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ABSTRACT

ANALYSIS OF SIGNAL DETECTABILITY IN STATISTICALLY RECONSTRUCTED
TOMOGRAPHIC IMAGES

by

Anastasia Yendiki

Chair: Jeffrey A. Fessler

Imaging in general, and emission tomography in particular, has become an important

tool in many areas of medical diagnosis. Several common applications of emission to-

mography, such as the diagnosis of lung tumors or myocardial perfusion defects, involve

the detection of a spatially localized target signal in an image reconstructed from noisy

data. Such detection tasks are affected by various design parameters of the imaging sys-

tem and reconstruction algorithm. This thesis is concerned with optimizing regularized

image reconstruction methods for emission tomography with respect to the detectability

of a spatially localized target signal in the reconstructed images.

We first consider the task of detecting a statistically varying signal of known location on

a statistically varying background in a reconstructed tomographic image. We show that a

broad family of linear observer models can achieve exactly optimal detection performance

in this task if one chooses a suitable reconstruction method. This conclusion encompasses

several well-known models from the literature, including those with a frequency-selective

channel mechanism. Interestingly, the “optimal” linear reconstruction methods for many

x



of these observer models are unregularized and in some cases quite unconventional. In the

case of channelized models in particular, the observer’s ability to prewhiten determines the

extent to which its detection performance can benefit from regularization. That is, regular-

ization is more important for channelized observers that have incomplete knowledge of the

second-order statistics of the reconstructed images. Therefore, such models are more use-

ful for the purposes of designing regularized reconstruction methods that optimize lesion

detectability.

Subsequently, we investigate detection tasks where the location of the target signal is

unknown to the observer. This location uncertainty complicates the mathematical analysis

of observer performance significantly. We consider model observers whose decisions are

based on the maximum value of a linear local test statistic over all possible signal locations.

Several of our conclusions about the known-location task extend to this case. Previous ap-

proaches to this problem have used Monte Carlo simulations to evaluate the localization

performance of maximum-statistic observers. We propose an alternative approach, where

approximations of tail probabilities for the maximum of correlated Gaussian random fields

facilitate analytical evaluation of detection performance. We illustrate how these approx-

imations can be used to optimize the probability of detection (at low probabilities of false

alarm) for the observers of interest. Using our analyses, one can rank and optimize image

reconstruction methods with respect to unknown-location detectability without the need

for time-consuming Monte Carlo simulations.
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CHAPTER 1

Introduction

Objective evaluation of the quality of an image requires specifying the goal that the

image will be used to achieve. Typical uses of medical images can be categorized into

estimation, where the goal is to measure the value of some parameter of interest (e.g.,

radioactivity uptake within an organ), and classification, where the goal is to decide among

several possible states of the truth (e.g., the presence or absence of a lesion). By evaluating

images with respect to a task of interest, one can compare and rank the imaging systems

or reconstruction algorithms that produce these images.

In several types of medical diagnosis, the goal is to detect a small abnormality, such

as a lesion, in an image reconstructed from noisy tomographic data. Faced with choosing

among a plethora of image reconstruction methods, one would like to find which method

best facilitates this classification task. Furthermore, several reconstruction methods in-

volve parameters that control the variance-resolution trade-off in the reconstructed images.

Rather than resorting to trial-and-error, one would like to have a fast analytical method to

determine optimal or at least reasonable choices for these parameters. Our objective is

to optimize image reconstruction methods with respect to the performance of observers

attempting to detect small features in the reconstructed images. We are particularly inter-

ested in optimizing the regularization parameters involved in penalized-likelihood meth-

1
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ods.

We begin our treatment of this problem, in Chapter 2, with an overview of tomographic

imaging systems and the basic principles of reconstructing images from data acquired

by such systems. We also provide a mathematical formulation for the detection tasks

considered in this work and the observers that perform such tasks.

In a typical clinical setting, these tasks are performed by human observers. However,

not only are experiments with human observers time-consuming, but also the performance

of human observers does not lend itself to optimization through analytical tools. Thus, our

objective of optimizing reconstruction parameters analytically is better served by mathe-

matical observer models.

Statistical decision theory can be used to derive an ideal observer model that takes ad-

vantage of all available statistical information to achieve optimal performance in a specific

classification task. However, because the performance of this ideal observer is invariant to

any nonsingular data transformation, it is not useful for evaluating and ranking image re-

construction methods. Optimization of reconstruction methods with respect to detectabil-

ity must instead be performed for non-ideal observer models. Furthermore, researchers

have found that human observers themselves do not perform ideally in simple detection

tasks. As a result, various linear observer models that account for human suboptimality

have been proposed in the literature and their performance in such tasks has been tested

against that of humans with various degrees of success.

The performance of these suboptimal observer models is particularly amenable to anal-

ysis in the simple special case where the location of the signal to be detected is known

a priori. As a result, the analysis of detection performance in tomographically recon-

structed images has focused to a significant extent on such known-location tasks. These

are also the tasks that we use, in Chapter 3, as our starting point for gaining intuition into
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the problem. We show that a broad family of linear observer models can exactly achieve

optimal performance in the detection of a statistically varying signal of known location

on a statistically varying image background without the need for regularization. Using

frequency-domain approximations, we achieve fast evaluation of, and further insight into,

the detection performance of model observers in these tasks.

Since in clinical practice the potential location of a lesion is typically not known in

advance, efforts have been shifting lately to the analysis of the detection performance of

observer models for tasks that involve location uncertainty. We investigate these models in

Chapter 4. Due to the location uncertainty, the probability distribution of the decision vari-

ables associated with these models is difficult to obtain in closed form, thus complicating

the analysis significantly. As a result, previous approaches to evaluating the performance

of these observers have resorted to time-consuming simulations. We propose an alterna-

tive approach that can be used to evaluate unknown-location detection performance ana-

lytically. Our approach utilizes approximations for the tail distribution of the maximum of

correlated Gaussian random fields. Such approximations have been applied to the problem

of detecting activation in functional neuroimaging. We use them here to evaluate measures

of unknown-location lesion detectability in tomographically reconstructed images.

In Chapter 5 we summarize the results of our work on the optimization of tomographic

image reconstruction methods with respect to detection performance and we suggest some

future goals.

The main contributions of this work are:

• An analytical investigation of the reconstruction methods that lead to optimal perfor-

mance in known-location detection tasks for various commonly used observer mod-

els [41, 149, 151].

• An analytical investigation of the behavior of model observers when combined with
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practical regularized reconstruction methods. In particular, our analysis illustrates

the role of the observer’s knowledge of second-order image statistics, as it relates to

optimizing regularization with respect to detection performance.

• Derivation of frequency-domain approximations for detectability measures, using a

continuous-to-discrete model for the system. This approach leads to a refinement of

frequency-domain approximations and can be useful when the latter must be com-

puted locally at every pixel in the image.

• Fast, analytical methods for ranking and optimizing image reconstruction with re-

spect to observer performance in tasks that involve location uncertainty [148]. These

methods obviate the need for time-consuming simulations that are required by other

approaches to the unknown-location problem.

Finally, another part of our work focuses on system models for statistical tomographic

reconstruction and their effect on quantification tasks, particularly for single-photon emis-

sion computed tomography (SPECT) systems. We present some results from this work in

appendix A. Contributions in this area include:

• Design and implementation of system models for fully 3-D SPECT reconstruction,

including a new family of SPECT system models that assume the imaged object to

be composed of spherically symmetric volume elements.

• Investigation of the volume elements used by the system model and their effect on the

quantification of radiotracer uptake in images reconstructed from simulated phantom

data [147, 150].

• Investigation of the method for depth-dependent response compensation used by the

system model and its effect on the quantification of radiotracer uptake in images

reconstructed from real patient data [72–75].



CHAPTER 2

Background

The topic of task-based design of imaging systems and image processing algorithms is

of interest in any image formation application where a system or algorithm is needed to

produce images that will be used in a prespecified objective task. However, the motivation

for this investigation comes specifically from the problem of designing regularized recon-

struction methods for emission tomography, and therefore we begin with a brief review of

this problem. We first discuss the imaging systems used for emission tomography and the

nature of the data produced by such systems. We then describe some of the reconstruc-

tion methods that one can use to form images from this data. Finally, we present a simple

mathematical model for some of the classification tasks performed on such images, as well

as mathematical models for the observers that perform the tasks.

2.1 Tomographic Imaging Systems
2.1.1 Overview

Tomography1 is the imaging of transverse cross-sections of a three-dimensional ob-

ject [87]. In computed tomography (CT), an imaging system acquires a set of projections

through the three-dimensional object and an image reconstruction algorithm processes

1From the Greek τ óµoς , section, and γραφή, writing.
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these projections to form images of the transverse cross-sections.

In emission CT, the imaged quantity is the spatial distribution of radioactivity through-

out the object of interest. The source of this radioactivity is a substance injected into the

object. For clinical use, the radioactive substance usually consists of a radionuclide bound

to some molecule that can be absorbed by the part of the patient’s physiology that is to be

imaged. This substance is injected into the patient in a dosage small enough to avoid hav-

ing unwanted biochemical effects and is called a radiotracer. The detector counts photons

emitted along different directions by decaying atoms of the radionuclide.

Detectors in emission tomography systems typically consist of scintillating crystals

that are coupled to arrays of photo-multiplier tubes (PMTs). Commonly used scintillat-

ing materials include thallium-activated sodium iodide (NaI(Tl)) and bismuth germanate

(BGO). The γ-ray photons that are emitted by decaying atoms of the radiotracer within

the patient’s body hit the scintillating crystal on the detector. When the crystal absorbs

a γ-ray photon, it releases a burst of light photons onto the photocathodes of the PMTs.

