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CHAPTER I

Introduction

Functional MRI (Magnetic Resonance Imaging) is a noninvasive imaging method

to explore the function of the human brain, both in normal subjects and in clinical

populations. In most fMRI (functional MRI) studies, brain function mapped from a

set of MR images of a subject with a controlled manipulation of a task or stimulus.

However, while current methods have been used to provide valuable information

about structure and functional relationships, there still are limitations in temporal

and spatial resolution not to mention those from the artifacts of the reconstructed

images.

There has been remarkable progress for fast 2D functional imaging methods both

in temporal and spatial resolution. However, whole brain imaging is still a challenging

problem, since it requires excessive data acquisition in much larger volumes of interest

than several slices. Acquisition of the entire brain is desirable because the human

brain is organized in a distributed fashion with many different regions involved in

performing even very simple tasks. For example, the neural circuitry involved in

motor function includes primary sensory and motor cortices (bilateral precentral

gyrus), supplementary motor area (midline frontal cortex), higher motor planning

areas (anterior prefrontal cortex), cerebellum,striatum, and other sub-cortical areas.
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In addition, the fidelity of movement correction in transverse and through-plane

directions depends on large volumes of acquisition.

In work by Savoy, et al. [3], consistency in the response between hemispheres in

visual cortex allowed stimulus timing differences of 500 ms to be detected. This sets a

goal for the temporal resolution for only a single location to detect a single response.

In conventional fast single-shot techniques such as EPI (Echo Planar Imaging) and

spiral imaging, for distributed locations to be imaged with adequate spatial and

temporal resolution, the scan time should increase as the number of locations to

be imaged is increased. In MRI, samples of the Fourier transform of an image

are acquired and the image is reconstructed using the inverse Fourier Transform or

equivalent operation. Those single-shot methods have a limitation that they can

image only one slice at one time.

To increase the temporal resolution for multi-locations, SMART (Simultaneous

Multi-slice Acquisition using Rosette Trajectories) was suggested by Noll [2] in 1.5T,

in which data points are acquired from multiple slices simultaneously, then each

image is reconstructed after demodulating the data at the resonant frequency of each

slice. However, the originally proposed image reconstruction scheme (conjugate phase

reconstruction) introduced the artifacts from the off-resonance slices. Even though

these artifacts were shown to be mostly stationary, the artifacts hamper proper

motion correction of each image for functional studies, and the effect of physiological

signal on the artifacts from the off-resonance slices were not clearly understood. The

artifacts also limit the use of SMART method to only functional MRI where dynamic

information is most important.

The principal objective of this work was to develop a reconstruction method for

SMART imaging for reduced off-resonance artifact, and implement SMART in a
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3 T scanner. To reduce the artifacts from off-resonance slices, we developed an

iterative reconstruction method for SMART acquisition. The SMART acquisition

was implemented in our 3T scanner, and the results of simulations and functional

experiment are presented in chapter II.

Imaging at a higher field strength is desirable, since in general, higher magnetic

field results in higher MR signal to noise ratio. However, as we implemented the

SMART acquisition in a 3T scanner, we faced more difficulties than in 1.5 T due

to the increased susceptibility induced off-resonance, and the relatively less effective

gradient shimming system. In fact, the increased off-resonance not only affected

SMART imaging, but also conventional single slice imaging using rosette trajectory.

The off-resonance effect will be more problematic at even higher fields such as 7T.

On the other hand, iterative reconstruction for SMART or conventional single

slice imaging is found to be more sensitive to errors in the MR system model, e.g.

field map errors than non-iterative conjugate phase reconstruction. Therefore, it

was essential to estimate a very accurate off-resonance map for iterative field-map

corrected image reconstruction methods. One would increase the number of shots

in the conventional two-echo field map measurement method, but this method is

limited by extended scan time opening the door to the additional field map error

from respiration, motion and scanner drift.

To reconstruct images from field maps with limited accuracy, and also to esti-

mate field maps with higher accuracy, we proposed a spatio-temporally regularized

iterative reconstruction method for single slice rosette imaging in chapter III. Using

this method, we can estimate a very accurate field map as well as dynamic field-map

corrected images and the R∗

2 maps. Simulation and a functional imaging results are

shown.
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Dynamic R∗

2 mapping can be another useful tool for functional MRI, since it

provides nearly optimal contrast to noise ratio without prior knowledge of the tissue

T ∗

2 , and also R∗

2 can serve as a more physiologically related parameter for inter- and

intra- subject comparisons between functional studies.

In chapter IV, we propose another approach to improve the accuracy of the system

model for the iterative reconstruction. In this method, we use a pencil excitation

to accurate estimate the actual k-space trajectory and also the fluctuation of main

magnetic field during the data acquisition. Chapter V will contain the conclusion,

the list of the contributions of this thesis, and the future work.

We start with the brief overview of background materials such as MRI physics,

SMART imaging, and image reconstruction methods for non-Cartesian k-space tra-

jectories in the following sections.

1.1 Background

1.1.1 MRI Physics

Magnetic resonance imaging (MRI) is based on the quantum mechanical property

of nuclear spin. Nuclei having an odd number of neutrons, odd number of protons,

or both possess a net nuclear spin angular momentum and magnetic moment, there-

fore exhibiting the MR phenomenon. Classically, these nuclei can be visualized as

spinning charged spheres that give rise to a small magnetic moment. These MR-

active nuclei are referred to as simply spins. In biological specimens, hydrogen (1H),

with a single proton, is the most abundant (mostly from H2O), the most sensitive,

and by far the most studied element. In MRI experiment, the object to be imaged

is placed into a large, static magnetic field, ~B0. The magnetic moments associated

with nuclear spin tend to align themselves parallel or anti-parallel to ~B0. Therefore,
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the resultant macroscopic net magnetization ~M is formed parallel to ~B0.

The magnetization demonstrates a resonance phenomenon at a characteristic fre-

quency determined by the Larmor relationship,

ω0 = γB0(1.1)

where B0 is the strength of the main magnetic field, and γ is a constant unique

for each isotope and called as the gyromagnetic ratio with γ
2π

= 42.58MHz/Tesla

for 1H . Therefore, the magnetization can be perturbed by applying an oscillating

magnetic field ~B1 at this resonance frequency. This process is called excitation,

and the magnetization is partially or completely tipped into the plane perpendicular

to the main magnetic field ~B0forming a detectable state of magnetic spins. Once

excited, the magnetization precesses around the static magnetic field at its resonant

frequency given in equation (1.1). A coil placed near to the object can detect this

precessing magnetization. Therefore, the received signal can be expressed as the

total signal from excited (precessing) magnetization.

The excited magnetization is governed by the Bloch equation

dM

dt
= M × γB −

Mx
~i + My

~j

T2

−
(Mz − M0)~k

T1

,(1.2)

where Mx and My are the transverse component of the magnetization, Mz is the

longitudinal component of the magnetization and T2 and T1 are transverse and lon-

gitudinal relaxation constants. In MR signal equation derived from equation (1.2),

T2 is often replaced by T ∗

2 . T ∗

2 is composed of two components as 1/T ∗

2 = 1/T ′

2+1/T2,

where T ′

2 is time constant for a recoverable spin dephasing due to the macroscopic

field inhomogeneities, and T2 is the spin-spin relaxation constant, which is due to

dynamic variations in the local precessional frequencies. Table (1.1.1) shows typical

values of T2, T1, and T ∗

2 of human brain tissues at 3T.
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T1 T2 T ∗

2

(msec, ± SE) (msec, ± SE) (msec, ± SE)
White matter 832 ± 10 79.6 ± 0.6 44.7 ± 1.2 (frontal)

48.4 ± 4.5 (occipital)
Gray matter 1331 ± 13 110 ± 2 51.8 ± 3.3 (frontal)

41.6 ± 2.0 (occipital)

Table 1.1: Average T1, T2, and T ∗

2
values found in human brain at 3 T [1].

Once the magnetization is tipped onto the transverse plane after RF excitation,

the precessing transverse component of M(~r, t) goes through T ∗

2 exponential decay.

As spatially encoding gradients are played during the readout, the received signal is

integration of the signals from the transverse magnetizations in the imaging volume,

which go through phase evolution and magnitude change as

Sr(t) =

∫

vol

M(~r, t)dV + ε(t)(1.3)

=

∫

vol

M0(~r)e
−iγB0te−iω0(~r)te−t/T ∗

2
(~r)e−iγ

R t

0
~G(τ)·~rdτd~r + ε(t),

where γB0 is the global precession frequency dictated by the Larmor relation, ω0(~r) is

spatially varying off-resonance caused by local field inhomogeneity, ~G is the spatially

encoding gradient, ε(t) denotes noise, and ~r denotes the spatial locations. Note that

this signal equation ignores constant gain factors and constant phase factors, and

assumes uniform sensitivity of receiving coils in the region of interest.

The off-resonance ω0(~r) is caused by the local disturbance of the magnetic field

from spatial distribution of magnetic susceptibility in the imaging object. The pri-

mary source of the noise in MR system is considered to be the electrical random

fluctuation caused by the Brownian motion of electrons in the receiver coil and the

imaging object [4]. This noise is added to the raw received signal and goes through the

quadrature detection-demodulation to result in an additive bi-variate white Gaussian

noise.

Demodulating the received signal at the Larmor frequency and using the k-space
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notation, the baseband received signal is

Sr(t) =

∫

vol

M0(~r)e
−t/T ∗

2
(~r)e−iω0(~r)e−i2π~k(t)·~rd~r + ε(t),(1.4)

where ~k(t) ,
γ

2π

∫ t

0

~G(τ)dτ.

Ignoring the phase evolution from ω0(~r) and T ∗

2 decay, the k-space term ~k(t) in

equation (1.4) is a trajectory traversed in time in a three dimensional Fourier space of

M0(~r). The goal of MR image reconstruction is restoration of M0(~r) from the samples

of the received signal Sr(t), and the choice of a k-space trajectory determines imaging

parameters such as the size of field of view (FOV), spatial resolution, and various

forms of imaging artifacts as well as the choice of reconstruction method.

The simplest reconstruction of M0(~r) can be done by inverse FFT, if the samples

are taken at the Cartesian locations in k-space, and the T ∗

2 relaxation and the phase

evolution from ω0 are ignored. This can be done if a straight line (e.g., in kx) in

k-space is traversed at each RF excitation to keep the signal dephasing and decay

time minimal. A 2D imaging example (so called ’2D spin-warp’) shown in figure 1.1,

and an easy extension to 3D imaging (and consequently 3D IFFT for reconstruction)

are widely used.

However, these spin-warp type methods are less efficient in terms of scan speed,

since after scanning each line, we have to wait for the magnetization to recover its

longitudinal component. The recovery of longitudinal component is governed by T1

recovery time. The T1 varies in many human tissues, and the typical T1 of human

brain at 3T is between 800 and 1300 ms (table (1.1.1)).

To increase the scan speed, fast single shot methods have been widely used. Two

prominent contenders are EPI (Echo Planar Imaging) and spiral trajectories. Unlike
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Figure 1.1: Spinwarp acquisition is done by acquiring one line in the 2D k-space after each RF
excitation. TR denotes the repetition time, which is the time between RF excitations.

spin-warp acquisition, these fast methods use only single excitation, and all the

necessary samples to reconstruct M0 are acquired in a single readout. Therefore, the

longer acquisition makes it more susceptible to the effects of ω0 phase accumulation

and T ∗

2 decay in spin-warp acquisitions.

Figure 1.2 shows the single shot EPI and spiral trajectories. EPI is less efficient

in terms of utilizing hardware gradient system, however, it is relatively easier to

reconstruct the images via iFFT, and also the artifacts from the field inhomogeneity

manifest themselves as pixel shifts. Spiral trajectory is known to be more efficient

than EPI, and also robust to flow, but it requires more complicated reconstruction

methods since the samples are not on the Cartesian grid points. These two single-shot

trajectories are widely used in functional MRI to provide high temporal resolution.

The basics of functional imaging are briefly introduced in the next section.
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Figure 1.2: (a) Echo Planar Imaging (EPI) trajectory. (b) Spiral trajectory.

1.1.2 Functional magnetic resonance imaging

Functional MRI (fMRI) is an imaging method to explore the function of the hu-

man brain, both in normal subjects and in the clinical population. In most fMRI

studies, the function of brain is mapped from a set of MR images of a scan sub-

ject with a controlled manipulation of a task or stimulus [5–7]. The MR images are

directly/indirectly sensitized to the neuronal activities using many contrast mech-

anisms to provide functional information of human brain. Among the variety of

methods, BOLD (Blood Oxygenation Level Dependent) contrast serves as the most

widely used method in fMRI community.

BOLD contrast is attributed to the increase of T ∗

2 near the region of neuronal

activation. As the acquisition of the MR images is done at a certain echo time

repeatedly, the local change of T ∗

2 can be detected as local increase of image intensity.

Even though BOLD effect is an indirect measure of functional activity, which comes
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from a complex interact of cerebral blood flow, cerebral blood volume, tissue oxygen

extraction and local metabolism, its simplicity and robustness resulted in today’s

popularity of the method.

A typical BOLD fMRI study is composed of the data collection stage and the

data processing stage. In the data collection stage, the gradient echo MR data from

the volume of interest are collected repeatedly, while a designed functional task is

performed by the scan subject. In the post processing stage, the time series of

gradient echo images are reconstructed using appropriate reconstruction algorithm,

then statistical analysis is done to determine the activated area dictated by the

imposed functional task.

However, the T ∗

2 weighted BOLD imaging has a couple of disadvantages. Since

the method is based on the change of image intensities, it is not easy to compare

the results from different subjects or scanners. A more physiologically meaningful

comparison can be done by dynamically imaging the T ∗

2 maps. This can be done

by multi-gradient echo sequences [1, 8, 9]. In addition, the dynamic T ∗

2 mapping

provides nearly optimal functional contrast regardless of the spatial distribution of

T ∗

2 in the imaging object, while in T ∗

2 weighted imaging, the functional contrast is

best optimized by acquiring the images at the average T ∗

2 of the imaging object [8],

while individual locations may be still suboptimal.

In chapter III, we introduce the method to estimate dynamic change of R∗

2 maps

for functional imaging using rosette trajectory.

1.1.3 Rosette trajectory and spectral selectivity

Rosette trajectory

In this section, we bring our focus back to the 2D k-space trajectories used for MR

imaging sequences. There are many trajectories that traverse k-space in 2D MRI,
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including projection reconstruction (PR), echo-planar, spin-warp, spiral, stochastic,

and rosette etc. The rosette trajectory was originally proposed by Likes [10] in 1981

and was reintroduced in spectrally selective imaging techniques [2, 11].

The trajectory is parameterized by two frequency variables, one of which is a rapid

oscillation in radial direction (ω1) and the other is a slow rotation in angular direction

(ω2). Using complex presentation of 2D k-space, we can formulate the trajectory as

k(t) = kmax sin(ω1t)e
iω2t.(1.5)

Changing ω1 and ω2 with kmax enables us to control the angular and radial sam-

pling rate of the trajectory in k-space, the size of effective field of view (FOV), spatial

resolution. The x and y gradient waveform (Gx(t) and Gy(t)) correspond to the time

differential of equation (1.5).

