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ABSTRACT

NOISE PROPERTIES OF REGULARIZED IMAGE RECONSTRUCTION IN X-RAY
COMPUTED TOMOGRAPHY

by

Yingying Zhang-O’Connor

Chair: Jeffrey A. Fessler

X-ray computed tomography (CT) has routine use in medical diagnosis. Technology

advancements enable further clinical applications, such as cardiac imaging and lung cancer

screening. It also has use in industrial applications.

The spatial resolution and noise properties of image reconstruction methods are impor-

tant for imaging system design, reconstruction method comparisons and reconstruction pa-

rameter selection. Current reconstruction methods fall into two main categories: analytical

and iterative methods. The representative of the former category is filtered back projection

(FBP) or convolution back projection (CBP). The iterative methods can be further divided

into algebraic and statistical methods. The spatial resolution and noise properties of an-

alytical methods are well studied and understood. The statistical reconstruction methods

have the potential to offer improved image quality and better bias-variance performance.

They are based on models for measurement statistics and physics, and can easily incorpo-

rate the prior information, the system geometry and the detector response. They can also

model Compton scattering and the polyenergetic spectrum of the X-ray source. The main

xi



disadvantages of the statistical reconstruction methods are the longer computation time of

iterative algorithms that is usually required to minimize certain cost functions, and the lack

of insights into the resolution and noise properties of the reconstructed images.

This thesis addresses these two concerns of statistical reconstruction methods by de-

veloping the fast non-uniform FFT (NUFFT)-based forward and back-projectors and by

deriving an analytical approach to study the noise properties of the statistically recon-

structed images. The overall computation for the NUFFT-based 2D fan-beam forward

projector is akin to previous hierarchical methods, and is about two times faster than

the distance-driven (DD) forward projector while providing comparable accuracy. The

proposed analytical noise variance predictions for the 2D fan-beam geometry provide ac-

curacy comparable to FFT-based predictions and agree well with empirical variances in

fan-beam CT, but require much less computation than the traditional FFT method. An

extension to 3D cylindrical CT is also developed.

xii



CHAPTER 1

Introduction

The tasks of medical imaging can be grouped into two generic categories: classifica-

tion and estimation. Classification usually involves a decision-making process, determin-

ing from which class of underlying objects the data is derived. In the case of estimation

tasks, quantification of a variety of parameters is performed based on the measurements

to describe the objects. Image reconstruction is a common example of an estimation task:

estimating the spatial distribution of a certain characteristic of the object. For example,

the distribution of attenuation in transmission tomography and the distribution of the ra-

dioisotopes in emission tomography are the parameters of interest to reconstruct.

Objective assessment of image quality is task-specific. In the context of image recon-

struction, the task can be performed by different estimators, such as a Bayesian estimator,

an algebraic estimator or a maximum-likelihood (ML) estimator. Bias and variance are

two common measures to assess estimator performance. The quality of reconstructed im-

ages is often characterized by the spatial resolution and noise. In this dissertation, we focus

on tomographic imaging systems, particular transmission computed tomography (TCT).

The conventional method to reconstruct the attenuation images from computed tomog-

raphy (CT) measurements is filtered back projection (FBP) or convolution back projection

(CBP). FBP reconstruction method is a deterministic method based on the properties of

1
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the Radon transform and the central slice theorem. Therefore FBP method assumes an

ideal realization of tomographic imaging. The effect of noise is often reduced by a spatial-

invariant filter. Another class of methods that partially account for the data statistics are

somewhat “semi-statistical”, either using a spatial-variant filter to smooth the projection

data [3, 29, 82], or first statistically “restoring” the sinogram [10, 46, 58, 95] before apply-

ing FBP. The “fully” statistical reconstruction methods, on the other hand, are based on

models for measurement statistics and physics. They can easily incorporate the prior infor-

mation, the system geometry and the detector response, and model scattering and energy

spectrum of the X-ray source. Therefore, they have the potential to offer improved image

quality, better bias-variance performance and reduced dose. Of all the statistical recon-

struction methods, maximum likelihood reconstruction is most common. Because image

reconstruction is an ill-posed problem, maximum likelihood reconstruction leads to very

noisy images that are unacceptable. Noise reduction can be achieved by augmenting the

original optimization problem with a regularizer. Penalized-likelihood (PL) reconstruction

adds a roughness penalty to the negative log likelihood. Basically these penalty function-

als can be viewed as expressing prior information about the underlying object. Usually

an iterative algorithm is needed to minimize PL cost functions. The resolution and noise

properties are influenced by both the data collection method and reconstruction parameter

selection.

One of the main disadvantages of statistical reconstruction methods is the longer com-

putation time of iterative algorithms that usually are required to minimize the cost function.

Most iterative algorithms require one forward projection and one back-projection for each

iteration. The primary computation burden of iterative image reconstruction methods is

these forward and back-projections. All projection/back-projection methods are approxi-

mations to the real physical models. There are at least five practical types of backprojection
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approaches (including ours): rotation-based, pixel-driven, ray-driven, distance-driven and

Fourier-based. We will discuss these approaches in Chapter 3.

The statistical properties of the reconstructed images have not been well studied pre-

viously. Typically, the variance or standard deviation images are estimated empirically.

This requires multiple realizations of image reconstruction and therefore is impractical

due to the long computation time. The choices of regularization parameters that control

the trade-off between the data-fitting and the image smoothness are based mainly on trial

and error. Accurate prediction of variance maps for iteratively reconstructed images can

be useful for algorithm analysis and for the design of regularization methods. The exist-

ing variance prediction methods can be divided into iteration based and estimator based

methods. The iteration-based variance predictions are studied in e.g., [15,98] as a function

of the iteration number for the maximum-likelihood expectation maximization (MLEM)

algorithm that is based on a “stopping rule” to terminate the iterations before convergence.

The estimator-based variance predictions are the properties of the convergent images, and

independent of the particular algorithm and iterations, [32, 78, 91]. We focus on the latter

approach because the predictions depend only on the selected cost function, not on the

particular algorithm.

1.1 Contributions and Outline

The work in this dissertation has been focused on accelerating the forward and back-

projection and studying noise properties associated with statistical image reconstruction

in X-ray transmission CT:

1. Chapter 3 develops a fast Fourier-based projection and back-projection pair in 2D

fan-beam CT.

(a) Because there is no suitable Fourier slice theorem in divergent-beam geometry
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and it is not evident how to use for forward projection a recent extension [21] that

is suitable for analytical reconstruction, we use the usual parallel-beam Fourier

slice theorem and interpolate the samples into the fan-beam coordinates. To en-

sure good accuracy and computation efficiency, we use a min-max optimized

nonuniform fast Fourier transform (NUFFT) approach for the radial “interpola-

tion”. The backprojection is the adjoint operation of the forward projection.

(b) Because Fourier methods are efficient only for shift-invariant detector response

models, we approximate the detector response by the effective width at the center

of the field of view when the variation in detector response over the field of view

is often fairly modest.

2. The proposed NUFFT-based fan-beam forward and backprojectors work generally

for arbitrary fan-beam sampling patterns. For the usual 3rd-generation CT fan-beam

geometry, the overall computation for the NUFFT-based fan-beam forward projector

is O(N 2 logN), akin to previous hierarchical methods [16], whereas most space-

based forward projectors require O(N 3) operations. Therefore, the NUFFT-based

forward and backprojectors are much faster than the line or beam-based space ap-

proaches. They are comparable to the distance-driven projectors for small images

and are about 2 to 4 times faster for larger images.

3. Chapter 4 proposes an analytical variance prediction approach that can compute the

variance map efficiently and accurately. The derivation of the closed-form approxi-

mations provides insight into the noise properties of the quadratically penalized like-

lihood (QPL) reconstructed images in 2D fan-beam CT:

(a) Neglecting the depth-dependent detector blur, we start with the continuous-space

counterpart of the existing matrix-based covariance approximation [32], and de-
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rive a “pure” analytical local frequency response of Gram operator. This step

helps us understand the issue intuitively.

(b) By using discrete-space Fourier transform (DSFT) and Parseval’s theorem, we

are able to bridge the discrete space to continuous space and derive an accu-

rate analytical expression for variance prediction, based on local shift-invariance

approximations and local Fourier analysis.

(c) The simplest of these variance predictions require only a single backprojection

and a few minor operations to produce an entire variance map, so they are much

faster than the traditional FFT approach that would require a repetitive forward

and backprojection for each pixel in the image.

4. Chapter 5 extends the analytical 2D variance prediction methods into a 3D cylindrical

cone-beam geometry.



CHAPTER 2

Background

Statistical methods for image reconstruction can be used in different medical imaging

modalities, such as magnetic resonance imaging (MRI), positron emission tomography

(PET) and digital tomosynthesis. This thesis focuses on tomographic imaging. This chap-

ter briefly reviews the principles in tomographic imaging, particularly X-ray computed

tomography (CT).

2.1 Review of Principles of X-Ray Computed Tomography

Conventional tomography depicts a three-dimensional object into a two-dimensional

image. The word ”tomography” is derived from the Greek: tomos (slice) and graphia

(to write). In transmission tomography, the object to be imaged is the spatial attenua-

tion distribution, while the object to be imaged in emission imaging is the radioactivity

distribution. The main limitations of conventional tomography are the blurred overlying

structures superimposed on the image and the large x-ray dose to the patient.

The basic idea of today’s tomography was proposed as early as in 1940 by Gabriel Frank

[45] and by Allan Cormack independently. Computed tomography was later introduced

into clinical practice in early 1970s with first clinically available CT device installed at

Atkinson-Morley Hospital in Wimbledon, UK by Godfrey Hounsfield, James Ambrose

and Louis Kreel, [8]. Unlike conventional tomography, computed tomography is able to

6
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produce images of thin slices of the object with enhanced contrast and reduced structure

noise [19]. Tomographic imaging systems collect sets of projections and image recon-

struction algorithms recover the original objects from these projections.

2.1.1 Evolution of X-Ray CT Scanners

The typical transmission CT scanner consists of a X-ray tube, a rotation gantry, a table

and a detector with one or more detector cells. The types of CT scanners have evolved

over five major generations over the past few decades.

Figure 2.1 shows the typical first-generation CT scanner geometry that is characterized

by a single X-ray source and a single detector element. It represents the parallel beam

���������������������������������������������������������������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������������������������������������������������������������

x−ray detector

x−ray tube

10
th 

sca
n

1st scan

object

Figure 2.1: First generation CT scanner.

geometry. In this scanning geometry, X-ray tube and detector undergo both linear transla-

tion and rotation. For a given projection angle, a parallel-beam projection measurement is

collected by translating the X-ray tube and the detector along a straight line segment. The

X-ray source and detector assembly is translated in a direction that is perpendicular to the

X-ray direction and rotated to obtain projection measurements at different view angles.
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The advantages of this design are simplicity and the ability to accommodate objects of

different sizes. The disadvantage is the long scan time.

The second-generation CT scanner is also in a translation-rotation mode with multiple

detectors. A fan-beam of radiation is used. By using a small fan-beam angle, projection

data at different view angles are collected for each translation. This design helps reduce

scanning time by reducing the rotation step. Like the first-generation scanner, the second-

generation scanner also has the flexibility to accommodate a wide range of different object

sizes. This property enables important applications in some industrial areas.

The third-generation CT scanner utilizes a large number of detector elements and has

a much wider fan-beam angle so that ideally X-rays cover the entire object at all times,

shown in Figure 2.2. There is no need for translation in this geometry, leading to faster

scanning time. The X-ray tube and detectors assembly is operated only in the rotation

mode, as shown in Figure 2.2. However, to cover the entire object during the scan, the

range of different object sizes is limited by the maximum fan angle and the distance be-

tween the X-ray tube and the object. Furthermore, having all detector elements contribut-

ing to each view impose more stringent requirements on detector performance than earlier

generations.

The fourth-generation scanner is also a rotation-only scanner with a multi-element ring

detectors installed around the object. Only the X-ray tube is rotated while the ring detector

is stationary.

The mechanism of fifth-generation scanner is very different from that of all the earlier

generations discussed above in which the X-ray source and/or the detectors move within

the axial plane. The fifth-generation geometry is characterized by multiple X-ray sources

arranged into a circular array and an area detector with multiple elements. There is no

mechanical motion involved. Instead, the X-ray sources are electronically switched on or
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off during the data acquisition. A large volume of the object is covered during each scan

and a series of 2D projections are collected. An example of this approach is when the

X-ray source is produced by a electron-beam tomography (EBT) scanner, [45].

����������������������������������������������������������������������������������������

����������������������������������������������������������������������������������������
object

X−ray tube

detectors

Figure 2.2: Third generation of CT scanner.

During the 1980s, the development of slip ring technology enabled spiral/helical scan-

ning so that fan-beam helical scanning became the standard medical CT mode; see Fig-

ure 2.3. The X-ray source rotates continuously in one direction while the table on which

the patient is lying translates at a constant speed. The introduction of helical scanning

allows even larger body coverage during one single breath hold. Therefore artifacts due to

patient motion are reduced. However, there can be artifacts due to missing data in helical

acquisition.

���������������������������������������������������������������������������������������������������������������������������������������

�����������������������������������������������������������������������������������������������������������������������������

Table

object

Figure 2.3: Illustration of fan-beam helical CT scan.

Although helical CT improves the volume coverage, higher volume coverage and thin-
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ner slices are still demanded in many clinical situations. Multi-slice or multi-detector CT

scanners are available now commercially. They incorporate multiple rows of detector rings

and acquire multiple slices per rotation. Multi-threaded cone-beam CT scanners with up

to three X-ray tubes and corresponding detectors are proposed to improve temporal resolu-

tion and reduce cone-beam artifacts for multi-slice CT scanners [57]. Recently researchers

developed an inverse-geometry CT (IGCT) system [63, 67, 83]. In this IGCT architecture,

a scanned area source and one or more small detectors are used.

2.1.2 X-Ray CT Measurement Physics

Despite the different geometries mentioned in section 2.1.1, X-ray CT measurement

physics are the same for all geometries. For simplicity, our following discussion is re-

stricted to the 2D parallel-beam geometry. The detector measures the X-ray photon flux

emerging from the object at different angles, shown in Figure 2.1. Let Yi denote the mea-

surement for the ith ray of the incident spectrum. For a ray Li of infinitesimal width, the

mean of the projection measurements could be expressed as:

(2.1) E[Yi] =

∫

Ii(E) e
−

R

Li
µ(x,y,E) d`

dE +ri

where i = 1, . . . , Nd and Nd is the number of the rays. µ(x, y, E) denotes the unknown

spatially- and energy-dependent attenuation distribution,
∫

Li
· d` is the “line integral” func-

tion along line Li, and Ii(E) incorporates the source spectrum and the detector gain. In

reality, the measurements suffer from background signals such as Compton scatter, dark

current and noise. The ensemble mean of those effects (for the ith ray) is denoted ri.

2.1.3 Radon Transform and Fourier Slice Theorem

The CT measurements {Yi}Nd

i=1 indirectly correspond to the projections of the object’s

attenuation coefficient µ(x, y, E). The collection of line integrals is related to the Radon
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transform. The Radon transform and its associated Fourier slice theorem play a funda-

mental role in tomographic imaging systems and deserve an in-depth review.
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Figure 2.4: 2D function and its Line integrals.

sinogram for a NCAT phantom sinogram for a point object

Figure 2.5: Example of sinograms. Left: a sinogram of a NCAT phantom (see Figure 4.5). Right: a sinogram
of a point object.

For simplicity, we only consider the 2D case shown in Figure 2.4. The Radon transform
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relates a 2D image f(x, y) to its line integrals as follows [62]:

pϕ(r) = (Pf)(r, ϕ) =

∫

L(r,ϕ)

f(x, y) d`

=

∫ ∞

−∞

f(r cosϕ− ` sinϕ, r sinϕ+ ` cosϕ) d`

=

∫ ∞

−∞

∫ ∞

−∞

f(x, y)δ(x cosϕ+ y sinϕ− r) dx dy(2.2)

where P denotes projection operator, r is the radial distance from the origin and ϕ is the

view angle measured counter-clockwise from the y-axis to the ray direction. The final

expression in (2.2) is defined in polar coordinates, (r′, φ). If the projections pϕ(r) from

different angles are arranged as an array with one axis of projection angle ϕ and the other

axis of projection bins at the detector (radial distance r), then this 2D function is called

sinogram because the sinogram of a point object traces a sinusoid, see Figure 2.5. The goal

of image reconstruction is to estimate f(x, y), more particularly µ(x, y, E) in transmission

tomography, from a measured sinogram that is obtained from (noisy) samples of projection

data pϕ(r). In practice, the analytical reconstruction methods need to estimate p̂ϕ(r) from

measurements {Yi}. Statistical reconstruction methods estimate µ(x, y, E) directly from

measurements {Yi}.

The Fourier slice theorem is also known as the central section theorem or projection

slice theorem. This theorem is the foundation of the tomographic reconstruction method

(filtered back-projection) that is widely used in commercial CT scanners. Let Pϕ(ρ) denote

1D Fourier transform of pϕ(r):

Pϕ(ρ) ,

∫ ∞

−∞

pϕ(r) e−i2πρr dr .

Plugging (2.2) into Pϕ(ρ) yields the following mathematical statement of the Fourier slice

theorem [62]:

(2.3) Pϕ(ρ) =

∫ ∞

−∞

∫ ∞

−∞

f(x, y) e−i2πρ(x cos ϕ+y sin ϕ) dx dy = F (ρ cosϕ, ρ sinϕ),



13

where F (fx, fy) denotes the 2D Fourier transform of object f(x, y) and fx = ρ cosϕ, fy =

ρ sinϕ. The 2D Fourier slice theorem (2.3) states that the 1D Fourier transform of the

projection at view angle ϕ is equal to a central slice of the 2D Fourier transform of the

object at the same angle.

2.2 Review of Image Reconstruction Methods for X-Ray CT

The overall goal of x-ray CT image reconstruction is to reconstruct the underlying ob-

ject being imaged from the projection measurements, particularly µ(x, y, E) from {Yi}Nd

i=1

in transmission tomography. Image reconstruction methods or algorithms can divided

into two main categories: analytical and iterative methods. Most conventional reconstruc-

tion methods such as filtered back-projection (FBP) and backprojected-filtration (BPF)

are analytical methods. Iterative image reconstruction methods can be further divided into

algebraic and statistical methods. Algebraic reconstruction technique (ART) and multi-

plicative algebraic reconstruction technique (MART) are two examples of algebraic meth-

ods [9, 48, 88, 100]. Weighted least squares (WLS) and penalized likelihood (PL) recon-

struction are statistical reconstruction methods. Most conventional reconstruction methods

ignore the energy spectrum of the beam. In contrast, statistical reconstruction methods can

incorporate this energy spectrum into their statistical models. We give a brief review of

some of the reconstruction methods in this section.

2.2.1 Direct Fourier Reconstruction and Filtered Back Projection

Both direct Fourier reconstruction (DFR) and filtered back projection (FBP) are ana-

lytical image reconstruction methods. Fourier slice theorem and Radon transform are the

foundation of these approaches.
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Direct Fourier Reconstruction

The direct Fourier reconstruction (DFR) method is very straightforward with the direct

application of the Fourier slice theorem (2.3). To reconstruct f(x, y) from the measured

projections pϕ(r), one performs the following steps depicted in Fig. 2.6:

1. Take 1D Fourier transform of each pϕ(r) for each ϕ to get Pϕ(ρ). Based on the

relationship in (2.3), we have the 2D FT of the object f(x, y) in polar coordinates

F (ρ, ϕ).

2. Convert F (ρ, ϕ) in the polar coordinates into F (fx, fy) in Cartesian coordinates.

3. Take 2D inverse Fourier transform of F (fx, fy) to get f(x, y).

2D IFTGridding
1D FTs

along each ang 

PSfrag replacements

pϕ(r)

ϕ

f(x, y)Pϕ(ρ) F (fx, fy)

F (ρ, ϕ)

Figure 2.6: Basic steps of direct Fourier reconstruction.

In practice, we process the discretized versions of these continuous functions, as shown

in Figure 2.7. Hence the conversion from polar frequency samples to Cartesian frequency

samples usually involves Fourier domain interpolation (gridding). Fourier domain inter-

polation is non-trivial since local interpolation error in frequency domain can cause global

artifacts in image domain. Later in Chapter 3, we propose a Fourier-based forward projec-

tor that uses a Kaiser-Bessel (KB) interpolator optimized in min-max sense in the gridding

step.

Filtered Backprojection (FBP)

Filtered backprojection (FBP) is the most common analytical reconstruction technique

that is based on the Radon transform. The basic idea behind this method is to “smear”
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Gridding

PSfrag replacements

fx

fx

fyfy

Figure 2.7: Illustration of gridding step that interpolates polar samples of F (ρ, ϕ) of onto Cartesian samples
of F (fx, fy).

measured sinogram values back into the object space along the corresponding rays:

(2.4) (P∗p)(x, y) = b(x, y) =

∫ π

0

pϕ(x cosϕ+ y sinϕ) dϕ .

This operator P
∗ is called the backprojection operator that is the adjoint operator of the

forward projection operator in equation (2.2). The back-projection operation in (2.4) does

not recover the original object f(x, y), unfortunately. A blurred version of the object

b(x, y) called laminogram is yielded instead.

In practice we do not measure pϕ(r) directly, we need to estimate the projections from

the transmitted intensities {Yi}. Conventional FBP assumes mono-energetic property of

the X-ray spectrum Ii(E) = Ii(E0)δ(E − E0), then the mean intensities in (2.1) are given

by Beer’s law:

(2.5) E[Yi] = Ii(E0) e
−

R

Li
µ(x,y,E0) d`

+ ri.

The estimated projections can be obtained by taking the logarithm of the measurements:

(2.6) p̂ϕ(r) , − log

(

Yi − ri

Ii(E0)

)

≈
∫

Li

µ(x, y, E0) d` .

As mentioned earlier, the resulting laminogram b(x, y) from (2.4) is a blurred version of

the object f(x, y). To deblur, we apply a 1D “ramp” filter to each projection at each angle
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Figure 2.8: Basic steps of FBP reconstruction.

ϕ. The basic steps of FBP are illustrated in Figure 2.8. In reality, the ideal ramp filter

does not really exist and must be set zero beyond certain cutoff frequency. The ramp filter

is often apodized with a window function to reduce noise. Since the Fourier transform is

implemented using a FFT, the zero-padded sinogram is used to avoid aliasing before 1D

Fourier transform at each view and filtering.

Most CT scanners offer various filter options that the operator can select to enhance

either soft tissue features or bone details for different clinical applications. For example,

GE LightSpeed CT scanner has six types of filters: soft, standard, detail, lung, bone, edge

filters [45].

Conventional FBP is based on the monochromaticity assumption of X-ray source. Us-

ing the monoenergetic photon source is impractical in diagnostic CT because of the signal-

to-noise ratio (SNR) consideration. In reality, the photons emitted from a X-ray tube have a

spread of energies. The photon flux density or intensity demonstrates an energy-dependent

distribution. The shape of the X-ray spectrum is like a hump topped with several spikes.

The continuous spectrum is generated by Bremsstrahlung radiation. The spikes result

from the characteristic radiation that is not continuous.
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2.2.2 Statistical X-Ray CT Image Reconstruction

Statistical image reconstruction methods are based on measurement statistics and physics

models and offer numerous advantages, such as the potential for improved bias-variance

performance and providing quantitatively accurate CT values. Conventionally, the X-ray

CT measurements are assumed to follow discrete Poisson statistics. However, most CT

detectors are energy-integrating, not photon-counting. Due to the polyenergetic property

of the X-ray beam, although individual X-ray quanta will lead to Poisson statistics, the

overall recorded signal will not be Poisson.

A compound Poisson probability distribution function (pdf) of X-ray CT measurements

was derived by Whiting [97] using a moment generating function approach. The pdf is

dependent on the X-ray energy quanta, flux level and quantization step size. It has been

shown that the compound Poisson likelihood is similar to the ordinary Poisson likelihood

for the normal clinical exposures and deviates significantly from the ordinary Poisson

likelihood in situations of low counts. The compound Poisson statistics has a complicated

likelihood that hinders its direct application in statistical reconstructions. An approximate

likelihood was derived by Elbakri et al. in [28] using a generalized saddle-point integration

method. Their proposed approximate likelihood is more accurate than regular Poisson

likelihood. All the models above can be generalized to incorporate additive electronic

noise that is usually assumed to be independent of the quanta measurements. Variance

predictions in Chapter 4 and Chapter 5 are based on regular Poisson likelihood. However,

because variance is second-order statistics, the proposed variance prediction method is

applicable to essentially any statistical model.

We focus on the case of normal clinical exposures where regular Poisson statistics is

fairly accurate. The measurements are often modeled as the sum of a Poisson distribution

representing photon-counting statistics (2.1) and a zero-mean normal normal disctribution
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representing additive electronic noise:

(2.7) Yi ∼ Poisson{E[Yi]}+ N(0, σe),

where σe denotes the standard deviation of electronic noise. Because (2.7) does not leads

to a tractable likelihood function, an approximate shifted Poisson likelihood function that

matches the first and second moments is often used [80, 85, 102]:

(2.8) Yi + σe ∼ Poisson{E[Yi] + σe} .

For simplicity, we ignore the electronic noise and use a single material object to demon-

strate the ideas behind statistical image reconstruction. We discretize the continuous atten-

uation function µ(x, y, E) and parameterize both the spatial and energy dependence. We

parameterize the object space as follows:

(2.9) µ(x, y, E) =

p
∑

j=1

µj(E)bj(x, y),

where µj(E) denotes the unknown attenuation coefficient in pixel j and bj(x, y) is the pixel

basis function centered at pixel j. We further model the unknown attenuation coefficient

as

(2.10) µj(E) = m(E)ρj,

where m(E) is the mass attenuation coefficient of the single object material (e.g., water)

and ρj is the (unknown) density of the object in pixel j. Figure 2.9 gives some typical

mass attenuation coefficients for various materials.

Substituting (2.9) and (2.10) into (2.1), we obtain the following measurement statistics:

(2.11) Yi ∼ Poisson

{∫

Ii(E) e−m(E)[Aρ]i dE +ri

}

,

where A is the system matrix with entries aij =
∫

Li
bj(x, y) d`. For a mono-energetic

X-ray source, Beer’s law applies:

(2.12) Yi ∼ Poisson
{

Ii(E0) e−m(E0)[Aρ]i + ri

}
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Figure 2.9: Energy-dependent mass attenuation coefficients m(E) for bone, water and fat.

Now the reconstruction goal becomes to estimate ρ = (ρ1, . . . , ρp) from {Yi}Nd

i=1. When

the assumption that the object consists of one single material is invalid, one must parame-

terize both the spatial and energy dependency as Clinthorne et al. [22, 92, 93] as follows:

(2.13) µ(x, y, E) =
L
∑

l=1

ml(E)ρl(x, y)

where ml(E) denotes the energy-dependent mass attenuation coefficients of the lth mate-

rial and ρl(x, y) is the (unknown) spatially-dependent density of the lth material.