In response to these light photons, the PMTs produce electrons in a manner that allows

the position of the scintillation event to be estimated. The pulses that are generated at the

anodes of the PMTs vary depending on how close the PMTs are to the location on the

detector where the γ-ray photon was absorbed. The electronics of the detector count the

pulses generated by these scintillation events and record their estimated locations. Thus

the measurements form a sort of histogram of the number of photons absorbed at different

locations on the surface of the detector.

Roughly speaking, the higher the radioactivity concentration at some region of the

body, the more the photons that will hit the region on the detector that it faces, and the

more the pulses that will be counted there. Thus the photon counts collected at the detec-

tor provide information about radiotracer uptake in different parts of the body. Radiotracer
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uptake can help distinguish between normal and diseased function, so emission tomogra-

phy can be used to acquire functional information about the patient’s body.

The development of emission tomography has provided safe and non-invasive diagnos-

tic capabilities for a variety of medical conditions where early and accurate diagnosis is

critical. Applications include detecting breast, lung or other tumors, diagnosing myocar-

dial wall movement defects, and imaging brain function in epilepsy or stroke patients [20].

Tomographic images are used to monitor the treatment of specific patients, as well as to

evaluate the effectiveness of new procedures and medications.

Emission tomography encompasses two families of imaging modalities, PET and SPECT.

We proceed with discussing the basic characteristics of the two.

2.1.2 Positron Emission Tomography

In positron emission tomography (PET), positron-emitting radionuclides are used. When

atoms of such a radionuclide decay, positrons are emitted. Each positron travels for a short

distance before being annihilated by colliding with an electron. The annihilation results

in the emission of two γ-ray photons in directions that form a 180o angle. The detector

forms a ring, with the patient lying in its interior. It comprises an array of scintillating

crystals, either larger continuous crystals (typically made of NaI), or small discrete crystal

blocks (typically made of BGO) [81]. A simplified diagram of a PET detector is shown in

Fig. 2.1(a).

The coincidence of two photons arriving simultaneously at two different positions on

the detector ring is an event of interest, recorded at the detector. Ideally, this coincidence

signifies that a positron annihilation occurred somewhere along the line of response (LOR),

i.e., the line segment defined by the positions where the two photons hit the detector.

The higher the radioactivity distribution within the body along a certain LOR, the more



8

the events recorded for this LOR at the detector. Specifically, the count of events for

each LOR can be viewed as a projection (integration) of the values of the radioactivity

distribution along that line, as shown in Fig. 2.3. These projections can subsequently be

used to reconstruct an image of the radionuclide distribution.

However, due to effects known as photon attenuation and scattering, departures from

this ideal situation often occur. That is, not every positron annihilation results in a coin-

cidence event recorded at the detector, and not every event recorded at the detector corre-

sponds to a true annihilation along the respective LOR.

On the one hand, a significant number of photons are absorbed as they travel through

their surrounding materials. As a result, the number of photons reaching the detector is

only a fraction of the number of photons emitted from within the body. This effect is called

attenuation and is an exponential function of the distance traveled and of the attenuation

coefficient of the surrounding materials. If attenuation is not accounted for, LORs through

highly attenuating materials, such as bone, will appear to generate less annihilation events

than they actually do.

As a secondary result of attenuation, it is possible that one of the two photons produced

by a positron annihilation is absorbed and only one stray photon reaches the detector. If

two such stray photons from two different positron annihilations happen to reach the detec-

tor simultaneously, this event, called a random coincidence, will be erroneously recorded

at the detector as if it were a true coincidence corresponding to a single annihilation.

On the other hand, some photons experience Compton scattering as they interact with

free or bound electrons of the materials they travel through. In its interaction with an

electron, the scattered photon loses part of its energy and its path is deflected by some

angle inversely related to the amount of energy lost. Scintillating detectors can distinguish

scattered photons based on their reduced energy but they have a limited energy resolution



9

 

Scintillating crystal
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Figure 2.1: Simplified diagrams of a PET and a SPECT system.

and therefore some scattered photons will still be counted. A scattered coincidence, al-

though it involves two photons generated from the same positron annihilation, results in

an erroneous LOR being recorded due to the deflection of the photon path.

2.1.3 Single-Photon Emission Computed Tomography

In single-photon emission computed tomography (SPECT), γ-emitting radionuclides

are used. When an atom of such a radionuclide decays, a single (usually) γ-ray photon is

emitted isotropically. The typical SPECT detector, known as an Anger camera, consists

of a single large NaI crystal and rotates around the patient [153]. The orbit of the rotating

detector can be arbitrary but in practice it usually is circular or elliptical. As the detector

rotates at different angles along this orbit, it collects counts of γ-ray photons emitted from

the patient’s body at each angle. Similarly to PET, these counts are projections through

the nuclide distribution inside the body and can be used to reconstruct an image of this

distribution. A simplified diagram of a SPECT system is shown in Fig. 2.1(b).

Photons are emitted isotropically by decaying nuclei throughout the body, some in the
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direction of the detector. Due to attenuation, similarly to PET, not all photons travelling

towards the SPECT detector will actually reach it. An important component of the SPECT

detector is a lead collimator that is mounted on the scintillating crystal, facing the patient.

Among the photons reaching the detector, those moving in appropriate directions will

travel down the openings of the lead collimator. The collimator openings are usually

parallel to each other, although geometries with convergent or divergent openings also

exist.

The purpose of the collimator is to achieve spatial localization of the photon emissions,

since in SPECT, with isotropically emitted single photons, it would otherwise be impos-

sible to get LOR information for scintillation events. Each opening of the collimator is

penetrated only by photons originating from a small range of angles around the direction

of the collimator bore. The narrower the bore, the better the LOR resolution but also

the smaller the number of photons that reach the scintillator and therefore the lower the

detector sensitivity.

An important complicating characteristic of SPECT systems is their shift variance. The

SPECT system response varies as a function of distance from the detector and as a result

not all areas of the imaged distribution contribute to the measurements in the same way.

Areas that are further away from the detector experience more blur than those that are

closer. This depth-dependent blurring is illustrated in Fig. 2.2. A photon entering at a

particular opening of the collimator could have originated in a greater range of locations

within the body if it originated at distance d2 than at distance d1 < d2. As a result,

areas of the object that are closer to the detector “see” a finer resolution than those further

away. The response of the system is thus characterized by a depth-dependent point-spread

function (PSF) whose FWHM increases linearly with distance.

Photons hitting on the septa of the collimator are ideally absorbed. In practice, al-
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Figure 2.2: Depth-dependent blurring in SPECT.

though lead greatly attenuates γ-rays, some photons will still penetrate the septa and end

up in adjacent openings, thus introducing another source of blur in the measurements. Fur-

thermore, similarly to PET, some photons will end up in the wrong collimator opening due

to scattering.

2.1.4 System Model

Let f be the object to be imaged and p a measurement of the object obtained through

an imaging system. We model the imaging system as a linear operator A, which we will

refer to as the system operator, mapping the object space into the measurement space2. We

assume that the object can be written as a function f : R
2 → R, and the measurement can

be written as a function p : R × [0, π] → R. In its most general form, the system operator

is defined by the superposition integral

(2.1) p = Af ⇐⇒ p(r, ϕ) =

∫ ∞

−∞

∫ ∞

−∞
a(r, ϕ;x, y) f(x, y) dx dy .

The operator A captures only the deterministic properties of the system, so p would be

the measurement obtained from f in the absence of random noise. The model in (2.1) is

2Emission tomography system models may be 3-D. However, we focus here on the 2-D case for simplicity and
because the observer models that we will deal with in subsequent sections act on 2-D reconstructed images.
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Figure 2.3: The Radon transform illustrated for a single projection angle.

broad enough to encompass various imaging systems, including the emission tomography

modalities described in the previous sections. We now elaborate on the nature of A for

PET and SPECT systems.

In emission tomography, the object f is the unknown radioactivity distribution and

the measurement p is a set of projections through the object at various angles. The ideal

mapping from object space to projection space (in the absence of attenuation and blurring)

is known as the Radon transform. It can be modeled as a linear operator P defined by

(2.2) p = Pf ⇐⇒ p(r, ϕ) =

∫ ∞

−∞

∫ ∞

−∞
δ(r − [x cosϕ+y sinϕ]) f(x, y) dx dy,

where δ(·) is the 1-D Dirac impulse. Here ϕ is the projection angle (the angle of the

LOR in PET or the detector’s rotation angle in SPECT) and r is the displacement in the

perpendicular direction. The Radon transform is illustrated in Fig. 2.3.

The Radon transform maps a single point in object space to a sinusoidal line in pro-

jection space, which is why a set of tomographic data is also called a sinogram. Fig. 2.4

shows an example of tomographic data. When the true object is the chest phantom shown
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(a) True object f

 

(b) Sinogram p

Figure 2.4: Example of an object and its sinogram as produced by a PET system model. The model accounts
for non-uniform attenuation in the object.

in Fig. 2.4(a), then the projections through this object, as they would be acquired by a PET

system in the absence of imaging noise, would look like Fig. 2.4(b).