In designing a real MR pulse sequence, the hardware requirement should be satis-

fied. The maximum slew rates and the maximum amplitudes of gradient waveforms

are such constraints. The maximum gradient and gradient slew magnitude of a

rosette trajectory is given by

|G|max =
2π

γ
kmaxω1(1.6)

|S|max =
2π

γ
kmax(ω

2
1 + ω2

2).

For example, the maximum gradient amplitude is 4 G/cm, and the maximum

gradient slew rate is 180 mT/m/ms in our 3T scanner (EXCITE 2.0, GE medical

systems, WI) at the functional MRI laboratory. Figure 1.3 shows examples of rosette

trajectories that were designed under these constraints.

Spectral selectivity
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Figure 1.3: (a) A rosette trajectory with ω1=1042 Hz, ω2=22 Hz, max slew = 156 mT/m/ms, max
gradient = 2.38 G/cm. (b) A rosette trajectory with ω1=1087 Hz, ω2=113 Hz, max
slew = 171 mT/m/ms, max gradient = 2.38 G/cm.
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Since the Larmor relation (1.1) holds at all times, when the magnetic field changes

in some area, the resonance frequency of spins in that area also changes. The change

of resonance frequency is called off-resonance frequency, which is the offset frequency

from the main field frequency. The typical source of off-resonance is the susceptibility

difference in the imaging object. The abrupt change in the magnetic susceptibility

disturbs in the local magnetic field, which leads to immediate perturbation in the

resonance frequency near the region. Off-resonance can cause image intensity losses,

distortion, and blurring in fast imaging methods such as EPI or spiral.

Likewise, in rosette trajectories, the off-resonance often leads to severe loss of

image intensity in the vicinity of large off-resonance. This is due to the frequent

visits to the center of k-space during the readout. As the trajectory visits the center

of k-space, the extra phase from off-resonance is accumulated, and multiple visits

during the long readout causes the vector sum of all DC samples to be canceled

out. The degree of loss of image intensity depends on the length of readout and the

magnitude of the off-resonance.

Therefore, the off-resonance is considered as another dimension of the imaging, as

the self-refocusing trajectories selectively reconstructs certain off-resonance frequency

(spectral) components (remember that the off-resonance is relative amount with

respect to the baseband frequency that we use to demodulate the received signal).

The idea of the spectral selectivity of rosette trajectory was introduced in [11].

In general, we can define the spectral selectivity of a trajectory as the 2-norm

ratio of two images f0 and f∆ω in ROI,

P (ωsm) =
‖fωsm

‖2

‖f0‖2

(1.7)

where f0 is the image reconstructed from unmodulated k-space data (ωsm = 0), and

fωsm
is the reconstructed image from k-space data modulated by ωsm 6= 0. Figure 1.4
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shows the spectral selectivity of the trajectories shown in figure 1.3, and reconstructed

images with various values of ωsms.

The FWHM (Full Width Half Maximum) of the main lobe is approximately the

reciprocal of the length of rosette acquisition. In multi-shot rosette acquisition,

random delays may be added to each shot to reduce the amplitudes of the spectral

stopband [11]. Note that the spectral selectivity curves shown in figure 1.4 are

imaging object dependent, but the variation between objects will be small.

1.1.4 Spectrally selective imaging

Chemical shift imaging

The idea of spectrally selective imaging is based on the spectral selectivity of

rosette trajectory investigated in the previous section. In the original work done by

Noll et al. [11], the water and fat components from an imaging object were separated

using the difference of the resonance frequencies between two species. This difference

is known as chemical shift. At 1.5T, the chemical shift of fat protons is about 220

Hz lower than the resonance frequency of water protons. If the received signal is

demodulated at the water proton resonance frequency, the signal from fat protons

undergoes extra phase accumulation whenever the rosette trajectory visits the center

of k-space during the readout. The image reconstruction from this demodulated

data leads to reduction of fat image intensity. In other words, the fat off-resonance

is located at the spectral stopband of the spectral selectivity curves shown in figure

1.4, while the water component stays in the spectral passband. Demodulating the

received signal at the fat resonance frequency results in the opposite effect, i.e.,

the fat image retains its image intensity while water image loses most of the image

intensity. In summary, a rosette data set is demodulated at the resonance frequencies

of water and fat, then water and fat images are reconstructed from each data. This
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Figure 1.4: (a) Spectral selectivity of the rosette trajectory shown in figure 1.3 (a). This trajectory
results in off-resonance artifacts around the edges of the simulation object. The images
were reconstructed without off-resonance correction, where the k-space data was mod-
ulated by the off-resonance frequencies (0 Hz, 75 Hz, 150 Hz, 225 Hz) indicated by the
arrows. (b) Spectral selectivity of the rosette trajectory shown in figure 1.3 (b). Unlike
the previous example, this trajectory has very good suppression of the simulation object
at nonzero off-resonance locations.
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method is advantageous over other chemical shift imaging methods based on Dixon’s

method [12,13], since it requires only one data acquisition.

Since the data samples in k-space do not lie on the Cartesian grid, the field-map

corrected reconstruction was done using the convolution gridding method [14, 15]

combined with time-segmented field correction technique [16].

SMART(Simultaneous Multislice Acquisition using Rosette Trajecto-

ries) imaging

The principle of spectrally selective imaging was extended to a fast multi-slice

imaging technique called SMART [2]. In this method, three slices are excited at

one time, and a constant gradient in slice-select direction, Gsm, is applied during

the readout to induce distinct off-resonance frequencies within each of those slices.

Figure 1.5 shows the gradient wave forms and RF pulse used in this method. In this

method, the slices are equally spaced, so the resonance frequency difference between

adjacent slices are equal. We define the resonance frequency difference between

slices as ωsm , γGsmz0, where z0 is the center-to-center slice distance. Similar

to the chemical shift imaging, ωsm works as an artificial chemical shift frequency,

and the spectral selectivity of rosette trajectory allows separation of three spectral

components, that, in this case, are the three simultaneously excited slices.

In [2], each image is reconstructed from demodulated SMART data sets using

field-map corrected convolution gridding method. Figure 1.6 shows three slices of a

human brain reconstructed from the SMART acquisition, as well as the conventional

single slice image at one of the identical locations. As it was pointed out by Noll et

al., SMART images have lower approximate SNR due to the artifacts from the off-

resonant slices. The functional imaging result (activation map in the third column)

shows that the activation areas of SMART images are very similar to that of the
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Figure 1.5: Pulse sequence for SMART imaging. The pulse sequence is very similar to the conven-
tional single shot gradient echo imaging sequence except for the SMART gradient and
the multi-slice excitation RF pulse.
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Figure 1.6: Figure 5 of [2]. ”Comparison of single-slice rosette acquisition (a-c) and triple-slice
SMART acquisition (d-l) for experimental data acquired using the single-shot rosette
trajectory. Images are presented for the average control condition (a,d,g,j), the average
active condition (b,e,h,k), and the average difference (x 60) of active and control condi-
tions (c,f,i,l). Activation areas are marked with arrows” [2]. Note that this experiment
was performed using 1.5 T scanner, and the in-plane spatial resolution was kept to 5
mm to accommodate the hardware limitations (max slew rate 120 mT/m/ms).

single slice image. The received signal of SMART acquisition, which is demodulated

at the resonance frequency of the middle slice, can be written as

SSMART(t) = Sslice1
(t) + Sslice2

(t) + Sslice3
(t) + ε(t)(1.8)
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where

Sslice1
(t) =

∫ ∆z
2

+z0

−
∆z
2

+z0

e−iγ(Gsmt+φ0)zdz

∫∫

M1(x, y)e−i2π(kx(t)x+ky(t)y)e−iω1(x,y)tdxdy

= Ez(t) · e
−iγ(Gsmt+φ0)z0

∫∫

M1(x, y)e−i2π(kx(t)x+ky(t)y)e−iω1(x,y)tdxdy,

Sslice2
(t) =

∫ ∆z
2

−
∆z
2

e−iγ(Gsmt+φ0)zdz

∫∫

M2(x, y)e−i2π(kx(t)x+ky(t)y)e−iω2(x,y)tdxdy

= Ez(t)

∫∫

M2(x, y)e−i2π(kx(t)x+ky(t)y)e−iω2(x,y)tdxdy,

Sslice3
(t) =

∫ ∆z
2
−z0

−
∆z
2
−z0

e−iγ(Gsmt+φ0)zdz

∫∫

M3(x, y)e−i2π(kx(t)x+ky(t)y)e−iω3(x,y)tdxdy

= Ez(t) · e
iγ(Gsmt+φ0)z0

∫∫

M3(x, y)e−i2π(kx(t)x+ky(t)y)e−iω3(x,y)tdxdy,

Ez(t) =
2 sin (γ(Gsmt + φ0)

∆z
2

)

γ(Gsmt + φ0)
,

φ0 = −GsmTacq/2.

z0 denotes the center-to-center slice distance; ∆z is the slice thickness; ω1, ω2, ω3 are

susceptibility induced off-resonance of each slice; φ0 is the gradient-time area of the

prephasing gradient blip; Tacq is the length of the readout; and ε(t) is the complex

Gaussian noise.

The magnitude of Gsm needs to be big enough to be able to give enough suppres-

sion of the off-resonant slices (slice1 and slice3 in equation (1.8)). At the same time,

it should be small enough to ensure that the spectral stopbands do not clip off the

outer part of the slices, and the through-slice dephasing term, Ez(t), should not have

any zeros during the data acquisition. These constraints are summarized as

2π

γz0Tacq

< Gsm <
2π

γ∆zTacq

.(1.9)

Therefore, depending on the total number of slices to be imaged, the slice dis-

tance and slice thickness should be determined, and the magnitude of Gsm should

be determined using equation (1.9).
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In addition, if there is significant susceptibility induced off-resonance in each slice,

ωsm should be bigger than the maximum of off-resonance in each slice. Equation 1.9

then should be modified to

4πωmax

γz0

< Gsm <
2π

γ∆zTacq

(1.10)

where ωmax is the maximum absolute value among ω1,ω2, and ω3.

1.1.5 Image Reconstruction for non-Cartesian sampling in MRI

In this section, we briefly overview two field-map corrected reconstruction meth-

ods called conjugate phase reconstruction method [16–18], and physics model based

iterative reconstruction method [19]. The rest of the section covers convolution grid-

ding [20] and NUFFT (NonUniform Fast Fourier Transform) [21] as methods to

accelerate those field-map corrected reconstruction methods. In chapters II and III,

NUFFT serves an essential building block of the proposed reconstruction methods.

CP (Conjugate Phase) reconstruction

The conjugate phase reconstruction is based on the simple idea to rewind all the

phase accumulation due to off-resonance [16–18]. Using the notations of equation

(1.1.1), the field-map corrected image reconstructed using conjugate phase is

x̂(~rn) =
M

∑

m=1

WmSr(tm)eiω0(~rn)ei2π~km·~r(1.11)

where Wm is a density weight compensation function sampled at k-space sam-

pling locations. To avoid direct evaluation of conjugate phase, which is computa-

tionally expensive, time-segmented and frequency segmented approximations were

proposed [16, 18]. In time-segmented approximation, the received data is time-

segmented, and each segment is reconstructed using a fast convolution gridding

method, then the images are combined linearly to form the field-map corrected image.
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In frequency-segmented approach, a similar procedure is done, in multiple segments

in the off-resonance frequency domain. Although, these methods can correct for the

off-resonance artifacts, its success heavily depends on the assumption of smooth field

map. The physics model based iterative reconstruction does not require such as-

sumption, and works better in the brain regions where the field map has high spatial

gradient.

Physics model based iterative reconstruction

From the MR signal equation (1.4), we can establish a discrete matrix-vector

formulation.

The object can be represented as sum of basis functions bj(x, y, z) and its coeffi-

cients cj(x, y, z) [19]

M0(x, y, z) =
∑

j

cj(x, y, z) · bj(x, y, z).(1.12)

The simplest choice of bj and cj will be Dirac impulses δ(x)δ(y)δ(z) and the M0

evaluated at Cartesian grid points (xi, yi, zi), i.e.

M0(x, y, z) =
N

∑

i=1

M0(xi, yi, zi)δ(x − xi)δ(y − yi)δ(z − zi).(1.13)

Substituting equation (1.13) into equation (1.4) results in the discrete formulation

of the MR signal equation, and X = M0(xi, yi, zi) becomes the object to be recon-

structed from the formulation, i.e., given M samples of the received signal Y ∈ C
M ,

Y = AX + n,(1.14)

where

[A]ji = e−i2π(kx(tj)xi+ky(tj)yi)e−iω(xi,yi)tj , i = 1, . . . , N, j = 1, . . . ,M,

X ∈ C
N is the object, ω(x, y) is off-resonance from field inhomogeneity, and n ∈ C

N

is bi-variate white Gaussian noise. The primary source of the noise in MR system is
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considered to be the electrical random fluctuation caused by the Brownian motion

of electrons in the receiver coil and the body [4]. This noise is added to the raw

received signal and goes through the quadrature detection-demodulation to result in

an additive complex white Gaussian noise.

The reconstruction of X can be done by Maximum Likelihood Estimation (MLE),

and the estimator is given as the least square form,

X̂MLE = argmin
X

‖Y − AX‖2

= [A∗A]−1A∗Y.(1.15)

However, the matrix inversion, in general, is an ill-conditioned problem. Even if

the inverse exists at all, it requires a regularization term added to the (1.15). The

quadratic function is one of the simplest forms of regularization, but easier to analyze.

This penalizes the roughness of neighboring pixels,

R(X) =
N

∑

i=2

(Xi − Xprevious in horizontal direction)
2

+
N

∑

i=2

(Xi − Xprevious in vertical direction)
2

= ‖CX‖2,(1.16)

where C =







C1

C2






∈ R2(N−1)×N , and

C1 =





























−1 1 0 · · · 0

0 −1 1 · · · 0

. . . . . .
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1 0 · · · 0 −1





























, C2 =
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Adding the equation (1.15) to the cost function in equation (1.16) yields the

Quadratic Penalized Least Square (QPLS) cost function. The physics model based

iterative reconstruction is finding the minimizer of the cost fuction

X̂MLE = argmin
X

‖Y − AX‖2 + β‖CX‖2

= [A∗A + βC∗C]−1A∗Y.(1.17)

Because the inversion of the MR system matrix (A∗A) is such a large scaled problem,

and can be also numerically unstable, an iterative approach is desirable which is

numerically stable, convergent, and fast. Among the many iterative methods, the

Conjugate Gradient (CG) [22] is used. When the matrix to be inverted is hermitian

and positive definite, the algorithm achieves zero norm of the error at finite number of

iteration, under the assumption of no numerical noise. If the matrix is well behaved

either by itself or by pre-conditioning, the method achieves a desired accuracy much

earlier than the maximum number of iterations [23].

The regularization parameter β can be chosen as the maximum value that gives

the maximum resolution for the grid size. This was done by observing the point

spread function (PSF) of the estimator. A fast calculation of local PSF based on

FFT [24] is often used for quick determination of β.

Convolution gridding and NUFFT (NonUniform Fast Fourier Trans-

form)

In CP reconstruction and physics-based iterative reconstruction, the most com-

putationally intensive part boils down to the calculation of the image pixel values

at Cartesian grid points from non-Cartesian Fourier data, and vice versa. In this

thesis, we call the estimation of image pixel points from k-space reconstruction as

MR inverse problem, and the calculation of non-Cartesian k-space samples as MR
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forward problem.