Penalized-likelihood (PL) Reconstruction

Based on the statistical distribution of the measurements, we can estimate ρ using pe-

nalized likelihood estimation. For the mono-energetic model (2.13), the negative log-

likelihood has the form

−L(ρ) =

Nd
∑

i=1

{

Yi log
(

Ȳi(ρ)
)

−Ȳi(ρ)
}

=

Nd
∑

i=1

{

Yi log
(

Ii(E0) e−m(E0)[Aρ]i + ri

)

−
(

Ii(E0) e−m(E0)[Aρ]i + ri

)}

(2.14)
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where Ȳi(ρ) , E[Yi|ρ] is the mean of the measurement data along pathLi. For reconstruc-

tion, we add a roughness penalty term to the negative likelihood, resulting in the following

penalized-likelihood (PL) cost function:

(2.15) Φ(ρ) = −L(ρ) + αR(ρ),

where the (pairwise) penalty term has the following form

R(ρ) =

p
∑

j=1

∑

k∈Nj

ψ(ρj − ρk),

β is a scalar that controls the trade-off of data fit and smoothness of image, ψ(·) is an

edge-preserving potential function and Nj is some neighborhood of pixel j.

Penalized Weighted Least Squares (PWLS) Reconstruction

The Poisson log-likelihood in (2.14) is based on the statistical properties of the tomo-

graphic reconstruction problem. However, because Poisson negative log-likelihood (2.14)

is non-convex and non-quadratic, the minimization algorithms required can be complex.

To simplify, one can apply a second-order Taylor expansion to the Poisson log-likelihood

in (2.14), [30, 31]. This quadratic approximation leads to weighted least squares (WLS)

likelihood function:

(2.16) −L(ρ) =

Nd
∑

i=1

wi
1

2
(− log(Yi)−[Aρ]i)

2,

where wi values are statistical weighting factors that depend on the model for the mea-

surement statistics. For the case of shifted Poisson likelihood, wi ≈ (Ȳi(ρ)+σe−ri)
2

Ȳi(ρ)+σe
. For

the case of regular Poisson likelihood, wi ≈ (Ȳi(ρ)−ri)
2

Ȳi(ρ)
. Plugging (2.16) into (2.15) yields

penalized weighted least squares (PWLS) cost function. In practice, one often uses simply

wi = Yi.
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Iterative algorithms are often applied to minimize (2.15) subject to certain object con-

straints such as non-negativity:

(2.17) ρ̂ = argminρ≥0Φ(ρ).

To find the minimizer of (2.15), optimization transfer methods [2, 25, 27] can be used

to replace a complex likelihood as in (2.14) with surrogate cost functions that are sim-

pler and easier to minimize. Optimization transfer methods also ensure the cost function

monotonically decreases after each iteration. The resulting algorithm is often a diagonally-

preconditioned gradient descent method of the following form:

(2.18) ρn+1 = [ρn −D−1∇Φ(ρn)]+

where ∇Φ(ρn) is the gradient of the cost function evaluated at current estimates ρn, D

is a diagonal matrix and [· ]+ enforces non-negativity constraint. The diagonal matrix D,

whose nonzero diagonal entries are the second derivatives of the surrogate function, is the

key that controls the rate of convergence and monotonicity of the algorithm. The second

derivative of the surrogate function has a curvature term that influences the rate of the

convergence particularly. We have several different choices of the curvature term:

• Iteration-dependent optimal curvature that keeps step size as large as possible, but re-

quires more computation [1].

• Iteration-independent maximum curvature that ensures the monotonicity of the algo-

rithm, but leads to a slower convergence [1].

• Iteration-independent precomputed curvature that compromises the monotonicity and

achieves faster convergence. It is usually used in the ordered-subset version of the

algorithm [2].

The column gradient of the cost function in (2.18) has the follow matrix form:

(2.19) ∇Φ(ρ) = −A′
D
(

Yi/Ȳi(ρ)− 1
)

∇ρȲ(ρ) + β∇R.
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From (2.12) and (2.19), we can see that one forward projection and one backprojection

are involved in each iteration. Therefore, fast forward and back-projectors are essential

in computation time reduction. This is the motivation for our work in next chapter on the

development of fast NUFFT-based forward and back projectors.

2.2.3 Beam-Hardening Artifacts Correction

The phenomenon of beam hardening arises from the nature of a polychromatic X-ray

source and the non-linearity between the attenuation and the material thickness. The lower

energy rays are preferably attenuated than the higher energy rays, as they penetrate through

a material. As a result, the effective beam energy shifts upward during the process. In other

words, the beam becomes “harder”. This phenomenon is referred to beam hardening. If

this beam-hardening effect is ignored, “cupping” artifacts will appear in the reconstructed

images and the reconstructed attenuation is not quantitatively accurate. The cupping ar-

tifacts are caused by the fact that the rays passing though the center of the phantom are

harder than the ones passing through the edges. The resultant attenuated profiles display a

cupped shape compared to the ideal profiles without beam hardening. The beam-hardening

artifacts become more severe for highly attenuating materials.

Correction of beam-hardening errors is essential in quantitative computed tomography

(QCT). Current correction methods [7, 26, 49, 50, 56, 68, 101] can be divided into single-

energy and dual-energy correction techniques. Two most commonly used single-energy

techniques are the water and bone corrections. Water correction technique assumes a

single-material object consisting of water. Bone correction technique usually performs

water correction first and then additional correction for bone is performed. Since the

single-material assumption is only partially valid, the techniques can not lead to an optimal

correction. Dual-energy technique uses two polyenergetic x-ray sources and collects two
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sets of measurements. We summarize two techniques here: water-corrected FBP and dual-

energy statistical reconstruction.

Water-Corrected FBP

Water-corrected FBP is the primary reconstruction method used clinically to eliminate

some of the beam-hardening artifacts. It takes into account the X-ray spectrum in the

pre-FBP processing.

This method assumes a single-material object consists only of water:

(2.20) µ(x, y, E) = m(E)ρ(x, y)

and (2.1) becomes

E[Yi] =

∫

Ii(E) e
−

R

Li
µ(x,y,E) d`

dE

=

∫

Ii(E) e
−m(E)

R

Li
ρ(x,y) d`

dE .

Before detailing how this method works, we first define the following notations:

`i(ρ) , −
∫

Li

ρ(x, y) d`

fi(`) , − log

(
∫

Ii(E) e−m(E)` dE
Ii

)

(2.21)

where a total intensity is defined

Ii =

∫

Ii(E)dE .

Since mwater(E) depends only on the spectral characteristics of the material attenuation

coefficient properties and we assume that the object consists of water only, mwater(E) can

be measured within the diagnostic x-ray energy range. By scanning a water-only phantom

with a known shape (usually a cylinder), the line integral function `i(ρ) can be calculated

analytically along different paths Li. In principle, this water phantom scan only needs to



24

be done once for a given scanner and source kVp setting. Then fi(`) is known as a function

of `. In reality, the water phantom scan needs careful calibration and we have only a finite

number of measurements. An empirical water correction method is used [87].

By taking the logarithm of the measurements,

(2.22) f̂i , − log

(

Yi

Ii

)

,

we get the estimates denoted by f̂i of the function fi(`). We can use a polynomial function

to approximate the continuous function fi(`) (or more precisely f−1
i ), or build a look-up

table for a certain range of `. Then the estimated ˆ̀
i of the `i’s can be obtained by

(2.23) ˆ̀
i = f−1

i

(

f̂i

)

.

Multiplying ˆ̀
i by water mass attenuation coefficient mwater(E0) for some reference energy

E0 yields the estimated sinogram

(2.24) p̂ϕ(r)
∣

∣

∣

Li(r,ϕ)
= mwater(E0)ˆ̀i.

Then we apply the regular FBP method mentioned in section 2.2.1 to this estimated sino-

gram to estimate µ̂(x, y, E0). Comparing equations (2.6) and (2.24), we can see that water-

corrected FBP partially takes into account the polyenergetic property of the incident spec-

trum by estimating ˆ̀
i from the logarithm of the measurements.

Water-correction FBP greatly reduces the beam hardening artifacts and provides vi-

sually pleasing images. However, since the human body does not consist of only water,

the reconstructed image using this method will be biased. Therefore water-corrected FBP

does not provide quantitatively accurate CT values.

Dual-Energy Image Reconstruction

Dual-kVp or dual-energy image reconstruction approach [7, 38, 93] doubles the mea-

surements by using two x-ray spectra, i.e., s = 1, 2 in (2.26). Using these measurements
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from two diverse spectra, one is able to reconstruct separate soft tissue and bone images.

The dual-energy reconstruction approach has shown promising potential for material char-

acterization and for quantitatively accurate CT values. The conventional disadvantage of

this method is the increased scan time and noise amplification due to the material decom-

position process.

A more general parameterization could be used:

(2.25) µ(x, y, E) =
L
∑

l=1

p
∑

j=1

µlj(E)bj(x, y),

where µlj(E) = ml(E)ρlj is the unknown attenuation coefficient in pixel j for lth material,

L is the number of different materials, i.e., the number of the spectral basis functions. In

dual-kVp case, we assume the object consisting of two materials, water and cortical bone,

where L = 2 in (2.25). The mean measurement for sth scan is given as

(2.26) E[Ysi] =

∫

Isi(E) e−
PL

l=1 ml(E)[Aρl]i dE ,

ignoring the background events. A is a system matrix with entries aij =
∫

Li
bj(x, y) d` .

We can use negative penalized log likelihood cost function as in (2.15) and apply opti-

mization transfer methods to find the minimizer [38].

Water-corrected FBP can produce one image for each x-ray energy because it assumes

the object consists of only water and use one-material model. Although this method over-

comes some of the beam-hardening artifacts and produces visually plausible images, it

introduces bias to the bone CT values which is not appropriate for the applications in

which the quantitative accuracy is required, especially for bone mineral density measure-

ments. On the other hand, dual-energy reconstruction is able to reconstruct soft tissue and

bone density map separately and has the potential to provide the quantitatively accurate

CT values at the price of the increased number of unknowns and possibly increased scan

time and X-ray dose.
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2.3 Summary

This chapter briefly reviews the X-ray CT measurement physics and the reconstruction

methods of X-ray CT. Radon transform and Fourier slice theorem are also introduced.

These concepts are essential as we develop the NUFFT-based forward and backprojectors

and propose an analytical variance prediction method in the following chapters.

In chapter 3, we extend the Fourier-based projectors to a fan-beam geometry based on

Fourier slice theorem and fan-to-parallel rebinning. For properly chosen parameters, an

O(N 2 logN) forward/backprojector pair is developed.

Statistical image reconstruction methods offer better bias-variance tradeoff over con-

ventional image reconstruction methods. However, noise properties of the reconstructed

images have not been well studied. In chapter 4 and 5, analytical variance prediction

methods are proposed for 2D fan-beam and 3D cone-beam geometries.



CHAPTER 3

Nonuniform Fourier Transform-Based Projectors for Fan-Beam
Transmission Tomography 1

The classical approach to reconstructing tomographic images is filtered back-projection.

Statistical image reconstruction methods are based on models for measurement statistics

and physics, and offer some attractive features such as the potential for improved image

quality and reduced dose. A drawback of statistical image reconstruction methods (com-

pared to FBP) is the longer computation time of the iterative algorithms.

Most iterative algorithms require one forward projection and one backprojection for

each iteration. These projection steps are the computational bottleneck. The Fourier-slice

theorem relates the 2D Fourier transform of the object and the 1D Fourier transforms

of sinogram data along radial direction at different view angles. It suggests a forward

projection scheme involving taking 2D Fourier transform of the object followed by the

1D inverse Fourier transforms at different views. This forward projection scheme should

work exactly in the continuous spaces. For the discrete spaces in which computed tomog-

raphy works, discrete Fourier transform can be implemented using fast Fourier transform

(FFT) that is very computation-efficient. Therefore, Fourier-based projectors have the po-

tential to greatly reduce the computation time. However, the FFT results does not give the

1This chapter is based on material from [106].
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samples at the same frequency locations as shown in Figure 2.7. In parallel-beam tomog-

raphy, the Fourier-based forward projector involves a non-uniform fast Fourier transform

(NUFFT) obtaining polar spectral samples that are non-uniformly spaced in Cartesian co-

ordinates from Cartesian images samples. Some interpolation is needed here and low

interpolation error is the key for the good performance of this type of projectors.

Two important requirements are imposed on the NUFFT that are suitable for developing

Fourier-based projectors in computed tomography: interpolation accuracy and computa-

tion efficiency. Matej et al. evaluated forward and back projectors [34, 41, 64, 65] that

used a NUFFT with a min-max optimized Kaiser-Bessel (KB) interpolation kernel [42].

Their results showed low interpolation error and good computation efficiency. This chap-

ter presents an extension of this NUFFT approach to the fan-beam geometry that is used

widely in X-ray CT systems [104].

There are two complications in extending Fourier-based projectors to a fan-beam ge-

ometry. Firstly, in the fan-beam case there is no suitable Fourier slice theorem. (A recent

extension is suitable for analytical reconstruction [21], but it is not evident how to use it

for forward projection.) Therefore, we use the usual Fourier slice theorem and interpo-

late into the fan-beam coordinates. To ensure good accuracy and compute efficiency, we

use a min-max optimized KB NUFFT approach for the radial “interpolation.” The second

complication is that Fourier-methods are efficient only for shift-invariant detector response

models. In emission tomography with converging (fan-beam) collimators, the detector re-

sponse is highly shift variant, and it is unlikely that Fourier-based methods can be suitable.

We focus here on transmission tomography for the fan-beam geometries of typical clinical

X-ray CT scanners, where the variation in detector response over the field of view is often

fairly modest. We approximate the detector response by the effective width at the center

of the field of view, and investigate the effect of this approximation. We focus on itera-
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tive reconstruction but we note for completeness that NUFFT-based direct Fourier image

reconstruction methods have also been investigated [23] [43].

3.1 Nonuniform Fourier Transform (NUFFT)

The practical implementation of discrete Fourier transform, fast Fourier transform (FFT)

is very computationally efficient when uniformly-spaced frequency samples are needed.

FFT requires O(N logN) operations rather than O(N 2) direct computation of discrete

Fourier transform in 2D case when we have N by N image samples. However, in some

applications where non-uniform frequency domain sampling is needed, FFT is not appli-

cable. The fast approximation of the non-uniform Fourier transform [12] is required to

retain the computation advantages of fast algorithm like FFT. It is called non-uniform fast

Fourier transform (NUFFT). Interpolation errors are a limitation.

Recently, the NUFFT using min-max interpolation has been proposed by Fessler [42],

and numerical results showed that this approach has lower approximation error than con-

ventional interpolation methods. It has also been found that the conventional interpolators

such as Kaiser-Bessel and Gaussian bell interpolators, with min-max optimized param-

eters provide a comparable accuracy as the min-max interpolator if larger neighborhood

J is chosen. Particularly, Kaiser-Bessel interpolator, if suitably optimized, can provide a

reasonable trade-off between accuracy and computation simplicity.

Min-Max Non-Uniform FFT

In parallel-beam and fan-beam tomography, 2D non-uniform FFT is needed. For sim-

plicity, we consider 1D case first. The extension to 2D case is straightforward. The dis-

cussion follows the main idea in [42]. The basic steps of a 1D NUFFT are:
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1. Calculation of a K/N times oversampled and scaled FFT:

(3.1) Y [k] =
N−1
∑

n=0

s[n]x[n] e−iγkn

for k = 0, . . . , K−1 and γ = 2π/K. s[0], . . . , s[n−1] are the predetermined scaling

factors.

2. Interpolation onto the desired, non-uniformly spaced frequency locations ωm, where

m = 1, . . . ,M with J nearest neighbors:

(3.2) X̂(ωm) =
J−1
∑

j=0

u∗mjY [{k0(ωm) + j}K ],

where umjs are the interpolation coefficients, “∗” denotes complex conjugate, {· }K

denotes module-K operation and k0(ω) is integer offset defined as:

(3.3) k0(ω) =











(arg mink∈Z |ω − γk|)− J+1
2
, J odd

(max{k ∈ Z : ω ≥ γk})− J
2
, J even

.

The integer offset function satisfies the following shift property:

k0(ω + lγ) = l + k0(ω), ∀l ∈ Z.

For min-max interpolator, we choose the interpolator um , (um0, . . . , um(J−1)) and

scaling factors s , (s[0], . . . , s[n− 1]) that minimizes the worst approximation error:

min
s

max
ω

min
u(ω)

max
x:‖x‖≤1

∣

∣

∣X̂(ω)−X(ω)
∣

∣

∣ .

As shown in [42], the inner optimization of the interpolation coefficients u(ω) for a fixed

scaling vector s has an analytical solution by firstly finding the worst case signal x using

Cauchy-Schwartz inequality and then transforming the inner optimization into an ordinary

least-squares minimization. The outer optimization requires numerical evaluation.

One critical problem remains in the design of the min-max interpolator: the appropriate

choice of the scaling factors, s. The simplest choice is a unity scaling vector such that
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s[n] = 1 for all n (trivial scaling in [69] or uniform scaling in [42]). A more sophisticated

choice requires exhaustive minimization on the maximum error. A truncated Fourier series

is used to expand s[n]s:

(3.4) s[n] =
L
∑

l=−L

cl e
iγζ(n−N−1

2
) ,

for n = 0, . . . , N − 1. cls are Hermitian symmetric Fourier coefficients and ζ is the design

parameter. Brutal-force global search is used jointly to find the best cls and ζ . The unity

scaling vector is a special case of (3.4) such that ζ = 0 and cl = 1/(2L + 1). The cosine

scaling factors considered in (3.4), [69] is another special case corresponding to ζ = 0 and

c = (0, 1/2). As shown in [42], using the scaling vector by exhaustive search provides

lower interpolation error than using the unity scaling vector that in turn outperforms the

cosine scaling vector. However, the complexity of this choice of scaling factors increases

greatly as truncation length L increases. Therefore, we need a practical procedure that

gives a good trade-off between computation simplicity and interpolation accuracy. We

discuss this procedure next.

2D non-uniform FFT is a straightforward generalization of 1D case. We compute a

K1K2/N1N2 times oversampled and scaled 2D FFT:

(3.5) Y [k1, k2] =

N1−1
∑

n1=0

N2−1
∑

n2=0

s[n1, n2]x[n1, n2] e
−i(γ1k1n1+γ2k2n2)

For simplicity, we use separable scaling factors s[n1, n2] = s[n1]s[n2] in [34].

Min-Max Optimized Kaiser-Bessel Non-Uniform FFT

Although exhaustively minimized scaling factors in (3.4) yields low interpolation er-

ror, the optimization of the scaling factors remains a complex problem and imposes com-

putation challenge. A practical procedure is proposed in [42] using suitably optimized

conventional shift-invariant interpolators, such as Gaussian bell or Kaiser-Bessel interpo-
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lators. Error analysis shows that for a given interpolation kernel g(·) with finite support,

the following scaling factors minimize the worst case error at the DFT sample locations:

(3.6) s[n] =
1

∫ J/2−1

l=−J/2
eiγl(n−N−1

2
) g(l) dl

.

Using the min-max criterion, the conventional interpolators are also able to provide

the accuracy comparable to min-max interpolator. In our studies, the min-max optimized

Kaiser-Bessel interpolator is used for its reasonable trade-off between accuracy and sim-

plicity. We will focus on Kaiser-Bessel interpolator from now on. The generalized Kaiser-

Bessel function [60] has the following form:

(3.7) g(κ)m,J,τ = fm
J (τ)

Im(τfJ(κ))

Im(τ)

where κ is the distance from KB window center, Im denotes the modified Bessel function

of order m, J is window size and parameter τ controls the kernel shape and frequency

characteristics [60, 66].

(3.8) fm
J (κ) =











√

1−
(

κ
J/2

)2

, |κ| < J
2

0, otherwise

Numerical results in [42,65] show that the approximation error decreases rapidly with the

increase of oversampling factor K/N and for a fixed K/N , the min-max optimal Bessel

function order is m ≈ 0. For a fixed oversampling factor K/N and at m = 0, the optimal

ratio τ/J is around 2.34 for a range of kernel size.

Min-Max Non-Uniform inverse FFT

By duality i.e., by changing the sign in the exponent of (3.1), one can use the above pro-

cedure of computing NUFFT to evaluate a nonuniform inverse FFT when given uniformly-

spaced spectral samples, and non-uniformly spaced spatial samples are needed.
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3.2 NUFFT-Based Forward and Back-Projectors in Parallel-Beam To-
mography

Min-max NUFFT has been applied recently to parallel-beam iterative image recon-

struction by Matej et al. [65] and the results show low approximation errors and com-

putation efficiency. The Fourier slice theorem is the basis of the Fourier-based forward

and back-projections in parallel beam CT image reconstruction. Figure 3.1 illustrates the

NUFFT-based forward projector.

Detector frequency response
(radially shift−invariant)

Data spectrum (Polar)

 

Image

2D FFT Interpolation

Image spectrum (Cartesian)

radially
1D IFFTs

 

Projections

Scale Basis function filter 

2 4

5

6

1 3

Figure 3.1: Basic steps of NUFFT forward projector.

Step 1 and 2 give us the spectral samples uniformly-spaced in Cartesian grid:

(3.9) Y [k1, k2] =

N1−1
∑

n1=0

N2−1
∑

n2=0

s[n1]s[n2]x[n1, n2] e
−i(γ1k1n1+γ2k2n2)

In the practice of image reconstruction, we work on a discretized version of continuous

image, represented as a sum of weighted basis functions:

(3.10) f(x, y) =

N1−1
∑

n1=0

N2−1
∑

n2=0

f [n1, n2]b(x− n141, y − n242)

where f [n1, n2] denotes the values of the continuous image f(x, y) and b(x − n141, y −

n242) is the basis function such as square pixels or blob at location [n141, n242)]. Typ-

ically, the basis functions are spatially invariant and therefore could be imitated in the

image frequency domain by including a basis function filter. In our studies, we use square
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pixels

(3.11) b(x, y) = rect
(

x

41

)

rect
(

y

42

)

Therefore, the basis function filter used in step 3 is

(3.12) B(fx, fy) = 4142 sinc(41fx)sinc(42fy)

Step 3 performs the multiplication between the image spectral samples and the samples of

B(fx, fy):

(3.13) Z[k1, k2] = Y [k1, k2]·B[k1, k2]

whereB[k1, k2] is the basis function filter sampled at locations (2πk1/K1, 2πk2/K2), k1 =

−K1/2, . . . , K1/2− 1 and k2 = −K2/2, . . . , K2/2− 1, assuming K1, K2 are even.

Step 4 interpolates the uniformly-spaced Cartesian samples Z[k1, k2] into polar grid

and Zθ[k]’s are obtained.

In parallel beam geometry, the radially invariant detector blur can also be modeled

by multiplying the data spectrum Zθ[k]’s radially by the samples H[k]’s of the detector

frequency response H(ρ). A choice for h(r) is

(3.14) h(r) =
1

w
rect

( r

w

)

where w is the finite width of the detector elements.

3.3 NUFFT-Based Forward and Back-Projectors in Fan-beam Tomog-
raphy

There are two complications in extending Fourier-based projectors to a fan-beam ge-

ometry. Firstly, in the fan-beam case there is no suitable Fourier slice theorem. (A recent

extension is suitable for analytical reconstruction [21], but it is not evident how to use it
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for forward projection.) Therefore, we use the usual Fourier slice theorem and interpo-

late into the fan-beam coordinates. To ensure good accuracy and compute efficiency, we

use a min-max optimized KB-NUFFT approach for the radial “interpolation.” The second

complication is that Fourier-methods are efficient only for shift-invariant detector response

models. In emission tomography with converging (fan-beam) collimators, the detector re-

sponse is highly shift variant, and it is unlikely that Fourier-based methods can be suitable.

We focus here on transmission tomography and the fan-beam geometries of typical clin-

ical X-ray CT scanners, where the variation in detector response over the field of view is

often fairly modest. We approximate the detector response by the effective width at the

center of the field of view, and investigate the effect of this approximation. This effective

detector width is calculated by multiplying the actual detector width by the ratio of the

source-to-isocenter distance over the source-to-detector distance.

The Fourier slice theorem [52] is the foundation of Fourier-based forward projection.

Let η denote the 2D image and denote its 2D FT in polar coordinates by

(3.15) Gϕ(ρ) ,

∫∫

g(x, y) e−ı2πρ(x cosϕ +y sinϕ) dx dy .

The ideal line-integral projection of g(x, y) at angle ϕ (taken counter-clockwise from the

y axis) as a function of the radial distance r from the origin is given by

(3.16) pϕ(r) =

∫

η[r cosϕ−` sinϕ, r sinϕ+` cosϕ] d` .

For our purposes, the most convenient form of the Fourier slice theorem expresses each

projection as a 1D inverse Fourier transform of Gϕ(ρ) as follows:

(3.17) pϕ(r) =

∫

Gϕ(ρ) eı2πρr dρ .

Fourier-based projectors use discretized versions of (3.15) and (3.17), whereas space-

based projectors discretize (3.16).
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Figure 3.2: Angular coordinates in fan-beam geometry.

3.3.1 Fan-Beam Tomography

As illustrated in figure 3.2, fan-beam rays are indexed by angular coordinates (β, γ),

where β is the angle of the source relative to the y axis, and γ is the angle of the ray relative

to the source. Fan-beam FBP methods exist only for special detector configurations [18].

Here we accommodate any set of samples γm, m = 1, . . . , Nγ , where γ = s/Dsd. We

assume that β is sampled uniformly, i.e., β = 2π k
Nβ
, k = 0, . . . , Nβ − 1, although this

could be relaxed.

To develop a Fourier-based projector for fan-beam geometries, we use the well-known

relation between parallel-beam and fan-beam coordinates [73]:

r = Ds0 sin γ(3.18)

ϕ = β + γ,(3.19)

where Ds0 is the source to rotation center distance, illustrated in figure 3.2. For typical

angular samples {γm}, the corresponding radial samples rm , Ds0 sin γm are spaced non-

uniformly. And when β is sampled uniformly, for a given γm (or equivalently a given rm),

the corresponding values of ϕ are also equally spaced but shifted by γm.



37

Projections
fan −beam

 

1D NUIFFTs 
radially

3 4

1D shifts 
in

Effective detector 
frequency response

2

Data spectrum (Polar)

 

Image

1
NUFFT =

PSfrag replacements

rrm
γ

ϕ
ϕ

ϕ
β

Figure 3.3: Basic steps of NUFFT forward projection in fan-beam CT. 1) 2D NUFFT of image to obtain
polar spectrum samples. 2) Multiply radially by the frequency response of the effective detector
blur. 3) 1D NUFFTs along radial direction r for each ϕ. 4) 1D shifts in ϕ using interpolation
with periodic end condition.

3.3.2 NUFFT-Based Fan-Beam Forward and Back Projectors

Figure 3.3 shows the four major steps of the proposed fan-beam NUFFT-based forward

projector. These four steps are summarized next.

2D Non-Uniform Fast Fourier Transform

Step 1 in figure 3.3 uses a 2D NUFFT to evaluate a discretized version of (3.15). The

input is N1 × N2 samples of the image η. The output is polar coordinate samples of G+

that are equally-spaced along ρ at locations {n∆ρ}, for n = −N1/2, . . . , N1/2− 1, where

∆ρ is the sample spacing in ρ. N1 is chosen based on the choice of ∆ρ and the extent of

the spectral samples. In light of (3.19), we use ϕ samples that match the β samples, i.e.

θk = 2π k
Nβ

.

