcel Dekker, 1995.

[94] C. Riviere, A. Thakral, I. I. lordachita, G. Mitroi, and. Stoianovici. Predicting respiratory motion
for active canceling during percutaneous needle insertionProc. 23rd Annual Intl. Conf. IEEE
Enginnering in Medicine and Biology Socigpages 3477-80, Oct. 2001.



133

[95] D. Robinson and P. Milanfar. Fundamental performaimoéd in image registrationlEEE Trans. Im.
Proc. 13(9):1185-99, September 2004.

[96] T.Rohlfing, C. R. Maurer, D. A. Bluemke, and M. A. JacobBlume-preserving nonrigid registration
of MR breast images using free-form deformation with an mpeessibility constraintiEEE Trans.
Med. Imag, 22(6):730-741, June 2003.

[97] D. Ruan and J. A. Fessler. Adaptive ellipse tracking amdnvergence proof. Technical Report 382,
Comm. and Sign. Proc. Lab., Dept. of EECS, Univ. of Michigann Arbor, Ml, 48109-2122, May
2007.

[98] D. Ruan, J. A. Fessler, and J. Balter. Real-time prémlicof respiratory motion based on local
regression method$hys. Med. Bio).52:7135-52, 2007.

[99] D. Ruan, J. A. Fessler, and J. M. Balter. Mean positiaaking of respiratory motionMed. Phys.
35(2), 2008.

[100] D.Ruan, J. A. Fessler, J. M. Balter, R. |. Berbeco, Shitika, and H. Shirato. Inference of hysteretic
respiratory tumour motion from external surrogates: Aestatigmentation approachH?hys. Med.
Biol., 53(11):2923-36, June 2008.

[101] D. Ruan, J. A. Fessler, J. M. Balter, and J. Sonke. Hikpiobreathing pattern irregularity with
projection-based methoded. Phys.33(7):2491-2499, Jul. 2006.

[102] D. Ruan, J. A. Fessler, M. Roberson, J. Balter, and Msskas. Nonrigid registration using regular-
ization that accommodates local tissue rigidity.Aroc. SPIE 6144, Medical Imaging 2006: Image
Proc., page 614412, 2006.

[103] D. Ruan, D. A. Casta non, G. Sharp, and S. Jiang. Restumor tracking with interactive multiple
model filter. CenSSIS "03.

[104] A. Schweikard, G. Glosser, M. Bodduluri, and M. J. Mayp Robotic motion compenstation for
respiratory movement during radiosurgeGomputer Adied Surgerp(4):263-277, 2000.

[105] A. Schweikard, H. Shiomi, and J. Adler. Respiratioacking in radiosurgery. Med. Phys.
31(10):2738-41, October 2004.

[106] Y. Seppenwoolde, R¢, I. Berbeco, S. Nishioka, H. Shjratd B. Heijmen. Accuracy of tumor motion
compensation algorithm from a robotic respiratory tragkystem: a simulation studyed. Phys.
34(7):2774-84, Jul. 2007.

[107] Y. Seppenwoolde, H. Shirato, K. Kitamura, S. Shimi¥u, Herk, J. V. Lebesque, and K. Miyasaka.
Precise and real-time measurement of 3D tumor motion in tregto breathing and heartbeat, mea-
sured during radiotherapynt. J. Radiat. Oncol. Biol. Phys53(4):822-34, July 2002.

[108] R. J. Serfling Approximation theorems of mathematical statistMéley, New York, 1980.

[109] G. C. Sharp, S. B. Jiang, S. Shimizu, and H. Shirato.dietien of respiratory tumour motion for
real-time image-guided radiotheraf®hys. Med. Biol.49(3):425-40, February 2004.

[110] H. Shirato et al. Physical aspects of a real-time tutrexking system for gated radiotherapmt. J.
Radiat. Oncol. Biol. Phys48(4):1187-95, November 2000.

[111] H. Shirato, T. Harada, T. Harabayashi, K. Hida, H. EnfloKitamura, R. Onimaru, K. Yamazaki,
N. Kurauchi, T. Shimizu, N. Shinohara, M. Matsushita, H. Bkes-Akita, and K. Miyasaka. Feasibil-
ity of insertion/implantation of 2.0 mm diameter gold imat fiducial markers for precise setup and
real-time tumor tracking in radiotherapint. J. Radiat. Oncol., Biol., Phys56(1):240-247, 2003.

[112] M. Staring, S. Klein, and J. P. Pluim. Nonrigid regagion with adaptive, content-based filtering of
the deformation field. If#Proc. SPIE 5747, Medical Imaging 2005: Image Prgmages 212-21, 2005.



134

[113] M. Staring, S. Klein, and J. P. Pluim. Nonrigid regéton using a rigidity constraint. IRroc. SPIE
6144, Medical Imaging 2006: Image Pro2006.

[114] M. Staring, S. Klein, and J. P. W. Pluim. A rigidity pétyaerm for nonrigid registrationMed. Phys.
34(11):4098-108, November 2007.