The most popular way to accelerate the MR forward/inverse problems is to use 2D

FFT with 2D interpolation. For MR inverse problem, a method known as convolution

gridding [20] has been used in many MR applications as a fast non-iterative way

of reconstructing images for non-Cartesian k-space trajectories. The convolution

gridding procedure is described as

X̂ = IFFT [(Y · W ) ⊗ C]/c(1.18)

where the sampled MR data Y is multiplied by the density conpensation function

(DCF) W , convolved with a chosen 2D convolution function C, the inverse FFT is

applied, and divided by the inverse Fourier transform of the convolution kernel.

The finite support convolution function C gives a way to a practical implementa-

tion of the algorithm compared to the optimal sinc interpolator. In [14], the Kaiser-

Bessel function is found to be the best choice, since it is simple to calculate for the

price of slight sacrifice in the interpolation performance. However, this function (and

other possible choices of convolution functions) often results in rolloff at the edge of

the FOV. Therefore, the division of c is necessary to make the response to be flat in

the FOV. Since the division by c also makes the sidelobes of the response function to

be amplified, it is often recommended to grid the non-Cartesian data to oversampled

grid points to increase the effective FOV [20]. The DCF (W ) makes a correction

for a nonuniform sampling density of the non-Cartesian trajectory. The DCF can

be calculated directly from the analytical expression of k-space trajectory [25,26], or

from local sampling density of the trajectory [27,28]. An alternative method was also

suggested by Pipe [29] that iteratively calculated DCF from a necessary condition

for correct reconstruction in an ROI (Region Of Interest). Apart from the original

formulation by O’Sullivan, Rosenfeld [30] suggested a least square solution to grid-
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ding, and Sedarat [31] showed that both formulation can be expressed in similar

linear equation and calculated the least square approximation of DCF to Rosenfeld’s

formulation.

The MR forward problem requires a similar approach to convolution gridding. In

fact, it corresponds to the problem 2 of NUFFT using the nomenclature of [21]. The

problem 2 is defined as a fast calculation of the following expression

X(ωm) =
N−1
∑

n=0

xne
−iωmn, m − 1, . . . ,M(1.19)

where X(ωm) is FT of x evaluated at the non-Cartesian frequency locations ωm, and

xn are the given samples at the Cartesian grid locations. In NUFFT literature, there

are many ways to evaluate equation 1.1.5 including [21, 32–34], where each method

differ by the choice of the interpolation kernels. In this section, we briefly overview

the derivation of [32], which is used in the developed methods in chapters II and III.

The NUFFT is described by the following equation

X̂(ωm) =
K−1
∑

k=0

v∗

mk

N−1
∑

n=0

xne
−i2πk/Kn, m = 1, . . . ,M,(1.20)

in other words, a weighted K-point (K ≥ N) FFT is done on the Cartesian sam-

ples xn, then appropriate interpolation using neighboring samples is done to quickly

determine the non-Cartesian Fourier coefficients at ωm. The scaling factor was first

introduced in [33], and it serves as precompensation for the imperfections in the sub-

sequent frequency-domain interpolation. Note that the adjoint operator combined

with DCF precompensation is an equivalent method to the convolution gridding.

In [32], the min-max interpolation coefficients were found by solving a simple

least square problem. The min-max interpolator was also shown to give the best

interpolation accuracy among other conventional interpolation kernels. But, once

again, Kaiser Bessel function was found to have very close interpolation accuracy
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to the min-max interpolator. Therefore, in our works, we used the Kaiser-Bessel

interpolator in the NUFFT implementation.

Using the combination of NUFFT and the time-segmented approximation for off-

resonance as well as the adjoint operation, a fast CG iteration for iterative MR image

reconstruction is done [19].



CHAPTER II

Iterative Reconstruction for SMART Imaging

2.1 Introduction

Fast dynamic 3D imaging methods can benefit numerous MR applications includ-

ing diffusion imaging, perfusion imaging, functional imaging, cardiac imaging, and

real-time imaging. Increased imaging speed can result in increased temporal/spatial

resolution, or increased signal to noise ratio via averaging of the signal. One way of

accelerated imaging would be increasing gradient switching rate and gradient ampli-

tude, which allow faster sampling in k-space. However, there is a limitation to this

approach as high temporal variation of gradient can cause discomfort of a subject

due to the peripheral nerve stimulation [35].

Another approach is sparse sampling in k-space and filling up the missing data

points via appropriate interpolation with a priori information on the imaging object

or data samples acquired in other time points. Such methods include keyhole imaging

[36,37], generalized series reconstruction (RIGR) [38], k-t BLAST [39] and UNFOLD

[40].

The recent development of parallel imaging techniques [41,42] also enabled signif-

icant acceleration of MR acquisition, where the extra information of coil sensitivity

maps or a low resolution calibration scans help the reconstruction algorithms to

27
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determine the missing data samples.

SMART imaging was introduced by Noll et al. [2] as another yet unique method

for fast 3D volume imaging. Rather than using interpolations for missing data or

extra equipment such as array coils, it used the intrinsic property of the sampling

pattern of rosette trajectories. The rosette trajectory has been known for its spectral

selectivity due to the repeated sampling of the origin of k-space during the readout

[11]. In SMART, three slices are excited followed by a constant gradient in the

slice select direction during the readout, which imposes distinctive off-resonance to

each slice. Each slice is then reconstructed using conjugate phase reconstruction [17]

after demodulating the k-space data by the corresponding off-resonances. Noll et

al. successfully demonstrated that this method provides nearly equivalent functional

detectability compared to the conventional single slice imaging. However, this work

was demonstrated only in a 1.5T scanner, and the conjugate phase reconstruction of

each slice led to significant off-resonance artifacts in the reconstructed images.

According to the basic MR physics, increasing the main magnetic field is desir-

able since it increases the MR signal strength. Therefore, implementing SMART

in 3T would be beneficial for a higher detectability of functional studies. However,

in 3T systems, the conjugate phase reconstruction can be an unfavorable choice,

since the MR physics dictates that the susceptibility induced off-resonance doubles

at 3T compared to 1.5T. The increased off-resonance causes more artifact especially

in the brain areas near ear canals and sinus, and the conjugate phase reconstruction

often fails to recover image intensity at the locations with high spatial gradient of

the off-resonance [19]. Among many other field-map corrected image reconstruc-

tion methods, physics model-based iterative reconstruction via minimization of the

quadratic penalized cost function [19] recovers the image intensity in areas with high
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Figure 2.1: (a) Diagram of SMART method. Three slices at locations z1, z2, and z3 are excited
simultaneously. During the readout, a linear gradient in slice-select direction is played
to introduce spatially constant off-resonance at each slice location. (b) Pulse sequence
of SMART acquisition

spatial gradient of off-resonance, while allowing flexible modification of the system

model.

In this chapter, we extend the physics model based iterative reconstruction to the

image reconstruction of SMART method. The proposed iterative SMART recon-

struction (iSMART) recovers image intensity at the areas with higher susceptibility-

induced off-resonance in 3T, and also reduces much of the static off-resonance ar-

tifacts. Simulation results are shown to demonstrate the improved accuracy in the

image reconstruction compared to the conventional conjugate phase SMART recon-

struction. A functional study result is also shown to demonstrate the effectiveness

of the proposed method.
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Figure 2.2: An example of a SMART acquisition to cover a 3D volume. Slices 1A,2A,3A are si-
multaneously excited, and the excitation of slices 1B,2B,3B and 1C,2C,3C follow. In
order to fill up the space without a gap, the center-to-center slice distance should be
one third of the thickness of the 3D volume. Only the slices in the dashed box need to
be prescribed in the scanner.

2.2 Theory

2.2.1 SMART acquisition

Figure 2.1 (a) depicts the SMART acquisition method. In this method, three

different slices are excited simultaneously using the linear sum of sinc pulses modu-

lated by off resonance freqnecies, and the constant gradient in slice-select direction

(Gsm) is applied during the readout as shown in the pulse sequence diagram (figure

2.1). Figure 2.1 reveals that the pulse sequence for SMART acquisition differs from

the conventional gradient echo sequences only by the multi-slice excitation pulse in

RF channel, and Gsm. Gsm is preceded by the refocusing gradient, since Gsm re-

sults in additional sinc modulation to the received signal due to the through-plane

dephasing. The prephasing gradient blip brings the peak of the sinc envelope to the

middle of the acquisition in order to avoid having zeros of the sinc envelope during

the acquisition. Therefore, there is slight increase of scan time (≈ 200µs) compared

to the conventional single-slice gradient echo rosette imaging.
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In multi-slice imaging, the SMART data is acquired at multiple locations to cover

a 3D volume. To cover a 3D volume without a gap, we need to set the center-to-

center distance between simultaneously excited slices as one third of the thickness of

the entire volume. Figure 2.2 illustrates how the slice selections are done for a 3D

volume coverage.

2.2.2 SMART system model

We can easily calculate the off-resonance frequency of each slice location from the

slice thickness, slice distance and the magnitude of Gsm, for the isocenter of the slice

select gradient is set to the center of the prescribed volume in the MR scanner. After

demodulating each data to the resonance frequency of the middle slice, the baseband

signal of SMART acquisition is the sum of signals from the simultaneously excited

slices as

SSMART(t) = Sslice1
(t) + Sslice2

(t) + Sslice3
(t) + ε(t)(2.1)

where

Sslice1
(t) =

∫ ∆z
2

+z0

−
∆z
2

+z0

e−iγ(Gsmt+φ0)zdz

∫∫

M1(x, y)e−i2π(kx(t)x+ky(t)y)e−iω1(x,y)tdxdy

= Ez(t) · e
−iγ(Gsmt+φ0)z0

∫∫

M1(x, y)e−i2π(kx(t)x+ky(t)y)e−iω1(x,y)tdxdy,

Sslice2
(t) =

∫ ∆z
2

−
∆z
2

e−iγ(Gsmt+φ0)zdz

∫∫

M2(x, y)e−i2π(kx(t)x+ky(t)y)e−iω2(x,y)tdxdy

= Ez(t)

∫∫

M2(x, y)e−i2π(kx(t)x+ky(t)y)e−iω2(x,y)tdxdy,

Sslice3
(t) =

∫ ∆z
2
−z0

−
∆z
2
−z0

e−iγ(Gsmt+φ0)zdz

∫∫

M3(x, y)e−i2π(kx(t)x+ky(t)y)e−iω3(x,y)tdxdy

= Ez(t) · e
iγ(Gsmt+φ0)z0

∫∫

M3(x, y)e−i2π(kx(t)x+ky(t)y)e−iω3(x,y)tdxdy,

Ez(t) =
2 sin (γ(Gsmt + φ0)

∆z
2

)

γ(Gsmt + φ0)
,

φ0 = −GsmTacq/2.
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In the equation 2.1, z0 denotes the slice distance; ∆z is the slice thickness; ω1, ω2, ω3

are susceptibility induced off-resonance of each slice; φ0 is the gradient-time area of

the prephasing gradient blip; Tacq is the length of the readout; and ε(t) is the complex

Gaussian noise added to the received signal. In addition, we define the resonance

frequency difference between slices as ωsm , γGsmz0.

The through-plane dephasing term Ez(t) is expressed as a sinc function only when

the excitation slice profile is a perfect rect. In real experiments, this function may

deviate from a sinc function due to the imperfect slice profile. In general, Ez(t)

is a Fourier transform of the excitation profile. In addition, the spatial gradient

of the susceptibility-induced off-resonance within a voxel also can contribute to the

through-plane dephasing, which is spatially varying. Since the spatial gradient can

be easily calculated from a measured 3D field map, this term can be included as the

extra dephasing in the signal equation. In this work, we assume the effect of spatial

gradient of field map is negligible.

Considering the intra voxel dephasing on the imaging plane [19], the transverse

magnetization is expressed as sum of rect basis functions

Mk(x, y) =
N

∑

i=1

Mk(xi, yi) u (x − xi) u (y − yi), k = 1, · · · , 3.(2.2)

Substituting equation (2.2.2) into (2.1) and sampling in time results in the dis-

cretized linear SMART signal equation:

Y = AX + ε(2.3)
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where

A = [ D (Ez(tj)E1(tj)) A1 D (Ez(tj)) A2 D (Ez(tj)E3(tj)) A3 ] ,

X =















X1

X2

X3















,

E1(tj) = e−iωsmtj ,

E3(tj) = eiωsmtj ,

[Ak]ji = Φ(tj)e
−i2π(kx(tj)xi+ky(tj)yi)e−iωk(xi,yi)tj ,

i = 1, . . . , N, j = 1, . . . ,M, k = 1, 2, 3,

D(·) denotes a diagonal matrix, X1,X2,X3 are the vectors which are the lexicograph-

ically rearranged samples of slices 1,2,3 at locations (xi, yi), and ε denotes a noise

vector. Note that the constant phase terms e±iγφ0z0 in equation (2.1) for slices 1 and

3 were not included in the equation (2.3), therefore the reconstructed images of those

slices will have extra constant phase from the refocusing SMART gradient. In the

SMART system model, the discrete locations (xi, yi) are limited to a circular support

that covers typical brain images in the FOV to reduce the number of unknowns, or

the length of the vector X. For the rosette trajectory we used in this work, the

number of unknowns was smaller than the number of samples. Therefore, the sys-

tem model remains over-determined as in the conventional single slice reconstruction

problems.

2.2.3 Conjugate phase and single slice iterative reconstructions for
SMART

As was described in the section 1.1, the conjugate phase reconstruction for

SMART data was proposed by Noll et al. in their original paper [2]. The recon-
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struction is done by demodulating the SMART data to the resonance frequencies of

each slice, then applying conjugate phase reconstruction to each demodulated data.

In this work, we call this method simply as CPSMART method.

One could think of another yet similar reconstruction method, since conjugate

phase reconstruction is not known to be the best choice when field map has high

spatial gradient [19]. In lower brain areas, the physics model-based iterative recon-

struction proposed by Sutton et al. [19] was reported to be superior compared to

the conjugate phase reconstruction. Therefore, it is a natural extension to use the

iterative reconstruction to each demodulated SMART data set for a better correction

for the off-resonance. We refer this method as single slice iterative reconstruction for

SMART, or ssiSMART.

2.2.4 Iterative SMART reconstruction (iSMART)

The reconstruction of the discrete images X1, X2, X3 can be done by solving the

inverse problem of the equation (2.3). Extending the single slice case discussed in

section 1.1 to SMART system equation, the ML estimator of the object from the

observed data Y with quadratic roughness penalty is

X̂MLE = argmin
X

‖Y − AX‖2 + β‖CSMX‖2

= [A∗A + βC∗

SMCSM ]−1A∗Y(2.4)

where

CSM =















C 0 0

0 C 0

0 0 C















,(2.5)

and C is the finite difference matrix as defined in section 1.1. The minimization of the

cost function is done by applying conjugate gradient algorithm. For each iteration,
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Figure 2.3: (a) Rosette trajectory. (b) Spectral selectivity of the rosette trajectory in (a).

the most time consuming matrix-vector multiplications were accelerated by using

the combination of time-segmented approximation with min-max interpolator and

NUFFT [19].

In the SMART system model, there are many components that affect the quality

of the reconstruction. The susceptibility-induced off-resonance maps, i.e. ω1,ω2,ω3

have to be measured in separate scans, and the through-slice dephasing term Ez also

have to be measured due to the unideal gradient characteristics and the excitation

profiles.