The ideal Radon transform in (2.2) involves line integrals of the object. However, real

tomographic systems have a finite spatial resolution, which translates to blur introduced in

these integrals. When this blur and other effects of real systems, such photon attenuation,

are accounted for, the system model departs from (2.2). Let bϕ(r;x, y) be the system blur

function at position (x, y) within the object along a LOR of angle ϕ, given as a function

of the radial displacement r. Let also cϕ(x, y) be the attenuation factor experienced by

photons emitted at position (x, y) and traveling towards the detector along the direction of

ϕ. Then the tomographic system can be modeled as an operator P b,c such that

p = Pb,cf ⇐⇒

p(r, ϕ) =

∫ ∞

−∞

∫ ∞

−∞
bϕ(r − [x cosϕ+y sinϕ];x, y)cϕ(x, y) f(x, y) dx dy .(2.3)

In PET, the system blur is sometimes assumed shift-invariant, i.e., bϕ(r;x, y) = bϕ(r)
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∀x, y. Then (2.3) can be written as a convolution in the measurement domain. Further-

more, photon pairs that are emitted along the same LOR experience the same attenu-

ation factor in PET, regardless of where on this LOR they originated, i.e., cϕ(x, y) =

cϕ(x cosϕ+y sinϕ). Thus the attenuation factor in (2.3) can be factored out as a LOR-

dependent scaling cϕ(r). In this case the system operator A for PET can be written as

APET = BPETCPETP ,

where BPET and CPET are measurement-domain operators denoting convolution with

bϕ(r) and multiplication with cϕ(r) respectively. The above factorization does not hold

when blur due to depth-of-interaction effects is taken into account, as in [79, 112]. Then

the system blur becomes shift-variant and the more general formulation of (2.3) applies.

In SPECT, the attenuation factor experienced by a photon depends not only on the

LOR (r, ϕ) along which it travels, but also on the position (x, y) where the photon origi-

nated. Therefore the effects of attenuation cannot be factored out of the Radon transform.

Furthermore, the depth-dependent blur in SPECT systems is strongly dependent on the

position (x, y). Thus for SPECT system models only the general formulation applies:

ASPECT = Pb,c.

A tomographic system model can be more complex, accounting for the effects of scat-

ter, detector efficiency, etc. Note that although A is referred to as a “system” operator,

here it depends on properties of both the tomographic imaging system (e.g., geometry and

detector efficiency) and the imaged volume (e.g., attenuation and scatter).

Incorporating attenuation into the model of a PET or SPECT system requires knowl-

edge of how γ-rays are attenuated along each LOR through the patient. It is becoming

increasingly common to acquire this information by a transmission CT scan of the pa-

tient [71, 81]. In transmission tomography, an external x-ray source of known intensity is
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scanned around the patient. Measuring the intensity of the x-rays as they exit the patient’s

body from different angles can yield a map of the attenuation coefficient of the tissues

throughout the body. This map is then used to calculate the attenuation factors c(r, ϕ)

corresponding to each LOR.

Incorporating scatter into the model of a tomographic system requires knowledge of

the fraction of the measurement at each LOR that corresponds to scattered counts. There

are several approaches to estimating this fraction and incorporating it into the model [71,

81]. The most commonly used method involves acquiring separate count measurements

in nearby energy windows simultaneously with the main energy window. The ratio of

scattered counts in the main energy window is then estimated as a fraction of the counts in

the nearby energy windows. This is the basis for the popular triple energy window (TEW)

scatter correction method [102]. Somewhat similarly, the effect of random coincidences

in PET can be quantified by counting photons in a delayed time window, in addition to the

main time window used to count coincidence events.

Incorporating a depth-dependent response into the model of a SPECT system requires

knowledge of the PSFs of the system at different distances from the detector face. This

information can be obtained by imaging a “point source” of radioactivity at different dis-

tances from the detector [15, 93, 127]. Ignoring septal penetration, the PSFs of a SPECT

system with a parallel-hole collimator are usually modeled as Gaussian-shaped functions

whose FWHM increases linearly with distance [21]. For septal penetration modeling, re-

sponse functions with heavier tails are appropriate [73].

In all the above representations, the parameters x, y, r and ϕ were assumed to vary

over a continuum of values. In practice, however, tomographic systems can acquire only

a finite number of measurements and reconstruction algorithms can estimate only a finite

number of image intensity parameters. Thus discrete representations are also useful.
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In a discrete representation of the measurements, the detector collects nd photon counts,

which are lexicographically ordered in a vector y ∈ R
nd . In the 2-D case described above,

the angle ϕ takes a discrete set of values ϕj , j = 1, . . . , nϕ, corresponding to nϕ possible

LOR angles in PET or nϕ rotation angles along the detector orbit in SPECT. At each

angle, the detector collects photon counts at a finite number of radial positions, so r takes

a discrete set of values ri, i = 1, . . . , nb, resulting in a total of nd = nbnϕ recorded counts.

The conceptual detector unit responsible for collecting one of these nd counts is referred

to as a detector element or bin, although it does not necessarily correspond to a physical

detector element.

In a discrete representation of the object f , a set of basis functions vj(x, y), j =

1, . . . , np, is chosen and the imaged distribution is assumed to be well approximated by a

linear combination of these functions:

(2.4) f(x, y) ≈
np
∑

j=1

fjvj(x, y).

The expansion coefficients fj are then lexicographically ordered in a vector f ∈ R
np .

Typically the basis functions are spatially localized volume elements, arranged on a grid

over the imaged area. The usual choice is cubic volume elements, but other shapes have

been studied as well [82, 91, 138, 150].

For any of the system models discussed above, the problem at hand, in the absence of

random noise, would be to find the object f given the measurement p, where

(2.5) p = Af .

However, even for this hypothetical noiseless measurement, it is not trivial to solve (2.5)

for f . For a measurement p in discrete space and an object f in continuous space, the

problem is ill-posed. When adopting a discrete representation for both p and f , the system
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operator becomes a matrix A ∈ R
nd×np . The ij element of this matrix, given by

aij =

∫ ∞

−∞

∫ ∞

−∞
a(ri, ϕi;x, y)vj(x, y) dx dy, i = 1, . . . , nd, j = 1, . . . , np,

represents the probability that a photon emitted at the jth volume element will be recorded

at the ith detector element. Most of these probabilities are zero, resulting in a very sparse

matrix A. The nature of this matrix in emission tomography is such that, even if it is

full-rank, it usually is ill-conditioned, so inverting it is not trivial.

2.1.5 Measurement Model

The raw measurements acquired by a real tomographic imaging system are not related

deterministically to the true radioactivity distribution, as (2.5) would suggest. The in-

herent randomness in radiotracer distribution, decay time, and photon detection result in

randomness in the measurements, which can be treated as Poisson-distributed independent

random variables [111, 152].

More specifically, if Y is a random vector representing the acquired tomographic data,

then

(2.6) Y ∼ Poisson{Af + r},

where Poisson{µ} denotes a multivariate Poisson probability distribution with mean vec-

tor µ. The vector r ∈ R
nd contains the “background” counts (e.g., random coincidences

and/or scattered counts) collected at each detector element in lexicographic ordering. (Al-

though it is possible to account for scatter within the system model A [14, 103, 139], we

assume here that A models only unscattered events.)

Both A and r are considered known, following the discussion in the previous section.

The image reconstruction problem in emission tomography consists of estimating f given

the data y, where y is a realization of the random vector Y in (2.6).
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2.2 Tomographic Image Reconstruction
2.2.1 Overview

As previously explained, the tomographic data y are in the form of projections through

the true object f along different directions. This data cannot be used directly for the

purpose of medical diagnosis. It would be extremely challenging for a human observer to

reliably decide on the presence of a small anomaly and determine its exact position within

the imaged area by looking at the projection views. It would also be very challenging

to quantify radiotracer uptake within a region of interest in the object directly from the

projection view data. This creates the need for a reconstruction method, i.e., a mapping of

the projection data y to an estimated image f̂ .

The resolution of a particular imaging system is intrinsically limited by its various

physical characteristics. Nevertheless, the resolution of the reconstructed images can be

significantly poorer than this intrinsic resolution, as it is also affected by the reconstruction

method that is applied to the data. This effect is undesirable, since important details that

we seek to image, such as small lesions, may be missed if the resolution is not fine enough.

On the other hand, the reduction of noise in the reconstructed images is also important,

since noise artifacts may be mistaken for lesions. However, fine resolution and low noise

levels are competing demands and we can only accomplish a trade-off between them.

For a broad review of image reconstruction methods for emission tomography, see, for

example, [84]. In the following we list some common reconstruction methods, explaining

the tuning parameters through which each of them controls the noise-resolution trade-off.

We begin with backprojection, which, although not adequate as a reconstruction method

by itself, plays a role in most practical reconstruction methods.
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2.2.2 Backprojection

In the following, we use “′” to denote the adjoint of an operator or equivalently the

complex transpose of a matrix. For the generic linear operator A defined in (2.1), the

adjoint operator A′ is defined by

g = A′q ⇐⇒ g(x, y) =

∫ π

0

∫ ∞

−∞
a∗(r, ϕ;x, y) q(r, ϕ) dr dϕ .

For the Radon transform operator in (2.2), the operation Pf is a (forward) projection of

the true object f and the adjoint operation,

(2.7) g = P ′q ⇐⇒ g(x, y) =

∫ π

0

q(x cosϕ+y sinϕ, ϕ) dϕ,

is a backprojection of the sinogram q. The latter amounts to replicating each projection

onto image space along the direction of the respective projection angle and integrating the

result over all angles.

We also define here a “diagonal” weighting operator W , performing sinogram-domain

multiplication with some angle-dependent weights w(ϕ), by

(2.8) q = Wp ⇐⇒ q(r, ϕ) = w(ϕ) p(r, ϕ),

for some π-periodic angular-weighting function w(ϕ). We assume that w(ϕ) is real, in

which case the operator is self-adjoint, i.e., W ′ = W .

Although backprojection, as defined in (2.7), is a mapping from the sinogram domain

to the image domain, it is not appropriate as a reconstruction method because it results in

severe blurring. Using the definition of the Radon transform operator P from (2.2), one

can show that, for any weighting operator W defined as in (2.8), we have [37]

(2.9) P ′WPf =
w(ϕ+ π/2)

|r| ∗∗ f ,
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where r =
√

x2 + y2 and the symbol “∗∗” denotes 2-D convolution. That is, projecting

an object onto the sinogram domain and subsequently backprojecting it onto the image

domain, is equivalent to convolving the object with 1/|r|, a particularly heavy-tailed PSF.