Step 1 is identical to the parallel-beam case that is detailed in [34, 41, 42, 64, 65]. It

involves the following operations.

(i) Multiply the 2D image samples by a scaling function that precompensates for imper-

fections in the frequency-domain interpolator. We use separable Kaiser-Bessel scaling

functions for simplicity [42].

(ii) Calculate a K1 × K2 point (oversampled) 2D FFT of the scaled discrete image.

Typically K1 = 2N1 and K2 = 2N2.

(iii) Interpolate onto the desired, non-uniformly spaced frequency locations from the
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J×J nearest neighbors, using the Kaiser-Bessel interpolator that minimizes the worst-

case approximation error [47, 72].

(iv) Multiply by the spectrum of the image-domain basis function (typically square pix-

els).

By choosing sufficient oversampling and sufficiently large J ×J neighborhood, very high

accuracy is achieved [42, 65].

Approximating Detector Response

In parallel-beam tomography, one can model shift-invariant detector blur in the fre-

quency domain by multiplying the image spectrum G+ with the frequency response of the

detector blur [65]. In fan-beam tomography, detector blur effects depend on the distances

between each image pixel and the detector elements, and hence cannot be modeled exactly

in the frequency domain. For example, in the CT system described in Section 4.5.4, the

effective detector width varies from 0.22 mm to 0.64 mm over a 40 cm field of view. For

simplicity, we approximate the depth-dependent detector response by the effective beam

width at the rotation center, calculated by multiplying the actual detector width by the ratio

of the source-to-isocenter distance over the source-to-detector distance.

Simulations in Section 4.5.4 evaluate the effects of this shift-invariant approximation.

The next two steps in figure 3.3 also differ between the parallel-beam and fan-beam

geometries.

1D Non-Uniform IFFTs

Step 3 in figure 3.3 evaluates a discretized version of (3.17). In the parallel-beam case,

a simple 1D inverse FFT along r for each θk will suffice [65]. For the fan-beam case, the

desired radial samples rm are spaced unequally, per (3.18). We discretize (3.17) as follows
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for m = 1, . . . ,M :

(3.20) pθk
(rm) ≈

N1
2
∑

n=−
N1
2

Gθk
(n∆ρ) ∆ρ eı2π∆ρnrm ,

where we choose ∆ρ ≤ 1
2rmax

to avoid aliasing.

Since the rm values are spaced unequally, whereas the ρn = n∆ρ values are spaced

equally, we evaluate (3.20) for each θk using a 1D NUFFT with “frequency” locations

−2π∆ρrm [42].

1D Shifts Using FFT-Based Interpolations

After step 3 in figure 3.3, we have projection data that is non-uniformly spaced in r

(corresponding to each γm), and uniformly-spaced in ϕ. For each m = 1, . . . , Nγ , a 1D

shift (by γm, see (3.19)) in the ϕ direction is needed. Since projections are 2π periodic in

ϕ, Dirichlet-like “periodic sinc” interpolation is a natural choice to “fractionally shift” the

resulting projection data in the previous step into the desired ϕ locations. We use 1D FFTs

for this final step [44].

Symmetry Properties

Because the input image, g(x, y) is real in CT, its Fourier Transform, G+ is Hermitian

symmetric. Thus, only half of the Fourier samples must be calculated in the 2D NUFFT

(step 1) and the 1D NUFFT (step 3). In particular, we implement (3.17) as follows:

(3.21) pθk
(rm) ≈ Gθ(0) + 2 · real







N1
2
∑

n=1

Gθk
(n∆ρ) ∆ρ eı2π∆ρnrm







.

This approach reduces computation and also ensures that the projections are entirely real

valued. There may still be small negative values even if g is nonnegative. For some

iterative algorithms these may need be set to zero.
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For further savings, we exploit the Radon symmetry property: pθ(−r) = pθ±π(r). So

we only need to compute the polar frequency samples for θ ∈ [0, π) instead of [0, 2π) in

step 1 shown in figure 3.3.

Backprojection

Iterative algorithms require repeated forward and back-projections, where the back-

projector is the adjoint operator of the forward projector. We implement the back-projector

by “reversing” (not inverting!) the linear steps above. This approach provides an exact

adjoint, so the forward and back projectors are matched perfectly.

3.3.3 Theoretical Analysis of Operation Flops

NUFFT-based space-based
steps FFT interpolation (line integral)

2D NUFFT 2N2 log N J2NγNβ/4
1D NUFFTs NβNγ log Nγ J1NγNβ O(NβNγN)

1D shifts 2Nβ log Nβ

Table 3.1: Floating-point operations for NUFFT-based and space-based forward projectors. Assumes N×N
image and N1 ≈ Nγ .

Table 3.1 summarizes the dominant operation counts for the NUFFT-based forward

projector. The expressions are for a N × N image and a Nγ × Nβ sinogram. We use

a J × J neighborhood of 2D DFT samples for interpolation in the 2D NUFFT, and J1

neighbors for the 1D NUFFT. The 2D NUFFT computes N1 × Nβ/4 polar frequency

samples.

For comparison, a line-length space-based forward projector requires O(NβNγN) op-

erations, where the proportionality constant can be large when the intersection lengths are

computed on the fly (rather than precomputed) due to the very large image sizes in CT.

In the usual 3rd-generation CT fan-beam geometry where Nγ ≈ 2N and Nβ ≈ 2N ,

the overall computation for the NUFFT-based forward projector is O(N 2 logN), akin to
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previous hierarchical methods [16], whereas most space-based forward projectors require

O(N 3) operations.

3.4 Simulation and Real Data Results

We simulated a 3rd-generation fan-beam X-ray CT system with sinogram size of ap-

proximately 1.7N radial bins by 2N views over 360
◦ . The source to detector distance,

Dsd, is about 949mm, and the rotation center to detector distance is about 408mm. Thus

Ds0 = 541mm. For example, when N = 512, the corresponding sinogram size is 888

samples in γ, spaced by4γ ≈ 0.06
◦ and 984 source positions over 360

◦ , so4β ≈ 0.37
◦ .

A quarter detector offset is also included to reduce aliasing. Except where noted below,

we use Nρ = 1.7N and ∆ρ = 1/FOV in (3.21). In all simulations, we used Shepp-Logan

digital phantom and assume mono-energetic X-ray source.

The Fourier-based method is implemented in Matlab (version 7.0.4) using double pre-

cision; the NUFFT spectral interpolator is an ANSI C MEX routine. The space-based

projector is an ANSI C MEX routine using single precision. All projectors are evaluated

on a Dell 670n computer with dual Intel Xeon 3.40GHz CPU.

The space-based projector used here was designed originally for coordinate-wise algo-

rithms, e.g., [39]. It was not optimized for ray-driven calculation of the line-integral model

described in Model 1 in section 3.4.1. Its primary role here is for accuracy comparisons.

3.4.1 Forward and Back-Projector as Single Modules

We evaluated the NUFFT-based fan-beam forward and back-projectors using the Shepp-

Logan digital phantom. The brain-size field of view is approximately 308mm, thus pixel

size is about 0.6mm for N = 512.
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Forward Projector

We investigated four different scenarios, involving three different analytical models.

All models used the analytical formula for the fan-beam projections of ellipses to provide

a “gold standard” reference sinogram.

Analytical model 1: line integral model.

Here we used the analytical formula for the fan-beam line-integral projections of an

ellipse, sampled at the center of each detector element. For the NUFFT approach we

set the detector frequency response to unity. For the space-based approach we set aij to

the usual length of intersection of the ith ray with the jth pixel. (This was implemented

by setting the beam-width in Model 2 below to zero, rather than by developing an

optimized, ray-driven line-integral algorithm.) This line-integral model is often used in

evaluating forward projectors.

Analytical model 2: linear averaging model.

The line-integral model is unrealistic since detectors have finite width and they aver-

age the incoming signal across that width. For Model 2, we generated the reference

sinogram by linearly averaging 8 analytical rays sampled across each detector element.

This also accounts for depth-dependent detector response. For the NUFFT method,

we accounted for the finite beam width approximately by using the beam width at the

center of the field of view. For the space-based approach, we computed aij as the area

of intersection between the jth pixel and the thin-wedge connecting the point X-ray

source with the ith finite-width detector. That space-based model accounts for distance

dependent beam-width but increases computation.

Analytical model 3: nonlinear averaging model.

Due to the nonlinearity of Beer’s law, the linear averaging model is imperfect. For

Model 3, instead of linearly averaging the 8 analytically computed line integrals per
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analytical models Model 1 Model 2 Model 3a Model 3b
discretized models space NUFFT space NUFFT space NUFFT space NUFFT

max % error 7.03 6.13 2.31 2.15 2.91 2.71 2.64 2.67
`1 % error 0.13 0.10 0.07 0.08 0.07 0.08 0.07 0.09

% nrms error 0.28 0.25 0.16 0.16 0.17 0.17 0.16 0.16

Table 3.2: Space-based and NUFFT-based forward projectors of 512 × 512 image compared to exact an-
alytical projections for three different analytical models. Model 1: analytical, space-based and
NUFFT-based methods all use line integrals. Model 2: analytical method linearly average 8
rays across one detector element; space-based method uses the thin-wedge beam and NUFFT-
based method approximates the beam width at the rotation center. Model 3a: analytical method
nonlinearly average 8 rays across one detector element before taking the logarithm; space-based
method uses thin-wedge beam; NUFFT-based method uses the beam width at the rotation cen-
ter. Model 3b: As in Model 3a except NUFFT and space-based both use multi-line nonlinear
averaging.

detector element used in Model 2, we formed the reference sinogram by computing

the negative logarithm of the average of the exponentials of the negatives of these ray

values multiplied by 0.02/mm. This nonlinear averaging introduces the “exponential

edge gradient effect” that occurs in practice [51].

For this reference sinogram, we compared two different approaches to pixelized for-

ward projectors. For Model 3a we used the same NUFFT and space-based forward

projectors described under Model 2. Those projectors use linear averaging so increased

errors are expected. For Model 3b we used over-sampled versions of the line-integral

models described under Model 1 and nonlinearly averaged the resulting line integrals

over each detector element. These over-sampling approaches require much more com-

putation than may be practical for routine use, but better match the nonlinearly averaged

analytical sinogram. In this model, all of the methods account for distance-dependent

beam width.

For all of the above scenarios, we computed the normalized maximum error, maxj(|xj−yj |)
maxj(|xj |)

,

and the normalized `p error, ‖xj−yj‖p

‖xj‖p
, specifically the normalized absolute error (`1 error)

and the normalized root mean square (NRMS) error. For 1D and 2D NUFFT, we used

FFT oversampling factor K/N = 2 and the number of neighbor samples J = 5. Table 3.2
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cpu = 120.2 s 
 range [0.0 303.5]

Space−based

50

300

cpu = 2.1 s 
 range [−0.6 303.5]

NUFFT(J=5)

50

300

range [0.0 303.0]

Analytical

50

300

range [0.0 2.0]

Shepp−Logan

0.9

1.1

2.31% max; 
 0.16% nrms 
 range [0 7.01]

space |error|

0

1

2.15% max; 
 0.16% nrms 

 range [4.32e−08 6.52]

NUFFT |error|

0

1

Figure 3.4: Simulation results for forward projectors of image size 512× 512 in Model 2: sinogram size of
888 bins by 984 views. The gray-scale ranges were chosen to show details. The exact range are
shown below each Figure.

summarizes the comparisons under these three different models. The space-based and

NUFFT-based forward projectors perform similarly for all situations, despite the approxi-

mated detector response model.

We also performed the forward projections on various image sizes,N = 128, 256, 384, 512

and 1024. figure 3.4 shows the projections of an image of size 5122 in Model 2. The sino-

grams are visually indistinguishable. The accuracy of the NUFFT-based method is compa-

rable with the space-based method, while the computation time (using Matlab cputime

command) is about 57 times faster. This acceleration factor does not equal to N
log N

due to

other constants.

Table 3.3 further compares the computation times and accuracies for images of various

sizes. To further demonstrate the computation efficiency, we also include the performance
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Image size CPU time (in seconds) max % error % nrms error
Space NUFFT DD Space NUFFT DD Space NUFFT DD

(line) (beam) (beam) (beam)
1282 1.7 1.9 0.1 0.1 3.57 3.82 3.58 0.64 0.63 0.61
2562 13.5 15.2 0.5 0.7 3.05 3.76 3.05 0.31 0.31 0.30
3842 45.4 50.9 1.2 2.1 2.34 2.97 2.34 0.21 0.21 0.20
5122 106.9 120.2 2.1 5.0 2.31 2.15 2.31 0.16 0.16 0.15
10242 852.5 956.3 8.6 39.2 1.53 1.58 1.53 0.08 0.08 0.07

Table 3.3: Comparison of space-based, NUFFT-based and distance-driven (DD) forward projectors for var-
ious image sizes.

of the fast distance-driven (DD) projector proposed recently by De Man et al. [24], which

is a O(N 3) method, implemented as a C MEX interface to C++ code provided by those

authors. The computation time of the NUFFT-based forward projector is comparable to

the distance-driven forward projector for small images and is about 2 to 4 times faster for

larger images. The benefits of a O(N 2 logN) method improves as N increases, but in

practice, the preferred method will depend on hardware considerations like pipelining.

2 3 4 5 6 7 8 9
0

2

4

6

8

10

12

neighborhood J

%
 e

rro
r

max % error

% normalized RMS

K/N = 1.5
K/N = 2
K/N = 3

Figure 3.5: Trade-off between NUFFT-based forward projector accuracy and oversampling factor K/N and
neighborhood J × J for 5122 image.

Figure 3.5 shows the accuracy as a function of the oversampling factor K/N and the

neighborhood size J . This plot suggests that J = 4 would be adequate. However, this
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plot shows only the accuracy in the sinogram domain. In the image domain, some ringing

artifacts appeared in the NUFFT image for J = 4, suggesting that the sinogram domain

does not adequately reveal high frequencies. Therefore in all subsequent results, we chose

J = 5.

Back-Projector

To evaluate the back-projector, we processed the sinogram obtained from the analytical

projections with the first two steps in the fan-beam FBP method. Since there is no easy

way to calculate the exact back-projections analytically, here we applied only space-based

and NUFFT-based methods to this processed sinogram.

In results not shown, the computation efficiencies and accuracies were very similar

to those in Table 3.3, as is expected because the back-projector is the exact adjoint of

the forward projector. For a 5122 image, the back-projection times for the space-based,

NUFFT and DD methods were 245.2, 2.4 and 5.1 seconds, respectively.

3.4.2 Forward and Back-Projectors within Iterative Reconstruction

Because even small approximation errors might accumulate after many iterations, it is

necessary to evaluate the accuracy of the NUFFT-based projectors in iterative reconstruc-

tion methods.

Simulation Study

We used the analytical method mentioned under “Model 2” in section 3.4.1 to simulate

a noiseless sinogram y from a Shepp-Logan phantom. The sinogram size was 888 radial

bins by 984 views over 360
◦ . We ran 200 iterations of the conjugate gradient algorithm,

initialized with x = 0, for the following penalized weighted least-squares cost function
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with a quadratic roughness penalty (QPWLS-CG)

Φ(x) =

Nd
∑

i=1

wi
1

2
(yi − [Ax]i)

2 + αR(x)(3.22)

R(x) =
∑

k

ψ([Cx]k),(3.23)

where yi is the negative log of the measured sinogram, wis are statistical weighting factors,

A is the system matrix, C is a differencing matrix and ψ(t) is the potential function. Here

ψ(t) = t2/2, a quadratic penalty. For this simulation, we used wi = exp(−ξ[Ax]i) where

ξ is a scaling factor chosen to set the maximum value of ξ[Ax]i to about 5. We chose

α = 28 for this simulation. Evaluating the PSF using the approximations described in [40]

shows that the FWHM is about 2.1 pixels, i.e., 1.3mm, for this value of β. We used the

modified quadratic roughness penalty in [40] to obtain approximately uniform resolution.

We ran QPWLS-CG using the distance-driven, space-based and NUFFT-based forward

and back projectors respectively. Here, we used Nρ = 1332 in (3.21).

Figure 3.6 shows that the reconstructed images are visually indistinguishable even with

a 200HU window. Figure 3.7 shows the profiles through the region of interest contain-

ing the small features in lower part of the phantom. The max percent difference between

NUFFT-based and space-based and distance-driven methods is less than 1.4% and nor-

malized RMS is about 0.3%. This difference is much smaller than the 3.7% NRMS error

of the PWLS estimates themselves (compared to the true object). The NUFFT method

exhibits oscillations of about 1HU in this region. This could be reduced by increasing Nρ

at the price of increased computation. The computation time is reduced by a factor of 80

for the NUFFT approach compared to the space-based method and a factor of 2 for the

NUFFT approach compared to the distance-driven method.
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Figure 3.6: QPWLS-CG reconstruction (200 iterations) for Shepp-Logan phantom with projectors from
Model 2: noiseless data, square pixels.
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Figure 3.7: Horizontal profiles through region of interest of the reconstructed images of distance-driven,
space-based and NUFFT-based methods at the 200th iteration.
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Real X-Ray CT Data

We further tested the NUFFT approach within iterative reconstruction using real (noisy)

CT data. Transmission data from a human shoulder phantom were acquired on a GE

Lightspeed scanner. The field of view is 500mm, thus pixel size is about 1.0mm. Other

parameters, such as Dsd, Ds0 and the detector offset are as the same as those used in the

previous noiseless data simulation. The initial image is the ramp-filtered FBP image with

median filtering using a 3-by-3 neighborhood.

We ran 60 iterations of conjugate gradient algorithm for a PWLS cost function (PWLS-

CG) [37]. We again use the expression in (3.22) and (3.23) except here we used an edge-

preserving “hyperbola” penalty function:

(3.24) ψ(t) =
δ2

3
(
√

1 + 3(t/δ)2 − 1).

The regularization parameters were δ = 100HU and α = 29 which gives FWHM 1.7

pixels, i.e., about 1.6mm. We also used the modified penalty described in [40]. We chose

wi to correspond to the 2nd derivative of the transmission Poisson log-likelihood [81].

Figure 3.8 shows the results of iterative reconstruction on real data with space-based

and NUFFT-based projectors, respectively, using a standard display window width of 400

Hounsfield units (HU). The reconstructed images from the reconstruction methods with

space-based and NUFFT-based projectors are again visually indistinguishable, with the

max difference less than 3.4% (178.3 HU) and normalized rms around 1.0%. The largest

differences were at the edges of the FOV.

This chapter has presented a NUFFT-based projection method for fan-beam tomogra-

phy. This framework is an extension of parallel-beam NUFFT-based projectors. Our re-

sults show that the min-max NUFFT approach provides an accurate and efficient method

for fan-beam forward and back-projection. Software is available online [36].
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Figure 3.8: PWLS-PCG reconstruction (60 iterations) for real X-ray CT fan-beam sinogram data with pro-
jectors from Model 2.

The NUFFT-based forward and back-projectors with min-max interpolation kernels

are efficient computationally compared to space-based methods, and are reasonably accu-

rate. As expected, the computation advantage increases with larger data size (Table 3.3).

The approximation error remains low even after many iterations. We have proposed this

NUFFT approach for iterative fan-beam reconstruction. It is unclear how the NUFFT

method could be used directly for fan-beam FBP, since that approach requires a weighted

backprojection. However, one could first rebin from fan-beam to parallel-beam rays and

then apply an NUFFT-type method.



51

3.5 Conclusion and Discussion

We have used an NUFFT method that works generally for arbitrary fan-beam sampling

patterns. Further acceleration may be possible if one uses a specific 2D NUFFT approach

that is tailored to the polar sampling pattern required for the Radon transform, e.g., [11].

Many such methods have been proposed for direct Fourier reconstruction, e.g., [13,17,59,

74, 96]. Presumably some of these methods could be adapted to iterative reconstruction,

for both parallel-beam and fan-beam geometries. The method also can be extended to the

helical cone-beam geometry.

However this method is poorly suited for “ordered-subsets” algorithms since it must

compute an oversampled 2D FFT even if only a few projecton views are needed. This

property limits its application to algorithms where ordered-subsets are not needed. Exist-

ing O(N 2 logN) methods also have this limitation [99].



CHAPTER 4

Analytical Noise Analysis for Fan-Beam Transmission Tomography
with Quadratic Regularization 1

Statistical image reconstruction methods offer improved resolution and noise trade-

off over conventional reconstruction methods such as FBP. However, iterative methods

based on maximum-likelihood criteria often lead to very noisy reconstructed images upon

convergence. There are several ways to reduce the undesirable noise: stopping the iteration

long before convergence, post-filtering the convergent images, or including a roughness

penalty term in the objective function. The latter is referred to as penalized-likelihood

(PL) criteria. Our primary interest is penalized-likelihood image reconstruction.

Accurate predictions of image variances can be useful for reconstruction algorithm

analysis and for the design of regularization methods. Computing the predicted variance

at every pixel using matrix-based approximations [32] is impractical. Even most recently

adopted methods that are based on local discrete Fourier approximations are impractical

since they would require a forward and back-projection and two FFT calculations for every

pixel, particularly for shift-variant systems like fan-beam tomography.

This chapter describes new “analytical” approaches to predicting the approximate vari-

ance maps of 2D images that are reconstructed by penalized-likelihood estimation with

1This chapter is based on material from [107].

52
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quadratic regularization in fan-beam geometries. The simplest of the proposed analytical

approaches requires computation equivalent to one back-projection and some summations,

so it is computationally practical even for the data sizes in X-ray CT. Simulation results

show that it gives accurate predictions of the variance maps. The parallel-beam geometry

is a simple special case of the fan-beam analysis. The analysis is also applicable to 2D

PET.

We start with a brief review on the matrix approximation proposed in [32] and then

present an analytical variance prediction method that can be applied to any 2D tomogra-

phy. Instead of working in the discrete space, we use the discrete space Fourier transform

(DSFT) and Parseval’s theorem to bridge from the discrete space to the continuous space.

Using local shift-invariance approximations and local Fourier analysis, we derive “analyt-

ical” closed-form expressions for the local impulse response and local frequency response

of the Gram operator and the regularization operator. The final approximations eliminate

the need of FFTs for variance predictions, greatly reducing computation for cases where

the variance is to be predicted at numerous pixel locations. Furthermore, these approxima-

tions provide insight into the resolution and noise properties of the reconstructed images.

4.1 Review of Existing Noise Analysis Methods

Statistical image reconstruction methods are usually nonlinear and shift-variant. To an-

alyze the statistical characteristics of the reconstructed images, one would like to be able to

predict the variances and covariances of estimated pixel values. The variance information

provides an uncertainty measure of the reconstructed image and may aid regularization pa-

rameter selection. The existing noise analysis methods can be divided into two categories:

iteration based and estimator based. The iteration-based variance predictions are studied in

e.g., [15,98] as a function of the iteration number for the maximum-likelihood expectation
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maximization algorithm based on the “stopping rule” to terminate the iterations before

convergence. The estimator-based variance predictions are independent of the particu-

lar algorithm and iterations, [32,78,91]. Our proposed method falls in the estimator-based

category. In this section, we give a brief overview on the existing estimator-based methods

and our proposed method.

The estimator-based analysis for the mean and variance proposed in [32] uses the par-

tial derivatives of the cost function and Taylor approximations. The approximations are

in matrix form and give accurate results. However, the predictions involve the inversion

of the Hessian matrices and therefore are computationally expensive. Based on this work,

a great deal of effort has been given to simplify these matrix methods [78, 91]. All these

methods, that we refer to as the DFT approximations, are based on a factorization of the

system matrix and circulant approximations to the Hessian matrices to precompute and

store a great portion of the calculations. The factorization of the system matrix into ge-

ometric and object-dependent portions is specially useful for the shift-varying imaging

systems. However, these DFT approximations still require in precomputation one for-

ward and backprojection and two FFT calculations, one for likelihood Hessian and one

for penalty Hessian, for each location of interest. Moreover, these expressions are still in

matrix form and provide little direct insight into the noise properties.

Because our analysis is built on the previous work [32], we briefly repeat its main

results here. The goal of transmission image reconstruction is to estimate an attenuation

image µ[~n] from projection data Y , where ~n is a vector denoting the 2D image pixel

location. We focus here on penalized-likelihood estimators obtained by minimizing a cost

function as follows:

µ̂ = arg min
µ

Φ(µ,Y ),

where µ = (µ[~n1], . . . , µ[~np]) ∈ R
p (p-dimensional real space). The cost function includes
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a negative log-likelihood term and a regularization term:

(4.1) Φ(µ,Y ) = −L(µ,Y ) + αR(µ),

where α is a global regularization parameter, controlling the trade-off between the reso-

lution and noise. As a concrete example, for transmission tomography under the Poisson

noise model, the log-likelihood is

(4.2) L(µ,Y ) =
∑

i

Yi log
(

Ȳi(µ)
)

−Ȳi(µ).

For mono-energetic transmission scans, the measurement means are modeled by

(4.3) Ȳi(µ) = bi e
−[Aµ]i + ri,

where A is the system matrix, bi denotes the blank scan, and ri denotes the additive con-

tribution of scatter to the ith ray.

We focus on regularization terms of the following form:

R(µ) =
4
∑

l=1

Rl(µ)(4.4)

Rl(µ) =
∑

~n,~n−~ml∈S

rl[~n]
1

2
(µ[~n]− µ[~n− ~ml])

2 ,(4.5)

where S , {~nj : j = 1, . . . , p} denotes the subset of the N × M lattice that is esti-

mated and ~ml ∈ {(1, 0), (0, 1), (1, 1), (−1, 1)}. The roughness penalty (4.4) involves the

horizontal, vertical, and diagonal neighbors and allows for the possibility of using regu-

larization coefficients {rl[~n]} that vary both with spatial location and direction [35,84]. In

general 1 ≤ p ≤ NM and p < NM because the physical field of view (FOV) is a subset

of the lattice (see Figure 4.1).

The goal of this work is to approximate the covariance matrix Cov{µ̂} efficiently yet

accurately, motivated by the problem of designing the regularizer R(µ). The proposed
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Figure 4.1: A N ×M lattice with approximately circular FOV. Only the pixels with indices are estimated.
In this example, p = |S| = 12.

prediction methods can be generalized to other log-likelihood terms including 2D emis-

sion tomography by modifying W in (4.7) below. An accurate estimation of the Fisher

information matrix in emission tomography is essential [61].

The following approximation to the p× p covariance matrix of µ̂ was derived in [32]:

(4.6) K = (A′WA + αR)−1A′ Cov{Yi}A(A′WA + αR)−1,

where R is the Hessian matrix of the roughness penalty. Usually, W ≈ diag
{

Ȳi

}

based

on models (4.1) and (4.2). The weighting matrix W depends on the cost function we

use in image reconstruction and the diagonal covariance matrix of measurements Cov{Yi}

depends on the statistical model. This general form of covariance matrix approximation

(4.6) is accurate for any cost functions used in image reconstructions, provided that the

measurements’ second-order moments can be accurately estimated.

For transmission tomography with the simple Poisson statistical model (4.3), Cov{Yi} =

diag
{

Ȳi

}

. The approximation (4.6) becomes

(4.7) K = (A′WA + αR)−1A′WA(A′WA + αR)−1,
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In practice Ȳi is unknown, so we plug in Yi as an approximation [33]. Although we focus

on (4.7) hereafter, the analysis generalizes easily to more complicated statistical models

and log-likelihoods, using (4.6). The covariance between pixels µ̂[~nk] and µ̂[~nj] can be

approximated using (4.7) as follows:

(4.8) Cov{µ̂[~nj], µ̂[~nk]} ≈ e′
jKek,

where ej denotes the jth unit column vector of length p.