In the following section, we describe how to measure the data and such components

for the accurate reconstruction of the SMART images as well as the simulation studies

to demonstrate and compare the effect of those components on the CPSMART,

ssiSMART, and iSMART reconstruction methods.

2.3 Methods

Figure 2.3 shows the rosette trajectory and its spectral selectivity used in the

simulations and scan experiments. First, the number of petals were decided to be 96,

which led to 192 angular sampling, where the number of angular sampling to ensure
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Figure 2.4: (a)-(c) The reference images used in the simulation. (d)-(f) The reference field maps
used in the simulation overlayed with the support of the reference images.

Nyquist sampling at the edge of the k-space was 201. Since the ratio between the fast

oscillation frequency (radial direction) and the slow oscillation frequency (angular

direction) decides the location of the secondary peak in the spectral selectivity, the

ratio was carefully chosen not to have the secondary peak at ωsm. The fast frequency

was 1041.7 Hz, and the slow frequency was 108.5 Hz. The sampling time was 4 µs,

and the total readout was 46.3 ms. The SMART off-resonance ωsm was 165 Hz.

2.3.1 Simulation study

Figure 2.4 shows the reference discrete objects and the corresponding field maps.

The supports overlayed on the field map (figure 2.4 (d)-(f)) indicate the regions

inside the objects. The supports were used when the normalized root mean squared

error was measured with respect to the reference images. On the other hand, three

identical circular supports (radius 28 voxels) were used in the reconstruction to reduce

the number of pixels to be reconstructed.
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Comparison of reconstruction methods

Using the reference images and the field maps, a SMART data set was synthesized

using equation (2.3). In the system model, we used the through slice dephasing term

Ez, which was measured in another scanner experiment. A complex Gaussian random

noise was added to the data set, and the variance of noise was set to 40dB (100 to

1) SNR.

Using the reference field maps, field-map corrected reconstructions were done us-

ing CPSMART, ssiSMART, and iSMART. For ssiSMART reconstruction, the spatial

regularization parameter was set to 1. The spatial regularization parameter was de-

termined as the value that resulted 1.28 pixels of the FWHM of the point spread

function of the reconstruction. Similarly, the spatial regularization parameter was

set to be 10 for iSMART reconstruction. At each iteration, NRMSE was measured

with respect to the reference images inside the objects for each slice. NRMSE was

also measured for the CPSMART reconstructions in a similar way.

Sensitivity to the field map error

The second set of simulations were done to investigate the sensitivity of each

reconstruction methods to the error of the field maps used in the field-map corrected

reconstruction. As in the first simulations, a SMART data set was synthesized using

equation (2.3) with 40 dB SNR and the reference images and the field maps shown in

figure 2.4. For each reconstruction method, field-map corrected reconstructions were

performed using field maps that are scaled by factors 1.0 ∼ 2.0. The scale factors

introduced spatially non uniform errors in the field maps used in the reconstruction

up to 18 Hz root mean square error. The NRMSE was measured with respect to the

reference images in the object for each reconstruction method.

Spatial resolution comparison
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To investigate the spatial resolution of each reconstruction method, two SMART

data sets were synthesized and reconstructed using each reconstruction method. One

data set was synthesized using the reference images in figure 2.4, and the other data

set was synthesized using a perturbed image, which is sum of the reference image and

a dirac delta function located in the middle of FOV. The perturbation was done to

the slice 2. The point spread function was determined by subtracting the magnitude

images of all slices reconstructed from perturbed/unperturbed SMART data, and

the full width half maximum of the point spread function was measured.

In the spatial resolution simulation, field maps were not used in the system model,

since they can introduce extra spatial non uniformity in the point spread function of

the reconstruction. The simulated data was noiseless, as noisy data makes it hard

to estimate the full width half maximum when the amplitude of the point spread

function is low compared to the noise strength.

2.3.2 Experimental study

For a series of system parameter measurements and functional experiments, a

scan subject was recruited, and provided with the informed consent in accordance

with the guideline of the University of Michigan institutional review board. All scan

experiments were performed using a 3T scanner (EXCITE 2.0, GE medical systems,

Waukesha, WI).

Measurement of field map

A vender-provided high order shimming was performed prior to the scan experi-

ment. The initial field maps were estimated using 8 shot rosette gradient echo images

with single slice excitations. Two different echo times (TE1=27.5 ms, TE2=30 ms)

were used to estimate the field maps of each slice from the phase difference of the

images [43], then were smoothed using quadratic penalized weighted least square
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method with second order difference roughness penalty [44]. Those initial field maps

were improved by applying the spatio-temporally regularized reconstruction (chap-

ter III). In the spatio-temporally regularized reconstruction, the field maps from 8

shot rosette images were used as the initial field maps for the reconstruction system

models. The improved field maps were estimated via linear least square fit of the

phase of the reconstructed subimages. The number of segments was 24, and the

spatial regularization factor was 1 and the temporal regularization factor was 100 for

all slices.

Measurement of Ez(t)

The through-slice dephasing due to Gsm was measured by two separate single-shot

single-slice scans of the imaging volume with and without Gsm. In the scans, the

rosette readout gradients were not played, so that the FID signals could be recorded.

Rewriting the equation 2.1 for the FID signals, the received signals are

Sa(t) = Ez(t) · e
−iγ(Gsmt+φ0)z0

∫∫

M2(x, y)e−iω(x,y)tdxdy(2.6)

Sb(t) =

∫∫

M2(x, y)e−iω(x,y)tdxdy,

where ω(x, y) denotes the susceptibility induced off-resonance. Simply, we estimated

the through-slice dephasing Ez(t) by dividing Sa(t) with Sb(t).

Functional experiment

Following the initial field map and Ez(t) measurements, two functional experi-

ments were performed. The first functional experiment was done using a SMART

acquisition. In the multi-slice excitation, the center-to-center distance between slices

was designed to be 11 times of the slice-thickness, therefore the SMART sequence

could cover 33 slices. Gsm was 0.012 G/cm, and the ωsm was 165 Hz when the slice

thickness was 3 mm. Gsm caused maximum off-resonance at the edge of the slice
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profile as 15 Hz, which was well within the main peak of the spectral selectivity of the

rosette trajectory. TR was 1.5 s, and TE was 30 ms, where the echo time is defined

as the beginning of the rosette acquisition. The subject was required to do a bilateral

finger tapping task while a visual checker board stimulation was given as a queue (20

s off/20 s on, 5 cycles). The data was reconstructed using CPSMART, ssiSMART,

and iSMART reconstruction methods. The number of iterations for ssiSMART and

iSMART was 10. Since the spatial resolutions of each reconstruction method are

found to be different, first, each reconstruction was done at the best spatial resolu-

tion for direct comparison of the reconstructed images. Then the spatial resolution of

CPSMART and ssiSMART were matched to that of iSMART for functional analysis.

For CPSMART, the k-space samples at higher spatial frequency were truncated to

give the spatial resolution close to that of iSMART. For ssiSMART, the spatial regu-

larization parameter was set to 10 to match the resolution with iSMART. The cutoff

frequency for CPSMART and the spatial regularization parameter of ssiSMART were

determined by comparing the FWHM of the point spread function. For each image

set, the functional data analysis was performed using FSL [45] software package. Us-

ing the generalized linear model, the z-score of each time course was calculated and

thresholded (p=0.05) to determine the activation. In addition, the time-series SNR

was measured for each image set. The time-series SNR was measured by dividing

the mean in the ROI by the standard deviation over time in the same ROI for each

slice, then by averaging them for each reconstruction method.

The second functional experiment was performed using a single slice gradient echo

rosette sequence with conventional single slice excitations. The same volume cover-

age was prescribed as SMART experiment, however the TR had to be increased to

3.5 s. TE was 30 ms, and the slice thickness was 3 mm. The same human subject was
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Figure 2.5: Simulation results : (a) the reference discrete object (b) the conjugate phase recon-
struction (c) the iterative single slice reconstruction (d) the proposed iterative SMART
reconstruction

given the same functional task. Prior to the functional study, the high-order shim-

ming and the field map measurement were performed again to adapt the changes

in the off-resonance after the preceding SMART functional study. The data was

reconstructed using field-corrected iterative reconstruction [19]. The spatial regular-

ization parameter of the iterative reconstruction was set to 10 to match the spatial

resolution of iSMART images. FSL software package was used for functional data

analysis. Same threshold as the previous functional analysis was used to determine

the activated pixels.

2.4 Results

Figure 2.5 compares the reconstructed SMART images using CPSMART, ssiS-

MART, and iSMART in simulations. As was shown in [2], the conventional CPS-
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Figure 2.6: NRMSE of each reconstruction methods. The error was measured inside of the object.
(a) slice 1 (b) slice 2 (c) slice 3

CPSMART ssiSMART iSMART
(10 iterations) (10 iterations)

Slice 1 0.23 0.43 0.074
Slice 2 0.23 0.29 0.066
Slice 3 0.22 0.31 0.059

Table 2.1: Simulation result : NRMSE of the reconstructed images. NRMSE was measured in the
support illustrated in figure 2.4.
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MART images show the noisy artifacts over the FOV. Similarly, the iteratively re-

constructed ssiSMART images suffer the off-resonance artifacts originated from the

other slices, while the artifacts are smooth due to the spatial regularization. In con-

trast, the off-resonance artifacts are significantly reduced in iSMART images. Figure

2.6 shows another evidence for the superior reconstruction results of iSMART. The

NRMSE was measured in each slice at each iteration, and compared with CPSMART.

Within 10 iterations, iSMART reduced about 70 % of the reconstruction error (table

2.4). Note that NRMSE is measured within the object, and measuring the error over

the entire FOV would exaggerate the contrast between the two methods.

From figures 2.5 and 2.6, ssiSMART turned out to be worse than CPSMART

method in spite of the reduction of artifacts outside of the object. This is because the

ssiSMART reconstruction cannot distinguish between the susceptibility induced off-

resonance and the off-resonance imposed by Gsm. The reconstruction system model

does not have the Gsm term, and this hinders the optimization algorithm from finding

the right solution. In general, as the amplitude of the susceptibility induced off-

resonance approaches ωsm, ssiSMART resulted worse reconstruction results. When

there is no off-resonance (i.e. ω1 = 0, ω2 = 0, and ω3 = 0), ssiSMART outperformed

the noniterative CPSMART method.

The iterative methods were found to be more sensitive to the error in the measured

field maps that were used in the field-map corrected reconstruction. Figure 2.7 shows

that both iterative methods have higher sensitivity to the error in the field map than

the non-iterative CPSMART method. As the RMSE of the field map reaches 20

Hz, the quality of iSMART images reaches more than 100% reconstruction error.

Therefore, use of a good high order shimming and accurate field map estimation

method are essential to iSMART method.
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Figure 2.7: Sensitivity of each reconstruction method to the field map errors

Figure 2.8 (a) shows that the point spread function of iSMART reconstruction is

wider than the other methods. This is due to the severe sparse sampling of k-t space

in the SMART acquisition. The FWHM of the point spread function was found to

be 1.2 pixels for CPSMART, 1.3 pixels for ssiSMART, and 1.5 for iSMART. Figures

2.8 (b) ∼ (d) show the center profile of the point spread functions of all slices for each

reconstruction method. As expected, the perturbation in slice 2 caused artifacts in

the other slices, while iSMART has the lowest artifacts.

Figure 2.9 shows the reconstruction results for a human subject. Note that figure

2.9 (a) required 3 TRs while (b) ∼ (d) required only 1 TR. As was seen in the simula-

tion results, iSMART reduced most of the off-resonance artifacts in the slices for the

price of smoother images. The same functional data set was re-reconstructed match-

ing the spatial resolution of CPSMART and ssiSMART to that of iSMART. Figure

2.10 shows the activated pixels overlayed the reconstructed images after matching

the spatial resolution. Figure 2.10 (a) shows the activations from single-slice exci-

tation experiment, and (b) ∼ (d) show that three methods are equivalent to the
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Figure 2.8: (a) The FWHM of the point spread function of each reconstruction method. Center pro-
files of the point spread functions of the on-resonant slice (slice 2) and the off-resonant
slices (slice 1 and 3): (b) conjugate phase (CPSMART) reconstruction (c) iterative sin-
gle slice (ssiSMART) reconstruction (d) iterative SMART (iSMART) reconstruction.
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Figure 2.9: (a) Reconstructed images from a single slice acquisition. (b) CPSMART reconstructed
images from SMART acquisition. (c) ssiSMART reconstructed images from SMART
acquisition. (d) iSMART reconstructed images from SMART acquisition.

single slice excitation in terms of the activation areas. Comparing figures 2.10 (b)

∼ (d), iSMART resulted more activation areas. However, comparing all 33 slices

reconstructed, iSMART did not always result in the largest activated areas (figure

2.11). The time-series SNR were 18.5 for iSMART, 15.4 for cpSMART, and 18.0 for

ssiSMART.

2.5 Discussion

In this chapter, we demonstrated that iSMART method can reduce most of the off-

resonance artifacts which is prevalent on the conventional CPSMART reconstruction.

However, the method required very accurate system model for a satisfactory results.

In the following, we discuss some of the factors that could affect the iterative method.
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Figure 2.10: (a) Activation maps from single slice acquisition. (b) Activation maps from CPS-
MART reconstruction of SMART acquisition. (c) Activation maps from ssiSMART
reconstruction of SMART acquisition. (d) Activation maps from iSMART reconstruc-
tion of SMART acquisition.
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Figure 2.11: The number of activated pixels for each slice (p=0.05). Slice 1 denotes the superior
side of the imaging volume.
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Spatial regularization

In the system model (equation (2.3)), many terms need to be determined before

applying the conjugate gradient method. First of all, the sampled data set is con-

taminated by the complex white Gaussian noise, which is mainly from the thermal

noise in the object. In 3T GE scanner, the typical signal to noise ratio is 100 to

1. At this noise level, the iterative reconstruction can result in a noisy image after

certain number of conjugate gradient iterations. The noisiness of the reconstructed

object can be reduced by the roughness penalty added in the cost function. How-

ever, increasing the weight in the roughness penalty, i.e. increasing β in the equation

(2.4) leads to more bias in the reconstructed images for the price of less noisiness.

The time-series SNR was higher in both iSMART and ssiSMART than cpSMART.

Obviously, the spatial regularization also helped to increase the time-series SNR,

therefore increasing the detectability of fMRI study.

System model accuracy

The susceptibility induced off-resonance should be measured for a proper correc-

tion in the iSMART reconstruction. The importance of achieving very high accuracy

(RMSE less than 5 Hz) needs to be stressed, since both spectral selectivity of rosette

trajectories and the ill-conditionedness of SMART reconstruction increase the sensi-

tivity to the field map error very much. In our human experiment, using the field map

from 8 shot rosette images introduced some uncorrected artifacts in the iSMART im-

ages. However, as shown in the results section, using the field maps improved by the

spatio-temporally reconstruction reduced most of the remaining off-resonance arti-

facts. For more or similar accuracy in the field map, one could also use more number

of shots. However, more number of shots involves more scan time, and the accuracy

of the measurement can be affected by subject motion, respiration, or scanner drift.
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Other trajectories such as spiral, which is more robust to the off-resonance, could

be used in the field map measurement. However, in this work, it was not done for

implementation convenience.