2.2.3 Analytical Reconstruction

Analytical reconstruction methods for estimating f̂ from y rely on the ideal mathemat-

ical model for the projection data, ignoring its statistics.

If one disregards the fact that real data are discrete and assumes that A is a continuous-

to-continuous operator as in (2.1), then it is possible to invert A for some simple tomo-

graphic system models [99]. This is the premise of the popular filtered backprojection

(FBP) method, which relies on the property (2.9) of the Radon transform operator. The

1/|r| blur in a backprojected image can be removed by applying a cone filter on the image

or, equivalently due to the central-section theorem [87, p.117], by applying a ramp filter

on the projections before backprojecting.

Since the ramp filter would greatly amplify the noise present in real data, practical

implementations of FBP use an apodized ramp filter [26], essentially leaving some of the

blur in the image to trade off some of the noise. There are many choices for the apodization

window and its cut-off frequency is the parameter that controls the variance/resolution

trade-off in FBP-reconstructed images.

Incorporating a detailed system model into FBP is not straightforward, especially for

SPECT, since the ideal model used to derive (2.9) does not account for shift-variant ef-

fects. The exact inversion of the Radon transform has been extended to accommodate

non-uniform attenuation [100, 101] but not depth-dependent detector response. Numer-

ous variations of FBP exist that attempt to approximately model shift-variant effects.

They range from the the simple but popular Chang attenuation correction [25] to more
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sophisticated methods, compensating for both uniform attenuation and depth-dependent

PSFs [67, 123, 131].

Another family of analytical reconstruction methods, known as algebraic reconstruc-

tion techniques (ARTs), attempt to obtain f by solving the forward projection equa-

tion (2.5). Because of the size of the problem in typical tomographic applications, iter-

ative algorithms are used to find the solution [24]. Several of the strategies for controlling

the variance/resolution trade-off that are described in the following section, such as post-

filtering or regularization, can be used with ARTs as well.

The main advantage of analytical reconstruction methods over the statistical methods

described in the following section is that the former may be much faster. Also, their

variance and resolution properties, especially in the case of FBP, are easier to analyze and

control. However, analytical methods may suffer from higher bias due to their difficulty

in incorporating accurate system models and/or higher variance due to their disregard for

measurement statistics.

2.2.4 Statistical Reconstruction

In general, statistical reconstruction methods estimate f from y by maximizing an

objective function Ψ(f) of the form

Ψ(f) = D(y,Af) − βR(f)(2.10)

f̂ = arg max
f≥0

Ψ(f),(2.11)

where D(·, ·) and R(·) are referred to as the data-fit and regularization terms respectively

and β ≥ 0 is a regularization parameter that controls the relative weight of the two terms.

The non-negativity constraint f ≥ 0 is used in emission tomography, where f consists of

photon emission densities.

The specific choices for D(·, ·) and R(·) have a great impact on the quality of the re-
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constructed image f̂ . For common choices, a closed-form expression for the maximizer

in (2.11) either does not exist or is too expensive to compute directly due to the problem

size, hence the need for iterative algorithms. Assuming that (2.10) has a unique maxi-

mizer and that the algorithm iterates until the estimate f̂ converges to this maximizer, the

algorithm itself has no effect on the quality of f̂ .

The usual choice for the data-fit term D(·, ·) is the log of the conditional likelihood

pY |f (y|f) of the data y given the true object f , in which case (2.10) and (2.11) define a

penalized-likelihood reconstruction method. For emission tomography, the Poisson statis-

tical model in (2.6) yields the log-likelihood

D(y,Af) =

nd
∑

i=1

yi log([Af ]i + ri)−([Af ]i + ri),(2.12)

where terms that are independent of the true object f have been discarded. Other data-fit

terms have been proposed for situations where the data statistics have been altered due

to preprocessing. An example is the shifted-Poisson model for PET data that have been

corrected by subtracting the randoms [146]. Alternatively, the assumption of Gaussian

statistics leads to penalized weighted least-squares (PWLS) methods [33], which make

use of a data-fit term that is quadratic in the object f :

(2.13) D(y,Af) = −(y − Af)′W (y − Af),

for some measurement-domain weighting matrix W .

Setting β = 0 in (2.10) results in an unregularized reconstruction method, which maxi-

mizes the data-fit term alone. Due to the noise in emission data and the conditioning of the

problem, such methods yield unacceptably noisy images. Therefore some noise reduction

strategy is needed and the literature offers numerous alternatives to choose from.

With most iterative algorithms, the estimate becomes increasingly noisy after each iter-

ation [12]. Thus the simplest approach to noise reduction is to initialize the algorithm with
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a smooth image and to stop it at some early iteration, well before convergence [57, 133].

The number of iterations is then the parameter that controls the noise/resolution trade-

off. However, stopping the algorithm before convergence makes the quality of the recon-

structed image dependent on additional factors, namely the image used for initialization

and the algorithm itself. Several iterative algorithms have been proposed and they often

come with their own tuning parameters. For example, practical application of the popular

expectation maximization (EM) algorithm [118] in tomographic reconstruction has been

facilitated by the introduction of ordered subsets (OS) [63]. The OS idea consists of ac-

celerating an algorithm by processing only a subset of projection data at each iteration.

How these subsets are chosen affects the image that is reconstructed, if the algorithm is

not allowed to converge.

Alternatively, one can allow the unregularized algorithm to converge and achieve noise

reduction by post-filtering the noisy reconstructed image [16, 121] or even by filtering the

estimate after each iteration [65, 120]. In these strategies, it is the smoothing filter that

controls the variance/resolution trade-off. Other approaches control this trade-off through

some smoothness constraints on the class of permissible true objects, such as the method

of sieves [122, 134] or methods that substitute smooth volume elements for the traditional

cubic voxels [82, 91].

Finally, noise reduction and convergence acceleration can be achieved by the introduc-

tion of the regularization term R(·) in (2.10). This term is typically a roughness penalty,

favoring smooth images by penalizing the intensity differences between neighboring vol-

ume elements [46, 56, 78]. Then maximizing (2.10) with β > 0 corresponds to maximum

a posteriori (MAP) estimation with a smoothness prior and the regularization parameter

β can be used to adjust the variance/resolution trade-off in the reconstructed images. A

smaller β in (2.10) gives more weight to the data-fit term, resulting in a noisier image,
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(a) Small β (b) Large β

Figure 2.5: Examples of penalized-likelihood reconstruction from noisy data. The images have been pro-
duced with a small and a large value of the regularization parameter β.

while a larger β gives more weight to the penalty term, resulting in a smoother image.

Examples of reconstructions of noisy data using a penalized-likelihood algorithm with a

small and a large value of β are shown in Fig. 2.5(a) and Fig. 2.5(b) respectively.

Besides the value of β, the form of the penalty function also affects image quality

significantly and various choices exist here as well. Assuming a discrete representation

for the reconstructed image as in (2.4), a general form of a roughness penalty is

R(f) =
∑

k

wk ψ([Df ]k),

where the summation index k indicates the kth neighborhood of volume elements whose

intensity differences are to be penalized. The cost function ψ(t), also referred to as a

potential function, specifies the penalty enforced for an intensity difference equal to t. The

penalty weightswk provide the flexibility to choose a different amount of regularization for

each neighborhood, allowing local resolution control. The difference matrix D is itself a

matter of choice (e.g., [80]) but it is usually chosen to produce first-order finite differences
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of the form

[Df ]k = fj − fk,

for element j near element k. Typically, differences between each element and its nearest

neighbors (or maybe its second-nearest neighbors as well) are included [56].

Various alternatives have been proposed for the cost function ψ(t) [76, 78]. A usual

choice is the quadratic

(2.14) ψ(t) = t2/2 ⇐⇒ R(f) = f ′Rf ,

where R = 1
2
D′D. It is very simple to optimize but it penalizes large intensity differ-

ences excessively, resulting in blurred object edges. For this reason, edge-preserving cost

functions have been introduced, but these are more complicated to optimize and analyze.

Moreover, some of them involve additional tuning parameters that control the degree of

edge preservation. For example, the Huber penalty [62],

ψ(t) =











t2/2, |t| ≤ δ

δ|t| − t2, |t| > δ,

is quadratic only for small values of t, with a parameter δ controlling how small.

In addition to the form of the data-fit and regularization functionals in (2.10), yet an-

other design consideration that affects the quality of the reconstructed images is the ac-

curacy of the system model A. As typical iterative algorithms apply both the forward

projector A and the backprojector A′ once per iteration, the increased computation re-

quired by a more complicated model needs to be weighed against its impact on image

quality. For example, a simpler backprojector B 6= A′ is sometimes substituted for the

adjoint in the interest of speed, but the errors due to this mismatch may accumulate, re-

sulting in artifacts [155]. Appendix A compares how two different implementations of A

for 3-D SPECT affect reconstructed image quality.
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As illustrated by this brief review, there is a plethora of methods for image reconstruc-

tion from tomographic data and each method involves various parameters that affect the

quality of the reconstructed images. Thus one needs to establish a criterion for ranking

these methods and choosing optimal values for their tuning parameters. Preferably this

criterion should be related to some intuitive measure of image quality. The following sec-

tion lists some approaches in the literature, with a focus on criteria that have been used

to optimize the regularization parameters involved in penalized-likelihood reconstruction

methods.

2.2.5 Methods for Regularization Design

Several general-purpose strategies exist for choosing regularization parameters in in-

verse problem solutions that involve maximization of an objective function similar to (2.10).

One such strategy is the method of L-curves, which chooses the regularization parameter

to achieve a balance between the magnitudes of the data-fit and regularization terms [17,

55]. This strategy has undesirable issues of non-convergence as the noise level goes to

zero [135]. Other strategies choose the amount of regularization that minimizes some type

of mean squared error (MSE) [66]. Yet others use a Bayesian framework, introducing a

prior distribution on the regularization parameter [60, 115, 156].