[115] P. Thevenaz, U. E. Ruttimann, and M. Unser. A pyramigdrapch to subpixel registration based on
intensity. IEEE Trans. Im. Prog.7(1):27-41, January 1998.

[116] P. Thevenaz and M. Unser. Optimization of mutual infation for multiresolution image registration.
IEEE Trans. Im. Pro¢.9(12):2083-99, December 2000.

[117] Y. Tsunashima, T. Sakae, Y. Shioyama, K. Kagei, T. fieroa, A. Nohtomi, and Y. Akine. Correla-
tion between the respiratory waveform measured using are¢gpy sensor and 3D tumor position in
gated readiotherapynt. J. Radiat. Oncaol., Biol. Phys60:951-8, 2004.

[118] M. Unser. Splines: A perfect fit for signal and image g@ssing. spmag 16(6):22—38, November
1999.

[119] M. Unser, A. Aldroubi, and M. Eden. Fast B-spline trimims for continuous image representation
and interpolationlEEE Trans. Patt. Anal. Mach. Int13(3):277-85, March 1991.

[120] M. Unser, A. Aldroubi, and M. Eden. B-spline signal pessing: Part I—theorylEEE Trans. Sig.
Proc. 41(2):821-33, February 1993.

[121] M. Unser, A. Aldroubi, and M. Eden. B-spline signal pessing: Part Il—efficient design and appli-
cations.IEEE Trans. Sig. Pro¢41(2):834-48, February 1993.

[122] M. Unser, A. Aldroubi, and M. Eden. THe, polynomial spline pyramidlEEE Trans. Patt. Anal.
Mach. Int, 15(4):364-379, April 1993.

[123] H. L. Van TreesDetection, estimation, and modulation theoWiley, New York, 1968.

[124] S. Vedam, V. Kini, P. Keall, V. Ramakrishnan, H. Mostdf and R. Mohan. Quantifying the pre-
dictability of diaphragm motion during respiration with amnvasive external markeMed. Phys.
30(4):505-13, April 2003.

[125] S. S. Vedam, P. J. Keall, A. Docef, D. A. Todor, V. R. Kiahd R. Mohan. Predicting respiratory
motion for four-dimentional radiotherapied. Phys.31(8):2274-2283, Aug. 2004.

[126] P. Viola. Alighnment by maximization of mutual informatioPhD thesis, Dept. of EECS, MIT,
Cambridge, MA, 1995.

[127] O.L.Wade. Movement of the thoracic cage and diaphregmspiration.J. Physiol, pages 193-212,
1954.

[128] K. Wang, Y. He, and H. Qin. Incorporating rigid structg in non-rigid registration using triangular
b-splines.Variational, Geometric and Level Set Methods in Computsiovii (VLSM) 3752:235-246,
Oct 2005.

[129] J. Weickert. On discontinuity-preserving optic flohn S. Orphanoudakis, P. Trahanias, J. Crow-
ley, and N. Katevas, editor®roc. Computer Vision and Mobile Robotics Workshpgages 115-22,
Santorini, Sep. 1998.

[130] W. M. Wells, P. Viola, H. Atsumi, S. Nakajima, and R. Kiks. Multi-modal volume registration by
maximization of mutual informationMed. Im. Anal. 1(1):35-51, March 1996.

[131] J. H. Wilkinson.The algebraic eigenvalue probblem@larendon Press, Oxford, England, 1965.



135

[132] J. W. H. Wolthaus, C. Schneider, J-J. Sonke, M. van HériS. A. Belderbos, M. M. G. Rossi,
J. V. Lebesque, and E. M. F. Damen. Mid-ventilation CT scamstraction from four-dimensional
respiration-correlated CT scans for radiotherapy plagrof lung cancer patientsint. J. Radiat.
Oncol. Biol. Phys.65(5):1560-71, August 2006.

[133] H. Wu, G. C. Sharp, B. Salzberg, D. Kaeli, H. Shiratod & B. Jiang. A finite state model for
respiratory motion analysis in image guided radiation aipgr Phys. Med. Biol.pages 5357-5372,
Nov. 2004.

[134] A. Yezzi, L. Zllei, and T. Kapur. A variational framewlofor integrating segmentation and registra-
tion through active contourdvlied. Im. Anal,. 7(2):171-85, June 2003.

[135] J. Yuan, C. Schirr, and E. Memin. Discrete orthogonal decomposition and variationad fflow
estimation.J. Math. Imaging Vis.28(1):67-80, 2007.

[136] J. Yuan, C. Schirr, and G. Steidl. Convex hodge decomposition and regatdn of image flows.
Preprint, University of Heidelberg, 2008.

[137] J. Yuan, C. Schinr, and G. Steidl. Simultaneous optical flow estimation dadomposition.SIAM
J. Sci. Comput.29(6):2283-304, 2007.

[138] B. Zitova and J. Flusser. Image registration methods: a survey. and Vision Computing
21(11):977-1000, October 2003.