The through-slice dephasing, Ez(t) was measured for couple of reasons. First,

the gradient-time area of prephasing gradient blip, or φ0, can be inaccurate because

of insufficient eddy current correction. Second, imperfect slice profile can cause

deviation of Ez(t) from a sinc function. Because the imperfection of Ez(t) is caused

mostly by the scanner characteristics, a parameterized estimation of Ez(t) with more

realistic slice profile would be helpful to get rid of the necessity of measuring Ez(t)

at every scan. Ez(t) also can have spatial variation due to the susceptibility induced

off-resonance. A more accurate system model would have to include the spatial

dependency of Ez(t).

The effect of the k-space trajectory error was not investigated in this work. The

accuracy could be further increased by using measured k-space trajectory. However,

the benefit seems to be marginal, as the iSMART images using designed trajectory

turned out to be reducing most of the artifacts.

The computational cost of iSMART is comparable to the conventional single slice

iterative reconstruction, since iSMART requires only extra O(M) additions for the

forward and back projections in CG algorithm.

Future work

Our choice of rosette trajectory was simply by trial and error. A more careful,

and automated way is conceivable such as optimization of a rosette trajectory using

genetic algorithm [46]. One could also think of increasing the number of slices that

are excited simultaneously. In this work, the number of k-space data samples was

nearly 11,000, while the number of unknowns was about 7,400. Therefore, with one
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more slice, the problem is still over-determined. However, adding one more slices

could increase sensitivity of the reconstruction to the system model error such as

field maps, and T ∗

2 decay. It might suffer from further reduction in spatial resolution.

A slight increase of readout would be helpful.

Another natural extension of the method is combining it with parallel imaging

techniques. The iSMART reconstruction allows an easy extension of the system

model to the parallel imaging [41, 42]. Using the extra information of sensitivity

maps of array coils, the acquisition length can be reduced. However, the method may

suffer from extra system model error in the measured sensitivity maps. Therefore,

developing a very accurate way to measure sensitivity map will be an essential step

to this extension. There are other parallel imaging methods that do not need an

estimation of sensitivity map. For example, a short auto calibration scan data is

used to calculate the missing data points in k-space (GRAPPA) [47]. This method

was originally developed for Cartesian sampling scheme, and adaptation into non-

Cartesian trajectories can be done [48,49].

2.6 Conclusion

In this chapter, we introduced the iterative SMART reconstruction method, which

significantly reduced the off-resonance artifacts. A comparison study between iS-

MART and the conventional CPSMART revealed that the proposed method reduced

the reconstruction error for the price of slightly reduced spatial resolution and in-

creased computation. To achieve high accuracy in the reconstruction, the proposed

method required measured field map and the through-slice dephasing term with

very high accuracy. One functional study result was shown to demonstrate that the

proposed reconstruction produced more activated pixels in most of the slices, and
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resulted higher time-series SNR.



CHAPTER III

A robust, dynamic R∗
2-and-field-map-corrected image

reconstruction for single shot self-refocusing trajectories at
3T

3.1 Introduction

Self-refocusing trajectories are defined as those k-space trajectories that sample

the origin of k-space multiple times, forming multiple gradient echoes. Self-refocusing

trajectories include multi-echo projection reconstruction (PR) trajectories [50, 51],

and rosette trajectories [2, 11].

Multiple visits to the origin of the k-space cause the reconstructed images to be

sensitive to off-resonance effects. This property is known as spectral selectivity in

the literature on the rosette trajectories, and it is shared by other self-refocusing

trajectories. Noll et al. used the spectral selectivity of rosette trajectories to selec-

tively reconstruct different chemical species or multiple slices with different resonant

frequencies [2, 11].

However, this property can create difficulties in image reconstruction for high field

imaging. If the off-resonance frequency is high enough to move an image voxel out

of the pass band of the spectral selectivity, the image intensity at the voxel will be

significantly reduced. In this case, the artifact from field inhomogeneity is mainly

local signal loss, rather than blurring in spiral imaging or geometric distortion in EPI

52
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(Echo Planar Imaging). The signal loss is exacerbated when single shot method is

used, because the width of the pass band is inversely proportional to the acquisition

length [2].

It is also known that R∗

2 (or 1/T ∗

2 ) decay during the readout can cause streaking

artifacts and blurring, if it is not accounted for in the reconstruction [51].

A standard approach to reduce the R∗

2 and off-resonance artifact is to use fewer

echo trains, or to use multi-shot methods. Conventionally, the acquisition time for

an echo train is restricted to ensure relatively small magnitude and phase changes

from R∗

2 and off-resonance. However, this method can increase scan time, making it

more susceptible to physiological noise and subject motion.

Another approach to reduce the artifact is to incorporate the off-resonance and/or

R∗

2 map in the reconstruction model [2,11,51,52]. However, these methods depend on

accurate pre-estimates of off-resonance and/or R∗

2 maps. Due to the limited accuracy

of the low resolution maps estimated from the same data, the acquisition length was

still restricted to nine echoes [51], or the spatial resolution and field of view had to

be reduced [2]. In addition, in high field imaging, it is often difficult to derive a field

map for lower brain slices from single shot data, since the large off-resonance there

leads to insufficient signal or significant distortion.

In this chapter, we propose a spatio-temporally regularized iterative reconstruc-

tion method as a new approach to correct for the R∗

2 and off-resonance artifacts in

single shot self-refocusing trajectories. This method can accurately reconstruct R∗

2-

and-field-map-corrected images for the single shot PR and rosette trajectories at 3T.

It does not require a pre-determined R∗

2 map, and only requires the initial guess of a

low accuracy field map. Beyond the R∗

2-and-field-map-corrected reconstruction, the

subimages generated by the method can be used in dynamic estimation of accurate
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R∗

2 and field map by fitting the magnitude and phase time courses of each voxel to

a complex exponential model.

Dynamic field mapping can improve image quality, for example, by capturing the

fluctuation of the main field during functional imaging studies. Such fluctuations are

caused by head movement, passive shim heating, and respiration [53]. The proposed

method is suitable for addressing such fluctuations.

Dynamic R∗

2 mapping has been used in a variety of MR applications [8,9,54–57]. In

functional MRI, dynamic R∗

2 mapping provided nearly optimal functional contrast

and activation volume [58], and better contrast to noise ratio than T ∗

2 -weighted

imaging [8]. R∗

2 is more closely linked to physiological parameters in functional

MRI, which may allow for better inter-subject and inter-tissue comparisons, and the

measurement can be more independent of scan parameters and hardware fluctuations.

Recently, there have been several studies that tried to estimate the field map

and/or R∗

2 map along with the proton density image, I0, simultaneously from a

single-shot gradient echo data, using trajectories such as spiral-in and out, multi-

echo EPI, or rosette [53, 59, 60]. However, these methods were not able to address

R∗

2 decay [53], required high computational cost [59], or could detect only relatively

small R∗

2 changes between acquisitions via linearization [60]. Our proposed method

estimates R∗

2 decay and field map simultaneously without assuming small R∗

2 changes.

In the following sections, we introduce a mathematical description of the proposed

method, and a strategy to obtain the initial field map from single shot data. We

also present an approach to determine the regularization parameters throughout

simulations, as well as the functional imaging results. All simulations were conducted

using both PR and rosette trajectories, while experiments were performed using

single shot rosette trajectories.
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Figure 3.1: (a) Single shot PR trajectory (sequential view ordering) (b) single shot rosette trajectory
(c) single shot PR pulse sequence (d) single shot rosette sequence

3.2 Theory

3.2.1 Self-refocusing trajectories and their R∗

2 and off-resonance artifacts

The main difference between PR and rosette trajectory is the number of self-

crossing points. The self-crossing point of PR is located only at the origin of k-space.

In rosette trajectories, the number of self-crossing points can be controlled via the

ratio between two frequencies ω1 and ω2, where the trajectories are described as [2]

~k(t) = sin(ω1t)e
iω2t.(3.1)

Figure 3.1 shows examples of PR and rosette trajectories and corresponding pulse

sequence diagrams.

If there is unwanted off resonance, the reconstructed images can lose intensity

severely due to the spectral selectivity. In addition, R∗

2 decay causes artifacts in the

reconstruction unless it is properly addressed.

In the following section, we propose a spatio-temporally regularized iterative re-

construction method that can correct for the artifact from R∗

2 and field map simul-

taneously.
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3.2.2 Iterative image reconstruction with spatio-temporal regularization

The baseband signal S(t) of MR with mono-exponential T ∗

2 (or 1/R∗

2) decay can

be modeled as [4]

S(t) =

∫

f0(~r)e
−R∗

2
(~r)te−iω(~r)te−2πi~k(t)·~rd~r, τ1 ≤ t < τend,(3.2)

where f0(~r) is the transverse magnetization at the beginning of the data acquisition;

R∗

2(~r) is the R∗

2 map in sec−1; ω(~r) is the B0 field inhomogeneity; ~r is the spatial

location vector; and τ1 and τend are the beginning and the end of the acquisition

respectively.

Assuming that the R∗

2 decay is negligible during the lth time segment, τl ≤ t <

τl+1, we can rewrite (3.2) as

Sl(t) ≈

∫

fl(~r)e
−iω(~r)te−2πi~k(t)·~rd~r, τl ≤ t < τl+1, and l = 1, ..., L,(3.3)

where L denotes the number of data segments, and fl(~r) = f0(~r)e
−R∗

2
(~r)TEl is the lth

subimage with the echo time TEl. We define TEl as the beginning of each segment,

TEl = tl, and each segment has approximately equal size.

We discretize (3.3) in a matrix-vector form with additive complex white Gaussian

noise ε ∈ C
Ml×1 as

Yl = AlXl + ε,(3.4)

where Yl ∈ C
Ml×1 is the l ’th segment of the measured complex MR signal; Ml

denotes the number of data samples in the lth segment; Xl ∈ C
N×1 is the lth

discrete subimage i.e., [Xl]n = fl(~rn); and Al ∈ C
Ml×N is the lth system matrix.

The elements of Al are

[Al]mn = e−i2π~k(tm)·~rne−iω̂(~rn)tm , m = 1, ...,Ml and n = 1, ..., N,
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Figure 3.2: The proposed R2* corrected reconstruction scheme (dotted line) and dynamic R2*
estimation (solid line)

where ω̂ is an initial guess of the field map.

To ensure minimal signal change due to R∗

2 decay, the length of each segment

should be much smaller than T ∗

2 , i.e., a few miliseconds. If the individual subimages

were directly reconstructed from each data segment, there would be artifacts from

high levels of undersampling (Figure 3.2). To overcome the limited k-space coverage

of each segment, additional information on the subimages is necessary.

In previous work, we used temporal evolution of the subimages based on the com-

plex exponential model as the additional information to reduce the undersampling

artifacts. The complex exponential model included the pre-estimated R∗

2 map and

the field map [61]. An extra penalty term penalized the subimages against the com-

plex model, where the term was added to the cost function of iterative penalized



58

least square reconstruction [62].

In this chapter, we propose to penalize the second derivative of the time course

of subimages. This temporal regularization is adequate to capture the temporal

evolution of the magnitude and phase of the subimages. There are advantages to

this temporal regularization scheme compared with our previous work. First, the

new regularization scheme does not require the preestimation of R∗

2 map. Second,

it is more robust to the errors of the initial field map used in the reconstruction.

Third, it is not limited to the mono-exponential model; instead it allows models

with smoothly varying functions.

In the proposed regularization scheme, the penalty term is modified to regularize

the second derivative of the temporal evolution of the subimages, which represent

the object corresponding to each data segment. The final cost function φ consists of

the data fit term, spatial regularization term for each subimage, and the temporal

regularization term as

φ =
L

∑

l=1

‖Yl − Al(ω̂)Xl‖
2 + β

L
∑

l=1

‖CXl‖
2 + γ

L−1
∑

l=2

‖Xl−1 − 2Xl + Xl+1‖
2,(3.5)

where C is a spatially differencing matrix for the spatial smoothness penalty; β is

the spatial regularization parameter; and γ is the temporal regularization parameter.

The reconstruction of subimages is done by minimizing φ over the subimages Xl’s as

follows:

(X̂1, X̂2, ..., X̂L) = argmin
X1,X2,...,XL

φ(X1,X2, ...,XL; ω̂).(3.6)

In our experiment, we used the conjugate gradient iteration for minimization. As-

suming that each time segment is sufficiently small, we model the reconstructed

subimages X̂l as

[X̂l]n = fl(~rn)e−i(ω(~rn)−ω̂(~rn))TEl .(3.7)
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From the magnitude of Xl’s, we can estimate the R∗

2 map by fitting to an exponential

curve. If it is necessary, one can estimate the field map residual ω(~r) − ω̂(~r) using a

log-linear fit of the phase of subimages, and use the refined field map to re-estimate

the subimages. However, the convergence of such an iteration is not guaranteed,

and our preliminary simulation results show that there is only minimal improvement

from reestimation with an updated field map. Figure 3.2 illustrates how the spatio-

temporal regularized iterative reconstruction is done.

3.2.3 R∗

2-and-field-map-corrected reconstruction

Ideally, every subimage Xl reconstructed from the iterative scheme described in

the previous section is R∗

2 corrected, since the data segment size is small enough

not to allow significant R∗

2 decay in each of them. However, due to the structure of

the temporal regularization and finite length of the acquired data, the first and last

subimages have fewer neighbors to regularize with. This results in more artifacts in

the subimages in near the boundary of data acquisition than the subimages in the

middle of data acquisition.

Therefore, we simply choose the middle (L/2th) subimage among the subimages

from the spatio-temporally regularized iterative reconstruction as the R∗

2-and-field-

map-corrected image. The basic outlines of the procedure is described as dashed

lines in Figure 3.2.

3.2.4 R∗

2 and field map estimation from extended data set

The R∗

2 map is estimated by least-square fitting the magnitude of the low-

reconstruction-error subimages to a mono-exponential curve. Similarly, the field map

is estimated from the sum of the initial field map and the log-linear fit of the phase

of the subimages. In this procedure, we used the first half of the subimage sequence
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reconstructed from the spatio-temporally regularized iterative reconstruction.

Extending data acquisition results in more accurate R∗

2 and field maps, since it

has less proportion of subimages which are affected from the boundary effect. On

the other hand, the length of acquisition is limited by hardware capability and the

MR signal strength. Therefore, the length of extended data acquisition needs to be

determined within those limitations. Figure 3.2 again illustrates the basic scheme of

this procedure.

To get accurate estimates of Xl’s, a few unknown terms in (3.6) must be prede-

termined. The following sections explain how to determine the initial field map and

the design parameters.

3.2.5 The estimation of initial field map

Off resonance effects cause phase changes between the neighboring subimages. If

the phase change is too large, the temporal regularization can reduce the difference

in phase more than the difference in the magnitude. This causes artifacts in the

subimages, and results in erroneous estimation of the R∗

2 and field maps.

To avoid large phase changes, the safe range of the off-resonance can be defined as

follows. Assuming that the time difference between neighboring subimages is about

4ms, the off-resonance cannot cause more than π/4 of phase difference during that

period. Therefore the maximum allowable off-resonance will be 31Hz. We call this

interval of off-resonance as the operation range of the temporal regularization for

given length of data segment.

At 3T, the off-resonance frequency often exceeds 31Hz even with good shimming

procedures. This is why the initial field map ω̂ is necessary in the proposed method.