General-purpose methods such as the ones listed above do not relate the choice of reg-

ularization to any intuitive measure of image quality that is of interest in medical imaging.

As data-fit and regularization terms typically used in image reconstruction have unrelated

units, balancing their magnitudes via the L-curve method is not reasonable, nor does it

have any obvious, desirable effect on reconstructed image quality. How specific choices

of MSE-related metrics or priors on the regularization parameter affect image quality is

not obvious, either.
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Several methods for regularization design that are more specifically tailored to image

reconstruction exist in the literature. One approach is choosing the regularizer that leads to

some desirable property, such as uniform and isotropic resolution [40, 95, 124] or optimal

contrast-to-noise ratio [108], in the reconstructed images. Another approach is choosing

the regularizer that leads to optimal performance in a task to be performed on the recon-

structed images. Tasks of interest in a clinical setting can be split into the broad categories

of estimation and classification. As far as estimation (quantification) performance is con-

cerned, one could choose the regularizer so as to approach the uniform Cramér-Rao lower

bound on the variance of biased estimators [59].

This thesis is concerned with optimizing image reconstruction in general, and the regu-

larizer in penalized-likelihood methods in particular, with respect to classification perfor-

mance. The following section describes this problem in more detail and presents related

previous work.

2.3 Detection of Signals in Reconstructed Images
2.3.1 Overview

Classification is the task of assigning an object or event to one of a set of prespecified

classes. This is performed by observing one or more features of the object or event and

deciding which class it belongs to through the evaluation of those features [31]. Medical

diagnosis tasks can often be described as classification problems, e.g., classifying a patient

as normal or diseased, classifying a condition as mild, moderate or acute, etc. Our focus

here is the case where the features used for the purpose of such a classification are extracted

from a set of tomographic data.

We refer to the entity performing the classification as the observer. In a clinical set-

ting that would usually be a human, although it may also be a computer program or a
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combination of the two. However, our ultimate goal in studying observers here is a fast,

automated means for adjusting the parameters of image reconstruction methods prior to

the reconstruction so as to improve performance in classification tasks. Therefore, we will

eventually turn our attention to mathematical observer models, which are simpler to study

analytically. We will be interested especially in certain models that, according to the liter-

ature, have been found to perform in a manner correlated to human observer performance.

2.3.2 Classification Tasks

Let f be the true object being imaged (or its approximation in R
np). To express our un-

certainty about the object, we allow it to be a realization of a random field. In emission to-

mography this uncertainty stems from the variability in patient physiology and radiotracer

uptake. Assume that f belongs to exactly one of the nC object classesCi, i = 0, . . . , nC−1

and Hi is the hypothesis that f belongs to class Ci. We consider an observer that has to

determine which one of the hypotheses Hi, i = 0, . . . , nC − 1 is true.

In the applications that interest us, the true object f cannot be observed directly, so

the decision must be based on the observed data y or, more generally, on a feature vector

v = v(y) extracted from the data. This task would be easy to perform if there were

a deterministic, one-to-one mapping of the object f to the feature vector v. However,

the imaging process that produces y is characterized by loss of information (e.g., from a

continuous-space object to discrete-space data) and randomness. Furthermore, the process

through which the feature vector v is extracted from the data y may introduce additional

randomness and loss of information.

For a specific instance of the true object f , the variability in the data y due to noise

inherent in the imaging process is expressed by the conditional distribution p(y|f), which

in emission tomography is Poisson as given in (2.6). For a specific instance of the data y,
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the variability in the feature vector v due to uncertainty in the observer’s feature extraction

process is discussed later in this section.

An observer is characterized by a decision rule, i.e., a mapping of the feature vector v to

a hypothesisHi. Observers that have previous knowledge about any aspects (deterministic

or random) of the imaging and feature extraction process can perform the classification

more effectively by incorporating such knowledge in their decision rule. The decision

rules we focus on are deterministic, that is the observer makes the same decision every

time it is provided with the same v. Furthermore, the decision must specify exactly one

of the Hi’s to be true. We use Di to denote the event that the observer decides that Hi is

true. Classification then corresponds to a partition of the feature vector space into non-

overlapping regions, each corresponding to one of the Hi’s [31, 44].

Under these assumptions, the observer’s decision rule can be represented as a com-

parison of a set of test statistics ti, each of which is a function of the feature vector v,

ti = ti(v), i = 0, . . . , nC − 1. The functionals ti(·) are called discriminant functions. The

decision rule is then:

(2.15) Decide Hi if ti(v) > tj(v) ∀j 6= i.

In the special case of a binary-hypothesis task (nC = 2), this reduces to comparing a single

test statistic t = t(v) to some threshold τ , where τ is independent of the data y:

(2.16) Decide H1 if t(v) > τ , otherwise decide H0.

In the following we focus on detection tasks, where the observer must determine whether

a certain detail of interest is present or not in the true object. Following convention, we

use the term signal (or target signal) to refer to this detail of interest, which may or may

not be present in f , and not to the entire object f . We use the term background to refer

to what remains of the object in the absence of the signal. In emission tomography, the
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background would be a normal radionuclide distribution within the patient and a signal of

interest could be, for instance, a lesion or a myocardial perfusion defect. Such signals of

interest are identified in an emission scan as regions of either higher or lower radionuclide

concentration than the normal region of the organ that is imaged. In this case, an additive

model for the signal and background is an intuitive one [11, §8.4.5] and we adopt this

model hereafter.

In addition to detecting the presence of the signal, it may also be of interest to assign

it to one of a set of signal classes. In its most general form, the detection task is thus a

decision between hypotheses of the form:

H0 : f = fb

Hi : f = fb + fs(i), i = 1, . . . , nC − 1.

The usual formulation encountered in the literature assumes that the target signal is spa-

tially localized and assigns a separate signal class to each of the nL = nC − 1 different

locations within the object where the signal may be centered. In this case, the task is signal

detection and localization. In the most general formulation, the background fb is treated as

a random field. The signal fs(i) at each different location may also be treated as a random

field, to express uncertainty about its profile in addition to its location.

In the more realistic scenario where there are multiple candidate locations for the sig-

nal, the observer’s decision rule has the general form (2.15). Although this formulation

assumes a finite set of possible locations, it can be extended to consider a continuum of

locations over R
2 (e.g., [68]). Then the task consists of determining whether the signal is

absent or present and, in the latter case, estimating its location r ∈ R
2. In the following we

will focus on observers that consider finite sets of candidate locations, since the observer

models that are usually studied in the literature fall under this category.
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In the special case where there is only one possible signal location, or where identify-

ing the signal location is not of interest, the task becomes a decision between the signal

absent hypothesis H0 and the signal present hypothesis H1. Then the binary-hypothesis

rule (2.16) applies.

Although in realistic diagnostic tasks the location of the signal of interest is rarely

known a priori, known-location tasks are commonly used as a starting point in the liter-

ature, as they are simpler to analyze. Two further simplifications of the known-location

task are considered often enough in the literature to have gotten their own names. These

are the signal-known-exactly (SKE) tasks, where the signal profile fs is deterministic, and

the background-known-exactly (BKE) tasks, where the background fb is deterministic.

Human observers have difficulty distinguishing details, such as small lesions, in a sino-

gram; reconstructed images are better suited for this purpose. To reflect common imaging

practice, we focus hereafter on the case where the observer extracts its feature vector

from a reconstructed image f̂ = f̂(y), rather than directly from the data y. That is,

v = v(f̂(y)), where the mapping f̂(y) is determined by the reconstruction method. Our

goal is to find reconstruction methods that allow observers to achieve optimal performance

in a specified detection task. We now discuss how this performance is quantified.

2.3.3 Figures of Merit

In binary-hypothesis tasks, one can evaluate the detection performance of an observer

by tracing its receiver operating characteristic (ROC) curve. This is a plot of the proba-

bility of detection or probability of a true positive, i.e., deciding that the signal is present

when it is actually present:

(2.17) PD , P{D1|H1},
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versus the probability of false alarm or probability of a false positive, i.e., deciding that

the signal is present when it is actually absent:

(2.18) PFA , P{D1|H0} .

For a decision rule of the form (2.16), the trade-off between these two probabilities is

plotted by varying the decision threshold τ . A common figure of merit for observers is the

area under the curve (AUC)3.

Another common figure of merit for binary-hypothesis tasks is the signal-to-noise ratio

(SNR), defined as

(2.19) SNR ,
E[t|H1]−E[t|H0]

√

1
2
Var{t|H1}+ 1

2
Var{t|H0}

,

where E[·|Hi] and Var{·|Hi} denote the expected value and variance respectively of some

random variable under hypothesis Hi. In the case where the test statistic t is Gaussian-

distributed under each hypothesis, the SNR is especially useful, since it is monotonically

related to the AUC [11, p.819]:

(2.20) AUC =
1

2

[

1 + erf

(

SNR

2

)]

,

where erf(·) is the error function. By inverting (2.20), one can also define the detectability

index dA:

dA , 2erf−1(2(AUC) − 1).

Obviously, SNR = dA when t is Gaussian-distributed under each hypothesis.

For binary-hypothesis tasks, tracing the ROC curve is enough to quantify the observer’s

performance. For detection tasks where the signal location is not known a priori, however,

3Alternatively, one may consider the area under the error-exponent curve, which is easier to analyze when the error
exponent is available in closed form [54].
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one may be interested not only in detection performance, but also in localization perfor-

mance. Then the probability of correct localization becomes important. The concept of

localization is often extended to include a tolerance region, so that the signal location de-

termined by the observer is considered correct if it lies within a certain distance from the

true signal location. In this case, the probability of correct localization is defined as

(2.21) PCL , P{∪nL
`=1 ∪j∈N`

(Dj ∩H`)| ∪nL
`=1 H`} =

∑nL

`=1

∑

j∈N`
P{Dj|H`}P{H`}

∑nL

`=1 P{H`}
,

where N` is the set of locations that lie within the tolerance region around location `.