The matrix method described in (4.7) and (4.8) has been used in various applica-

tions [75, 91]. Simulation and experimental results have confirmed the accuracy of this

covariance approximation in image regions where the non-negativity constraint is usually

inactive. However, evaluating (4.8) is relatively expensive. In this chapter, we introduce

“continuous space analysis” and use “local stationarity” to develop fast approximations

for the variance and covariance of the reconstructed image µ̂[~n].

4.2 Local Shift-Invariance Approximations

The matrix method described in (4.7) and (4.8) is very expensive to compute, even for

the variance at a single pixel. To accelerate computation, local shift-invariance approxi-

mations are usually used in practice, (e.g., [54,75,78,79,91]). Figure 4.2 demonstrates the

idea behind local shift-invariance approximations. When two pixels are sufficiently close

to each other, the local impulse responses at these pixels are similar. We state this idea

mathematically in the following context.

Let M denote one of the p × p matrices in (4.7), such as A′WA or R, or inverses or

sums thereof. Then a matrix-vector operation y = Mx can be expressed equivalently as

y[~n] = δS [~n]
∑

~n′∈S

h(~n, ~n′) x[~n′]

= δS [~n]
∑

~n′

h(~n, ~n′)x[~n′]δS [~n′],(4.9)



58

impulse images with mask

−300 −200 −100 0 100 200 300
0

0.5

1

1.5

2

2.5 x 108

x (mm)

Local impulse responses of AtWA at various locations 

 

 
(0,0)
(3∆,0)
(−27∆,0)

LIR at (3∆,0)LIR at (0,0) LIR at (−27∆,0)

Figure 4.2: Local impulse responses (LIR) of A′ W A at three different pixels: (0, 0), (3∆, 0) and
(−27∆, 0). The contours shown are at 95%, 75%, 50%, 30%, 15% of LIR maximum.

where δS [~n] is an indicator function of ~n defined as follows:

(4.10) δS [~n] ,











1, ~n ∈ S

0, otherwise.

In other words, the elements of M correspond to Mkj = h(~nk, ~nj) .

Near a given location ~n0 of interest, we define a local impulse response of M as fol-

lows2:

h0(~m) , h(~n0 + λ~m,~n0 − (1− λ) ~m)

δS [~n0 + λ~m]δS [~n0 − (1− λ)~m],(4.11)

where ~m ∈ Z
2, Z denotes the set of integers. Usually we choose λ = 1. However,

sometimes we can approximate h even for non-integer arguments, in which case λ = 1/2

may also be useful [14, p. 870].

2Throughout the paper we use the subscript “0” to indicate dependence on a given pixel location ~n0.
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We say that h(~n, ~n′) is locally shift invariant near ~n0 if h(~n, ~n′) ≈ h0(~n− ~n′) for ~n and

~n′ close to ~n0. The approximation should be accurate provided ~n and ~n′ are “sufficiently

close” to ~n0 relative to the width of h0. Thus, if the operator M is approximately locally

shift invariant near ~n0, then we can approximate the superposition sum (4.9) by (almost) a

convolution sum:

(4.12) y[~n] ≈ δS [~n]
∑

~n′

h0(~n− ~n′)x[~n′]δS [~n′],

or equivalently y ≈M0x, where the p×pmatrix M0 is defined by [M0]kj = h0(~nk − ~nj) .

The expression (4.12) is almost a convolution sum, except for the “edge conditions” of the

indicator functions. If the point ~n0 is not “too close” to the boundaries of the support

mask S , then we may able to disregard the indicator functions and treat the expression as

a convolution.

Let T be the NM × p matrix such that

T1+n+mN,j =











1, ~nj = (n,m)

0, otherwise,

for n = 0, . . . N − 1 and m = 0, . . .M − 1. The purpose of T is to embed the p elements

of µ (as shown in figure 4.1) back to the 2D N ×M lattice. Then M0 = T′M̆0T, where

(M̆0)~n,~n′ = h0(~n− ~n′) is an NM ×NM matrix that is block Toeplitz with Toeplitz blocks

(BTTB). Thus we can make a circulant approximation to M̆0, ( [20]). Such approximations

are often reasonably accurate except near the edges of the FOV, where the differences

between “Toeplitz” and “circulant” end conditions are largest. The local impulse response

(4.11) and the corresponding circulant approximation are two key tools for analysis.
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4.3 Variance Predictions for Fan-Beam Tomography

In the spirit of the local shift-invariance approximations presented in Section 4.2, we

approximate the covariance matrix in (4.7) near a given location ~n0 by

K ≈ K0 , T′K̆0T

K̆0 , (F0 + αR0)
−1F0(F0 + αR0)

−1,

where F0 and R0 are the NM × NM BTTB approximations corresponding to A′WA

and R, respectively. Then we approximate the covariance between pixels µ̂[~n] and µ̂[~n′]

in (4.8) by the following inner product:

(4.13) Cov{µ̂[~n], µ̂[~n′]} ≈ 〈K̆0e~n′ , e~n〉,

where e~n is ~nth unit vector of length NM .

Two useful approximations to (4.13) follow from Parseval’s theorem. One option is to

interpret the arguments in (4.12) with a suitable modulo N or M . In this case, the inner

product defined in (4.13) is in the form of circulant convolution and can be approximated

by FFTs:

(4.14) Cov{µ̂[~n], µ̂[~n′]} ≈ 1

NM

~N−1
∑

~k=~0

Pd0[~k] e
i~ω~k

·(~n−~n′) ,

for ~n, ~n′ ≈ ~n0, where ~N = (N,M), ~ω~k = (2πk1/N, 2πk2/M) and

Pd0[~k] ,
Γ0[~k]

(Γ0[~k] + αΩ0[~k])2
,

with

F0 ≈ QΓ0Q
′

R0 ≈ QΩ0Q
′,
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where Q is the 2D (N,M )-point orthonormal DFT matrix. The diagonal matrices Γ0 and

Ω0 have diagonal elements Γ0[~k] and Ω0[~k] that are the 2D DFT coefficients of the local

impulse response of A′WA and R near ~n0, respectively. This DFT/FFT approximation

has been used in [37, 78, 90] to predict variance at a single pixel:

Var{µ̂[~n0]} ≈ 〈K̆0e~n, e~n〉

≈ 1

NM

~N−1
∑

~k=0

Γ0[~k]

(Γ0[~k] + αΩ0[~k])2
.(4.15)

Generally, evaluating this expression for a single pixel requires a forward and backprojec-

tion and two FFTs. Computation of this DFT approximation is still expensive for realistic

image sizes when the variance must be computed for many or all pixels, particularly for

shift-variant systems like fan-beam tomography.

An alternative option is to consider µ[~n] to be defined over all of Z
2 (two-dimensional

integer space), in which case (4.13) is in the form of ordinary convolution that can be

expressed using the discrete-space Fourier transform (DSFT) as follows:

(4.16) Cov{µ̂[~n], µ̂[~n′]} ≈
∫ π

−π

∫ π

−π

Pd0(~ω) ei~ω·(~n−~n′) d~ω

(2π)2
,

where Pd0(~ω) is the local spectrum of K̆0, given as follows:

(4.17) Pd0(~ω) ,
Hd0(~ω)

[Hd0(~ω) + αRd0(~ω)]2
,

where Hd0(~ω) is the local frequency response of the Gram matrix A′WA and Rd0(~ω) is

the local frequency response of R near ~n0. To our knowledge, this paper is the first to

use (4.16) to develop analytical variance approximations as a faster alternative to the DFT

approach (4.15).

For regularizer design, the standard deviation map of the reconstructed image is one

quantity of interest, and our numerical investigation will focus on variance prediction.

However, the methodology applies readily to approximate covariances.
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Using the DSFT approximation (4.16), we approximate the variance at pixel ~n0 as

follows:

(4.18) Var{µ̂[~n0]} ≈
∫ π

−π

∫ π

−π

Pd0(~ω)
d~ω

(2π)2
.

Let ∆ denote the sample spacing in the reconstructed image. By making the change of

variable, ~ω = (2πρ∆)~eΦ where ~eΦ , (cos Φ, sin Φ), we rewrite (4.18) in terms of polar

frequency coordinates (ρ,Φ) as follows:

(4.19) Var{µ̂[~n0]} ≈ ∆2

∫ 2π

0

∫ ρmax(Φ)

0

P0(ρ,Φ)ρ dρ dΦ,

where ρmax(Φ) = 1
2∆ max{|cos Φ|,|sin Φ|}

, and we define

(4.20) P0(ρ,Φ) , Pd0(2πρ∆~eΦ) =
H0(ρ,Φ)

[H0(ρ,Φ) + αR0(ρ,Φ)]2
.

We defined H0 and R0 similarly in terms of Hd0 and Rd0. The variance prediction (4.19)

applies to any 2D geometry with appropriate local frequency responses H0(ρ,Φ) and

R0(ρ,Φ). We will specialize (4.19) by finding H0(ρ,Φ) for fan-beam geometry and

R0(ρ,Φ) for quadratic regularization.

4.4 “Pure” Analytical Variance Predictions for Ideal Fan-Beam To-
mography

We first present a “pure” analytical analysis in continuous space for an ideal fan-beam

scanner that has infinitesimal beams and zero-width detectors. In this ideal case, the sys-

tem operator A is the continuous counterpart of the system matrix A in (2.11) and is same

as the fan-beam projection operator P .

The result developed under this idealized situation is not practical but served as a nat-

ural starting point of and provides first intuition on the noise properties of the fan-beam

tomography.
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4.4.1 Local Frequency Response of The Gram Operator

The linear operator A transforms a signal f(x, y) in image space into a signal p(s, β)

in fan-beam projection space:

p(s, β) , (Af)(s, β) =

∫ ∞

−∞

f(x, y)δ(x cosϕ(s, β) +y sinϕ(s, β)− r(s)) dx dy .

The usual inner product for fan-beam projection space is given as the following:

(4.21) 〈p1, p2〉 =

∫ smax

−smax

∫ βmax

0

p1(s, β) p2(s, β) ds dβ,

where p1(s, β) and p2(s, β) are two signals in fan-beam projection space. This is the

natural inner product when considering the usual case of samples that are equally-spaced in

the arc length s and in source angle β for equiangular case. The parallel-fan relationships

are given in (3.18) and (3.19). For convenience, we repeat the results here with slightly

different notations:

r(s) = Ds0 sin γ(s)(4.22)

ϕ(s, β) = β + γ(s),(4.23)

whereDs0 is the source to rotation center distance and γ(s) is the angle of the ray relative to

the source. γ(s) = s/Dsd for equiangular case and γ(s) = arctan(s/Dsd) for equidistant

case. We consider equiangular case only here.

For the inner product (4.21), the adjoint of P is given by

(P∗p)(x, y) =

∫ smax

−smax

∫ βmax

0

δ(x cosϕ(s, β) +y sinϕ(s, β)− r(s)) p(s, β) ds dβ .

To analyze the impulse response of the Gram operator P
∗
WP , consider an impulse object

δ0(x, y) = δ(x− x0, y − y0) as follows:

h(x, y;x0, y0) = (P∗
WP δ0) (x, y)

=

∫ 2π

0

∫ smax

−smax

δ(x cosϕ(s, β) +y sinϕ(s, β)− r(s))

· δ(x0 cosϕ(s, β) +y0 sinϕ(s, β)− r(s))w(s, β) ds dβ .(4.24)
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We assume hereafter that w(s, β) is chosen such that w(s, β) = 0 when β > βmax.

Thus we can assume βmax = 2π for the analysis, yet the results are still applicable to

“short” scans provided w(s, β) is chosen appropriately. For convenience, we express

the point (x0, y0) in polar coordinates (r0, ϕ0). Now make the change of variables r′ =

Ds0 sin γ(s), ϕ′ = β + γ(s), the impulse response in (4.24) becomes

h(x, y;x0, y0) =

∫ 2π

0

∫ rmax

−rmax

δ(x cosϕ′ +y sinϕ′−r′) δ(r0 cos(ϕ′ − ϕ0)−r′)

·w(s(r′), β(r′, ϕ′)) J(r′) dr′ dϕ′

=

∫ 2π

0

δ(x cosϕ′ +y sinϕ′−r′0) w̄(r0(ϕ
′), ϕ′)J(r0(ϕ

′)) 1{|r0(ϕ′)|≤rmax} dϕ′,

where J(r) is the determinant of the Jacobian matrix of transforming from the fan-beam

coordinates to parallel-beam coordinates and w̄(r, ϕ) is rebinned w(s, β) in parallel coor-

dinates:

J(r) =

∣

∣

∣

∣

D2
sd

arcsin(r/Ds0)

∣

∣

∣

∣

w̄(r, ϕ) = w(s(r), β(r, ϕ))

r0(ϕ
′) = r0 cos(ϕ′ − ϕ0)

s(ϕ′) = Dsd arcsin

(

r0(ϕ
′)

Ds0

)

β′ = ϕ′ − arcsin

(

r′0
Ds0

)

.(4.25)

We focus on locations within the field of view (FOV) where r0 ≤ rmax , Ds0 sin γ(smax).

In the spirit of local shift invariance, x ≈ x0 + r cosϕ and y ≈ y0 + r sinϕ. Consider the

following local impulse response:

h0(r, ϕ) , h(x0 + r cosϕ, y0 + r sinϕ; x0, y0)

=

∫ 2π

0

δ(r cos(ϕ− ϕ′)) w̄(r0(ϕ
′), ϕ′)J(r0(ϕ

′)) dϕ′

=
1

|r|

[

w̄(r0(ϕ
′), ϕ′)J(r0(ϕ

′))
∣

∣

∣

ϕ′=ϕ+ π
2

+ w̄(r0(ϕ
′), ϕ′)J(r0(ϕ

′))
∣

∣

∣

ϕ′=ϕ−π
2

]

,(4.26)
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Thus, for the fan-beam case the local impulse response of the Gram operator is

(4.27) h0(r, ϕ) =
1

|r|w0(ϕ+ π/2),

where the angular-dependent weighting is

(4.28) w0(ϕ) , w̄(r0(ϕ
′), ϕ′)J(r0(ϕ

′))
∣

∣

∣

ϕ′=ϕ
+ w̄(r0(ϕ

′), ϕ′)J(r0(ϕ
′))
∣

∣

∣

ϕ′=ϕ−π
.

The local impulse response h0(r, ϕ) is in form of 1
r

that decays rapidly with the increase

of the distance r with respect to the location (x0, y0).

We can obtain the local frequency response of the Gram operator by taking local Fourier

transform of h0(r, ϕ) in (4.27):

H0(ρ,Φ) =

∫ π

0

∫ ∞

−∞

h0(r, ϕ) e−ı2πrρ cos(ϕ−Φ) |r| dr dϕ

=

∫ π

0

w0(ϕ+ π/2)

∫ ∞

−∞

δ(ρ cos(ϕ− Φ)) dϕ

=
1

|ρ|

∫ π

0

w0(ϕ
′) δ(sin(ϕ′ − Φ)) dϕ′

=
w0(Φ)

|ρ| ,(4.29)

where w0(Φ) is a location-dependent angular weighting function.

4.4.2 Local Frequency Response of Quadratic Regularization Operator

Analogous to the discrete-space regularization (4.4) in Section 4.1, natural approaches

to quantify the continuous-space roughness involve the derivatives of the image µ(x, y).

Define Dφ`
to be the differentiation operator along direction [cosφ` sinφ`]

T :

(Dφ`
µ)(x, y) =

√
rl,0

(

cosφ`
∂

∂x
+ sinφ`

∂

∂y

)m

µ(x, y),

where rl,0 is a user-designed weight along direction [cosφ` sinφ`]
T . Usually, m = 1 or 2.

For the usual L2 norm we have

‖Dφ`
µ‖2 =

∫∫
∣

∣

∣

∣

√
rl,0

(

cosφ`
∂

∂x
+ sinφ`

∂

∂y

)m

µ

∣

∣

∣

∣

2

dx dy,
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These norms quantify the roughness of µ. (To use such semi-norms we must restrict

attention to the subspace of functions with square integrable derivatives.) We can write

this differentiation operator in frequency domain:

Dφ`
= F

−1
2 D

(√
rl,0(ı2πu cosφ` + ı2πv sinφ`)

m
)

F2

= F
−1
2 D

(

(ı2πρ)m√rl,0(cos Φ cosφ`+sin Φ sinφ`)
m
)

F2

= F
−1
2 D

(

(ı2πρ)m√rl,0 cosm(Φ− φ`)
)

F2,(4.30)

where (u = ρ cos Φ, v = ρ sin Φ) denotes the frequency domain Cartesian coordinates.

The adjoint operator of Dφ`
can be easily obtained for the usual inner product in L2(R

2):

(4.31) D
∗
φ`

= F
−1
2 D

(

(−ı2πρ)m√rl,0 cosm(Φ− φ`)
)

F2.

We can show from (4.30) and (4.31) that

D
∗
φ`

Dφ`
= F

−1
2 D

(

(2πρ)2m · rl,0 cos2m(Φ− φ`)
)

F2.

Then we define the following regularization operator:

R ,

L
∑

`=1

(D∗
φ`

Dφ`
) = F

−1
2 R0(ρ,Φ)F 2,

where the frequency response of R is separable in ρ and Φ:

(4.32) R0(ρ,Φ) = (2πρ)2m

L
∑

`=1

rl,0 cos2m(Φ− φ`) = (2πρ)2mR̃0(Φ),

with angular-dependent regularization

(4.33) R̃0(Φ) ,

L
∑

`=1

rl,0 cos2m(Φ− φ`) .

Consider the usual quadratic regularization design where m = 1 for the first-order

derivatives: R(ρ,Φ) = CR(2πρ)2R̃j(Φ).The variance approximation becomes

Var{µ̂0}≈
∫ 2π

0

∫ ρmax

0

w0(Φ)/ |ρ|
(

w0(Φ)
|ρ|

+ α(2πρ)2R̃j(Φ)
)2ρ dρ dΦ

=
1

3

∫ 2π

0

1
[

w0(Φ)/ρ3
max + α4π2R̃0(Φ)

] dΦ,(4.34)
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where µ̂0 , µ̂(x0, y0) and the inner integral over ρ can be computed analytically. The

angular-dependent weighting function w0(Φ) is equivalent to one back-projection. The

approximation (4.34) is not accurate for realistic fan-beam CT, however it agrees with one

version of our practical derivation in next section, the SI approximation in (4.71).

4.5 Fast Variance Predictions for Non-Ideal Fan-Beam Transmission
Tomography

In this section, we conduct a different analysis on local frequency responses of Gram

matrix and quadratic regularization in fan-beam tomography. The analysis takes into ac-

count of the discretization effect and gives closed-form expression for P0(ρ,Φ). With these

results, the variance prediction in (4.19) is practical and accurate for implementation.

The following analysis is focused on equiangular fan-beam transmission tomography

with an arc detector. However, the method generalizes readily to flat detectors, i.e.,

equidistant sampling and to parallel-beam geometries.

4.5.1 Analysis For Fan-Beam Gram Matrix

To accurately predict variance images in realistic fan-beam transmission tomography

using (4.19), we need to determine the local frequency response H0(ρ,Φ), or equivalently

Hd0(~ω). We first find the local impulse response.

Local Impulse Response

Consider the 2D object model based on a common basis function χ(~x) superimposed

on a N ×M Cartesian grid as follows:

(4.35) µ(~x) =
∑

~n∈S

µ[~n]χ

(

~x− ~xc[~n]

∆

)

,
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where ~x ∈ R
2 denotes the 2D coordinates of the continuous image space, and ~xc[~n] denotes

the center of the basis function. Typically

~xc[~n] = (~n− ~w~x)∆, ~n ∈ S

~w~x = ( ~N −~1)/2 + ~c~x,

where ~N = (N,M) and the user-selectable parameter ~c~x denotes an optional spatial offset

for the image center.

For simplicity, we assume here that the detector blur b(s) is locally shift invariant,

independent of source position β, and acts only along the s coordinate. Then we model

the mean projections as follows:

(4.36) ȳβ[sk] =

∫

b(sk − s′) pϕ̃(s′,β)(r(s
′)) ds′

for sk = (k−wS)∆S and k = 1, . . . , ns, where ∆S is the sample spacing in s, wS is defined

akin to ~w~x, and pϕ(r) is the 2D Radon transform of µ(~x):

pϕ(r) =

∫

µ(r cosϕ− ` sinϕ, r sinϕ+ ` cosϕ) d` .

Substituting the basis expansion model in (4.35) for the object into the measurement

model (4.36) and simplifying leads to the linear model

ȳβ[sk] =
∑

~n∈S

a(sk, β;~n)µ[~n],

where the fan-beam system matrix elements are samples of the following fan-beam pro-

jection of a single basis function centered at ~xc[~n]:

(4.37) a(s, β;~n)=

∫

b(s− s′) ∆ g

(

r(s′)− rϕ(s′,β)[~n]

∆
, ϕ(s′, β)

)

ds′,

where g(·, ϕ) is the Radon transform of χ(~x) at angle ϕ and

rϕ[~n] , ~xc[~n] · ~eϕ,
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with ~eϕ , (cosϕ, sinϕ).

Then the elements of the Gram matrix are given exactly by

hd[~n;~n′] =











[A′WA]jj′ , ~n = ~nj ∈ S, ~n′ = ~nj′ ∈ S

0, otherwise

= h̆d[~n;~n′]η(~xc[~n])η(~xc[~n
′])(4.38)

where η(~xc[~n]) , 1{~n∈S},

(4.39) h̆d[~n;~n′] ,

nA
∑

l=1

ns
∑

k=1

w(sk, βl) a(sk, βl;~n)a(sk, βl;~n
′)

and w(s, β) denotes the weighting associated with W and nA denotes the number of sam-

ples of the source position β. To simplify (4.38), we first use an integral to approximate

the summation in (4.39) as follows:

(4.40) h̆d[~n;~n′]≈ 1

∆β

1

∆S

∫ 2π

0

∫ ∞

−∞

w(s, β) a(s, β;~n)a(s, β;~n′)ds dβ,

where ∆β is the source angular sampling interval. Notice that h̆d[~n;~n′] in (4.40) is not

shift invariant.

We develop locally shift-invariant approximations to h̆d[~n;~n′] in (4.40) by re-parameterizing

variables s, β using analogs of fan-to-parallel beam rebinning. Reparameterize variables

s and β in (4.40) according to the inversion of (4.22) and (4.23):

s→ s̃(r) = Dsd arcsin(r/Ds0)

β → β̃(r, ϕ) = ϕ− arcsin(r/Ds0) .

Then the fan-to-parallel beam rebinning of a(s, β;~n) is

a(s̃(r), β̃(r, ϕ);~n)≈
∫

b(s̃(r)− s̃(r′)) ∆ g

(

r′ − rϕ[~n]

∆
, ϕ

)

∣

∣ ˙̃s(r′)
∣

∣ dr′,

, a(r, ϕ;~n)(4.41)
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because r(s̃(r′)) = r′ and ϕ̃(s̃(r′), β̃(r, ϕ)) ≈ ϕ for r ≈ r′.

A first-order Taylor expansion of s̃(r) around r′ yields

s̃(r)− s̃(r′) ≈ ˙̃s(r′)(r − r′).

Substituting into (4.41), the system matrix elements become

(4.42) a(r, ϕ;~n) ≈
∫

b
(

˙̃s(r′)(r − r′)
)

∆ g

(

r′ − rϕ[~n]

∆
, ϕ

)

∣

∣ ˙̃s(r′)
∣

∣ dr′ .

Substituting (4.42) into (4.40) and changing variables from (s, β) to (r, ϕ) using (4.22)

and (4.23) yields the local impulse approximation,

h̆d[~n;~n′]≈ 1

∆β

1

∆S

∫ 2π

0

∫ ∞

−∞

w̄(r, ϕ)a(r, ϕ;~n)a(r, ϕ;~n′) |J(r)| dr dϕ

=
1

∆β

1

∆S

∫ 2π

0

w̆(ϕ;~n;~n′)h̆ϕ[~n;~n′] dϕ,(4.43)

where |J(r)| =
∣

∣ ˙̃s(r)
∣

∣ is the determinant of Jacobian matrix, and

h̆ϕ[~n;~n′] ,

∫ ∞

−∞

a(r − rϕ[~n], ϕ;~n) a(r − rϕ[~n′], ϕ;~n′) dr(4.44)

w̆(ϕ;~n;~n′) ,

∫∞

−∞
w̄(r, ϕ) |J(r)| a(r − rϕ[~n], ϕ) a(r − rϕ[~n′], ϕ) dr
∫∞

−∞
a(r − rϕ[~n], ϕ) a(r − rϕ[~n′], ϕ) dr

w̄(r, ϕ) ,w(s̃(r), β̃(r, ϕ)).

Let r0(ϕ) , rϕ[~n0]. Because ˙̃s(r) is fairly smooth, we make the following approxima-

tion for r′ ≈ r0(ϕ):

(4.45) ˙̃s(r′) ≈ ˙̃s(r0(ϕ)) , m0(ϕ) .

Substituting (4.45) into (4.42) and simplifying yields

a(r, ϕ;~n)≈ a(r, ϕ;~n0) , a0(r, ϕ)

=

∫

b0(r − rϕ[~n]−r′′, ϕ)∆g

(

r′′

∆
, ϕ

)

dr′′,(4.46)
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with r′′ = r′ − rϕ[~n] and

(4.47) b0(r, ϕ) , m0(ϕ) b(m0(ϕ) r) .

Therefore, we further simply (4.43) as follows

(4.48) h̆d[~n;~n′] ≈ 1

∆β

1

∆S

∫ 2π

0

w0(ϕ)h̆0(∆(~n− ~n′) · ~eϕ, ϕ) dϕ,

where because w̄(r, ϕ) often varies slowly in r relative to the typically sharp peak of

a0(r, ϕ) at r = 0,

h̆0(r, ϕ) , a0(r, ϕ) ? a0(r, ϕ),

w̆(ϕ;~n;~n′)≈
∫∞

−∞
w̄(r, ϕ) |m0(ϕ)| a2

0(r − rϕ[~n0], ϕ) dr
∫∞

−∞
a2

0(r − rϕ[~n0], ϕ) dr

≈ |m0(ϕ)| w̄(r0(ϕ), ϕ) , w0(ϕ),(4.49)

where ? denotes a 1D autocorrelation with respect to r and a0(r, ϕ) is a locally parallel-

beam version of the system model defined in (4.46).

The angle-dependent weighting w0(ϕ) is associated with pixel ~n0, accounting for the

position-dependent magnification as follows:

w0(ϕ) , |m0(ϕ)|w(s(r0(ϕ)), β(r0(ϕ), ϕ))(4.50)

r0(ϕ) , rϕ[~n0]

m0(ϕ) ,
∂

∂r
s(r)

∣

∣

∣

∣

r=r0(ϕ)

=
Dsd/Ds0

√

1− (r0(ϕ)/Ds0)2
,(4.51)

where s(r) and β(r, ϕ) are the inverse of (4.22) and (4.23). The local impulse response of

Gram matrix has the following almost shift invariant form:

(4.52) hd[~n;~n′] ≈ η(~xc[~n])η(~xc[~n
′])

∆β∆S

∫ 2π

0

w0(ϕ)h̆0(∆(~n− ~n′) · ~eϕ, ϕ) dϕ .