As is denoted in (3.7), the phase evolution of the estimated images depends on the

difference between the unknown true field map and the initial field map. If the
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field map error is smaller, i.e. less than 31Hz, the spatio-temporally regularized

reconstruction will result in less artifacts in the subimages.

On the other hand, for single-shot-self-refocusing trajectories at 3T, it is often

difficult to achieve small error in the field map using the standard ’two-point’ method

[63]. The images with delayed echo time, which are to be used in estimating the field

map, suffer severe image intensity loss due to the spectral selectivity. For example,

a 25Hz of off-resonance will cause significant loss of image intensity for 40ms-long

single-shot rosette acquisition, since the FWHM (Full Width Half Maximum) of

spectral selectivity is the inverse of acquisition length [11].

To estimate the initial field maps with errors within the operation range of the

temporal regularization for single-shot-self-refocusing trajectories at 3T, we improved

the ’two-point’ method to ignore incoherent data points in the reconstruction of

images with different echo times. We choose a grid in an area near the center of k-

space, reconstruct low resolution images at different echo time using only first data

point that visits each grid point. Using this method, from a pair of rosette data with

echo time difference of 2.5ms, we estimated a field map with the RMSE (Root Mean

Squared Error) 6.79Hz, where the maximum absolute off-resonance of the true field

map was 80.4Hz. Figure 3.3 compares the field maps from the standard ’two-point’

method and our improved method.

3.2.6 Determining the design parameters

Spatial regularization is known to introduce a trade off between spatial smoothness

and image noise variance [24]. High βs would result in the loss of the spatial resolution

of the subimages Xls and the estimated R∗

2 map, while low βs would cause unwanted

amplification of the noise. The temporal regularization parameter γ has similar effect

in the temporal direction. Excessive temporal regularization would cause the time
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Figure 3.3: (a) The reference field map. (b) Estimated field map from conventional ’two-point’
method (RMSE = 14.23Hz, Max error = 98.5Hz). (c) Estimated field map from the
proposed field map estimation method (RMSE = 3.43Hz, Max error = 34.46Hz).

course of subimages resemble a straight line, introducing bias in the R∗

2 estimates

with less variance. On the other hand, low temporal regulraization would bring in

more undersampling artifact in the subimages, which will introduce noisy time course

of subimages.

The number of segments L and the total data length play an important role in

the accuracy and the speed of the reconstruction. For a given length of data, one

could choose very large L to reduce the approximation error of R∗

2 decay during each

data segment. However, smaller data segments will introduce more undersampling

artifact despite temporal regularization, and require more memory and computation

time.

Choosing the right set of design parameters is another challenging task. In this

work, we determined the design parameters given a data set in simulations and

experiments. Section 3.3 describes how this was done.
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(a) Reference image (b) Reference R2* map (sec−1)
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Figure 3.4: The reference image (a), R∗

2
map (b), and field map (c) used in simulations

3.3 Simulations

3.3.1 Method

The simulations were conducted using 64 × 64 discrete image, R∗

2 map and field

map as shown in Figure 3.4. The k-space data was generated using direct implemen-

tation of equation (3.4) without noise. We implemented the reconstruction based on

the NUFFT (NonUniform Fast Fourier Transform) representation of the MR system

matrix 1 [19] in MATLAB (Mathworks Inc. Natick, MA). 300 iterations were used

for all simulations.

The PR and rosette trajectories shown in Figure 3.1 were used with variations

in the number of extra spokes or petals. PR trajectories had 128 spokes for the

estimation of the R∗

2 and field maps, and 64 spokes for R∗

2-and-field-map corrected

reconstruction. Each spoke had 128 samples, and the sampling time was 4µs. For

simplicity, no transition time between the spokes was assumed for simplicity.

Rosette trajectories had the fast radial frequency ω1/2π=1.087 kHz, and slow

angular frequency ω2/2π=113.22Hz. For R∗

2-and-field-map corrected reconstruction,

these choices led to 48 cycles of radial oscillation, and for R∗

2-and-field-map estima-

tion, the extended trajectory had 96 cycles of radial oscillation. The readout lengths

of the rosette trajectories were 44.4ms and 88ms respectively with sampling time
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of 4µs. The time segmentation of trajectory was done carefully so that each seg-

ment had almost the same number of spokes or petals. For rosette trajectories, each

segment started from the center of the k-space.

3.3.2 Determining the design parameters

The design parameters were determined by simulations. Using the synthesized

k-space data, the subimages were reconstructed with a range of β, γ, and L values.

For these simulations only, the reference field map was used as the initial field map,

since this choice should provide the best achievable reconstruction performance. For

each reconstruction, the NRMSEs (Normalized Root Mean Squared Error) of the

magnitude subimages with respect to the R∗

2-weighted reference images were mea-

sured, and the minimum values of the NRMSEs were compared for various values of

the design parameters.

Figure 3.5 shows the minimum NRMSEs for the various values of β, γ, L and

acquisition length. The β and γ values that gave the minimum reconstruction er-

ror depended on the length of segment rather than the acquisition length or L. In

addition, the overall NRMSE was lowest when each segment included two spokes or

petals.

From the simulations, the best spatial regularization parameter β was chosen as 1,

the temporal regularization parameter γ was 400, and the number of data segments

L was 32 for the PR trajectory of 64 spokes.

We also performed similar simulations for the rosette trajectories (not shown).

3.3.3 R∗

2-and-field-map-corrected image reconstruction

For comparison, we performed four different simulations. First, we reconstructed

the field-map-corrected T ∗

2 -weighted image using fast iterative reconstruction [19]. In



65

0 1000 2000 3000 4000

10
−1

γ

N
R

M
S

E

(a) Spokes=128, L=64

 

 
β=0.25
β=1
β=4

0 1000 2000 3000 4000

10
−1

(b) Spokes=128, L=32

γ
N

R
M

S
E

0 1000 2000 3000 4000

10
−1

(c) Spokes=64, L=32

γ

N
R

M
S

E

0 1000 2000 3000 4000

10
−1

(d) Spokes=64, L=16

γ

N
R

M
S

E

Figure 3.5: The minimum NRMSE of subimages with different β and γ values for various data
lengths and numbers of segments.
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this method, we used the reference field map in the reconstruction system model to

highlight the artifact from R∗

2 decay during the data acquisition (Figure 3.6 (a)). Sec-

ond, instead of the reference field map, we used the initial field map estimated from

the method described in section 3.2.5. The standard fast iterative reconstruction

reveals that the estimation error of the initial field map causes significant amount

of artifacts in the reconstructed image (Figure 3.6 (b)). Third, the initial field map

was also used in the proposed R∗

2-and-field-map-corrected reconstruction (Figure 3.6

(c)), and the reference field map was again used in the proposed R∗

2-and-field-map-

corrected reconstruction method (Figure 3.6 (d)). The design parameters determined

in the previous section were used in the reconstructions. Figure 3.6 (c) and (d) indi-

cate that the proposed R∗

2-and-field-map-corrected reconstruction method not only

reduces most of the artifacts from both R∗

2 decay and field map error but is also

robust to the error in the initial field map. Note that the most of the remaining

artifact in the proposed method (Figure 3.6 (c)) is local to the area where the error

in the initial field map was highest (47.9 Hz) in the region of interest.

For rosette trajectories, we achieved similar results, where the NRMSE of no R∗

2-

corrected image was 0.376, NRMSE of the field-corrected image using the initial field

map was 0.369, and the NRMSE of the proposed method using the initial field map

was 0.047.

3.3.4 R∗

2-and-field-map estimation

Using the design parameters determined from section 3.3.2 (β=1, γ=400, L=64,

PR trajectory with 128 spokes), we estimated the R∗

2 and field maps using the pro-

posed method (Figure 3.7). The area where higher error in the initial field map

presents showed more error in the estimated R∗

2 map. The accuracy of the field map

was significantly improved by the proposed R∗

2-and-field-map estimation method over
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Figure 3.6: (a) Field-map-corrected image using the reference field map without R∗

2
correction

(NRMSE=0.28), (b) field-map-corrected T ∗

2
-weighted image using the initial field map

without R∗

2
correction (NRMSE=0.31), (c) proposed method with the initial field map

(16th subimage, NRMSE=0.064), (d) proposed method with the reference field map
(16th subimage, NRMSE=0.042). (e) The NRMSE of each subimage for (c) and (d).
The maximum error in the initial field map was 47.9Hz with RMSE of 3.1Hz. The
design parameters for the proposed method were β=1, γ=400, L=32.
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Figure 3.7: (a) (f) The subimages (l=1,5,9,13,17,21) and their profiles. (g) the estimated R∗

2
map

(RMSE = 1.32sec−1) and (h) the estimated field map (RMSE = 0.52Hz).

Initial field map Estimated field map Estimated R∗

2
map

RMSE max.error RMSE max.error RMSE max.error
Field map 1 0.86 Hz 8.02 Hz 0.52 Hz 2.99 Hz 1.32 s−1 7.77 s−1

Field map 2 2.27 Hz 20.50 Hz 0.68 Hz 4.34 Hz 1.97 s−1 16.03 s−1

Field map 3 3.27 Hz 31.71 Hz 0.91 Hz 8.73 Hz 3.11 s−1 24.87 s−1

Table 3.1: Estimation errors of the field maps and R∗

2
maps for synthesized data sets with different

field map magnitudes. Field map 3 (max amplitude = 79.1 Hz) is identical to the
reference field map shown in Fig. 3.4. Field maps 1 (max amplitude = 26.4 Hz) and
2 (max amplitude = 52.7 Hz) are obtained by scaling field map 3 by 0.33 and 0.67,
repectively.

using only the initial field map.

While the extended acquisition length increased the accuracy of the reconstructed

subimages, it also increased the sensitivity of R∗

2 map estimation to the error of the

initial field map. Table 3.1 shows the result of the simulations for various values of

the reference and the initial field maps. The proposed method improved the accuracy

of the field maps from the initial field maps, but the accuracies of the estimated R∗

2

maps were affected at the locations where the errors in the initial field maps were

high.

3.4 Experiments

3.4.1 Method

All MRI data were acquired on a 3T scanner (GE Signa, Milwaukee, WI). Written

informal consent was obtained from subjects prior to the MRI scan. Two MRI
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experiments were performed on human subjects.

Experiment I : For the R∗

2-and-field-map-corrected image reconstruction, five mea-

surements were acquired for twenty contiguous slices with 3mm thickness. The scan

parameters were TR = 2s, TE = 5ms, and FOV = 20cm, where TE was defined as

the beginning of the rosette acquisition. The first time point was delayed by 2.5ms

to estimate the initial field map as described in section 3.2.5. The parameters for

the rosette trajectory were kept the same as in the section 3.3. Total readout was

44.4ms. Each session was preceded by non slice selective fat presaturation pulse. The

R∗

2-and-field-map-corrected reconstruction was done based on the design parameters

determined from simulations (β=1, γ=150, L=24).

Experiment II : For the R∗

2-and-field-map estimation, ten contiguous slices (slice

thickness = 3mm) were acquired while a functional imaging study was conducted.

An 8Hz flickering checker board was used as visual stimulation to the subject, while

finger tapping task was asked to be performed during the visual stimulus. The visual

stimulus was presented for 5 cycles with 20s off/20s on. The scan parameters were

kept the same as those used in the first experiment, and the initial field map was

also estimated from the delayed acquisitions. The readout was 88ms for the extended

rosette acquisition.

Four different volumes of time series were reconstructed from the functional study

data acquired in experiment II.

1. The first volume of dynamic R∗

2 maps was reconstructed applying the proposed

R∗

2-and-field-map estimation method to the entire 88ms acquisition data (β=1,

γ=150, L=48).

2. The second volume was chosen as the time series of the 24th subimage among

the subimages, which were already reconstructed using the proposed spatio-
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temporally regularized iterative reconstruction for the first volume.

3. The third volume was the time series of the static field-map-corrected T ∗

2 -

weighted images using the fast iterative reconstruction [19]. At each time point,

the image was reconstructed using the static field map estimated from the pro-

posed R∗

2-and-field-map estimation method at the first time point. The recon-

struction was done on the middle segment of the extended data, which started at

20ms from the beginning of the acquisition and ended at 62ms of the acquisition

to match the effective echo time of the 24th subimage.

4. The fourth volume was the time series of the dynamic field-map-corrected T ∗

2 -

weighted images using the fast iterative reconstruction. At each time point,

the image was reconstructed using the dynamic field map estimated from the

proposed R∗

2-and-field-map estimation method. The reconstruction was done

on the same segment of the data as the third volume.

The NRMSE of the current iteration with respect to the previous iteration was

used as the stopping criterion for the conjugate gradient iteration in the proposed

methods. We stopped the iteration when the NRMSE of current iterate gets smaller

than 10−4. About 460 iterations were needed to reach that error level for the R∗

2-

and-field-map estimation method. The number of iterations varied widely according

to the choice of design parameters and the acquisition lengths.

3.4.2 Results

Figure 3.8 and figure 3.9 show the image reconstruction results from the first MRI

experiment (Experiment I). Figure 3.8 shows all of the 24 subimages reconstructed

using the proposed R∗

2-and-field-map-corrected reconstruction method. As was found

in the simulation results, the later echo subimages had more artifact than those in
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Figure 3.8: Experiment I : The 24 reconstructed subimages from a single shot gradient echo rosette
data set (readout = 44.4ms). The left top image is the first subimage.

the middle. The streaking artifact present in the earlier echo subimages are due to

imperfect fat presaturation, and to error in the initial field map. The subimages

clearly show the temporal evolution of the R∗

2 contrast between brain tissues and

CSF in ventricles.

Figure 3.9 compares the standard field-map-corrected/uncorrected T ∗

2 -weighted

image with that of the proposed R∗

2-and-field-map-corrected reconstruction method.

The image from the proposed R∗

2-and-field-map-corrected reconstruction successfully

recovered the signal in the high off-resonance area, where the image without field map

correction lost most of the intensity (Figure 3.9 (a) and (c)). Figure 3.9 (b) shows

the field-map-corrected T ∗

2 -weighted image with the initial field map estimated using

the improved ’two-point’ method in section 3.2.5.

The following figures show the results from the second functional MRI experiment

(Experiment II). Figure 3.10 shows the R∗

2 and field map of the 10th time point of
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(a) (b) (c)

Figure 3.9: Experiment I : (a) Image without field map correction. (b) Field-map-corrected T ∗

2
-

weighted image reconstructed from standard iterative reconstruction. (c) Proposed
R∗

2
-and-field-map-corrected reconstruction (12th subimage in Figure 3.8). In (b) and

(c), the initial field map, which was estimated using the method described in section
3.2.5, was used in the reconstructions.
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Figure 3.10: Experiment II : The estimated R∗

2
map and field map from the proposed R∗

2
-and-field-

map estimation method.

the 7th slice estimated from the proposed R∗

2-and-field-map estimation method. The

R∗

2 map exhibits the anatomical structure of the brain, and the high field map area

(bottom of the R∗

2 map) shows no artifact from the field map error.

Figure 3.11 shows the results of four different reconstructions on the functional

study data. The first row shows the activation map and the averaged time course

of the dynamic R∗

2 maps estimated using the proposed R∗

2-and-field-map-estimation

method. The second row shows the activation map from the 24th subimages re-

constructed using the proposed spatio-temporally iterative reconstruction method.
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The third and fourth row show the results from the static and dynamic field-map-

corrected T ∗

2 -weighted images using fast iterative reconstruction [19]. For each re-

construction, the numbers of the activated pixels were 16, 18, 20 and 23 pixels

repectively.