When there is no tolerance, this set reduces to N` = {`} , ` = 1, . . . , nL.

Localization performance can be quantified by tracing the localization ROC (LROC)

curve, a plot of the probability of correct localization in (2.21) versus the probability of

false alarm, defined in the unknown-location case as

(2.22) PFA , P{∪nL
`=1D`|H0} =

nL
∑

`=1

P{D`|H0} .

If the tolerance region for correct localization is expanded to include all possible lo-

cations, i.e., N` = {1, . . . , nL} , ` = 1, . . . , nL, then the task becomes detection without

localization and (2.21) reduces to the detection probability

(2.23) PD , P{∪nL
`=1D`| ∪nL

`=1 H`} .

The detection and false-alarm probabilities (2.23) and (2.22) respectively define a ROC

curve for the unknown-location case, much like (2.17) and (2.18) do for the known-

location case.

2.3.4 Image Reconstruction and Human Observer Performance

Humans are a natural starting point as observers of interest, since usually they are the

ones performing clinical tasks in practice. The decision rule, that is, the explicit form of
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the discriminant t(·) that human observers use in signal detection tasks is not known. As a

result, the SNR of human observers could not be calculated explicitly from (2.19), even if

the statistics of f and y were known. The ROC curve must therefore be traced empirically

to evaluate human performance [27, 86, 92].

To trace a ROC curve, the observer is presented with a series of realizations of the

reconstructed image where the signal of interest may or may not be present. The ob-

server is asked to rate her or his confidence in the signal’s presence in each image. These

confidence ratings represent different values of the detection threshold and thus different

operating points on the ROC curve. The true-positive and false-positive probabilities at

each of these points are estimated from repeated trials of the experiment and used to fit the

observer’s ROC curve. If the observer is also asked to determine the location of the signal

in each image, the probabilities of correct localization can similarly be estimated and used

to fit a LROC curve.

Various experimental studies have shown that the choice of reconstruction method can

indeed affect the performance of human observers in detection/localization tasks. For ex-

ample, Tourassi et al. investigated how human observers performed in detecting a lesion in

images reconstructed from simulated SPECT data [128]. They found that EM reconstruc-

tion led to better performance than FBP reconstruction. LaCroix and Tsui found that EM

with non-uniform attenuation correction led to improved detectability of myocardial perfu-

sion defects in SPECT images, when compared to FBP without attenuation correction [77].

Wells et al. found that, compared to FBP, OSEM extended the range of lesion contrasts

over which human observers perform accurate lesion detection and localization in tho-

rax SPECT reconstructed images [141]. Gifford et al. found that compensating for the

depth-dependent system response in image reconstruction for thorax SPECT significantly

improved the localization performance of human observers [50]. They also showed how
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this performance varied per OSEM iteration. Later, Narayanan et al. found that compen-

sating for non-uniform attenuation, scatter, and distance-dependent response in OSEM-

reconstructed myocardial SPECT images led to better defect detection performance than

compensating for only a subset of these factors [98].

Experiments like these offer valuable insight into the effect that various reconstruction

parameters have on the performance of human observers. However, they are too time-

consuming to perform for many values of a parameter of interest or to repeat every time

that some aspect of the imaging process changes. Thus experiments with human observers

are not practical as a tool to optimize reconstruction methods. This has led investigators to

seek mathematical observer models whose performance in tasks of interest approximates

the performance of humans and allows analytical treatment.

2.3.5 The Ideal Observer

As mentioned above, observers can achieve improved performance by incorporating

previous knowledge about the imaging and feature extraction process in their decision

rule. Human observers presumably acquire such knowledge through training, i.e., looking

at several images that have been generated by the same process. Mathematical observers

attempt to model this knowledge in the form of various statistics of the feature vector

included in their discriminant function. An important aspect of modeling human observers

is determining the appropriate degree of knowledge about these statistics to include in the

model’s discriminant.

The ideal observer for performing a binary-hypothesis task given the data y has full

knowledge of the statistics of y. It has been shown [132, p.26] that the discriminant

function of this observer is the well-known likelihood ratio:

(2.24) t◦(y) =
p(y|H1)

p(y|H0)
,
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where p(·|Hi) denotes the probability distribution of a random vector under hypothesisHi.

The optimal threshold is equal to

(2.25) τ =
(c10 − c00)p1

(c01 − c11)p0

,

where pi is the a priori probability of the hypothesisHi, and cij is the Bayes cost associated

with deciding on Hi when the truth is Hj . This observer is ideal in the sense that it

minimizes an average Bayes cost (e.g., average probability of error). Furthermore, by the

Neyman-Pearson lemma, the discriminant (2.24) maximizes the true-positive probability

for any given false-positive probability, thus maximizing the AUC.

Conducting the test defined by (2.24) and (2.25) requires knowledge of the statistics of

both the object variability and the imaging noise, as well as the a priori probabilities of the

hypotheses, referred to in medical diagnosis as disease prevalence. In practice, this much

information is never known, so the ideal observer serves as a standard against which the

detection performance of other observers can be compared.

The performance of the ideal observer is invariant to nonsingular transformations of the

data y [44, §10.1]. However, using a feature vector v = v(y) instead of the data y will

lead to a decrease in the ideal detection performance if the mapping v(y) discards useful

information in the data, i.e., if v(y) is not a sufficient statistic for discriminating between

H0 and H1. Thus the performance of the ideal discriminant for observation in the feature

vector space,

(2.26) t◦(y) =
p(v(y)|H1)

p(v(y)|H0)
,

will generally be inferior to that of (2.24).

As previously mentioned, observers that use the tomographic data y as their feature

vector would not be appropriate as models of humans. The observer models described in

the following sections extract their feature vector from the reconstructed image. Some of



37

them use the reconstructed image itself as the feature vector, i.e., v = f̂(y), and it may be

safe to assume that a sensible reconstruction method would not discard useful information

in the data. Other models, however, include a non-invertible feature extraction step in an

attempt to capture the suboptimality of human observers.

2.3.6 Linear Observers

In contrast to the performance of an ideal observer that cannot be improved by any data

transformation, the performance of human observers can benefit from appropriate recon-

struction methods, as discussed in section 2.3.4. The ideal discriminants for all but the

simplest detection tasks are nonlinear, but those discriminants have been known to over-

estimate the performance of human observers. It has been argued that linear discriminants

are more appropriate to model the suboptimality of human observers in known-location

tasks. Thus, although the specific mechanisms through which each model attempts to

capture this suboptimality may vary, most of the popular observer models that have been

proposed for this purpose are linear [10, 13, 22, 23, 32, 85, 96].

A linear discriminant can be defined as the inner product of some template w, which

is a real vector in the same space as f̂ , with f̂ :

(2.27) t(y) = w′f̂(y).

Strategies have been proposed for estimating the template w directly from human observer

data [3,4]. Furthermore, explicit mathematical forms, involving the statistics of the recon-

structed images, have been proposed for the template w and their performance has been

compared to that of humans. In the following, we list the linear observer models that are

most commonly encountered in the objective image quality literature, e.g., [7–9].
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The Hotelling Observer

The Hotelling observer (HO) [61] assumes knowledge of the first- and second-order

statistics of the reconstructed image f̂ under both the signal absent and signal present

hypotheses. This results in the ideal linear discriminant, that is the one that achieves

maximum SNR:

(2.28) wHO , K
†
f̂

(

E
[

f̂ |H1

]

−E
[

f̂ |H0

] )

,

where

Kf̂ , 1
2
Cov

{

f̂ |H1

}

+ 1
2
Cov

{

f̂ |H0

}

is the unconditional covariance matrix of f̂ , known as the intra-class scatter matrix in the

pattern classification literature, the superscript “†” denotes a pseudo-inverse, and E[·|Hi]

and Cov{·|Hi} denote the mean vector and covariance matrix respectively of some random

vector under hypothesis Hi.

The HO is the ideal observer in SKE tasks where the data have a Gaussian distribution

under both hypotheses and it is the ideal linear observer otherwise. No linear transforma-

tion of the data can improve the SNR of this ideal linear observer, just like no transforma-

tion of the data can improve the performance of the ideal observer. The performance of

the Hotelling observer was found to be well-correlated with human observer performance

in a simple detection task in [42].

The Prewhitening Observer

The prewhitening (PW) observer assumes knowledge of the second-order statistics of

the reconstructed image f̂ under the signal absent, but not under the signal present hy-

pothesis. The corresponding template is

(2.29) wPW , Cov
{

f̂ |H0

}† (

E
[

f̂ |H1

]

−E
[

f̂ |H0

] )

.
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In SKE tasks the covariance of the reconstructed image f̂ is equal under both hypotheses.

In such tasks, if the reconstruction method is linear, then the optimal linear discriminant

(HO) reduces to the PW discriminant.

The Non-Prewhitening Observer

The non-prewhitening (NPW) observer assumes knowledge only of the first-order statis-

tics of the reconstructed image f̂ under both the signal absent and signal present hypothe-

ses. The corresponding template is

(2.30) wNPW , E
[

f̂ |H1

]

−E
[

f̂ |H0

]

.

In SKE tasks, if the reconstruction method is linear and the background and imaging noise

present in the reconstructed image f̂ are additive, white, and independent, then the optimal

linear discriminant (HO) reduces to the NPW discriminant. However, rarely is the noise

in reconstructed images white in practice.

The Region-of-Interest Observer

The region-of-interest (ROI) observer assumes knowledge only of the first-order statis-

tics of the target signal fs. The corresponding template is that of a simple matched filter:

(2.31) wROI , E[fs|H1] .