The shape of h̆d[~n;~n′] in (4.48) is a modification of 1/r (cf [71]) with statistically mod-

ulated angular weighting. The key property of (4.52) is that it is locally shift invariant,
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except for edge effects. This approximation should be reasonably accurate provided that

~n and ~n′ are “sufficiently close” to ~n0, the coordinates of the pixel of interest.

Now we apply the local shift-invariance approximation to (4.52). One way is to use

the coordinate transformation recommended for analyzing quasi-stationary noise in [14,

p. 870] as follows:

h̃ϕ[~n;~n0] ,hϕ[~n0 + ~n/2;~n0 − ~n/2]

= h̆0(∆~n · ~eϕ, ϕ)η2(∆~n),

where ~x0 , ~xc[~n0], and η1 denotes the support of the image,

(4.53) η1(~x) , η(~x0 + ~x/2)η(~x0 − ~x/2).

This approach yields a local impulse response that is symmetric in ~n, thus ensuring that

its spectrum is real.

Another alternative is to refer all displacements relative to the point ~n0 as follows:

h̃ϕ[~n;~n0] ,hϕ[~n0 + ~n;~n0]

= h̆0(∆~n · ~eϕ, ϕ)η2(∆~n),

where

(4.54) η2(~x) , η(~x0 + ~x)η(~x0).

This choice is not symmetric in ~n but it better corresponds to the local Fourier analysis

based on the DFT of A′WAej.

By referring all displacements relative to the point ~n0, we can obtain the final form of

local impulse response:

(4.55) hd[~n;~n′] ≈ 1

∆β∆S

∫ 2π

0

w0(ϕ) sϕ,0(∆~n · ~eϕ) dϕ,
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Figure 4.3: Approximation on “strip-like” function, sϕ,0(~x). A circular support function η(~x) is used here.

where we define the following “strip like” function:

(4.56) sϕ,0(~x) , h̆0(~x · ~eϕ, ϕ)η2(~x).

Local Frequency Response

Having found the local impulse response approximation (4.55), the next step is to find

the local frequency response. This requires consideration of the edge effects.

The simplest approach to finding the local frequency response would be to take the 2D

Fourier transform of the local impulse response in (4.48), while ignoring the “edge effects”

caused by the support functions in (4.55). We found this approach to yield suboptimal

accuracy. Taking the DSFT of (4.55) yields the following result:

(4.57) Hd0(~ω) =
1

∆β

1

∆S

∫ 2π

0

w0(ϕ)Hϕ(~ω) dϕ,

where Hϕ(~ω) is the spectrum of sϕ,0(∆~n), as follows:

Hϕ(~ω) =
∑

~n

sϕ,0(∆~n) e−ı(~ω·~n)

≈ 1

∆2

∫∫

sϕ,0(~x) e−ı 1
∆

(~ω·~x) d~x

=
1

∆2
Sϕ,0

(

~ω

2π∆

)

,(4.58)
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where sϕ,0(~x)
2D FT←→ Sϕ,0(u, v) .

Because sϕ,0(~x) is in form of multiplication in space domain, this leads to convolution

in frequency domain that is not desirable. Because of the “strip-like” nature, we make

further approximation on sϕ,0(~x) that is projection-angle dependent and pixel dependent.

The left plot in Figure 4.3 shows sϕ,0(~x) for fixed ϕ and ~n0 when a circular support func-

tion is used. sϕ,0(~x) has finite width along the ray direction ~e⊥ϕ and is very sharp along the

direction perpendicular to the ray direction ~eϕ. Therefore we make the following approxi-

mation:

(4.59) sϕ,0(~x) ≈ h̆0(~x · ~eϕ, ϕ)η0

(

~x · ~e⊥ϕ
d0(ϕ)

)

,

where d0(ϕ) denotes the length of the chord through ~n0 through the FOV at angle (ϕ +

π/2). This approximation is useful because the approximated sϕ,0(~x) is a separable func-

tion in rotated coordinates, (~eϕ, ~e
⊥
ϕ ). To preserve the non-negative definiteness of the Gram

Matrix, we chose η0(~x) to be a triangular function with the angular-dependent width d0(ϕ):

η0

(

~x · ~e⊥ϕ
d0(ϕ)

)

= tri
(

~x · ~e⊥ϕ
d0(ϕ)

)

.

The 2D FT of sϕ,0(~x) is easiest to see for the case ϕ = 0:

s0,0(x, y) = h̆0(x, 0)tri
(

y

d0(0)

)

2D FT←→ S0,0(u, v) = |A0(u, 0)|2 d0(0) sinc2(d0(0) v),

where A0(ν, ϕ) is associated with the detector response and basis effect, given in (4.74).

By the rotation property of the 2D FT:

Sϕ,0(ρ,Φ) ≈ |A0(ρ cos(Φ− ϕ), ϕ)|2 d0(ϕ) sinc2(d0(ϕ)ρ sin(Φ− ϕ)) .

Therefore, using (4.49) and (4.58), the local frequency response H0(ρ,Φ) around a point

~n0 is

H0(ρ,Φ) ≈ 1

∆β∆S∆2

∫ 2π

0

w0(ϕ)Sϕ,0(ρ,Φ) dϕ,(4.60)
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Figure 4.4: Type I, Type II and FFT-based local frequency responses H01(ρ, 0), H02(ρ, 0) and HFFT(ρ, 0)
for ~n0 at image center in unweighted case: w(s, β) = 1. H02(0, 0) is not shown because it is
infinite.

where the following function captures both detector response effects and edge effects:

(4.61) Sϕ,0(ρ,Φ) = |A0(ρ cos(Φ− ϕ), ϕ)|2 d0(ϕ) sinc2(d0(ϕ)ρ sin(Φ− ϕ)),

A0(ν, ϕ) is the 1D FT of a0(r, ϕ) with respect to r.

Further Approximations of Local Frequency Response

The local frequency response of the Gram operator in (4.60) is very accurate. However,

direct implementation of (4.60) is still computationally demanding. We present here two

types of further approximations to simplify (4.60).

1. Type I non-separable form

As d0(ϕ)→∞, one can show that for large |ρ|,

d0(ϕ) sinc2(d0(ϕ)ρ sin(Φ− ϕ))→ δ(ρ sin(Φ− ϕ)) .

Therefore the sinc2 term is sharply peaked near Φ = ϕ and Φ = ϕ±π, so we consider

the further simplifying approximation

(4.62)
∫ 2π

0

w0(ϕ)Sϕ,0(ρ,Φ) dϕ ≈ w0(Φ) |A0(ρ,Φ)|2G0(ρ,Φ),
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where

(4.63) G0(ρ,Φ) =

∫ 2π

0

d0(ϕ) sinc2(d0(ϕ)ρ sin(Φ− ϕ)) dϕ .

Substituting into (4.60) leads to the “Type I” approximation:

(4.64) H0(ρ,Φ)≈H01(ρ,Φ),
w0(Φ)

∆β∆S∆2
|A0(ρ,Φ)|2G0(ρ,Φ).

AlthoughH01(ρ,Φ) is not separable, we can precomputew0(Φ) and tabulateG0(ρ,Φ)

once for all pixels for coarsely sampled Φ. Accurately computingG0(ρ,Φ) is crucial,

therefore finely sampled ϕ is necessary in (4.62).

2. Type II separable form

We can simplify further by using the sifting property of the Dirac impulse:

∫ 2π

0

w0(ϕ)Sϕ,0(ρ,Φ) dϕ ≈ 2

|ρ| w0(Φ) |A0(ρ,Φ)|2 .

Because typically A0(ν, ϕ) varies slowly, we also consider the following further ap-

proximation:

(4.65) A0(ν, ϕ) ≈ A0(0, ϕ).

Combining all the above approximations yields the following separable approxima-

tion to the local frequency response:

(4.66) H0(ρ,Φ) ≈ H02(ρ,Φ) ,
2 |A0(0, ϕ)|2

∆β∆S∆2

w0(Φ)

|ρ| .

This “Type II” separable form agrees with the familiar FT of 1
r
. Figure 4.4 shows the

profiles of analytical Type I, Type II and FFT-based local frequency responses for ~n0

at image center in unweighted case. We can see that three profiles agrees with each

other closely. The discrepancy is mainly at low frequencies.



77

4.5.2 Analysis for 2D Quadratic Regularization

To evaluate the variance using (4.19) and (4.20), we also need the local frequency

response of quadratic regularization, R0(ρ,Φ), [33, 35, 89, 94].

Practical regularization methods are based on the differences between neighboring

pixel values. For a discrete-space 2D object µ[~n], a typical quadratic roughness penalty is

given in (4.4) and (4.5) for 1st-order differences. The rl[~n] values are possibly space vari-

ant. For the purpose of local frequency response analysis, we examine the characteristics

of R(µ) near a pixel ~n0 of interest, so we define rl,0 , rl[~n0] assuming rl[~n] values vary

smoothly. Then, the quadratic roughness penalty near a pixel ~n0 has the following form:

R(µ) =
∑

~n

L
∑

l=1

rl,0
1

2

(

(cl ∗∗ µ)[~n]
)2

.

The rl,0 values are design parameters that affect the directionality of the regularization and

hence the shape of the PSF. Each cl[~n] is a (typically) high-pass filter. For a first-order

difference:

cl[~n] = ξl (δ2[~n]− δ2[~n− ~ml]) ,

or for a 2nd-order difference:

cl[~n] = ξl(δ2[~n]− δ2[~n− ~ml]) ∗∗ ξl(δ2[~n]− δ2[~n− ~ml]),

where ξl = ‖~ml‖−υ/2, ~ml = (nl,ml) denotes the spatial offsets to the neighboring pixels,

and υ is the power of weights for diagonal neighbors that can be chosen by the user. For

example, common practice chooses υ = 1 [30, 70].

Applying Parseval’s theorem, we can rewrite R(µ) as follows:

(4.67) R(µ) =
L
∑

l=1

∫ π

−π

∫ π

−π

1

2
rl,0 |Cl(~ω)U(~ω)|2 d~ω

(2π)2
,
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where µ[~n]
FT←→ U(~ω) and the DSFT of a Λ-order (where Λ ∈ N) difference has the

following magnitude:

|Cl(~ω)| = ξΛ
l

∣

∣1− e−ı(~ω·~ml)
∣

∣

Λ

= ξΛ
l 2Λ

∣

∣

∣

∣

sinΛ

(

1

2
(~ω · ~ml)

)∣

∣

∣

∣

.

In the polar coordinates of (4.20):

(4.68) |Cl(ρ,Φ)|2= |Cl(2πρ∆~eΦ)|2= ξ2Λ
l 4Λ sin2Λ(π∆ρ~eΦ · ~ml) .

Thus, the Type I local frequency response for the regularization operator is

R0(ρ,Φ) = R01(ρ,Φ) =
L
∑

l=1

rl,0 |Cl(ρ,Φ)|2

=
L
∑

l=1

rl,0ξ
2Λ
l 4Λ sin2Λ(π∆ρ~eΦ · ~ml) .(4.69)

Applying the approximation sin(x) ≈ x to (4.68) yields:

|Cl(ρ,Φ)|2 ≈ ξ2Λ
l (~ml · ~eΦ)2Λ(2π∆ρ)2Λ

= (2πρ∆)2Λξ
(1−2/υ)2Λ
l cos2Λ(Φ− ϕl),

where the angle between the lth neighbors is

ϕl , tan−1 ml

nl

.

With this simplification, the Type II local frequency response of the regularizer is approx-

imately separable in (ρ, Φ):

R0(ρ,Φ)≈R02(ρ,Φ) = (2πρ∆)2ΛR̃0(Φ),(4.70)

where

R̃0(Φ) ,

L
∑

l=1

ξ
(1−2/υ)2Λ
l rl,0 cos2Λ(Φ− ϕl) .

This separable form agrees with the familiar FT of the differentiation operation.
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4.5.3 Variance Prediction Implementation

Having obtained the approximations to H0(ρ,Φ), the local frequency response of the

Gram operator given in (4.64) and (4.66), and to R0(ρ,Φ), the local frequency response

of the regularizer given in (4.69) and (4.70), we can discretize the integral (4.19) again to

compute the variance image. There are two variance prediction expressions for fan-beam

transmission tomography based on the Type I H01(ρ,Φ) given in (4.64) and R01(ρ,Φ)

given in (4.69), and the Type II H02(ρ,Φ) given in (4.66) and R02(ρ,Φ) given in (4.70).

Double Integral Approach

The variance prediction using H01(ρ,Φ) in (4.64) and R01(ρ,Φ) in (4.69) involves a

double integral and can be implemented by a double summation. We call this prediction

the double integral (DI) approach. The location-dependent weighting function w0(Φ) can

be precomputed, with the computation equivalent to one back-projection. We can coarsely

sample Φ because P0(ρ,Φ) is fairly smooth along Φ.

Single Integral Approach

The separability properties of H02(ρ,Φ) in (4.66) and R02(ρ,Φ) in (4.70) enable us to

carry out the inner integral over ρ analytically. Therefore the double-integral in (4.19) is

reduced to one single integral over Φ. Substituting (4.66) and (4.70) into (4.19) yields the

remarkably simple expression:

(4.71) Var{µ̂[~n0]}≈
∫ 2π

0

ζ(Φ)/3

2 |A0(0,Φ)|2w0(Φ) + α4π2ζ(Φ)R̃0(Φ)
dΦ,

where ζ(Φ) , ρ3
max(Φ)∆β∆S∆

4. We call this prediction the single integral (SI) approach.

We evaluate this integral using a finite summation, with w0(Φ) and R̃0(Φ) precomputed.

Therefore, computing (4.71) is equivalent to one back-projection.
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Implementation of The Single Integral Prediction

We found empirically that the SI approach (4.71) gave predictions that could be im-

proved by including a single global scale factor, presumably because the SI approach

(4.71) uses many approximations to achieve its simple form. In particular, we found that

the SI method underestimates the variance, presumably because the “Fisher information”

implied by Type II local frequency response in (4.66) is too large for low spatial frequen-

cies. To determine the scale factor, we assumed that the DFT-based approach and the

analytical approach should produce equivalent results at the image center. Specifically, we

used the predicted variance for unweighted least squares estimator with standard quadratic

penalty (QPULS) for unit variance data.

For QPULS estimator for unit variance data, the statistical weighting, w(s, β) be-

comes 1. Consider the standard quadratic penalty with first-order (Λ = 1) differences

and second-order neighborhood (L = 4), for which ϕ1,2,3,4 = 0, π/2, π/4, and −π/4 and

rl,0 = (1, 1, 1, 1). We used υ = 1 both in calibration and reconstruction as is the common

practice in quadratic regularization. For these choices, the Type II R02(ρ,Φ) in (4.70)

becomes independent of Φ:

(4.72) R̃0(Φ) =
L
∑

l=1

‖~ml‖ = 1 +
√

2.

Finally, to determine the scale factor, we computed the ratio of the variance predicted

by the DFT approach over that predicted by (4.71). For the parameters used in our simu-

lations, this factor was (1.13)2. This value would need to recomputed for different system

geometries or regularization parameters, but is otherwise patient independent.

4.5.4 Simulation Results

To evaluate the performance of the proposed methods, we implemented the variance

predictions for fan-beam tomographic images reconstructed by quadratically penalized
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likelihood algorithm. We simulated 1000 realizations of fan-beam transmission scans us-

ing a 256× 256 NCAT phantom and a blank scan of 106 counts/detector. The correspond-

ing sinogram size was 444 samples in s, spaced by ∆S ≈ 2 mm and 492 source positions

over 360
◦ . We simulated the geometry of the GE LightSpeed Pro CT scanner with the

source-to-detector distance around 949 mm, the isocenter-to-detector distance 408 mm

and ∆ = 500/256 mm.

An elliptical support was used for S , with p = |S| = 43892. For simplicity, in (4.63)

we used the width of the central profile through the FOV:

(4.73) d0(ϕ) ≈ d(ϕ) ,
2z1z2

√

z2
1 sin2ϕ+z2

2 cos2ϕ
,

where z1 = 244.1 mm and z2 = 220.7 mm are the semi-major and semi-minor axes of the

ellipse. This approximation is exact when ~n0 is at the ellipse center. The approximation to

d(ϕ) becomes less accurate as ~xc[~n0] approaches the edge of the ellipse support.

For simplicity, we use ρmax(Φ) ≈ 1
2∆

and model the detector response3 in (4.36) by a

shift-invariant rectangle of width ∆S:

b(s) =
1

∆S

rect

(

s

∆S

)

.

In the case of a square pixel basis χ(~x) = rect2(~x)4, we have from (4.46)

(4.74) A0(ν, ϕ) = sinc

(

∆Sν

m0(ϕ)

)

∆2 sinc(ν∆ cosϕ) sinc(ν∆ sinϕ),

which we substitute into (4.61). In our simulation, we make the following simplification:

m0(ϕ) ≈ mc(ϕ) = mc = Dsd/Ds0,

where mc is the value of m0(ϕ) at the image center.

3A more accurate model could include detector deadspace and crosstalk effects.

4rect2(~x) , rect(x)rect(y) is a 2D square function.
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We chose the regularization parameter α = 211 to give FWHM = 1.72 pixels, i.e.,

3.4 mm, at the center of the image. For each realization, µ̂ was reconstructed using

70 iterations of the convergent incremental optimization transfer algorithm (PL-IOT) [4]

with 41 subsets and no nonnegativity constraint. The initial images were the filtered

back-projection (FBP) images with equivalent spatial resolution, obtained by post-filtering

ramp-filtered FBP images with the designed PSF. We computed the sample standard de-

viation pixel by pixel within the finite support S used in reconstruction. All images and

profiles are shown in Hounsfield unit (HU).

Two prediction approaches are investigated here: the DI approximation (4.19) with

Type I H01(ρ,Φ) in (4.64) and R01(ρ,Φ) in (4.69), and the SI approximation (4.71) with

R̃0(Φ) in (4.70). The former formula was derived with fewer approximations while the

latter formula involves more approximations. The accuracy and computation time are

compared below.

We considered three types of regularization: standard, certainty-based [40]. and modi-

fied [84]. In all cases, we implemented (4.69) and (4.70) for regularization with first-order

(Λ = 1) differences and second-order neighborhood (L = 4). The standard and certainty-

based cases used all 1000 realizations of fan-beam transmission scans while only 250

realizations are used in modified case.

In all cases, the standard deviation images predicted by the DI approach are displayed

while both DI and SI predictions are compared in the profile plots.

Standard Quadratic Penalty Function

We first considered a standard quadratic penalty where

rl,0 = κ2
c ,
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and κ2
c is the value of κ2[~n0] at the image center in (4.75) below. This choice assures that

the resolution of the two studies is matched at the image center. In this case, R̃0(Φ) =

(1 +
√

2)κ2
c is a constant for all pixels.

Figure 4.5 shows the reconstructed images and empirical standard deviation images.

The empirical standard deviation image for FBP is also shown. The average of FBP stan-

dard deviations is around 2.2 HU, approximately 1.8 times higher than that of PL-IOT, 1.2

HU, illustrating the noise advantage of the statistical reconstruction methods at matched

resolution.

Figure 4.5 also shows the central horizontal and vertical profiles of the standard devia-

tion maps. The analytical, the FFT-based and the empirical standard deviations agree with

one another very closely within the object. The largest discrepancy within the object was

about 10% in the left lung for unknown reasons.

Certainty-Based Quadratic Penalty Function

We next investigate a more complicated regularizer that was designed to achieve nearly

uniform spatial resolution [40]. In this case, we used space-varying regularizer:

rl,0 = κ2[~n0],

where

(4.75) κ2[~n0] ,
1

2π

∫ 2π

0

w(s̃(r0(ϕ)), β̃(r0(ϕ), ϕ)) dϕ .

Here, R̃0(Φ) is still independent of Φ, but varies spatially. Computing the “certainty map”

(4.75) requires a simple backprojection with fan-to-parallel beam rebinning.

Figure 4.6 shows the reconstructed images, standard deviation images and central hor-

izontal and vertical profiles. In this case, the average of FBP standard deviations is around

2.2 HU, approximately 1.8 times higher than that of PL-IOT, 0.7 HU. The analytical,
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the FFT-based and the empirical standard deviations agree with one another very closely

within the object.

Modified Quadratic Penalty Function

Consider a modified quadratic penalty in [84], where

R̃0(Φ) ,

L
∑

l=1

rl,0 cos2(Φ− ϕl) .

For first-order differences and 2nd-order neighborhood (L = 4), ϕ1,2,3,4 = 0, π/2, π/4, and

−π/4. Ideally, rl,0 is designed in a way that leads to nearly uniform and isotropic spatial

resolution s.t.

(4.76) R̃0(Φ) ≈ w0(Φ).

Figure 4.7 shows the reconstructed images, standard deviation images and central hor-

izontal and vertical profiles. In this case, the average of FBP standard deviations is around

1.8 HU, approximately 3 times higher than that of PL-IOT, 0.6 HU. The analytical, the

FFT-based and the empirical standard deviations agree with one another very closely

within the object. However, both empirical and predicted standard deviation images show

four bright strips coming out from the object. Analytical method overestimates the vari-

ances at these areas. The angles of the strips seem to follow the ϕl’s in the second order

neighborhood. Analytical prediction method also overestimates the variance at the area

around the nodule in the left lung. These are probably due to the rapid change of the

statistical weights w(s, β) and the user-designed parameters rl,0. These facts indicate that

further investigation might be needed to find the optimal solution in regularization design

problem. We only use 250 realizations of transmission scans to compute empirical pred-

ctions in fully-modified quadratic penalty case. Therefore empirical predictions appear

more noisy than the ones in standard and certainty-based cases.
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In all cases, the analytical and the FFT-based predictions are somewhat less accurate

near the edge of the finite support used in image reconstruction. This is probably due

to the fact that the “local stationarity” approximation is less accurate in this area where

the statistical weights w(s, β) can vary rapidly. The approximation (4.73) may also vary

rapidly in our study, so it may be possible to improve accuracy near the edges of the FOV

by using d0(ϕ).

Error Distribution

We are interested in the distribution of the reconstruction errors, µ̂[~n] − µ[~n], from

1000 realizations for three different pixels: a pixel at image center, a pixel outside of

object and inside the finite support, and a pixel in a lower-right rib. Figure 4.8 shows the

histograms of the reconstruction errors for standard and certainty-based quadratic penalty

functions. All the histograms display an approximately Gaussian shape. Table 4.1 shows

the results of Lilliefors goodness-of-fit test of composite normality on the reconstruction

errors by using Matlab lillietest command. These quantitative results confirm that

the reconstruction errors follow an approximately Gaussian.

p-value standard quadratic penalty certainty-based quadratic penalty
pixel locations center top lower-right center top lower-right

p-value 0.2093 > 0.5 0.3984 > 0.5 > 0.5 0.3554

Table 4.1: p-values of Lilliefors goodness-of-fit test of composite normality on the reconstruction errors for
standard and certainty-based quadratic functions, respectively.

Computation Time and Accuracy

In our calculations, we used 123 samples in Φ and 128 samples in ρ in (4.19) to predict

a 256 × 256 standard deviation image. Both DI and SI predictions precompute w0(Φ)

and G0(ρ,Φ). The precomputation time for w0(Φ) was about 19 seconds on dual Intel

Xeon 3.40GHz CPU. Table 4.2 summarizes the computation time comparison for empir-
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ical, FFT-based and analytical (double-integral and single-integral) prediction methods.

The precomputation time for G0(ρ,Φ) with 492 samples in ϕ was 2.3 seconds. The DI

prediction requires no scale factor precomputation and the computation time was about

135 seconds. The SI prediction requires the scale factor precomputation that is (1.13)2

in our case, and the computation time for prediction was about 0.6 second. In contrast,

the FFT-based prediction needed about 374 seconds to compute only one single central

profile. Because the FFT-based predictions are only computed for two central profiles,

we calculted its computation time for the whole standard deviation map by multipling the

prediction time for a single pixel and p = 43892. We see that our proposed methods are

much faster than both empirical and FFT-based methods. As expected, the DI prediction

is slightly more accurate than the SI prediction, particularly near edges. The SI predic-

tion matches a bit better with the FFT-based prediction because the scale factor calibration

was based on FFT-predicted values. For the purposes of regularization design or noise

exploration, we believe that the very fast SI approach is adequate.

Table 4.3 compares the normalized root-mean square (NRMS) percent errors of analyt-

ical and FFT-based predictions with respect to empirical results. Because we only compute

two central profiles of the FFT-based prediction in each case, we compute the normalized

root-mean square (NRMS) percent errors only for these two central profiles. For κ2
c case,

the NRMS percent errors for FFT, DI and SI are 6.6%, 6.8% and 6.6%; for κ2
0 case, the

NRMS percent errors for FFT, DI and SI are 6.5%, 6.0% and 8.3%; for modified penalty

case, the NRMS percent errors for FFT, DI and SI are 10%, 14.6% and 10.7% within the

object, respectively. Our analytical methods can provide comparable accuracies as the

FFT-based method.
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precomputation
Types of predictions w0(Φ) Gcenter(ρ,Φ) calibration total time

empirical N/A N/A N/A several days
FFT-based N/A N/A N/A 64123 s

analytical (Double-integral) 19 s 2.3 s N/A 156.3 s
analytical (Single-integral) 19 s N/A 2.1 s 21.1 s

Table 4.2: Computation time comparison. The FFT-based predictions are computed only for two central
profiles. We calculted its computation time for the whole standard deviation map by multipling
the prediction time for a single pixel and p = 43892.

Types of penalties FFT-based Analytical
Double-integral Single-integral

standard 6.6% 6.8% 6.6%
certainty-based 6.5% 6.0% 8.3%

modified 10% 14.6% 10.7%

Table 4.3: The normalized root-mean square (NRMS) percent errors of analytical and FFT-based predic-
tions with respect to empirical predictions for the two central profiles. The standard error of
empirical predictions in standard and certainty-based quadratic penalty cases (with 1000 realiza-
tions) is about 1/

√

2(1000− 1) ≈ 2.2%. The standard error of empirical predictions in modified
quadratic penalty cases (with 250 realizations) is about 1/

√

2(250− 1) ≈ 4.5%.

4.5.5 Conclusion and Discussion

This chapter has developed analytical variance approximations for 2D tomography.

The double integral (4.19) with (4.64) and (4.69), and the single integral (4.71) provide

fast and accurate variance predictions for a quadratically penalized likelihood estimator

in fan-beam tomography. The simplest of the proposed approaches (4.71) requires one

backprojection with some additional summations, which is much less computation than

previous FFT-based methods. In fact, using the proposed methods, we can predict the

variance map in much less time than it takes to reconstruct a single image. The proposed

approximations are especially useful in the case that the variance information is needed for

many or all pixels, such as when choosing space-varying regularization parameters [84].

The empirical results from the simulated fan-beam CT transmission scans demonstrate

that the proposed variance approximations are very accurate. Future work will explore

using these predictions for regularization design. As indicated in modified quadractic
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penalty case, variance predictions can provide guidance in finding the optimal solution in

regularization design.