Figure 3.12 (a) shows the normalized averaged time series of one slice in the

functional study. We regressed out the reference waveform using linear least square

fitting before averaging the time series over the entire brain region. Only the time

series of static field-map-corrected T ∗

2 -weighted image exhibits the time varying trend

of the field map during the functional study. Figure 3.12 (b) shows the average time

course of the dynamic field map estimated using the proposed R∗

2-and-field-map-

estimation method.

3.5 Discussion

Most of the error in the R∗

2 estimates came from mismatch between the point

spread functions (PSF) of subimages. We observed that the earlier images had

enhancement in the edges of the simulation object, and the later subimages had

smoother edges as shown in Figure 3.7. The error in the field map estimates was also

concentrated around the edge of the simulation object. This result is the opposite

to the results observed in [64], which used multi-spin echo radial data, and it is an

interesting research problem to consider the effect of the spatio-temporal sampling

scheme on the PSF of images. Preliminary data shows that this PSF mismatch could

be reduced with well designed temporally varying γ values, and further investigation

is required. Separate spatial regularization of the magnitude and phase of subimages

[65] may also help to reduce the artifact.

Since there is no mono-exponential decay assumed in the reconstruction model,



74

(a)

0 50 100 150 200
18

19

20

21

sec

se
c−

1

(b)

0 50 100 150 200

0.9

1

1.1

sec

a.
u.

(c)

0 50 100 150 200

0.9

1

1.1

sec

a.
u.

(d)

0 50 100 150 200

0.9

1

1.1

sec

a.
u.

Figure 3.11: Experiment II : Activation maps (left) and the corresponding averaged time course
of the activated pixels (right). (a) The dynamic R∗

2
maps from the proposed R∗

2
-and-

field-map-estimation method. (b) The 24th subimages from the proposed R∗

2
-and-field-

map-estimation method. (c) The field-map-corrected T ∗

2
-weighted images with static

field map estimated from the first time point. (d) The dynamic field-map-corrected
T ∗

2
-weighted images, where dynamic field maps were estimated from the proposed

R∗

2
-and-field-map-estimation method.
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Figure 3.12: Experiment II : (a) The normalized mean time series of the four experiments from Fig.
3.11. Each line represents the time series of the R∗

2
maps from the proposed R∗

2
-and-

field-map estimation method (1), the 24th subimages from the proposed R∗

2
-and-field-

map estimation method (2), the field-map-corrected T ∗

2
-weighted images using the

field map estimated from the first time point (3), and the dynamic field-map-corrected
T ∗

2
-weighted images using the field maps estimated from the proposed R∗

2
-and-field-

map-estimation method (4). (b) The average time course of the dynamic field map
estimated using the proposed R∗

2
-and-field-map-estimation method.

the subimages can also exhibit multi-exponential decays. Other preliminary results

(not shown) indicate that the proposed scheme can reconstruct bi-exponential decays

in the subimages. However, a robust nonlinear estimation algorithm is required to

estimate the amplitudes and decay values from a single decay curve.

In this work, the parameters for the PR and rosette trajectories were not opti-

mized. A random view ordering of PR provided less error in the R∗

2 estimates than

the sequential order. This can be explained by considering the sampling in 3D k-t

space. The randomized view ordering provides more evenly distributed sampling in

3D than sequential ordering, therefore it allows better condition for the reconstruc-

tion scheme to estimate the missing points in the k-t space. However, randomized

view ordering would require more scan time due to the increased transition time be-

tween spokes. The rosette trajectory can provide a pseudo-randomized view ordering

without increased transition time between petals.

The proposed method can be easily extended to multi-shot methods and the par-
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tially parallel imaging methods [41,42] to speed up the acquisition or to improve the

accuracy of estimates. In addition, dynamic imaging methods such as UNFOLD [40]

use a series of undersampled trajectories to collect the data and applies a temporal

low-pass filter to reduce the aliasing artifacts on each frame. The proposed method

can be easily extended to reconstruct the unaliased images without specific temporal

filters.

In the functional study, it was observed that the number of activated pixels was the

smallest in the R∗

2 mapping. One of the reasons could be the erroneous estimate of R∗

2

maps due to the artifacts from the residual fat signal and the field map errors as shown

in Figure 3.8. On the other side, the dynamic field-map-corrected images generated

more activated pixels than the static field-map-corrected images in accordance with

the results in [53].

The proposed R∗

2-and-field-map reconstruction method successfully reconstructed

the R∗

2-and-field-map corrected image in the simulations. This indicates that the

proposed method is robust to the R∗

2-and-field-map errors in the system model.

The maximum allowable field map error can be calculated using the length of data

segment as described in section 3.2.5. In addition, given the initial field map within

the maximum allowable range of field map error, the proposed R∗

2-and-field-map

estimation method was able to provide not only the dynamic field maps but also

dynamic field-map-corrected subimages. The method requires an initial guess of the

static (or dynamic if possible) field map, but it is obvious that the method is able

to produce dynamic information of the field map change as it was presented in the

functional study results.

The proposed spatio-temporally regularized iterative reconstruction is not limited

to single-shot PR or rosette trajectories. As long as a trajectory acquires the center
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of k-space multiple times during the acquisition, the reconstruction method can be

applied to reconstruct the temporal change of the imaging object. The frequency

and the number of the sampling of DC will determine the spectral FOV and the

resolution for the reconstruction of dynamic change of the object. A series of quick

spiral out-in/in-out trajectories, multiple undersampled EPI trajectories, or single-

shot propeller imaging are conceivable choices. Further investigation is required

to study the benefit of using such trajectories and also to determine the optimal

trajectories given a priori information on the dynamics of the imaging object.

The biggest concern of the proposed method is the reconstruction speed. A new

faster iterative reconstruction method such as [66] could help to reduce the recon-

struction time significantly. A well designed preconditioner [23] and good initial

guess of subimages will also help to reduce the reconstruction time.

3.6 Conclusion

We have proposed a spatio-temporally regularized iterative reconstruction method

to reconstruct R∗

2-and-field-map-corrected images and to estimate dynamic R∗

2 and

field maps. The proposed method required no a priori knowledge of R∗

2 map, but

only pre-estimated low accuracy field map was required. Through simulations and

functinoal experiments, we verified that the method is capable of the accurately

reconstructing the R∗

2-and-field-map-corrected images and estimating the dynamic

R∗

2 and field maps.



CHAPTER IV

2D k-space trajectory measurement

4.1 Introduction

In fast MR imaging, high gradient slew rates are often required, which can lead

to distortions in the gradient waveforms due to the eddy currents. Fast imaging

methods such as spiral and echo-planar imaging (EPI) suffer from artifacts caused

by such gradient distortions [67–69].

One approach to reduce the distortion of gradient waveforms is hardware pre-

compensation. However, hardware pre-compensation is not enough for some MR

applications such as spiral in-out imaging [70, 71], and the eddy current effects hav-

ing short time constants (� 1ms) are often difficult to eliminate using such pre-

compensation techniques [68].

Another approach is to measure the actual k-space trajectory, and use the mea-

sured information in post processing. Many k-space trajectory measurement meth-

ods have been introduced. Several methods used extra encoding gradients [72–74] to

measure 2D or 3D k-space trajectories, but an extensive number of encoding steps

can lead to excessive scan time. Another method by Mason et al. [75] used a small

sphere to estimate the k-space trajectories from the phase of the received signal.

This approach required an extra surface coil to have adequate Signal to Noise Ratio

78
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(SNR), and the accuracy was limited by the spatial resolution of the gradient echo

image, which was used to determine the location of the sphere. Another by Duyn

et al. [69] used a slab excitation instead of using a small object. It did not require

extra surface coil, nor estimation of the location of a sample, but it was limited

to measuring only one channel at a time. Goodyear et al. [76] proposed to use a

uniform phantom with short T2 and T ∗

2 to measure instantaneous phase of the data

with multiple adjacent RF excitations.

In this chapter, we propose a new technique that uses the MR signal from a

pencil-shaped excitation volume. The proposed method has several advantages: it

does not require a surface coil or a point phantom, it can be implemented with

only a small modification to the pulse sequence, it only requires eight measurements

when signal averaging is not necessary, it can measure B0 fluctuation due to B0

eddy currents while fully compensating for field inhomogeneity, it can determine the

effects of gradient cross coupling between two channels.

A phantom experiment was performed to measure spiral in-out trajectory [77] and

B0 fluctuation. A comparison between the measured trajectory and the designed

trajectory was done via the reconstruction of a human scan data. In addition, a

simulation study was performed to investigate the effect of the trajectory distortion

and the B0 fluctuation on image reconstruction.

4.2 Methods

4.2.1 Theory

The proposed measurement method consists of measuring the MR signal from

four different spatial locations.

First, to measure the k-space trajectory of the X channel, the pencil excitation is
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applied at (X0, 0). The pencil excitation is composed of a slice selective 90 degree

pulse in X at X0, and followed by an 180 degree pulse in Y at 0 (Figure 4.1 (a)).

After the pencil excitation pulse, the target readout gradients (both channels) are

played while the data Son(t; X0, 0) is collected (Figure 4.1 (b)). Assuming the slice

thickness is small enough, the received signal is

Son(t; X0, 0) ≈ e−i2π(kx(t)X0)e−i
R t

0
γb0(τ)dτ

∫ ∆z/2

−∆z/2

M(X0, 0, z)e−iω(X0,0,z)tdz,(4.1)

where γ is the gyromagnetic ratio; ∆z is the length of the excited pencil-shaped

volume in z axis; M(X0, 0, z) is the transverse magnetization in the excited volume;

ω is the spatially varying but time invariant off-resonance; and γb0(τ) is the spatially

invariant main field fluctuation caused by the B0 eddy current. To cancel out any

unrelated eddy current effect and field inhomogeneity, we also acquire Soff(t; X0, 0)

while the target readout gradients are not played. Figure 4.1 (b) illustrates the pulse

sequences with/without the target gradients.

Second, to account for B0 fluctuations, we acquire another pair of data sets at

the opposite location of the axis, i.e., (−X0, 0). From the four measurements, we

estimate the k-space trajectory of the target channel, kx(t), using the following:

k̂x(t) = −
1

4πX0

U

(

∠
(Son(t; X0, 0)Soff(t;−X0, 0)

Soff(t; X0, 0)Son(t;−X0, 0)

)

)

,(4.2)

where U(·) denotes 1D phase unwrapping operation.

The phase accumulation from B0 fluctuation φ0(t) =
∫ t

0
γb0(τ)dτ , or B0 term, is

estimated from the same measurement using

φ̂0(t) = −
1

2
U

(

∠
( Son(t; X0, 0)Son(t;−X0, 0)

Soff(t; X0, 0)Soff(t;−X0, 0)

)

)

.(4.3)

Similarly, the k-space trajectory of the other target channel, ky(t), is estimated

from the measurements at (0, Y0), and (0,−Y0) with/without the target readout
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Figure 4.1: (a) Illustration of a pencil excitation at (X0, 0). (b) The pulse sequence used to measure
kx(t). (c) The proposed k-space trajectory measurement scheme.
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gradients. The B0 term is estimated from these measurements, and averaged with

the φ0(t) estimated from the X channel measurements to get the final estimated

φ0(t). Figure 4.1 (c) summarizes the complete procedure of the proposed k-space

trajectory measurement scheme.

4.2.2 Experiments

All experiments were done in GE 3T scanner (EXCITE 2.0, GE Healthcare,

Waukesha, WI). The vendor-provided eddy current pre-compensation was turned

on during all experiments.

A spiral in-out trajectory was used in the trajectory measurement and for imaging.

The maximum gradient slew rate was 18 G/cm/ms, and the maximum gradient

amplitude was 2.6 G/cm. The time gap between spiral in and spiral out trajectories

was 1.1 ms, and the total readout was 36.5 ms. The receiver bandwidth was 250

kHz (sampling time 4µs). Both the spiral in (first half) and spiral out (second half)

trajectories were designed to provide spatial resolution of 3.75 mm and a 24 cm FOV.

Phantom experiment

A spherical phantom (NiCl2 solution, 17 cm diameter) was used in the phantom

experiment. The cross sectional area of the pencil excitation was chosen to be 3

mm by 3 mm to have enough volume for high SNR, while preventing the k-space

coverage of the trajectory from reaching the first zero of the spectrum of the excited

volume. The locations in the measuring plane (X-Y) were ±5 cm from the isocenter

of the gradient system on each axis. TR was 2 s and the echo time was 50 ms,

where the echo time was defined as the time difference between the center of the

90 degree pulse and the center of the readout. To reduce the scan time to 4TRs,

the measurements on each axis were interleaved, and the amplitudes of the spoiler

gradients were increased at each measurement to reduce the stimulated echo. Using
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the equations in the previous section, kx(t), ky(t) and φ0(t) were estimated from the

measured data sets. No data averaging was necessary.

In addition, the k-space measurement was repeated without playing the spiral

in-out gradient in the X channel. By this experiment, we were able to measure the

cross coupling of gradient channels in the estimated kx(t).

Human experiment

One human subject was scanned in the GE 3T scanner. Written informed consent

was obtained from a subject prior to the MRI scan as approved by the University

of Michigan Institutional Review Board. Gradient echo images from two axial slice

locations were obtained using the identical spiral in-out trajectory used in the k-space

measurement sequence. TR was 2 s, and TE was 25 ms. Images were reconstructed

using the designed trajectory and then using the measured trajectory via fast iterative

reconstruction with field map correction [19].

Effect on the reconstruction

A k-space data set was generated from a 64 by 64 discrete object and a simulated

off-resonance map (min: -54 Hz, max: 5 Hz) using the estimated k-space trajectory

and the B0 term from the phantom measurements. For the simulations, we first

low-pass filtered the B0 term, φ0(t), and removed any linear trend.

Four images were reconstructed from the simulated k-space data using 1) the

measured trajectory and the measured φ0(t) (the reference reconstruction), 2) the

designed trajectory with φ0(t), 3) the measured trajectory without φ0(t), and 4) the

designed trajectory without φ0(t). We used a fast iterative reconstruction method

[19] with a slight modification to include the time-varying B0 fluctuations in the

reconstruction system model. The NRMSE (Normalized Root Mean Squared Error)

of the magnitudes of the reconstructed images (2,3,4) was measured with respect to
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Figure 4.2: (a) The measured trajectory and the designed trajectory for the first half (spiral in) of
the spiral in-out trajectory (b) The measured trajectory and the designed trajectory
for the second half (spiral out) of the spiral in-out trajectory (c) The measured phase
accumulation from B0 fluctuation, φ0(t).

the magnitude of the reference reconstruction.

4.3 Results

Figure 4.2 shows the measured k-space trajectory and the designed trajectory

on 2D k-space, along with the estimated B0 term, φ0(t). At this coarse scale, the

measured k-space trajectory is not noisy, and it deviates slightly from the designed

trajectory. Note that the deviation is larger in the higher spatial frequency region of

the k-space, where more trajectory error is accumulated. The RMSD (Root Mean

Squared Difference) of the measured trajectory with respect to the designed trajec-

tory were 0.0215 cm−1 and 0.0188 cm−1 for the X and Y channels respectively. Since

the self-induced eddy current term often manifests as gradient delay, we measured

the delay of the measured trajectory and the designed trajectory. The cross correla-

tion was done on the ten times oversampled trajectory waveforms. The delays were

measured for both spiral in and spiral out on each channel. Table 4.1 shows the

measured delays.