If the reconstruction method is linear and chosen so that the reconstructed image f̂ is an

unbiased estimate of the true object f , then the NPW discriminant reduces to the ROI dis-

criminant. However, due to the smoothing mechanisms of practical reconstruction meth-

ods, rarely is f̂ unbiased.

2.3.7 Channelized Linear Observers

Channelized observer models include a set of frequency-selective channels in an at-

tempt either to construct an efficient basis for the approximation of the ideal linear ob-
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server [45], or to model the frequency selectivity that is believed to characterize human

visual perception [96]. We are interested primarily in the latter type of channel, since sub-

optimal observers are the ones used for the purpose of image reconstruction optimization.

However, the analysis in the following chapters applies to either channel flavor.

Conceptually, channelized observers first pass the reconstructed image f̂ through a set

of M bandpass filters. In known location tasks, these observers form a new feature vector

ĉ ∈ C
M from the values of the filter outputs at the location of the target signal center,

potentially with the addition of some noise:

(2.32) ĉ(y) = C′f̂(y) + εint,

where C = [C1, . . . ,CM ] consists of M operators. The mth of these operators applies

the impulse response of the mth bandpass filter and samples the output at the center of

the target signal. Typically this filtering step is not invertible and it greatly reduces the

dimensionality of the detection problem (e.g., M = 4 in [52]). The internal noise vector

εint models inherent uncertainty in the observer’s decisions. A generic channelized linear

observer forms its test statistic tch by applying a template w ∈ C
M to the output of the

filter bank:

(2.33) tch(y) = w′ĉ(y).

The Channelized Hotelling Observer

The channelized Hotelling observer (CHO), introduced by Myers and Barrett [96], has

been found to be particularly successful in predicting human observer performance in

known-location tasks. It applies the optimal linear discriminant with respect to the output

ĉ of the M -channel filter bank. This corresponds to the template

(2.34) wCHO , Π
†
ĉ

(

E[ĉ|H1]−E[ĉ|H0]
)

,
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where

Πĉ , 1
2
Cov{ĉ|H1}+ 1

2
Cov{ĉ|H0}

is the unconditional covariance matrix of ĉ.

The Channelized Non-Prewhitening Observer

The channelized non-prewhitening (CNPW) observer applies the NPW template with

respect to the output ĉ of the filter bank:

(2.35) wCNPW , E[ĉ|H1]−E[ĉ|H0] .

A special case is the introduction of a single “eye filter”, proposed to model the frequency

response of the human visual system, to the NPW observer [85]. This model has been

superseded in the literature by models using multiple bandpass filters.

Channel Profiles

For tasks involving the detection of circularly symmetric signals, typically the chan-

nel responses are also modeled as circularly symmetric. Channels with various passband

profiles, including square or difference-of-Gaussians, have been proposed in the litera-

ture to model the frequency selectivity of human observers. As an example, Fig. 2.6

shows profiles of the frequency responses of three channel sets used with the CHO model

in [1]. These are the square (SQR), sparse difference-of-Gaussians (S-DOG), and dense

difference-of-Gaussians (D-DOG) channel sets. Gabor functions have also been proposed

as channel profiles [29, 88]. For tasks involving the detection of signals that are not cir-

cularly symmetric, channels with spatial orientations, such as the ones proposed in [64],

may be more appropriate.
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Figure 2.6: Profiles of channel frequency responses for three examples of channel sets. The square (SQR),
sparse difference-of-Gaussians (S-DOG), and dense difference-of-Gaussians (D-DOG) channels
shown here have been investigated with the CHO model in [1].

2.3.8 Model Observers for Unknown-Location Tasks

For tasks where there are multiple candidate locations for the target signal, it can be

shown [68] that the ideal discriminant is the following modified generalized likelihood

ratio:

(2.36) tmax◦
(v(y)) , max

`=1,...,nL

∑

j∈N`
p(v(y)|Hj)pj

p(v(y)|H0)
.

The ideal strategy for choosing the most suspicious location `◦ and deciding whether the

signal is present or absent is

`◦(v(y)) = arg max
`=1,...,nL

∑

j∈N`
p(v(y)|Hj)pj

p(v(y)|H0)

Decide H`◦(v(y)) if tmax◦
(v(y)) > τ , otherwise decide H0,

for some data-independent threshold τ . This strategy is ideal in the sense that it maximizes

the probability of correct localization for any given false-positive probability, thus maxi-

mizing the area under the LROC curve. It also minimizes the average Bayes cost, for some

constraints on the costs allocated to different types of erroneous decisions. In [68], this

result is also generalized for a continuum of locations, where the sum in (2.36) is replaced

by an integral.
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If the a priori probabilities of all candidate signal locations, p`, ` = 1, . . . , nL, are

equal and there is no localization tolerance, then (2.36) reduces to the usual generalized

likelihood ratio known from detection theory (with the location ` as a nuisance parameter).

In the binary-hypothesis case where nL = 1, the ideal discriminant in (2.36) becomes

equivalent (to within a scaling factor) to the likelihood ratio in (2.26).

In general, the observer models used in the literature for unknown-location tasks com-

pute some scalar local test statistic t` = t`(v(y)) for each of the candidate locations and

compare the maximum test statistic,

(2.37) tmax , max
`=1,...,nL

t`,

to some threshold. However, unlike the ideal local test statistic in (2.36), the test statistics

that have been used to model the suboptimality of human observers are linear, i.e.,

(2.38) t` = w′
`v(y),

for some local template w`, which is a real vector in the same space as the feature vector

v. The local test statistics are typically based on the channelized linear observer models

described in previous paragraphs. The maximum CHO (MaCHO) uses a local template

w` that follows (2.34), whereas the maximum CNPW (MaCNPW) observer uses a local

template w` that follows (2.35).

2.3.9 Correlation with Human Observers

There is an extensive literature comparing the performance of the observer models

above to that of human observers in some simple detection tasks, especially tasks where

the location of the target signal is known a priori. We review here some representative

findings.
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Known Signal Location

Rolland and Barrett found good correlation between the performance of the CHO and

human observers for the task of detecting signals of known location in images with statisti-

cally varying “lumpy backgrounds” [113]. Wollenweber et al. compared human observers

to CHO models with radially symmetric or oriented channels in the detection of myocar-

dial perfusion defects in SPECT images. They found good correlation between human and

CHO performance [142]. Gifford et al. found good correlation in how the CHO and hu-

man observers performed in SKE/BKE lesion detection in simulated SPECT images as the

scatter compensation strategy in the reconstruction algorithm was varied [48]. Abbey and

Barrett compared the effect of various parameters of the imaging process (including the

amount of post-smoothing) on the detection performance of several observer models [1].

They found the CHO to best capture the effect of these parameters on human observer per-

formance. Sankaran et al. also found good correlation in the effect of the cut-off frequency

of a post-filter on the performance of the CHO and human observers detecting myocardial

perfusion defects in SPECT images [114].

Unknown Signal Location

Research on observer models for tasks where the location of the signal is unknown is

less extensive. Gifford et al. compared the performance of some observer models with a

maximum test statistic to the performance of human observers in a task involving location

variability in simulated thorax SPECT images [51]. They found the MaCNPW model to

better capture human performance than the MaCHO model as the level of scatter in the

images increased. Based on these results, the authors suggested that the prewhitening

ability of humans may degrade when location uncertainty is introduced in the detection

task. The authors also found the MaCNPW model to be reasonably correlated with humans
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in a study involving PET images in various display formats [47]. The MaCHO, however,

was not investigated in that study.

Three-Dimensional Observer Models

The observer templates described above are applied to single slices of the reconstructed

object. Wells et al. found that results on human observer performance in detection tasks

that involve single image slices may not generalize to tasks where multiple slices are avail-

able [140]. There have been efforts to construct observer models that base their decisions

on multiple slices of the reconstructed object. However, research on the correlation of

these models to humans is still in preliminary stages. Gifford et al. recently investigated

a multislice CHO and multislice CNPW model in cardiac SPECT [49]. They found that

both modeled human performance on OSEM-reconstructed images equally well, but the

multislice CHO modeled human performance on FBP-reconstructed images better than

the multislice CNPW.

2.3.10 Image Reconstruction and Model Observer Performance

As previously mentioned, the performance of human observers does not lend itself

to analytical optimization. Mathematical observer models that are well-correlated with

humans are thus an attractive alternative for gaining insight on how image reconstruction

affects classification performance. There have been increasing efforts in recent years to

analyze the effect of reconstruction methods on the performance of some of the model

observers described in previous paragraphs.

One approach to optimizing reconstruction parameters with respect to model observer

performance is to perform simulations and evaluate performance in a manner analogous

to experiments with human observers. For example, Myers and Hanson used the detection

performance of the NPW observer in an SKE task, computed through simulations, to com-
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pare ART and maximum-entropy reconstruction and optimize their parameters [97]. Wag-

ner et al. suggested more generally that knowledge of the task that is to be performed on

the reconstructed images is a form of prior knowledge that should be included in Bayesian

image reconstruction [137]. They similarly examined optimizing a regularized maximum-

entropy method.

To avoid time-consuming simulations, efforts have shifted towards deriving analytical

expressions for the detection performance of observer models when combined with some

popular reconstruction methods. These expressions can subsequently be used to optimize

the reconstruction parameters. Qi and Huesman used such expressions to show that MAP

outperforms FBP in terms of SKE/BKE detection for the NPW and PW observer mod-

els [106]. The analysis of known-location tasks has been extended to include channelized

observers [145] and statistically varying backgrounds and signal profiles [104].