Although we focused on variance prediction, by using (4.16) we could also easily pre-

dict covariances and thus predict the covariance of an region of interest (ROI) whose size

is small enough that the local approximations are sufficiently accurate. However, if only a

single local autocorrelation function is needed, then the FFT approach is probably easier

to use. For analysis of detectability of lesions with unknown locations, autocorrelations

at many spatial positions may be needed [53–55, 76, 103], in which case the proposed

approach based on (4.16) can save computation. The matrix method described in (4.7)

and (4.8) is also applicable to other imaging modalities, such as PET and SPECT [32].

Therefore the proposed methods are also readily extended to those imaging modalities,

with different considerations of the weighting function.

The proposed analytical variance approximations are only investigated in the case of

the shift-invariant detector blur. We can also generalize the analysis to shift-variant de-

tector blur where the local shift-invariance approximation is applicable, e.g., for varifocal

collimators in SPECT. In this case, b(s− s′) is replaced by b(s, s′) in (4.37) and b0(r, ϕ)

in (4.47) becomes

b0(r, ϕ) , m0(ϕ) b(s0(ϕ) +m0(ϕ) r, s0(ϕ)),

where

s0(ϕ) , Dsd arcsin
r0(ϕ)

Ds0

.

The work in this chapter has focused on 2D fan-beam geometry. 3D generalization of

these methods can be done by applying the same principles [108]. This chapter has also

focused on analytical variance approximations for the case of quadratic regularization.

An interesting challenge for future work is to generalize the analysis to the case of edge-



89

preserving non-quadratic regularization. The analysis in [5, 6] may be a useful starting

point.
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Figure 4.5: Predicted and empirical standard deviation images (in HU) and central profiles for NCAT phan-
tom for PL fan-beam transmission image reconstruction using the standard quadratic penalty:
R̃0 = (1 +

√
2)κ2

c .
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Figure 4.6: Predicted and empirical standard deviation images (in HU) and central profiles for NCAT phan-
tom for PL fan-beam transmission image reconstruction using the certainty-based quadratic
penalty.
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Figure 4.7: Predicted and empirical standard deviation images (in HU) and central profiles for NCAT phan-
tom for PL fan-beam transmission image reconstruction using the modified quadratic penalty.
Only 250 realizations are used in this case.
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Figure 4.8: Histogram of (µ̂[~n] − µ[~n]) for three pixel locations: a pixel at image center, a pixel outside of
object and inside the finite support, and a pixel in a lower-right rib. Three figures on the left
are for standard quadratic penalty case, and three figures on the right are for certainty-based
quadratic penalty case.



CHAPTER 5

3D Variance Estimation for Quadratically Penalized-Likelihood
Image Reconstruction

The analytical variance approximations for 2D tomography presented in the previous

chapter have shown good accuracy while requiring much less computation than previ-

ous matrix-based and DFT-based methods. The advantages of these approaches should

become more pronounced for larger set of data, such as axial and helical cone-beam ge-

ometries. This chapter generalizes the analytical 2D variance prediction methods into a

3D cylindrical cone-beam geometry.

The main challenge of 3D extension to the cone-beam variance approximations is

the mismatch between the number of variables. There is no one-to-one explicit cone-

to-parallel relationship in projection space. A two-dimensional area detector is used in

3D cone-beam tomography that is specified by coordinates (s, t). Both axial and helical

cone-beam projection spaces are characterized by only three independent indices (s, t, β).

The axial cone-beam geometry is a special case of helical cone-beam geometry with zero

helical pitch. In 3D parallel-beam geometry projection space, there are four independent

indices (u, v, ϕ, θ) for 3D X-ray transform. The ray direction is specified by (ϕ, θ) and the

detector is specified by (u, v).

As an initial investigation of 3D CT, we circumvent this difficulty by assuming an ide-

alized cylindrical cone-beam geometry by introducing an extra independent coordinate:

94
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the elevation of the X-ray source, ζ . In this geometry, ideally the X-ray source can be

at any location on an infinitely long cylinder along the z-axis. However, we develop ap-

proximations for the more realistic case where there is a finite set of ζ values, roughly

corresponding to overlapping “step-and-shoot” axial scans.

5.1 3D X-Ray Transform

For 3D tomography with parallel rays, there are two projection angles: the azimuthal

angle ϕ, and a polar angle θ. We use a coordinate system in which ϕ ∈ [−π, π], and

θ ∈ T ⊂ [−π/2, π/2]. Define ~γ = (ϕ, θ) and define the following orthogonal unit vectors

(5.1)

~e1(~γ) =















cosϕ

sinϕ

0















, ~e2(~γ) =















− sinϕ sinθ

cosϕ sinθ

cosθ















, ~e3(~γ) =















sinϕ cosθ

− cosϕ cosθ

sinθ















,

and the following point in R
3:

(5.2)

~p = ~p(u, v;~γ) = u~e1 +v ~e2 = (u cosϕ−v sinϕ sinθ, u sinϕ+v cosϕ sinθ, v cosθ).

Letting (u, v) denote the coordinates on any 2D projection plane, we define the (X-ray)

projection of a 3D object f(~x) to be

(5.3) p(u, v;~γ) =

∫ ∞

−∞

f(~p(u, v;~γ) +`~e3(~γ)) d`,

i.e., the line integrals along the lines {~p+`~e : ` ∈ R}, where u, v ∈ R. Another way of

writing this operation is

(5.4) p(u, v;~γ) =

∫

f

(

T~γ

"

u
`
v

#

)

d`,
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where T~γ = [~e1(~γ) ~e3(~γ) ~e2(~γ)] is a unitary matrix. So we have the following relation:

T−1 = T′ =















cosϕ sinϕ 0

sinϕ cosθ − cosϕ cosθ sinθ

− sinϕ sinθ cosϕ sinθ cosθ















.

The matrix T is the product of two 3D rotation matrices [52, p. 100]:

(5.5)

T = R12(ϕ)R23(θ), R12(ϕ) =















cosϕ sinϕ 0

sinϕ − cosϕ 0

0 0 1















, R23(θ) =















1 0 0

0 cosθ − sinθ

0 sinθ cosθ















.

A third way to write (5.3) or (5.4) is

(5.6) p(u, v;~γ) =

∫ ∫ ∫

f(~x) δ(~x · ~e1(~γ)−u) δ(~x · ~e2(~γ)−v) d~x .

5.1.1 Properties of 3D X-Ray Transform

3D X-ray transform satisfies many useful properties, among which shift and scaling

properties are essential to us for deriving the variance approximations in 3D cylindrical

cone-beam tomography.

Symmetry Property

Let f(~x)
3D Xray←→ p(u, v;ϕ, θ) . The 3D projection operation satisfies the following sym-

metry property:

p(−u, v;ϕ± π, θ) = p(u, v;ϕ, θ),

because ~e1(ϕ± π, θ) = −~e1(~γ) and ~e2(ϕ± π, θ) = −~e2(~γ).
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Shift Property

The 3D projection operation also satisfies the following shift property:

f(~x)
3D Xray←→ p(u, v;ϕ, θ) =⇒

f(~x− ~z) 3D Xray←→ p(u− ~z · ~e1(~γ), v − ~z · ~e2(~γ);~γ).(5.7)

Scaling Property

Let f(~x)
3D Xray←→ p(u, v;ϕ, θ) . We would like to find the 3D projection q(u, v;ϕ, θ)

of f(x/a, y/a, z/b), where a, b 6= 0 are two nonzero scalars. Using the form (5.6),

q(u, v;ϕ, θ) can be found as follows:

q(u, v;ϕ, θ) =

∫ ∫ ∫

f(x′, y′, z′) δ(ax′ cosϕ+ ay′ sinϕ− u)

· δ(ax′ sinϕ sin θ − ay′ cosϕ sin θ + bz′ cos θ − v)
∣

∣a2b
∣

∣ dx′ dy′ dz′,(5.8)

with change of variables x′ = x/a, y′ = y/a and z′ = z/b.Using Dirac impulse properties,

we rewrite (5.8) as follows:

q(u, v;ϕ, θ) =

∫ ∫ ∫

f(x′, y′, z′) δ
(

x′ cosϕ+ y′ sinϕ− u

a

)

· δ
(

a sin θ

c(θ)
x′ sinϕ− a sin θ

c(θ)
y′ cosϕ+

b cos θ

c(θ)
z′ − v

c(θ)

)

· |ab|
c(θ)

dx′ dy′ dz′

=

∫ ∫ ∫

f(x′, y′, z′) δ
(

x′ cosϕ+ y′ sinϕ− u

a

)

· δ
(

x′ sinϕ sin θ′ − y′ cosϕ sin θ′ + z′ cos θ′ − v

c(θ)

)

· |ab|
c(θ)

dx′ dy′ dz′,

where

θ′ , arctan
(a

b
tan θ

)

c(θ) ,
√

a2 sin2 θ + b2 cos2 θ.
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Then we have the following scaling property:

(5.9) f
(x

a
,
y

a
,
z

b

)

3D Xray←→ |ab|
c(θ)

p

(

u

a
,
v

c(θ)
;ϕ, arctan

(a

b
tan θ

)

)

.

In the special case where a = b = ∆:

f

(

~x

∆

)

3D Xray←→ ∆ p
( u

∆
,
v

∆
;ϕ, θ

)

.

5.2 Variance Predictions for 3D Cone-Beam Tomography

The covariance matrix in (4.7) for quadratically penalized likelihood estimators and the

local shift-invariance approximations derived in section 4.2 are applicable for 3D tomog-

raphy. For the completeness of this chapter, we briefly state the results here. The p × p

covariance matrix is given as the following:

(5.10) K , Cov{µ̂} ≈ (A′WA + αR)−1A′WA(A′WA + αR)−1,

where µ = [µ1, . . . , µp]
′, A is the system matrix, Y = [y1, . . . , yn]′ denotes the noisy

measurements, R is the Hessian matrix of the roughness penalty and α is the regularization

parameter controlling the noise and resolution trade-off.

In the spirit of the local shift-invariance approximations presented in section 4.2, we

first approximate the covariance matrix in (5.10) near a given location ~n0 as follows:

K ≈ K0 , T′K̆0T

K̆0 , (F0 + αR0)
−1F0(F0 + αR0)

−1,

where F0 and R0 are the N1N2N3 × N1N2N3 block Toeplitz with Toeplitz blocks (BTTB)

approximations corresponding to A′WA and R, respectively. In practical computation

of predicting variances at a few image locations, circulant approximations and DFTs are

usually used as follows [75, 91]:

(5.11) Var{µ̂[~n0]} ≈ 〈K0e~n0 , e~n0〉 ≈
1

N1N2N3

~N−1
∑

~k=~0

Pd0[~k],
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where ~N = (N1, N2, N3), e~n0 corresponds to ~n0 and

Pd0[~k] ,
Γ0[~k]

(Γ0[~k] + αΩ0[~k])2
,

with

F0 ≈ QΓ0Q
′

R0 ≈ QΩ0Q
′,

where Q is the 3D (N1, N2, N3)-point orthonormal DFT matrix, and Γ0 and Ω0 are diag-

onal matrices with diagonal elements Γ0[~k] and Ω0[~k] that are the 3D DFT coefficients of

the local impulse response of A′WA and R near ~n0, respectively. Computing this DFT

approximation is still expensive for realistic image sizes when the variance is computed for

all or many pixels, particularly for shift-variant systems like fan-beam CT and cone-beam

CT.

We have discussed in Chapter 4 “analytical” approaches to predict the approximate

variance maps of 2D images that are reconstructed by penalized-likelihood estimation

with quadratic regularization in fan-beam geometries [105,107]. In this chapter, we extend

these approaches to 3D cylindrical cone-beam CT by applying the same principles: local

shift invariance approximation and local Fourier analysis.

We next approximate (5.11) by the 3D discrete-space Fourier transform (DSFT) as

follows:

(5.12) Var{µ̂[~n0]} ≈
∫ π

−π

∫ π

−π

∫ π

−π

Pd0(~ω)
d~ω

(2π)3
,

where Pd0(~ω) is the local spectrum of the covariance matrix, given as follows:

(5.13) Pd0(~ω) ,
Hd0(~ω)

[Hd0(~ω) + αRd0(~ω)]2
,

where Hd0(~ω) is the local frequency response of the Gram matrix A′WA and Rd0(~ω) is

the local frequency response of R near ~n0.
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Let ~∆ = (∆X,∆Y,∆Z) denote the sample spacings in the reconstructed image. Make

the change of variable, ~ω = (2π%)~∆�~eΦ,Θ where ~eΦ,Θ = (cos Φ cos Θ, sin Φ cos Θ, sin Θ),

and � denotes element-by-element multiplication. We rewrite (5.12) in terms of spherical

frequency coordinates (%,Φ,Θ) as follows:

(5.14) Var{µ̂[~n0]} ≈ ∆X∆Y∆Z

∫ π
2

−π
2

∫ 2π

0

∫ %max(Φ,Θ)

0

P0(%,Φ,Θ)%2 |cos Θ| d% dΦ dΘ,

where %max(Φ,Θ) = 1
2
max

(

|cos Φ cos Θ|
∆X

, |sin Φ cos Θ|
∆Y

, |sin Θ|
∆Z

)

, and we define

P0(%,Φ,Θ) , Pd0(2π%~∆� ~eΦ,Θ)

=
H0(%,Φ,Θ)

[H0(%,Φ,Θ) + αR0(%,Φ,Θ)]2
.(5.15)

We define H0 and R0 similarly in terms of Hd0 and Rd0. By finding analytical expressions

forH0 andR0, the approximation (5.14) can lead to faster alternatives to the DFT approach

(5.11). The variance prediction in (5.14) is applicable to any 3D CT geometry. We focus

on cylindrical 3D cone-beam CT here. To use (5.14), we need to find H0(%,Φ,Θ) and

R0(%,Φ,Θ) first.

5.2.1 Cylindrical Cone-Beam Geometry

Consider an ideal “cylindrical” cone-beam tomography: the source can be at any point

on a cylinder of radius Ds0 centered along the z-axis, see Figure 5.1. The step-and-shoot

cone-beam CT and helical cone beam CT are two examples of cylindrical cone-beam

geometry with different sampling patterns. The source position ~p0 can be parameterized

by two variables (β, ζ) as follows:

(5.16) ~p0 =















−Ds0 sin β

Ds0 cos β

ζ















,
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Figure 5.1: Cylindrical cone-beam geometry with 2D cylindrical detector that moves with the cone vertex.

where Ds0 is the source to rotation center distance, β is the angle of the source relative to

the y axis, and ζ is the z-axis position of source.

We focus on a 2D cylindrical detector that moves with the cone vertex here. We assume

that the detector arc has the X-ray source as its focal point, as in a 3rd-generation CT

system. We introduce local/relative coordinates (s, t) on the detector face, where s is the

arc length along each row, and the t-axis is parallel to the z-axis. A point on the 2D detector

can be expressed as

(5.17) ~p1 =















Dsd sin γ cos β + (Dsd cos γ −Ds0) sin β

Dsd sin γ sin β − (Dsd cos γ −Ds0) cos β

t+ ζ















=















Dsd sinϕ

−Dsd cosϕ

t















+ ~p0,

where D0d = Dsd −Ds0 is the isocenter to detector distance and

γ = γ(s) ,
s

Dsd

(5.18)

ϕ = ϕ(s, β) , γ(s) + β.(5.19)
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The direction vector of a ray from ~p0 to ~p1 can then be expressed as

~e3 =
~p1 − ~p0

‖~p1 − ~p0‖

=
1

√

t2 +D2
sd















Dsd sinϕ

−Dsd cosϕ

t















=















sinϕ cos θ

− cosϕ cos θ

sin θ















,(5.20)

where

(5.21) θ = θ(t) , arctan

(

t

Dsd

)

.

The parallel-beam projection plane is perpendicular to ~e3, specified by ~e1 and ~e2. The

corresponding Cartesian coordinates (u, v) can be found by

u = ~p1 · ~e1 = Dsd sin γ cos γ − (Dsd cos γ −Ds0) sin γ

= Ds0 sin γ(s)(5.22)

v = ~p1 · ~e2 = −Dsd sin θ +Ds0 cos γ sin θ + (t+ ζ) cos θ

= Ds0 cos γ(s) sin θ + ζ cos θ,(5.23)

since −Dsd sin θ + t cos θ = 0.

Combining (5.18), (5.19), (5.21), (5.22) and (5.23), we have the the following (cylin-

drical) cone-to-parallel rebinning relations:

γ̃(s) ,
s

Dsd

(5.24)

ϕ̃(s, β) , γ(s) + β(5.25)

θ̃(t) , arctan

(

t

Dsd

)

(5.26)

ũ(s) = Ds0 sin γ(s)(5.27)

ṽ(s, t, ζ) = Ds0 cos γ(s) sin θ̃(t) + ζ cos θ̃(t).(5.28)
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The inverse relations can be derived directly, given as follows:

s̃(u) , Dsd arcsin
u

Ds0

(5.29)

t̃(θ) , Dsd tan θ(5.30)

β̃(ϕ, u) , ϕ− arcsin
u

Ds0

(5.31)

ζ̃(u, v, θ) ,
v

cos θ
−Ds0 cos γ̃(s̃(u)) tan θ

=
v

cos θ
−
√

Ds0
2 − u2 tan θ.(5.32)

5.2.2 Analysis for Cone-Beam Gram Matrix

To predict variance images using (5.12), we need to determine the local frequency

response H0(ρ,Φ,Θ), or equivalently Hd0(~ω). We first find the local impulse response.

Local Impulse Response of Gram Matrix

Consider the 3D object model based on a common basis function χ(~x) superimposed

on a N1 ×N2 ×N3 Cartesian grid as follows:

(5.33) µ(~x) =
∑

~n∈S

µ[~n]χ

(

1

~∆
� (~x− ~xc[~n])

)

,

where S , {~nj : j = 1, . . . , p} denotes the subset of the N1 × N2 × N3 lattice that is

estimated and ~xc[~n] denotes the center of the ~nth basis function (see Figure 4.1). The grid

spacing is ~∆ = (∆X,∆Y,∆Z). We consider the case ∆X = ∆Y hereafter, but we allow

∆X 6= ∆Z. Typically

~xc[~n] = (~n− ~w~x)� ~∆, ~n ∈ S

~w~x = ( ~N − 1)/2 + ~c~x,

where the user-selectable parameter ~c~x denotes an optional spatial offset for the object

center.
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Assume that the detector blur b(s, t) is shift invariant, independent of source position

(β, ζ) and acts only along the s and t coordinates. (This could be generalized to the case

of locally shift-invariant blur.) Then we model the mean projections as follows:

(5.34) ȳϕ[sk, t`; β, ζ]=

∫∫

b(sk − s′, t` − t′) p
(

ũ(s′), ṽ(s′, t′, ζ); ϕ̃(s′, β), θ̃(t′)
)

ds′ dt′

for

sk = (k − wS)∆S

t` = (`− wt)∆t

and k = 0, . . . , ns − 1; ` = 0, . . . , nt − 1, where ∆S is the sample spacing in s, ∆t is the

sample spacing in t, wS and wt are defined akin to ~w~x, and p(u, v;ϕ, θ) is the line integral

of µ(~x) defined in (5.3).

Let g(u, v;ϕ, θ) denote the Radon transform of χ(~x) at angle (ϕ, θ). By shifting and

scaling properties of Radon transform in (5.7) and (5.9), we have

χ

(

1

~∆
� (~x− ~xc[~n])

)

3D Xray←→ ∆X∆Z

c(θ)
g

(

u− uϕ[~n]

∆X

,
v − vϕ,θ[~n]

c(θ)
;ϕ, arctan

(

∆X

∆Z

tan θ

))

,

where c(θ) ,
√

∆2
X sin2 θ + ∆2

Z cos2 θ and

uϕ[~n] , ~xc[~n] · ~e1(ϕ)(5.35)

vϕ,θ[~n] , ~xc[~n] · ~e2(ϕ, θ).(5.36)

Substituting the basis expansion model in (5.33) for the object into the measurement

model (5.34) and simplifying leads to the linear model

ȳϕ[sk, t`; β, ζ] =
∑

~n∈S

a(sk, t`; β, ζ;~n)µ[~n],

where the cone-beam system matrix elements are samples of the following cone-beam
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projection of a single basis function centered at ~xc[~n]:

a(s, t; β, ζ;~n) =

∫∫

b(s− s′, t− t′) ∆X∆Z

c(θ̃(t′))

· g
(

ũ(s′)− uϕ̃(s′,β)[~n]

∆X

,
ṽ(s′, t′, ζ)− vϕ̃(s′,β),θ̃(t′)[~n]

c(θ̃(t′))
; ϕ̃(s′, β), θ̃

(

∆X

∆Z

t′
)

)

ds′ dt′,(5.37)

where

(5.38) arctan

(

∆X

∆Z

tan θ̃(t′)

)

= arctan

(

∆X

∆Z

t′

Dsd

)

= θ̃

(

∆X

∆Z

t′
)

.

To proceed, we rebin (5.37) into parallel coordinates by defining ap(u, v;ϕ, θ;~n) in terms

of a(s, t; β, ζ;~n) using (5.29) − (5.32).

Next we reparameterize variables s′ and t′ in (5.37) according to the inversion of cone-

to-parallel rebinning as follows: s′ → s̃(u′), t′ → t̃(θ′), and use first-order Taylor expan-

sion to expand s(u) around s′(u′) as follows:

(5.39) s(u)− s(u′) ≈ ms(u
′)(u− u′),

where we define the following magnification factor

(5.40) ms(u
′) ,

∂s̃

∂u
(u)

∣

∣

∣

∣

u=u′

=
Dsd

Ds0 cos γ̃(s̃(u′))
=

Dsd
√

Ds0
2 − u2

.

Similarly,

(5.41) t̃(θ)− t̃(θ′) ≈ mt(θ
′)(θ − θ′),

where

(5.42) mt(θ
′) ,

∂t̃

∂θ
(θ)

∣

∣

∣

∣

θ=θ′
=

Dsd

cos2 θ′
.

Because the blur b(s, t) is assumed to be about 1-2 detector pixels wide, we expect θ ′ ≈ θ
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within (5.37) , leading to the following equalities and approximations:

θ̃(t̃(θ′)) = θ′

ũ(s̃(u′)) = u′

ϕ̃(s̃(u′), β̃(ϕ, u)) = ϕ+ arcsin
u′

Dsd

− arcsin
u

Dsd

≈ ϕ

θ̃

(

∆X

∆Z

t̃(θ′)

)

= arctan

(

∆X

∆Z

tan θ′
)

, ϑ(θ′)

ṽ(s̃(u′), t̃(θ′), ζ̃(u, v, θ)) = Ds0 cos γ̃(s̃(u′)) sin θ′ +
[ v

cos θ
−Ds0 cos γ̃(s̃(u)) tan θ

]

cos θ′

≈ v cos θ′

cos θ
−Ds0 cos γ̃(s̃(u′)) cos θ′(tan θ − tan θ′)

≈ v − U(u′, θ′)(θ − θ′),(5.43)

where

(5.44) U(u′, θ′) , Ds0 cos θ′ cos γ̃(s̃(u′)) = (cos θ′)
√

Ds0
2 − u2.

We assume these approximations hold for (s′, t′) sufficiently close to (s, t), i.e., within the

essential support of b(s, t).

With (5.39), (5.41), (5.37) and the above, we approximate the parallel-rebinned system

matrix elements as follows:

ap(u, v;ϕ, θ;~n) , a(s̃(u), t̃(θ); β̃(u, ϕ), ζ̃(u, v, θ);~n)

≈
∫∫

b(ms(u
′)(u− u′),mt(θ

′)(θ − θ′)) ∆X∆Z

c(θ′)

· g
(

u′ − uϕ[~n]

∆X

,
v − U(u′, θ′)(θ − θ′)− vϕ,θ′ [~n]

c(θ′)
;ϕ, ϑ(θ′)

)

|ms(u
′)mt(θ

′)| du′ dθ′

≈
∫∫

b(ms(u)(u− u′),mt(θ)(θ − θ′))
∆X∆Z

c(θ)

· g
(

u′ − uϕ[~n]

∆X

,
v − U(u, θ)(θ − θ′)− vϕ,θ[~n]

c(θ)
;ϕ, ϑ(θ)

)

|ms(u)mt(θ)| du′ dθ′ .(5.45)
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Making the change variable of v′ = v − U(u, θ)(θ − θ′) yields

ap(u, v;ϕ, θ;~n)≈
∫∫

b(ms(u)(u− u′),ms,t(u, θ)(v − v′))
∆X∆Z

c(θ)

· g
(

u′ − uϕ[~n]

∆X

,
v′ − vϕ,θ[~n]

c(θ)
;ϕ, ϑ(θ)

)

|ms(u)ms,t(u, θ)| du′ dv′,(5.46)

where

(5.47) ms,t(u, θ) ,
mt(θ)

U(u, θ)
=

Dsd

Ds0 cos θ cos γ̃(s̃(u))
.

Consider ~n and ~n′ values that are sufficiently close to ~n0, the location of interest.