Figure 4.3 shows the measured cross term in the X channel. Since there was no

gradient waveform played in the X channel during this measurement, the waveform,
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Table 4.1: Delays of the measured trajectory with respect to the designed trajectory (4 µs sampling
time)
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Figure 4.3: The cross coupling of the gradient channels was measured by setting the amplitude of
the X readout gradient as 0, and measuring kx(t) while the other channel was on using
the proposed measurement method.

kx(t), shown in the figure reveals the cross term induced by ky(t).

The human scan data was reconstructed with field map correction using the mea-

sured trajectory and the designed trajectory. Figure 4.4 shows that using the mea-

sured trajectory resulted in less artifacts in the reconstructed images.

The simulation results are shown in figure 4.5 to demonstrate the effect of the

trajectory distortion and the B0 fluctuation on image reconstruction. Most of the

reconstruction error of the magnitude images is due to the difference between the

measured trajectory and the designed trajectory. Figures 4.5 (b) and (d) indicate

that using the designed trajectory in the reconstruction caused a blurring in the

images. The effects of the B0 fluctuations on the magnitude images were minimal.

However, without B0(t) correction, the reconstructed images had a global shift in

the phase.
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(a) (b)

Figure 4.4: The images reconstructed from spiral in-out data in the human experiment. (a) The de-
signed k-space trajectory was used for the reconstruction. (b) The measured trajectory
was used for the reconstruction. The arrows indicate reduction of the reconstruction
artifacts when the measured trajectory was used.
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(a) (b)

(c) (d)

Figure 4.5: Simulation results using the measured k-space trajectory and B0 fluctuation. The
k-space data was synthesized using the measured k-space trajectory and φ0(t), then re-
construction was done by incorporating the following variations into the reconstruction
system model. (a) The reference reconstruction : The measured k-space trajectory and
φ0(t), (b) Difference map between the reference reconstruction and the magnitude im-
age using the designed k-space trajectory with φ0(t) (NRMSE=0.0534), (c) Difference
map between the reference reconstruction and the magnitude image using the measured
k-space trajectory without φ0(t) (NRMSE=0.0114), (d) Difference map between the ref-
erence reconstruction and the magnitude image using the designed k-space trajectory
without φ0(t) (NRMSE=0.0534). All difference maps were scaled by 22 for visualization
purpose. The NRMSE were measured with respect to the reference reconstruction (a)
inside of the object.
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4.4 Discussions and Conclusions

We have demonstrated that the proposed method can be used to measure 2D

k-space trajectories using a pencil excitation. The method is able to capture the

cross-coupling of gradient channels. Together with the self-induced eddy current

term, the cross-coupling caused the actual k-space trajectory to deviate slightly from

the designed trajectory even with the vendor-supplied eddy current compensation

enabled.

The self-induced eddy current often manifests itself as a delay in the gradient

waveform as well as distortions in the waveforms. The delay, along with the delay

between the gradient amplifier and the data acquisition unit, can be easily fixed in the

pulse sequence program by including a timing delay in the data acquisition window.

In spiral trajectories, a mismatch in delay can be observed as a slight rotation in the

reconstructed images. One could determine the delay by trial and error from such

rotations, but its accuracy is limited. In addition, the eddy current related delay

varies throughout the readout in accordance with the first derivative of the gradient

waveform. Therefore, measuring spiral k-space trajectory is desirable to improve the

reconstruction accuracy. For rosette trajectories, the artifact from delay mismatch

manifests as image intensity loss. A simple integration of image intensity can be

used as a measure to determine the right delay.

The proposed method was also able to measure B0 fluctuations that can lead to

additional error in the image reconstruction if uncorrected. The time derivative of

the estimated (and denoised) φ0(t) reveals that the magnitude of the instantaneous

off-resonance can reach up to 100Hz. However, this instantaneous change does not

lead to significant accumulation of the phase in the received signal, therefore it had
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minimal effect on the image reconstruction.

The accuracy of the proposed method is dictated by the accuracy of the pencil

excitation. Any nonlinearity in the gradient B field would cause unwanted scaling of

the measured trajectories. In addition, the spatial gradient of the B0 field inhomo-

geneity in the excited volume would cause distortions in the local k-space trajectories

and result in lower SNR in the measurement.

The proposed method requires relatively small scan time (4TRs) and small mod-

ifications to the pulse sequence, and there was no need for dedicated equipment.

One could reduce the scan time further to 2TRs by interleaving all measurements

and also integrate the measuring sequence into the regular prescan procedure. One

could also measure the k-space trajectories with the subject instead of a spherical

phantom. However, our preliminary data shows that even with the TR of 5s, and 20

times averaging, the SNR is too low due to the complex structure of the off-resonance

in the brain and the contamination by physiological noise and blood flow.

Based on the principle of the proposed 2D method, an easy extension to measuring

3D k-space trajectories is conceivable. However, signal averaging would be necessary

as the excitation volume is reduced to a small 3D cube.



CHAPTER V

Conclusions and future work

5.1 Conclusion

The principal objective of this work was to develop a better reconstruction method

for SMART imaging. SMART method had been shown to be a fast and effective way

of functional imaging. But, the previously proposed reconstruction method by Noll et

al. [2] suffered from the artifacts from the off-resonance slices. We proposed a physics

model based iterative reconstruction method (iSMART) to reduce these artifacts. In

our simulation, the proposed method was shown to reduce the reconstruction error

by about 70% from that of the conjugate phase reconstruction (CPSMART). It was

also found that the spatial resolution was slightly reduced in iSMART reconstruction.

In the functional study, iSMART resulted more activated pixels than CPSMART in

most of the slices, but further investigation is required to draw a conclusion whether

one method is better than the other in terms of functional detectability.

The proposed iterative reconstruction was more sensitive to the error in the field

map than CP reconstruction. Therefore a very accurate field map estimation proce-

dure was required. An improvement on the initial field map was done by applying

the spatio-temporally regularized reconstruction described in chapter III. A greater

number of shots for the field map estimation could be used for more accurate es-
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timation of the field map, but longer scan time would lower the accuracy of the

field map due to the field map change during the extended data acquisition. The

spatio-temporally regularized reconstruction provided a robust reconstruction of the

field-map corrected image even when inaccurate field map was used in the system

model. The robust reconstruction can be useful, when the vendor-provided shim-

ming is not sufficient and when a long acquisition for field map estimation is not

desirable. We also estimated a field map with better accuracy, and R∗

2 map without

prior information by extending the acquisition.

The accuracy of the system model of the iterative reconstruction can be improved

further by measuring the k-space trajectory. The proposed pencil excitation allowed

us to measure the 2D k-space trajectory at the same time, therefore, the cross talk

between two channels can be measured. From the same data set, we measured the

fluctuation of the main magnetic field due to the B0 eddy current. The method

does not require extra equipment such as a point phantom or a surface coil. Our

result showed that the difference between the measured trajectory and the designed

trajectory was mostly manifested as a group delay of the gradient waveform. In

rosette trajectory, the delay can be detected more efficiently than spiral trajectories.

The measurement of k-space trajectory does not have significant impact on the

image reconstruction error. Therefore, in our iSMART experiments, the k-space

measurement was not performed. With the use of other scanners with different

gradient system, the trajectory error could have more significant impact on the image

reconstruction.

In the following list, we state the contribution of this thesis to the field of MRI.

1. We developed a new iterative reconstruction method for SMART acquisition

(iSMART), and implemented SMART method in a 3T scanner for the first time.
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The proposed reconstruction method reduced the artifacts from off-resonance

slices, which can be found in the conventional CP reconstruction. It also resulted

more activated pixels in most slices, higher time-series SNR, but slightly lower

in-plane spatial resolution.

2. We developed a new robust R∗

2-and-field-map corrected image reconstruction

method based on the spatio-temporal regularization. The formulation of tem-

porally segmented system matrix was not done in MR research field previously.

It allows a robust R∗

2-and-field-map corrected image reconstruction when an

inaccurate field map and no R∗

2 map are provided in the system model.

3. Based on the robust R∗

2-and-field-map corrected image reconstruction, we also

developed a novel dynamic R∗

2 and field mapping method for functional MRI.

The dynamic field map estimation revealed the field map fluctuation during a

functional study, and a functional activation was detected by the dynamic R∗

2

maps.

4. We developed a new 2D k-space trajectory measurement method, which can

quickly measure the k-space trajectory as well as the crosstalk between two

channels and the B0 fluctuation.

5.2 Future work

Acceleration of iterative methods by preconditioning

The proposed iterative methods for rosette trajectory are slower than other non-

iterative or iterative reconstruction for conventional single slice imaging. In the

context of numerical linear algebra, the use of preconditioner is a common way to

accelerate the inverse problem of Y = AX [23]. The idea of preconditioning is to pre-

multiply a matrix M to the system matrix A to make the eigenvalues of MA to be
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clustered. A good preconditioner should be easily computed, and the multiplication

of it to a vector should be done quickly. A reasonable preconditioner would be an

approximation to the inverse of the system matrix, or the minimizer of ‖I − MA‖.

For a Toeplitz system matrix, circulant preconditioners are popular choices, since the

matrix-vector multiplication can be done using FFT. Several ways of constructing

circulant preconditioners are found in [78].

The hessian matrices of the proposed iterative methods are either Toeplitz (spatio-

temporally regularized iterative reconstruction, when field map is not included in

each subsystem), or composed of block matrices which are weighted linear sum of

Toeplitz matrices (iSMART). Further investigation will be necessary to find a circu-

lant preconditioner for a linear sum of Toeplitz block matrices.

Acceleration of iterative methods by Toeplitz based iterative recon-

struction

Toeplitz-based iterative reconstruction [66] is a faster method than the NUFFT-

based iterative reconstruction [19]. The Toeplitz-based method is faster than

NUFFT, because it does not require the interpolations in k-space. In [66], the

Toeplitz-based iterative reconstruction was found to be about 2 times faster than

the NUFFT-based iterative reconstruction. This method can be readily applied to

the proposed iterative methods for extra speed-ups.

Investigation of other trajectories for spatio-temporally regularized it-

erative reconstruction

The proposed spatio-temporally regularized iterative reconstruction is not only

limited to rosette trajectories or single-shot PR trajectories. It can be applied to

any trajectory that resamples the origin of k-space multiple times. The current for-

mulation has limitation that each segment should include samples near the origin to
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provide meaningful subimages. Therefore, multi-echo interleaved spiral in-out/out-in

trajectories, multi-echo interleaved EPI, or single shot propeller trajectories could be

alternative choices. Since these trajectories would result in different undersampling

artifacts, and the k-space coverage at each segment can be controlled in more in-

tuitively than rosette, further investigation would result in very interesting research

problems.

Combining with parallel imaging technique

SENSE (SENsitivity Encoding) was proposed by Pruessmann et al. [41] in 1999

as a parallel imaging technique. This method is used to speed up the acquisition

several times using the coil sensitivity as extra information. Its application to non-

Cartesian k-space trajectory was also tested and validated in [79]. The combination

of SENSE and SMART will be a very attractive way to accelerate the brain volume

imaging. Shorter rosette acquisition will result in wider spectral passband, then the

off-resonance frequency between slices will have to be increased. A more accurate

measurement of sensitivity map will be required, since the number of sensitivity map

will be increased by the number of simultaneously excited slices. In case the accuracy

of measured sensitivity maps are not sufficient, other parallel image reconstruction

methods such as GRAPPA [47–49] can be considered.

Combining arterial spin labeling and SMART

Arterial Spin Labeling (ASL) method is an endogenous contrast perfusion imaging

method in functional MRI. In this method, the spins at the arterial site are magnet-

ically tagged, and the perfusion at the imaging site is measured from the difference

between the control image and the tagged image [80]. Although this method pro-

vides better localization of neuronal activity and is less sensitive to subject motion,

it suffers from low spatial and temporal resolution. A typical ASL implementation
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acquires five to eight slices with a TR of 2 ∼ 3 s. Note that the actual temporal

resolution of perfusion images is doubled as both control and tag images should be

acquired. To increase the acquisition rate or number of slices, parallel imaging tech-

nique has been used with ASL [81]. In combination with parallel imaging method,

or by itself, SMART can serve as a way to increase the number of imaging slices

without loss of temporal resolution in ASL.

Comparison between the proposed dynamic R∗

2 mapping and the con-

ventional multi-echo method

In [8], the multiple gradient echo method was used to enhance the functional

detectability in BOLD. The temporal/spatial SNR of the multi-echo method and

the proposed dynamic R∗

2 mapping can be done to investigate the effect of spatio-

temporal regularization in the image reconstruction.
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ABSTRACT

Iterative reconstruction methods for rosette trajectories in functional MRI

by

Sangwoo Lee

Chairs: Douglas Noll and Jeffrey Fessler

Blood Oxygenation Level Dependent (BOLD) functional MRI (Magnetic Resonance

Imaging) is a noninvasive imaging method to explore the function of the human brain

using the change of tissue T ∗

2 as the contrast mechanism. Fast imaging of the whole

brain volume is important in fMRI, since the brain function can be spread over the

entire brain for a very simple task. Simultaneous Multislice Acquisition using Rosette

Trajectory (SMART) was proposed as one of the fast multislice imaging methods, but

the non-iterative conjugate phase (CP) reconstruction resulted significant amount of

artifacts from the off-resonance slices. In this thesis, we develop a physics model

based iterative reconstruction method for SMART (iSMART) to reduce the artifacts

and demonstrated the method at 3T. Simulation studies and functional experiments

were performed to show that the method reduces most of the artifacts at the price

of slight decrease in the in-plane spatial resolution and increased computation. The

accuracy of iSMART depends on the accuracy of the system model it uses in the

reconstruction. To increase the accuracy of the system model, we also developed



1

a robust, dynamic R∗

2-and-field-map-corrected image reconstruction method. This

method is based on the spatio-temporally regularized iterative reconstruction algo-

rithm. The spatio-temporally regularized iterative reconstruction estimates not only

provides accurate field maps, but also field-map corrected images and the R∗

2 map.

Therefore, the spatio-temporally regularized iterative reconstruction can be used for

dynamic R∗

2 mapping for functional MRI experiments, where dynamic R∗

2 mapping

has a few advantages over the conventional T ∗

2 weighted BOLD imaging. It also can

be used as dynamic field-map corrected BOLD imaging method. In simulations, we

show that the method can improve the accuracy of the field map from the initial

guess of the field map. In functional experiments, we show evidence that the pro-

posed method can dynamically estimate and correct for the field map changes during

a functional study. Further improvement on the accuracy of the system model can

be achieved by the proposed 2D k-space trajectory measurement method. It is well

known that time-varying magnetic fields induce eddy currents, which can distort the

designed gradient waveforms. The proposed k-space trajectory measurement method

utilizes pencil excitation at several spatial locations, and it measures main field fluc-

tuations and crosstalk between two gradient channels. It requires reasonable scan

time, and does not require extra equipment such as surface coil or a point phantom.

A phantom experiment in a 3T scanner shows that even with the vendor-provided

eddy current correction, there is remaining uncorrected distortion in the gradient

waveforms.