Let u0(ϕ) , uϕ[~n0], v0(ϕ, θ) , vϕ,θ[~n0]. and v0(ϕ, θ) , vϕ,θ[~n0]. Because ms(u) and

ms,t(u, θ) are fairly smooth over (u, v), we approximate the local magnification factors by

their values at the center of the voxel of interest ~n0:

ms(u) ≈ ms(u0(ϕ)) , ms,0(ϕ)(5.48)

ms,t(u, θ) ≈ ms,t(u0(ϕ), θ) , ms,t,0(ϕ, θ).(5.49)

Therefore, we further approximate (5.46) using (5.48) and (5.49) as follows:

ap(u, v;ϕ, θ;~n)≈ a0(u− uϕ[~n], v − vϕ,θ[~n];ϕ, θ)

,

∫∫

b0(u− uϕ[~n]− u′′, v − vϕ,θ[~n]− v′′;ϕ, θ)

·∆X∆Z

c(θ)
g

(

u′′

∆X

,
v′′

c(θ)
;ϕ, ϑ(θ)

)

du′′ dv′′,(5.50)

where

b0(u, v;ϕ, θ) , |ms,0(ϕ)ms,t,0(ϕ, θ)| b(ms,0(ϕ)u,ms,t,0(ϕ, θ)v)(5.51)

a0(u, v;ϕ, θ) ,

∫∫

b0(u− u′, v − v′)
∆X∆Z

c(θ)
g

(

u′

∆X

,
v′

c(θ)
;ϕ, ϑ(θ)

)

du′ dv′ .(5.52)

The second line of (5.50) uses change of variables u′′ = u′ − uϕ[~n], v′′ = v′ − vϕ,θ[~n].
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Now the elements of the Gram matrix are given exactly by

hd[~n;~n′] =











[A′WA]jj′ , ~n = ~nj ∈ S, ~n′ = ~nj′ ∈ S

0, otherwise

= h̆d[~n;~n′]η(~xc[~n])η(~xc[~n
′])(5.53)

where

h̆d[~n;~n′] =
ns
∑

k=1

nt
∑

l=1

nβ
∑

i=1

nζ
∑

j=1

w(sk, t`; βi, ζj) a(sk, t`; βi, ζj;~n)a(sk, t`; βi, ζj;~n
′),

and η(~xc[~n]) , 1{~n∈S}, and w(s, t; β, ζ) denotes the statistical weighting associated with

W . We first use the integrals to approximate the summations in (5.53) as follows:

h̆d[~n;~n′] ≈ Π

∫ ∞

−∞

∫ 2π

0

∫ ∞

−∞

∫ ∞

−∞

w(s, t; β, ζ)rect

(

s

2smax

)

rect

(

t

2tmax

)

rect

(

ζ

2ζmax

)

·a(s, t; β, ζ;~n)a(s, t; β, ζ;~n′) ds dt dβ dζ,(5.54)

where

Π ,
1

∆S

1

∆t

1

∆β

1

∆ζ

,

and ∆S,∆t,∆β and ∆ζ are the sampling intervals in s, t, β and ζ . Notice that h̆d[~n;~n′] in

(5.54) is not shift invariant. Making a change of variables from cone-beam coordinates to

parallel-beam coordinates, we rewrite (5.54) as

(5.55)

h̆d[~n;~n′] ≈ Π

∫ π
2

−π
2

∫ 2π

0

∫ ∞

−∞

∫ ∞

−∞

w̄(u, v;ϕ, θ)ap(u, v;ϕ, θ;~n)ap(u, v;ϕ, θ;~n
′)J(u, θ) du dv dϕ dθ,

where w̄(u, v;ϕ, θ) is the rebinned statistical weighting defined as follows:

w̄(u, v;ϕ, θ) , w(s(u), t(θ); β(ϕ, u), ζ(u, v, θ)) rect3

(

s(u)

2smax
,
t(θ)

2tmax
,
ζ(u, v, ζ)

2ζmax

)

≈ w(s(u), t(θ); β(ϕ, u), ζ(u, v, θ)) rect3

(

u

2umax
,

θ

2θmax
,

v

2ζmax cos θ

)

,(5.56)
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for small θ, rect3(~x) , rect(x) rect(y) rect(z) and umax , ũ(smax), θmax , θ̃(tmax). The

absolute value of the determinant of the Jacobian matrix J(u, θ) is given by

J(u, θ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂s̃
∂u

∂s̃
∂v

∂s̃
∂ϕ

∂s̃
∂θ

∂t̃
∂u

∂t̃
∂v

∂t̃
∂ϕ

∂t̃
∂θ

∂β̃
∂u

∂β̃
∂v

∂β̃
∂ϕ

∂β̃
∂θ

∂ζ̃
∂u

∂ζ̃
∂v

∂ζ̃
∂ϕ

∂ζ̃
∂θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂s̃
∂u

0 0 0

0 0 0 ∂t̃
∂θ

∂β̃
∂u

0 ∂β̃
∂ϕ

0

∂ζ̃
∂u

∂ζ̃
∂v

0 ∂ζ̃
∂θ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∂s̃

∂u

∂t̃

∂θ

∂β̃

∂ϕ

∂ζ̃

∂v

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

D2
sd

cos3 θ
√

D2
s0 − u2

∣

∣

∣

∣

∣

.(5.57)

We further simplify (5.55) as follows, by analogy with [40] and (4.43) in chapter 4:

(5.58) h̆d[~n;~n′] ≈ Π

∫ π
2

−π
2

∫ 2π

0

w̆(ϕ, θ;~n;~n′)h̆ϕ,θ[~n;~n′] dϕ dθ,

where

(5.59)

w̆(ϕ, θ;~n;~n′) ,

∫∞

−∞

∫∞

−∞
w̄(u, v;ϕ, θ)ap(u, v;ϕ, θ;~n)ap(u, v;ϕ, θ;~n

′)J(u, θ) du dv
∫∞

−∞

∫∞

−∞
ap(u, v;ϕ, θ;~n)ap(u, v;ϕ, θ;~n′) du dv

(5.60) h̆ϕ,θ[~n;~n′] ,

∫ ∞

−∞

∫ ∞

−∞

ap(u, v;ϕ, θ;~n)ap(u, v;ϕ, θ;~n
′) du dv .

To further simply (5.58), we approximate (5.59) and (5.60) by using (5.50) and assuming

that ~n and ~n′ are sufficiently close to ~n0:

w̆(ϕ, θ;~n;~n′)≈
∫∞

−∞

∫∞

−∞
w̄(u, v;ϕ, θ)J(u, θ)a2

0(u− uϕ[~n0], v − vϕ,θ[~n0]) du dv
∫∞

−∞

∫∞

−∞
a2

0(u− uϕ[~n0], v − vϕ,θ[~n0]) du dv

≈
∫∞

−∞

∫∞

−∞
J0(ϕ, θ)w̄(u, v;ϕ, θ)a2

0(u− u0(ϕ), v − v0(ϕ, θ)) du dv
∫∞

−∞

∫∞

−∞
a2

0(u− u0(ϕ), v − v0(ϕ, θ)) du dv

≈ J(u0(ϕ), θ)w̄(u0(ϕ), v0(ϕ, θ);ϕ, θ)

≈ J0(ϕ, θ)w̄(u0(ϕ), v0(ϕ, θ);ϕ, θ) , w0(ϕ, θ),(5.61)

where the Jacobian determinant at the voxel center is

(5.62) J0(ϕ, θ) , J(u0(ϕ), θ)
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and

h̆ϕ,θ[~n;~n′]≈
∫ ∞

−∞

∫ ∞

−∞

a0(u− uϕ[~n], v − vϕ,θ[~n])a0(u− uϕ[~n], v − vϕ,θ[~n
′]) du dv

=

∫ ∞

−∞

∫ ∞

−∞

a0(u, v;ϕ, θ)a0(u+ uϕ[~n− ~n′], v + vϕ,θ[~n− ~n′];ϕ, θ) du dv

= h̆0(~∆� (~n− ~n′) · ~e1, ~∆� (~n− ~n′) · ~e2;ϕ, θ),(5.63)

where the following 2D auto-correlation is w. r. t. (u, v):

(5.64) h̆0(u, v;ϕ, θ) , a0(u, v;ϕ, θ) ?? a0(u, v;ϕ, θ).

Combining all the approximations above, we have the expression for the local impulse

response:

(5.65) hd[~n;~n′] ≈ Π

∫ π
2

−π
2

∫ 2π

0

w0(ϕ, θ)hϕ,θ[~n;~n′] dϕ dθ,

where

(5.66) hϕ,θ[~n;~n′] , h̆0(~∆� (~n− ~n′) · ~e1, ~∆� (~n− ~n′) · ~e2;ϕ, θ)η(~xc[~n])η(~xc[~n
′]).

Thus, we now have a form that is nearly shift-invariant (except for edge effects).

As shown in 2D fan-beam case, the edge effects in (5.53) or (5.66) are a main concern

in accurate variance prediction. Here we use a similar approach to take the edge effects

into account to find the local frequency response. As in 2D fan-beam case, we refer all

displacements relative to the point ~n0 as follows:

hϕ,θ[~n;~n′] ≈ hϕ,θ[~n0 + ~n− ~n′;~n0]

= h̆0(~∆� (~n− ~n′) · ~e1, ~∆� (~n− ~n′) · ~e2;ϕ, θ)η2(~xc[~n− ~n′])

, h̃ϕ,θ[~n− ~n′;~n0],(5.67)

where

(5.68) η2(~x) , η(~x0 + ~x)η(~x0).
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We approximate (5.68) as follows:

(5.69) η2(~x) ≈ η0(~x) , η(~x)η(~x0).

This choice also yields a local impulse response that is symmetric in ~n provided the support

η(~x) is symmetric itself. We focus on a symmetric η(~x), such as elliptical cylinder or

sphere hereafter. The final form of the local impulse response follows from (5.65), (5.68)

and (5.69):

(5.70) hd[~n;~n′] ≈ Π

∫ π
2

−π
2

∫ 2π

0

w0(ϕ, θ)h̃ϕ,θ[~n− ~n′;~n0] dϕ dθ .

Local Frequency Response of Gram Matrix

To find the DSFT Hd0(~ω) of hd[~n+ ~n0;~n0], we need H̃ϕ,θ(~ω) first, the spectrum of

h̃ϕ,θ[~n;~n0]. Applying the linearity of the DSFT to (5.70) yields:

(5.71) Hd0(~ω) = Π

∫ π
2

−π
2

∫ 2π

0

w0(ϕ, θ)H̃ϕ,θ(~ω) dϕ dθ .

Define a “tube like” function

(5.72) sϕ,θ(~x) , h̆0(~x · ~e1, ~x · ~e2;ϕ, θ)η0(~x).

Then from (5.67) and (5.69) we have h̃ϕ,θ[~n;~n0] = sϕ,θ(~∆�~n). The spectrum of h̃ϕ,θ[~n;~n0]

can be found as follows:

H̃ϕ,θ(~ω) =
∑

~n

h̃ϕ,θ[~n;~n0] e
−ı(~ω·~n)

=
∑

~n

sϕ,θ(~∆� ~n) e−ı(~ω·~n)

≈ 1

∆2
X∆Z

∫∫∫

sϕ,θ(~x) e−ı 1
~∆
�(~ω·~x) d~x

=
1

∆2
X∆Z

Sϕ,θ

(

1

2π~∆
� ~ω

)

,(5.73)

where sϕ,θ(~x)
3D FT←→ Sϕ,θ(~ν).
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Because sϕ,θ(~x) is narrow in both (u, v), we approximate η0(~x) as follows:

(5.74) η0(~x) = ηs

(

~x · ~e3

d0(ϕ, ϑ(θ))

)

,

where d0(ϕ, ϑ(θ)) is the intersecting length of the profile passing though ~n0 and the finite

support at direction (ϕ+π/2, ϑ(θ)). ηs(·) denotes the image support function. We propose

two choices of this support function. To be consistent with FFT-based approach, we choose

(5.75) ηs

(

~x · ~e3

d0(ϕ, ϑ(θ))

)

= rect

(

~x · ~e3

d0(ϕ, ϑ(θ))

)

.

To preserve the non-negative definiteness of the Gram Matrix, we choose

(5.76) ηs

(

~x · ~e3

d0(ϕ, ϑ(θ))

)

= tri
(

~x · ~e3

d0(ϕ, ϑ(θ))

)

.

Regardless, the local frequency response H0(%,Φ,Θ) of the cylindrical cone-beam

Gram matrix around ~n0 is

(5.77) H0(%,Φ,Θ) ≈ Υ

∫ θmax

−θmax

∫ 2π

0

w0(ϕ, θ)Sϕ,θ(%,Φ,Θ) dϕ dθ,

where the constant Υ , Π
∆2

X∆Z
.

• The 3D Fourier Transform of sϕ,θ(~x)

The 3D FT of sϕ,θ(~x) can be found by the rotation property of the 3D FT. Combining

(5.72) and (5.74), we have

sϕ,θ(~x) = h̆0(~x · ~e1, ~x · ~e2;ϕ, θ)ηs

(

~x · ~e3

d0(ϕ, ϑ(θ))

)

.

Let ~x′ = T−1~x, where T is defined in (5.5) in section 5.1, whose determinant |T| = 1.

Then we have a separable function sr that is a rotated version of sϕ,θ(~x) :

(5.78) sr(~x
′;ϕ, θ) , sϕ,θ(T~x

′) = h̆0(x
′, z′;ϕ, θ)ηs

(

y′

d0(ϕ, ϑ(θ))

)

.
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Let sϕ,θ(~x)
3D FT←→ Sϕ,θ(~ν) and sr(~x;ϕ, θ)

3D FT←→ Sr(~ν;ϕ, θ). The spectra of sr(~x;ϕ, θ)

and sϕ,θ(~x) can be related through the rotation property:

Sϕ,θ(~ν) =

∫∫∫

sϕ,θ(~x) exp(−i2π~ν · ~x) d~x

=

∫∫∫

sr(~x
′;ϕ, θ) exp(−i2π~ν ·T~x′) |T| d~x′

=

∫∫∫

sr(~x
′;ϕ, θ) exp(−i2π(T′~ν) · ~x′) d~x′

=Sr(T
′~ν;ϕ, θ).(5.79)

The 3D FT of sr(~x;ϕ, θ) is easily found from (5.78)

(5.80) Sr(~ν;ϕ, θ) = |A0(ν1, ν3;ϕ, θ)|2 d0(ϕ, ϑ(θ))Ms(d0(ϕ, ϑ(θ))ν2),

where ηs(y)
FT←→Ms(νy) andA0(νu, νv;ϕ, θ) is the 2D FT of a0(u, v;ϕ, θ) with respect

to (u,v). Therefore, the 3D FT of sϕ,θ(~x) has the following form according to the

rotation property in (5.79):

(5.81) Sϕ,θ(~ν) = |A0(~ν · ~e1(~γ), ~ν · ~e2(~γ);ϕ, θ)|2 d0(ϕ, ϑ(θ))Ms(d0(ϕ, ϑ(θ))~ν ·~e3(~γ)).

The next goal is to determine A0(νu, νv;ϕ, θ). We start with the 3D Fourier Slice The-

orem. Let P (νu, νv;ϕ, θ) denote the 2D FT of p(u, v;~γ) with respect to (u,v). The 3D

Fourier Slice Theorem gives the following relation:

P (νu, νv;ϕ, θ) = F (νu~e1(~γ) + νv~e2(~γ)),

where F (~ν) is the 3D FT of the basis function χ(~x). Therefore, we have the following

2D FT with respect to (u,v):

∆X∆Z

c(θ)
p

(

u

∆X

,
v

c(θ)
;ϕ, ϑ(θ)

)

2D FT←→ G(νu, νv;ϕ, θ),

where

G(νu, νv;ϕ, θ) = ∆2
X∆ZP (∆Xνu, c(θ)νv;ϕ, ϑ(θ))

= ∆2
X∆ZF (∆Xνu~e1(ϕ) + c(θ)νv~e2(ϕ, ϑ(θ))).(5.82)
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Therefore, A0(νu, νv;ϕ, θ) includes the effects of basis function and detector blur:

(5.83) A0(νu, νv;ϕ, θ) = B0(νu, νv;ϕ, θ)G(νu, νv;ϕ, θ),

where B0(νu, νv;ϕ, θ) is the 2D FT of b0(u, v;ϕ, θ) with respect to (u,v).

• For “ideal” cubic voxel basis function χ(~x) = rect3(~x)

None of the projectors available to us, such as ray-driven(RD), pixel-driven(PD), NUFFT-

based and distance-driven(DD) projectors has this effect. However, we use this case as

demonstration. In this case, we have F (~ν) = sinc3(~ν) that leads to

G(νu, νv;ϕ, θ) = ∆2
X∆Z sinc(∆Xνu cosϕ− c(θ)νv sinϕ sinϑ(θ))

· sinc(∆Xνu sinϕ+ c(θ)νv cosϕ sinϑ(θ))

· sinc(c(θ)νv cosϑ(θ)).(5.84)

• For square area detector

Consider a cylindrical support for an object with radius Rs < Ds0 and a square area

detector response b(s, t) = 1
∆S

1
∆t

rect
(

s
∆S
, t

∆t

)

. For this case, we have

d0(ϕ, ϑ(θ)) =
2Rs

cosϑ(θ)
rect

(

ϑ(θ)

2θmax

)

B0(νu, νv;ϕ, θ) = sinc

(

∆Sνu

ms,0(ϕ)

)

sinc

(

∆tνv

ms,t,0(ϕ, θ)

)

.(5.85)

For computation efficiency, we would like to predict variances in spherical frequency

space coordinates in which we can finely sample % and coarsely sample (Φ,Θ). Let

Sϕ,θ(%,Φ,Θ) , Sϕ,θ(%~eΦ,Θ), whereA0(%,Φ,Θ;ϕ, θ) , A0(%~eΦ,Θ·~e1(~γ), %~eΦ,Θ·~e2(~γ);ϕ, θ).

As θ → 0 and d0(ϕ, ϑ(θ)) → ∞, one can show that for large %, the Ms (sinc or sinc2)

term is sharply peaked at near ϕ = Φ± π:

(5.86) d0(ϕ, ϑ(θ))Ms(d0(ϕ, ϑ(θ))~ν · ~e3(~γ))→ δ(~ν · ~e3(~γ)) = δ(% sin(ϕ− Φ) cos Θ) .
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We consider the following Type-I approximation to (5.77):

(5.87) H0(%,Φ,Θ) ≈ Υ

∫ θmax

−θmax

w0(Φ, θ)

∫ 2π

0

Sϕ,θ(%,Φ,Θ) dϕ dθ , H01(%,Φ,Θ) .

With (5.86), the FT of sϕ,θ approaches

(5.88) Sϕ,θ(%,Φ,Θ)→ |A0(% cos Θ cos(ϕ− Φ), % sin Θ;ϕ, 0)|2 δ(sin(ϕ− Φ))

|% cos Θ| .

We consider the following further approximations to (5.77):

H0(%,Φ,Θ) ≈ Υ

|% cos Θ|

∫ θmax

−θmax

∫ 2π

0

w0(ϕ, θ) |A0(% cos Θ cos(ϕ− Φ), % sin Θ;ϕ, 0)|2

· δ(sin(ϕ− Φ)) dϕ dθ

=
Υ

|% cos Θ| |A0(% cos Θ, % sin Θ; Φ, 0)|2
∫ θmax

−θmax

[w0(Φ, θ) + w0(Φ + π, θ)] dθ

≈ 2Υθmax

|% cos Θ| |A0(% cos Θ, % sin Θ; Φ, 0)|2 [w0(Φ, 0) + w0(Φ + π, 0)]

, H02(%,Φ,Θ),(5.89)

where the last line exploits the fact θmax ≈ 0 and the approximation
∫ θmax
−θmax

f(θ) dθ ≈ f(0) ·

2θmax. We can see (5.89) from that the frequency response is flat along ν3 axis, implying

that the local impulse response along z-direction is much narrower than in xy-directions.

This observation agrees with our empirical experience. The Type-II approximation (5.89)

leads to infinite DC value, but that does not alone prevent its use for variance predictions

via (5.14).

Reduced 2D Fan-beam Case

For a sanity check, we consider the DC value of local frequency response, H0(%,Φ,Θ)

in the reduced 2D fan-beam case where nt = 1 and ∆t → 0. We start with (5.87):

H0(%,Φ,Θ) ≈ Υ

∫
∆t

2Dsd

−
∆t

2Dsd

w0(Φ, θ)

∫ 2π

0

Sϕ,θ(%,Φ,Θ) dϕ dθ

→ Υ
∆t

Dsd

w0(Φ, 0) |A0(ρ, % sin Θ; Φ, 0)|2G2d
0 (ρ,Φ),(5.90)
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where ρ = % cos Θ and

(5.91) G2d
0 (ρ,Φ) ,

∫ 2π

0

d0(ϕ, 0) sinc2(d0(ϕ, 0) ρ sin(ϕ− Φ)) dϕ .

Therefore the DC value can be derived as the following expression for ∆ζ = ∆Z:

(5.92) H0(0,Φ,Θ) ≈ Dsd

Ds0

∆2
X

∆S∆β

G2d
0 (0,Φ).

This expression agrees with Type I DC value, H0(0,Φ), derived in (4.64) in previous

chapter.

Implementation of H0(%,Φ,Θ)

The key to calculateH0(%,Φ,Θ) correctly isw0(ϕ, θ) in (5.87). We first need to find the

proper cone-beam coordinates corresponding to u0(ϕ), v0(ϕ, θ), ϕ, and θ. Let ~x0 , ~xc[~n0].

Using (5.35) and (5.36),

u0(ϕ) = ~x0 · ~e1(ϕ)

v0(ϕ, θ) = ~x0 · ~e2(ϕ, θ).

We then find (s, t, β, ζ) using (5.29) − (5.32).

5.2.3 Analysis of Local Frequency Response for 3D Quadratic Regularization

For a discrete-space 3D object µ[~n], a typical quadratic roughness penalty is given as

R(µ) =
∑

~n

L
∑

l=1

rl,0
1

2

(

(cl ∗∗∗µ)[~n]
)2

,

where rl,0 values are design parameters that affect the directionality of the regularization

and hence the shape of the PSF. Each cl[~n] is a (typically) high-pass filter. For a first-order

difference:

cl[~n] = ξl (δ3[~n]− δ3[~n− ~ml]) ,
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where ξl = ‖~ml‖−υ/2, ~ml denotes the spatial offsets to the neighboring voxels, and υ is

the power of weights for diagonal neighbors that can be chosen by the user. For example,

common practice chooses υ = 1 [30, 70].

Applying Parseval’s theorem, the local frequency response of R for a Λ-order (where

Λ ∈ N) difference can be found in a similar form of 2D fan-beam case in Section 4.5.2 as

follows:

R0(%,Φ,Θ) =
L
∑

l=1

rl,0ξ
2Λ
l 4 sin2Λ

(

π%(~∆� ~eΦ,Θ) · ~ml

)

.(5.93)

In 3D geometry, L = 13 for the second-order neighborhood.

5.3 Simulation Results for 3D Cylindrical Cone-Beam CT

We first use a small image and sinogram to validate the local frequency responses

H0(%,Φ,Θ) and R0(%,Φ,Θ) at image center ~n0 = (0, 0, 0) for cylindrical cone-beam

CT with cubic voxels (5.84). Because the FFT-based approach provides very accurate

approximations to the true empirical variances, we compare analytical H0(%,Φ,Θ) and

R0(%,Φ,Θ) with FFT-based H (f)
0 (%,Φ,Θ) and R(f)

0 (%,Φ,Θ). We also compute the nor-

malized root mean square (NRMS) difference between analytically and FFT predicted

standard deviations at image center,

NRMS difference ,
‖std0 − std(f)

0 ‖2
‖std(f)

0 ‖2
,

where std0 and std(f)
0 are analytically and FFT predicted standard deviations, respectively.

5.3.1 Simulation Setup

We simulated a cylindrical cone-beam CT system with a cylindrical 2D detector with

zero detector offsets in s and t. The corresponding sinogram size is 111 samples in s,

spaced by ∆S ≈ 8 mm, 32 samples in t, spaced by ∆t ≈ 8.8 mm, 137 samples in ζ ,
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spaced by ∆ζ ≈ 1.3 mm and 123 source angular positions over 360
◦ for each ζ . The cone

angle of X-ray beam is about 26.4◦.

The image is of size 64 × 62 × 20 and the object is an ellipsoid. The voxel size is

of 7.8 mm, 7.8 mm and 5mm. A cylindrical support is used with radius Rs = 164.1

mm and height 80 mm. In this case, d0(ϕ, ϑ(θ)) ≈ Rs/ cosϑ(θ) at image center. To be

consistent with the FFT-based method, we implemented the rect support function (5.75).

For spectrum display and calculations of variance prediction, we use max(H0(%,Φ,Θ), 0).

Emulating Cubic Voxel Basis Using DD Projector

In our simulation studies, 3D distance-driven (DD) projector is used. Our derivation of

(5.87) and (5.89) is based on the 3D basis-expansion object model in (5.33). Furthermore,

our analytical H0(%,Φ,Θ) is calculated based on the ideal cubic voxel basis. However,

none of the projectors available has the cubic voxel effect, including the DD projector.

Therefore, FFT-based H (f)
0 (%,Φ,Θ) does not have this cubic voxel effect while analyti-

cal H0(%,Φ,Θ) has. A basis model mismatch occurs between analytical and FFT-based

results. For a fair comparison, we need to emulate the cubic voxel basis using DD pro-

jector. We can emulate this cubic voxel basis by using smaller voxels. In computing the

FFT-based H
(f)
0 (%,Φ,Θ), we first oversample the image, forward and back project the

oversampled image and then downsample the resultant Gram matrix A′WA before taking

FFTs. All of the other parameters remain unchanged.

Because of small cone angle, the DD projector approximates the cubic voxel in z-

direction fairly well. Poor approximation occurs in xy-planes due to the full 360◦ rotation.

Due to memory constraints, we only oversample the image in transaxial planes by a factor

4.

Future work should be done in finding the appropriate basis function that corresponds
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to the realistic projectors. Replace the cubic voxel basis by this projector-dependent basis

function to eliminate the basis mismatch.

5.3.2 Local Frequency Response of Gram Matrix

We consider the simplest case, where an unweighted least-squares cost function is used

in (4.2). In this case w(s, t; β, ζ) = 1. We compute the local frequency responses of Gram

matrix at image center ~n0, by our analytical method (5.77) and by the FFT-based method

(5.11).

center 20 slices of H01 at n0 = (0,0,0)

range[2675.0 17522644.0]
 

 

 100000

8500000

Figure 5.2: Center 20 slices of Type I local frequency response in unweighted case for ~n0 at image center.

Figure 5.2 and Figure 5.3 show the center 20 slices of local frequency responses of

Gram matrix computed by analytical and FFT-based methods, respectively. Figure 5.4

shows the difference image H0(%,Φ,Θ)−H (f)
0 (%,Φ,Θ). Figure 5.5, Figure 5.6 and Fig-

ure 5.7 compare the profiles along three axes (νx, νy, νz). We can see that both the spec-

trum and its profiles match fairly well.
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center 20 slices of H0
(f) at n0 = (0,0,0)

range[66593.2 17304306.0]
 

 

 100000

8500000

Figure 5.3: Center 20 slices of FFT-based local frequency response in unweighted case for ~n0 at image
center.

5.3.3 Local Frequency Response of Standard Quadratic Regularization

We consider a standard quadratic penalty, where rl,0 values are unity for all voxels in

(5.93). We choose the global regularization parameter α = 217.5 to give FWHM = 1.64

voxels, i.e., 12.8 mm in transaxial plane and 1.21 voxels, i.e., 6.1 mm, along axial axis at

the center of the image.

Figure 5.8 shows the νx profiles of local frequency responses of standard quadratic

regularizer calculated by analytical and FFT-based methods. We can see that the two

profiles are almost identical. This result is not surprising because very few approximations

are used to derive (5.93).

The NRMS difference of the predicted standard deviations for quadratically penalized

unweighted least squares (QPULS) between analytical and FFT-based methods are about

5.7%.
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center 20 slices of H01 − H0
(f)

 

 

−410000

 771000

Figure 5.4: Center 20 slices of H01−H
(f)
0 in unweighted case for ~n0 at image center for cylindrical cone-

beam CT.

5.3.4 Investigations on The Effects of Basis Function Mismatch and Discretization

The simulation results in previous section show that the proposed analytical method

provides accurateH0(%,Φ,Θ) andR0(%,Φ,Θ) at image center for a cylindrical cone-beam

CT with cubic voxels. The standard deviation at image center predicted by the integrals in

(5.14) is accurate compared to the FFT-predicted value.

However, cubic voxel projector is not available in practice. When operating in step-

and-shoot mode, we often set the sample spacing in ζ equal to ∆Z. This sample spacing

violates the assumption under (5.77) that X-ray source moves continuously in ζ direction.

We next investigate the sensitivity of our proposed approach to these two effects.

The Effect of Basis Function Mismatch

To investigate the effect of the basis function mismatch, we do not use the oversampled

image as proposed in Section 5.3.1 to obtain FFT-based H (f)
0 (%,Φ,Θ).
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Figure 5.5: H01 and H
(f)
0 νx profiles in unweighted case for ~n0 at image center.

Figure 5.9 shows the difference image of analytical H0 and the FFT-based H (f)
0 that

includes the basis model mismatch. Figure 5.10 shows their profiles along νz axis. Com-

paring Figure 5.9 and Figure 5.4, we can see that the basis function mismatch between

cubic voxel and DD projector introduces larger discrepancy at Φ = 0◦,±45◦ and ±135◦

directions. This phenomenon is due to the approximations that DD projector uses and

likely to change with other projectors, such as ray-driven and Fourier-based projectors.

The NRMS difference of the standard deviations increases to 9.5%.

The Effect of Discretization in Source Axial Trajectory ζ

Figure 5.11 shows the center 20 slices ofH (f)
0 calculated with ∆ζ = ∆Z. The analytical

local frequency response of Gram matrix (5.77) is derived based on an cylindrical cone-

beam CT. The X-ray source can be placed at any point on the cylinder with radius Ds0.

Therefore, the assumption made under (5.77) is that X-ray source moves continuously

along in ζ direction. When the sampling space in ζ is set as ∆Z, as is usual in step-and-

shoot-mode, the discretization effect is fairly pronounced, as shown in Figure 5.12 and
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Figure 5.6: H01 and H
(f)
0 νy profiles in unweighted case for ~n0 at image center.

Figure 5.13. The discretization effect is mostly at high νz frequency components. The

NRMS difference of predicted the standard deviations is about 10.3%.

5.4 Conclusion and Discussion

This chapter extends the analytical variance prediction approach to 3D cone-beam CT.

The analysis is based on a “ideal” cylindrical cone-beam geometry and can be served as a

starting point to the analysis in step-and-shoot or helical cone-beam CT.

The variance prediction integrals (5.14) for 3D cylindrical cone-beam CT provides an

efficient approach to computing variances at many voxel locations with reasonable ac-

curacy. However, our simulation studies in Section 5.3 show that the local frequency

response of Gram matrix (5.87) can be affected by basis function mismatch and discretiza-

tion in X-ray source axial positions. Basis function mismatch between cubic voxel basis

and DD projector incur larger spectral discrepancy at diagonal directions. Realistic sam-

ple spacing in X-ray source axial positions incur larger spectral discrepancy at high νz
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Figure 5.7: H01 and H
(f)
0 νz profiles in unweighted case for ~n0 at image center for cylindrical cone-beam

CT.

frequency components. We found that variance prediction integrals (5.14) is most accu-

rate for the “ideal” cylindrical cone-beam CT that is free of basis function mismatch. The

NRMS difference between standard deviations is about 5.7%. It is least accurate when

both voxel basis mismatch and the ζ discretization are present. The NRMS difference

between standard deviations increases to about 13.2% in this case.

For helical cone-beam geometry, we conjecture that the proposed approach in this chap-

ter can provide comparable accuracy as for cylindrical cone-beam geometry because ∆ζ

in X-ray helical trajectory is usually much smaller than ∆Z. For practical step-and-shoot

geometry, the “semi-continuous” approach developed in Appendix A provides a poten-

tially more accurate method. This “semi-continuous” variance prediction method keeps

both t and ζ discrete. Preliminary simulation results in Appendix A show that the NRMS

difference between standard deviations is about 6%.

Finally, all the simulation results are compared to FFT-based results that are not the

ground truth.



125

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 x 106

νx (cycles / mm)

Unweighted local freq. responses along νx 

 

 
R01(ρ,0,0)
R0

(f)(ρ,0,0)

Figure 5.8: R0 and R
(f)
0 profiles along νx for standard quadratic regularizer for ~n0 at image center.

center 20 slices of H01 − H0
(f) for smaller source step size
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Figure 5.9: Center 20 slices of H01−H
(f)
0 in unweighted case for ~n0 at image center when ∆ζ = 0.25∆Z =

1.3 mm. The cubic voxel basis is not emulated using DD projector.
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Figure 5.10: H01 and H
(f)
0 νz profiles in unweighted case for ~n0 at image center when ∆ζ = 0.25∆Z = 1.3

mm. The cubic voxel basis is not emulated using DD projector.
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Figure 5.11: Center 20 slices of H
(f)
0 in unweighted case for ~n0 at image center when ∆ζ = ∆Z. The cubic

voxel basis is emulated using DD projector.
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center 20 slices of H01 − oversampled H0
(f) at n0 = (0,0,0)
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Figure 5.12: Center 20 slices of H01−H
(f)
0 in unweighted case for ~n0 at image center when ∆ζ = ∆Z. The

cubic voxel basis is emulated using DD projector.
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Figure 5.13: H01 and H
(f)
0 νz profiles in unweighted case for ~n0 at image center when ∆ζ = ∆Z. The cubic

voxel basis is emulated using DD projector.



CHAPTER 6

Summary and Future Work

6.1 Summary

The forward and back-projections are the primary computation bottleneck in X-ray CT

image reconstruction. One can use conventional reconstruction methods, such as FBP

by applying only back-projection once. However, conventional methods usually ignore

energy-dependence of the X-ray source and cause beam-hardening errors that must be

compensated for quantitatively accurate CT values. The low signal-to-noise ratio in FBP

reconstructed images usually requires higher dose to patient. These disadvantages of FBP

give rise to the popular research in Statistical image reconstruction methods that usually

need to use iterative algorithms to minimize certain cost function. In those iterative al-

gorithms, one forward and one back projections are needed for each iteration. Faster and

more accurate forward and back-projectors are always feasible.

We developed a fast Fourier-based forward and back projectors for fan-beam transmis-

sion CT. The projectors are based on Fourier-slice theorem, the fan-to-parallel rebinning

relationship and the non-uniform Fourier transform (NUFFT) that utilizes a min-max op-

timized Kaiser-Bessel interpolation kernel. We also incorporate the effect of shift-variant

detector response in frequency domain by a simple shift-invariant detector response.

Simulation and real data results show that the NUFFT-based forward and back projec-
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tors can provide comparable accuracy as the existing approach. The computation time of

forward and back-projections is equivalent to that of distance-driven (DD) projectors for

modest image sizes. For larger image size, the NUFFT approach outperforms the distance-

driven (DD) projectors. However this method is poorly suited for “ordered-subsets” algo-

rithms since it must compute an oversampled 2D FFT even if only a few projection views

are needed. This property limits its application to algorithms where ordered-subsets are

not needed. Existing O(N 2 logN) methods also have this limitation [99].

Variance image predictions can be useful in understanding the trade-off between res-

olution and noise of statistical image reconstruction methods and aiding the selection of

regularization parameters. Matrix-based and DFT-based prediction methods are conve-

nient for computing variances at a few locations but is not practical when variances are

needed at many or all pixels/voxels. We propose analytical variance prediction approaches

that are based on local shift-invariance approximations and Parseval’s theorem and derive

closed-form approximations for fan-beam and cone-beam tomography.

Simulation results confirm the accuracy of these approaches. Therefore the analyti-

cal variance approximations provide a practical tool for efficiently predicting variances at

large number of locations. Although not deeply investigated, we also provide an expres-

sion for computing covariances of an small region of interest (ROI) within which the local

approximations are still valid. The proposed analytical variance approximations can also

be extended to the cases with shift-variant detector blur where the local shift-invariance

approximation is applicable, e.g., for varifocal collimators in SPECT.

6.2 Future work

The work in this thesis is merely the tip of the iceberg in statistical image reconstruction

research area. In this section, we propose the following suggestions for future work:
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• The computation time of statistical image reconstruction becomes much longer in 3D

cone-beam CT due to the larger data size. Extension of the NUFFT-based forward and

back-projectors in Chapter 3 to 3D cone beam CT might provide speed acceleration for

certain algorithms.

• The analytical variance prediction approaches in Chapter 5 and Appendix A are only

validated for local frequency responses of unweighted Gram matrix and standard quadratic

regularizer. Variances are only computed and compared for one voxel of interest at

image center, using analytical and FFT-based methods. Comparison with empirical

estimation results for a real systems is useful in assessing raw data noise properties.

• Chapter 5 and Appendix A developed fully-continuous and semi-continuous variance

prediction approaches for ideal cylindrical cone-beam CT and step-and-shoot cone-

beam CT. Generalization to axial cone-beam CT and helical cone-beam CT for quadratic

PL reconstruction can be done based on the analysis in Chapter 5 and Appendix A.

• The behavior of quadratic penalty function has been investigated and understood. It

has a very nice property that the Hessian matrix is independent of the object. However,

it might over-smooth the fine details such as edges and small bone structures in the

reconstructed image. In reality, one might prefer to use non-quadratic regularization to

achieve better noise and resolution trade-off. The properties of non-quadratic regular-

ization has not been thoroughly analyzed yet. Further research in this area will be very

useful. The analysis in [5, 6] may be a useful starting point.

• The variance analysis in Chapter 4 and Chapter 5 is based on a basic Poisson statistics

with mono-energetic X-ray source. Although the matrix-based approximations [32] are

general for any statistical models, further investigations are needed on the effects of

photon-counting detectors that collect polyenergetic X-ray photons.

• The analytical variance prediction philosophy can be also applied to predict the co-
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variance matrix which is useful in many detection tasks. However, the local Fourier

transform is not applied with respect to the same image location any more. Further

investigation is needed to evaluate the validity of “local stationarity”.

• The discussion of covariance and variance approximations in this dissertation is only

focused on the second-order moments. Further analysis on bias and skewness will be

helpful in understanding CT data statistics.

• The idea behind the analytical variance prediction approach is to bridge discrete and

continuous frequency spaces by Discrete Space Fourier Transform (DSFT) and Parse-

val’s theorem. In the derivation of local frequency response of Gram matrix, summa-

tions are approximated by integrals. A possible alternative is to consider the unknown

image µ(x, y) to be an infinite dimensional parameter and estimate it from discrete

observations [86].

• Apply variance predictions for regularization design. This is one reason that motivated

us to develop analytical variance prediction approach. How to select appropriate shape

parameter based on predicted noise level remains an open question.

• Study analytical variance formulas as a function of pixelization (np,∆X) and spatial

resolution to develop resolution/noise tradeoff rules. Similar results are known for FBP

[62].

• Generalize analytical variance formulas to account for the non-negativity constraints.

A “truncated Gaussian” model was proposed for PET in [77] to compensate for this

effect and improve the accuracy in low activity area.
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APPENDIX A

Semi-Continuous Approach for 3D Variance Predictions

A.1 Local Impulse Response of Gram Matrix

We previously discussed a (fully) continuous variance prediction approach for 3D

cylindrical cone-beam CT in Chapter 5. We proceeded by approximating the discrete sum-

mations in the elements of the Gram matrix (5.53) as (continuous) integrals. The NRMS

difference between analytically and FFT-predicted standard deviations at image center is

about 5.7% for unweighted case. However, the simulation studies in Chapter 5 also showed

that the discretization in X-ray source ζ axial trajectory decreases the accuracy to 10.3%.

In this appendix, we propose a semi-continuous approach that can overcome this dis-

cretization effect and potentially provide more accurate results for step-and-shoot cone-

beam CT. Instead of (5.54), we approximate (5.53) as follows:

h̆d[~n;~n′] ≈ Π′
nt
∑

l=1

nζ
∑

j=1

∫ ∞

−∞

∫ ∞

−∞

∫ 2π

0

∫ ∞

−∞

w(s, t; β, ζ) rect

(

s

2smax

)

δ(t− t`)

·δ(ζ − ζj)a(s, t; β, ζ;~n)a(s, t; β, ζ;~n′) ds dt dβ dζ,(A.1)

where Π′ , 1
∆S∆β

. Making change of variables from cone-beam coordinates to parallel-

beam coordinates, we rewrite (A.1) as

h̆d[~n;~n′] ≈ Π′
nt
∑

l=1

nζ
∑

j=1

∫ π
2

−π
2

∫ 2π

0

∫ ∞

−∞

∫ ∞

−∞

w̄(u, v;ϕ, θ)ap(u, v;ϕ, θ;~n)ap(u, v;ϕ, θ;~n
′)

·δ(t̃(θ)− t̃(θl))δ(ζ̃(u, v, θ)− ζj)J(u, θ) du dv dϕ dθ,(A.2)
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where J(u, θ) is the absolute value of the determinant of the Jacobian matrix given in

(5.57) and w̄(u, v;ϕ, θ) is the rebinned weighting defined as follows:

(A.3) w̄(u, v;ϕ, θ) , w(s(u), t(θ); β(ϕ, u), ζ(u, v, θ)) rect

(

s(u)

2smax

)

.

By using the properties of Dirac impulse and the relationship in (5.32) , we obtain the

following results:

δ(t̃(θ)− t̃(θl)) ≈
cos2 θl

Dsd

δ(θ − θl)

δ(ζ̃(u, v, θ)− ζj) = |cos θ| δ(v − v̂j(u, θ)),

where

(A.4) v̂j(u, θ) , Ds0 cos γ̃(s̃(u)) sin θ + ζj cos θ.

Therefore, we can first carry out the integrations in (A.2) with respect to θ and v as follows:

h̆d[~n;~n′] ≈ Π′
nt
∑

l=1

nζ
∑

j=1

∫ 2π

0

∫ ∞

−∞

w̄(u, v̂j,l(u);ϕ, θ)J2D(u)

·ap(u, v̂j,l(u);ϕ, θ;~n)ap(u, v̂j,l(u);ϕ, θ;~n
′) du dϕ,(A.5)

where v̂j,l(u) , v̂j(u, θl), the absolute value of 2D fan-beam Jacobian determinant J2D(u) ,

Dsd/
√

D2
s0 − u2, and ap(u, v̂j(u, θl);ϕ, θ;~n) is the rebinned cone-beam system matrix el-

ements ap(u, v;ϕ, θ;~n) in (5.46), evaluating at v = v̂j,l(u).

We further simplify (A.5) as follows:

(A.6) h̆d[~n;~n′] ≈ Π′
nt
∑

l=1

∫ 2π

0

w̆(ϕ, θl;~n;~n′)h̆ϕ,θl
[~n;~n′] dϕ,

where we define ŵ(ϕ, θ;~n;~n′) , w̄(u, v̂j,l(u);ϕ, θ)J2D(u) and

(A.7)

w̆(ϕ, θ;~n;~n′),

∑nζ

j=1

∫∞

−∞
ŵ(u, v̂j,l(u);ϕ, θ)ap(u, v̂j,l(u);ϕ, θ;~n)ap(u, v̂j,l(u);ϕ, θ;~n

′) du
∑nζ

j=1

∫∞

−∞
ap(u, v̂j,l(u);ϕ, θ;~n)ap(u, v̂j,l(u);ϕ, θ;~n′) du
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(A.8) h̆ϕ,θ[~n;~n′] ,

nζ
∑

j=1

∫ ∞

−∞

ap(u, v̂j,l(u);ϕ, θ;~n)ap(u, v̂j,l(u);ϕ, θ;~n
′)J2D(u) du .

We make further approximations to (A.7) and (A.8) by using (5.50) and assuming that

~n and ~n′ are sufficiently close to ~n0:

(A.9) w̆(ϕ, θl;~n;~n′) ≈ J0(ϕ)w̄(u0(ϕ), v̂j,l(u);ϕ, θl) , w0(ϕ, θl)

and

h̆ϕ,θl
[~n;~n′] ≈

nζ
∑

j=1

∫ ∞

−∞

a0(u− uϕ[~n], v̂j,l(u)− vϕ,θ[~n])a0(u− uϕ[~n], v̂j,l(u)− vϕ,θ[~n
′]) du

=

nζ
∑

j=1

h̆
(j)
0 (~∆� (~n− ~n′) · ~e1, v̂j,l(u)− vϕ,θ[~n], v̂j,l(u)− vϕ,θ[~n

′];ϕ, θl),(A.10)

where the following 1D cross-correlation is w. r. t. u:

(A.11) h̆
(j)
0 (u, v1, v2;ϕ, θ) , a0(u, v1;ϕ, θ) ? a0(u, v2;ϕ, θ).

Combining all the approximations above, we have the expression for the local impulse

response:

(A.12) hd[~n;~n′] ≈ Π′
nt
∑

l=1

∫ 2π

0

w0(ϕ, θl)hϕ,θl
[~n;~n′] dϕ,

where

hϕ,θl
[~n;~n′] , η(~xc[~n])η(~xc[~n

′])

·
nζ
∑

j=1

h̆
(j)
0 (~∆� (~n− ~n′) · ~e1, v̂j,l(u)− vϕ,θ[~n], v̂j,l(u)− vϕ,θ[~n

′];ϕ, θl).(A.13)

Using local shift-invariance approximation, we refer all displacements relative to the
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point ~n0 as follows:

hϕ,θl
[~n;~n′] ≈ hϕ,θl

[~n0 + ~n− ~n′;~n0]

= η(~xc[~n0] + ~xc[~n− ~n′])

·
nζ
∑

j=1

h̆
(j)
0 (~∆� (~n− ~n′) · ~e1(ϕ), v̂j,l(u)− vϕ,θ[~n0 + ~n− ~n′], v̂j,l(u)− vϕ,θ[~n0];ϕ, θl)

= η0(~xc[~n− ~n′])

·
nζ
∑

j=1

h̆
(j)
0 (~∆� (~n− ~n′) · ~e1(ϕ), v̂j,l(u)− vϕ,θ[~n0]− vϕ,θ[~n− ~n′], v̂j,l(u)− vϕ,θ[~n0];ϕ, θl)

= η0(~∆� (~n− ~n′))

·
nζ
∑

j=1

h̆
(j)
0 (~∆� (~n− ~n′) · ~e1(ϕ), cj,l0 (ϕ)− ~∆� (~n− ~n′) · ~e2(ϕ, θl), c

j,l
0 (ϕ);ϕ, θl)

, h̃ϕ,θl
[~n− ~n′;~n0],

where cj,l0 (ϕ) , v̂j,l(u)− vϕ,θ[~n0]. Therefore, the local impulse response has the following

nearly shift-invariant form:

(A.14) hd[~n;~n′] ≈ Π′
nt
∑

l=1

∫ 2π

0

w0(ϕ, θl)h̃ϕ,θl
[~n− ~n′;~n0] dϕ .

A.2 Local Frequency Response of Gram Matrix

To find the DSFT Hd0(~ω) of hd[~n;~n′], we need Hϕ,θl
(~ω;~n0) first, the spectrum of

h̃ϕ,θl
[~n;~n0], by applying the linearity of the DSFT to (5.70) yields:

(A.15) Hd0(~ω) = Π′
nt
∑

l=1

∫ 2π

0

w0(ϕ, θ)Hϕ,θl
(~ω;~n0) dϕ .

Define a “tube like” function

(A.16) sϕ,θl
(~x) ,

nζ
∑

j=1

h̆
(j)
0 (~x · ~e1(ϕ), cj,l0 (ϕ)− ~x · ~e2(ϕ, θl), c

j,l
0 (ϕ);ϕ, θl)η0(~x).

By an analysis analogous to (5.73), we can rewrite Hd0(~ω) as follows:

(A.17) Hd0(~ω) =
Π′

∆2
X∆Z

nt
∑

l=1

∫ 2π

0

w0(ϕ, θ)Sϕ,θl

(

1

2π~∆
� ~ω

)

,

where sϕ,θl
(~x)

3D FT←→ Sϕ,θl
(~ν).
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A.2.1 The 3D Fourier Transform of sϕ,θl
(~x)

An analogous analysis as in Section 5.2.2 on the 3D Fourier transform of sϕ,θ(~x) shows

that the key is to find the 3D FT of sr(~x
′;ϕ, θl), rotated version of sϕ,θ(~x) that is defined

as follows:

sr(~x
′;ϕ, θl) , sϕ,θl

(T~x′)

=

nζ
∑

j=1

h̆
(j)
0 (x′, cj,l0 (ϕ)− z′, cj,l0 (ϕ);ϕ, θl)ηs

(

y′

d0(ϕ, ϑ(θl)

)

.(A.18)

The spectra of sr(~x;ϕ, θl) and sϕ,θl
(~x) can be related through the rotation property:

(A.19) Sϕ,θl
(~ν) = Sr(T

′~ν;ϕ, θl)

The 2D Fourier transform of h̆(j)
0 (x, cj,l0 (ϕ)−z, cj,l0 (ϕ);ϕ, θl) with respect to (x, z) is given

as:

H̆
(j)
0 (νx, νz) ,

∫ ∞

−∞

∫ ∞

−∞

h̆
(j)
0 (x, cj,l0 (ϕ)− z, cj,l0 (ϕ);ϕ, θl) e−i2πνxx e−i2πνzz dx dz

= A
(1)∗

0 (νx, c
j,l
0 (ϕ);ϕ, θl)

∫ ∞

−∞

A
(1)
0 (νx, c

j,l
0 (ϕ)− z;ϕ, θl) e−i2πνzz dz

= A
(1)∗

0 (νx, c
j,l
0 (ϕ);ϕ, θl) e−i2πνzcj,l

0 (ϕ)A0(νx,−νz;ϕ, θl),(A.20)

whereA0(νu, νv;ϕ, θ) is the 2D FT of a0(u, v;ϕ, θ) with respect to (u,v) andA(1)
0 (νu, v;ϕ, θ)

is the 1D FT of a0(u, v;ϕ, θ) with respect to u only. ∗ denotes Hermitian conjugate. Com-

bining (A.18), (A.20) and (A.24), we have

(A.21)

Sr(~x
′;ϕ, θl) = A0(νx,−νz;ϕ, θl)M̃s (νy)

nζ
∑

j=1

A
(1)∗

0 (νx, c
j,l
0 (ϕ);ϕ, θl) e−i2πνzcj,l

0 (ϕ) ,

where M̃s (νy) is the 1D FT of ηs

(

y
d0(ϕ,ϑ(θl)

)

. Therefore, the 3D FT of sϕ,θl
(~x) has the

following form:

Sϕ,θl
(~ν) = A0(~ν · ~e1(ϕ),−~ν · ~e2(ϕ, θl);ϕ, θl)M̃s (~ν · ~e3(ϕ, θl))

·
nζ
∑

j=1

A
(1)∗

0 (~ν · ~e1(ϕ), cj,l0 (ϕ);ϕ, θl) e−i2πcj,l
0 (ϕ)~ν·~e2(ϕ,θl) .(A.22)
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“Ideal” cubic voxel

Direct computation of A(1)
0 (νu, v;ϕ, θ) from a0(u, v;ϕ, θ) in (5.52) is not feasible be-

cause g(t, ϕ) is generally non-separable. Therefore for ideal cubic voxel basis, we find

A
(1)
0 (νu, v;ϕ, θ) by taking the 1D IFT of A0(νu, νv;ϕ, θ) given in (5.83), with respect to

νv. This leads to a sequence of convolutions:

(A.23)

A
(1)
0 (νu, v;ϕ, θ) = ∆2

X∆Z sinc

(

∆Sνu

ms,0(ϕ)

)

τ1(v;ϕ, θ) ∗ τ2(v;ϕ, θ) ∗ τ3(v; θ) ∗ τ4(v;ϕ, θ),

where

τ1(v;ϕ, θ) =
1

c(θ) sinϕ sinϑ(θ)
eiv

2π∆Xνu cos ϕ

c(θ) sin ϕ sin ϑ(θ) rect

(

v

c(θ) sinϕ sinϑ(θ)

)

τ2(v;ϕ, θ) =
1

c(θ) cosϕ sinϑ(θ)
eiv

2π∆Xνu sin ϕ

c(θ) cos ϕ sin ϑ(θ) rect

(

v

c(θ) cosϕ sinϑ(θ)

)

τ3(v;ϕ) =
1

c(θ) cosϑ(θ)
rect

(

v

c(θ) cosϑ(θ)

)

τ4(v;ϕ, θ) =
ms,t,0(ϕ, θ)

∆t

rect

(

ms,t,0(ϕ, θ)v

∆t

)

.

The convolution in (A.23) can be analytically calculated. However, we approximate it as

follows. For small cone angle such that sinϑ(θ) ≈ 0, both τ1(v;ϕ, θ) and τ2(v;ϕ, θ) tends

to behave as Dirac impulses. Therefore, we approximate (A.23) as follows:

(A.24) A
(1)
0 (νu, v;ϕ, θ) ≈ ∆2

X∆Z sinc

(

∆Sνu

ms,0(ϕ)

)

t0(v;ϕ, θ),

where t0(v;ϕ, θ) is a trapezoid function shown in Figure A.1, where w1 = |c(θ) cosϑ(θ)|

and w2 = |ms,t,0(ϕ,θ)|
∆t

.

A.3 Simulation Results

We tested the proposed semi-continuous approach in unweighted case by simulating

the same cylindrical cone-beam systems as in Section 5.3. We compare the analytical
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Figure A.1: Trapezoid function as the result of τ3(v;ϕ) ∗ τ4(v;ϕ, θ), where w1 = |c(θ) cos ϑ(θ)| and w2 =
|ms,t,0(ϕ,θ)|

∆t
.

local frequency response of Gram matrix Hd0(~ω) in (A.17) with (A.22) to the FFT-based

H
(f)
0 (~ω) in Figure 5.11 for 3D cone-beam CT in step-and-shoot mode.

center 20 slices of H01 at n0 = (0,0,0)

range[1714.5 17522314.0]
 

 

 100000

8500000

Figure A.2: Center 20 slices of local frequency response in unweighted case for ~n0 at image center for
step-and-shoot cone-beam CT: Hd0(~ω) is computed using semi-continuous approach.

Figure A.2 shows the center 20 slices of local frequency responses of Gram matrix com-

puted by the semi-continuous approach. Figure A.3 shows the difference imageH0−H(f)
0 .

Figure A.4, Figure A.5 and Figure A.6 compare the profiles along three axes (νx, νy, νz).

We can see that both the image and the profiles match fairly well. The NRMS difference

of predicted the standard deviations is about 6%.
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center 20 slices of H01 − H0
(f) at n0 = (0,0,0)

 

 

−114000

 180000

Figure A.3: Center 20 slices of H0−H
(f)
0 in unweighted case for ~n0 at image center for step-and-shoot

cone-beam CT.

A.4 Discussion

This appendix proposed a semi-continuous approach to compute local frequency re-

sponse of Gram matrix, Hd0(~ω) or H0(ρ,Φ,Φ) for discrete ζ step size. Simulation results

in Section 5.3.4 show that when discretization effect in ζ can not be ignored, the accuracy

of the (fully) continuous approach proposed in Chapter 5 decreases. The NRMS difference

between (fully) continuous H0(ρ,Φ,Φ) and the FFT-based H (f)
0 (ρ,Φ,Φ) increases from

5.7% to 10.3%.

The semi-continuous approach is potentially more accurate than the (fully) continuous

approach in the case of discrete ζ because both ζ and t remain discrete. Preliminary

simulation results show that the NRMS difference between semi- continuous H0(ρ,Φ,Φ)

and the FFT-based H (f)
0 (ρ,Φ,Φ) is about 6%.

We conjecture that the (fully) continuous approach can provide comparable accuracy
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Figure A.4: H0 and H
(f)
0 νx profiles in unweighted case for ~n0 at image center for step-and-shoot cone-

beam CT.

for helical cone-beam CT as for cylindrical cone-beam CT because ∆ζ in X-ray helical

trajectory is usually much smaller than ∆Z.
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Figure A.5: H0 and H
(f)
0 νy profiles in unweighted case for ~n0 at image center for step-and-shoot cone-

beam CT.
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Figure A.6: H0 and H
(f)
0 νz profiles in unweighted case for ~n0 at image center for step-and-shoot cone-beam

CT.
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