Deriving analytical expressions for the performance of model observers for unknown-

location tasks is more challenging. Swensson analyzed this performance under some spe-

cial condition of statistical independence [126]. Khurd and Gindi used Swensson’s re-

sults to analyze the LROC performance of the MaCHO for images reconstructed with

penalized-likelihood methods for the case where the local test statistics at different candi-

date locations are independent [69]. However, the assumption of statistical independence

generally does not hold when the candidate locations are near each other. For this more

general situation, analytical approximations of the moments of the local test statistics have

been combined with simulations to trace the LROC [70, 107].

In the following chapters we will illustrate which reconstruction methods optimize the

performance of various model observers for known-location tasks, drawing on our presen-

tation in [41,149,151]. We will also derive analytical approximations for the performance

of model observers for unknown-location tasks, expanding on our presentation in [148].



CHAPTER 3

Known Signal Location

The assumption that there is only one possible location where the target signal may

appear is fairly removed from realistic clinical tasks. However, due to their simplicity,

known-location tasks have received considerable attention in the literature and we will use

them as our starting point as well. We begin by establishing our notation for the objects,

measurements, and reconstruction methods that we will be considering. We then analyze

the detection performance of the observer models for known-location tasks that were de-

scribed in chapter 2, with the objective of finding reconstruction methods that allow each

of these observers to achieve optimal performance in such tasks. We show that, for sev-

eral observer models, the optimal reconstruction method need not include regularization.

However, in the case of channelized observers, which are the ones of greatest practical

interest, the importance of regularization increases as the observer’s prewhitening capabil-

ities deteriorate.

3.1 The Detection Task
3.1.1 Overview

As discussed in section 2.3.2, we adopt an additive model for the background fb and

the target signal fs. The known-location detection task is a decision between the following

47
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pair of hypotheses:

H0 : f = fb (signal absent)

H1 : f = fb + fs (signal present).(3.1)

The background fb and the signal fs are random and statistically independent. We denote

their expectations by f̄b and f̄s respectively. We denote their covariances by Kb and Ks

respectively. We assume that the signal is concentrated in space around a given location.

Thus the only source of randomness in the signal is its profile and not its location.

In the general case where both background and signal are random, Kb and Ks are

positive definite. In a SKE task we have Ks = 0 and thus a deterministic signal fs = f̄s.

In a BKE task we have Kb = 0 and thus a deterministic background fb = f̄b. In all cases,

we assume that f̄b, f̄s, Kb and Ks are known.

3.1.2 Measurement Model

In the following, all moments are averages over both y and f , except when they are

accompanied by the subscript f , in which case they are averages only over f , or when

they are conditional averages over y for a given instance of f , in which case the usual ·|f

notation is used. We assume knowledge of the following statistics of the measurement y:

ȳ , E[y|H1]−E[y|H0](3.2)

Πi , Cov{y|Hi}, i = 0, 1.(3.3)

In emission tomography, where the measurement y is a noisy sinogram, its elements

are independent and Poisson-distributed conditional on the object f following (2.6). Then

the conditional mean and covariance of y are, respectively,

E[y|f ] = Af + r

Cov{y|f} = diag{Af + r},
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where we use the notation diag{a} for a diagonal matrix with diagonal elements equal to

the elements of vector a. Both the linear system operator A and the randoms vector r are

assumed to be deterministic and known. The moments of the sinogram y under hypothesis

Hi, i = 0, 1 are then given by

E[y|Hi] = Ef

[

E[y|f ]
∣

∣Hi

]

= A Ef [f |Hi] +r(3.4)

Cov{y|Hi} = Ef

[

Cov{y|f}
∣

∣Hi

]

+ Covf

{

E[y|f ]
∣

∣Hi

}

= diag{A Ef [f |Hi] +r}+A Covf{f |Hi}A′.(3.5)

Under the assumption that fb and fs are independent, using (3.4) and (3.5) for each of the

two hypotheses in (3.1) and substituting in (3.2) and (3.3) yields, for emission tomography,

ȳ = Af̄s(3.6)

Π0 = diag
{

Af̄b + r
}

+AKbA
′(3.7)

Π1 = Π0 + diag
{

Af̄s

}

+AKsA
′.(3.8)

3.1.3 Linear Reconstruction Methods

We focus here on linear reconstruction methods, as several common tomographic re-

construction techniques either are or can be approximated as linear. We denote a generic

linear reconstructor by an operator Z . The reconstructed image is then given by

(3.9) f̂(y) = Zy.

We may view the reconstruction f̂ either as a vector in a Hilbert space, in which case Z is

a general linear mapping from R
nd to that Hilbert space, or as a discrete representation in

R
np , in which case Z is a matrix in R

np×nd . Combining the linear reconstruction method

in (3.9) with the data moments from (3.2) and (3.3) yields the following expressions for
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the moments of the reconstructed image:

E
[

f̂ |H1

]

−E
[

f̂ |H0

]

= Z ȳ(3.10)

Cov
{

f̂ |Hi

}

= ZΠiZ
′, i = 0, 1.(3.11)

An example of a well-known family of reconstruction methods that can be approxi-

mated as linear is the penalized-likelihood family, which was discussed in section 2.2.4.

In general, linearity is a good approximation for reconstructors of that family except maybe

when the non-negativity constraint is enforced [35]. Here we assume that the target signal

appears on a background that is sufficiently high to render the non-negativity constraint

inactive around the signal location, so these reconstructors can be considered linear near

the signal.

Consider, for instance, the PWLS reconstructor, which uses the quadratic data-fit term

in (2.13). When the regularization term is also quadratic, as in (2.14), we have a quadrat-

ically PWLS (QPWLS) reconstructor. We will assume hereafter that the regularization

parameter β has been absorbed within the regularization term R(f), i.e., the estimate is

obtained by maximizing

(3.12) f̂(y) = arg max
f≥0

[D(y,Af) −R(f)].

If the non-negativity constraint is ignored, one can show that (3.12) with data-fit term (2.13)

and regularization term (2.14) is equivalent to taking f̂(y) = (A′WA + R)−1A′Wy.

Thus QPWLS corresponds to the linear reconstructor

(3.13) Z = (A′WA + R)−1A′W .

For R = 0, we get the unregularized WLS reconstructor, which simply maximizes the

data-fit term (2.13).
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We consider observers that decide between hypotheses H0 and H1 based on a feature

vector v extracted from the reconstructed image f̂ and a decision rule that compares some

scalar test statistic

(3.14) t = t(v(f̂)) = t(v(Zy))

to a threshold as in (2.16). The specific form of the discriminant function depends on the

observer model considered. Our goal is to optimize the reconstructor Z with respect to the

performance of various observer models of interest in the detection of fs. In the remainder

of this chapter we revisit the observer models for known-location tasks that we listed in

section 2.3 and examine the choice of Z that maximizes detection performance for each

of these models.

3.2 Ideal Observer

The ideal discriminant is given by the likelihood ratio in (2.26) or, equivalently, by any

monotonic function, such as the logarithm, of the likelihood ratio. In general, the ideal

discriminant is nonlinear in the feature vector v. For example, if the feature vector is

assumed to be Gaussian-distributed (which is a reasonable approximation in some cases,

as discussed in the following section), the log-likelihood ratio is

t◦(v) , log
p(v|H1)

p(v|H0)

=
1

2
v′

(

Cov{v|H0}†−Cov{v|H1}†
)

v

+
(

Cov{v|H1}† E[v|H1]−Cov{v|H0}† E[v|H0]
)′

v,(3.15)

where terms that are independent of the feature vector v have been discarded. The ideal

discriminant in (3.15) is quadratic in v and thus not Gaussian-distributed itself. (The

exception to this is the SKE case, when the observation covariance is equal under both hy-
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potheses and the quadratic term in (3.15) vanishes.) Therefore, one would have to optimize

the AUC of the ideal test statistic directly rather than work with the SNR.

However, as discussed in section 2.3.5, the performance of the ideal observer is invari-

ant to any nonsingular data transformation. For this reason, the ideal observer is generally

not used to evaluate image reconstruction methods, and linear observer models are instead

used in the literature for this purpose.

3.3 Linear Observers
3.3.1 Overview

We first consider a generic linear observer that uses as its feature vector an image f̂

produced by a linear reconstruction method. Combining the linear discriminant in (2.27)

with the reconstruction moments from (3.10) and (3.11) yields the following expressions

for the moments of t = t(y):

E[t|H1]−E[t|H0] = w′Z ȳ(3.16)

Var{t|Hi} = w′ZΠiZ
′w, i = 0, 1.(3.17)

Hereafter, we assume that the test statistic t is Gaussian-distributed and focus on max-

imizing the SNR, in which case the AUC is also maximized. For a linear observer w and

a linear reconstructor Z , the test statistic t is a weighted sum of the elements of the mea-

surement vector y, so usually t can be approximated as Gaussian-distributed by the central

limit theorem.

Furthermore, the probability distribution of an image f̂ reconstructed from Poisson

data y through a penalized-likelihood method of the form (3.12) can be approximated as

Gaussian [109]. This is an additional argument for considering t to be Gaussian-distributed

when it is the product of a linear observer w applied on an image f̂ reconstructed by a

penalized-likelihood algorithm.
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Substituting the moment expressions (3.16) and (3.17) into (2.19) yields the SNR of

the generic linear observer in (2.27):

(3.18) SNR2
lin =

(w′Z ȳ)2

w′ZΠ̌Z ′w
=

w′Z(ȳ ȳ′)Z ′w

w′ZΠ̌Z ′w
,

where

(3.19) Π̌ ,
1

2
Π1 +

1

2
Π0

is the unconditional covariance of the data. The left-hand side of the SNR expression (3.18)

has the form of a generalized Rayleigh quotient. This form is maximized with respect to

Z ′w when (e.g., see [31, p.120])

(3.20) Z ′w ∝ Π̌
−1 ȳ .

When the observer template w and the reconstructor Z satisfy the condition (3.20), the

observer at hand achieves the maximum SNR that is attainable with any combination of a

linear observer and linear reconstruction method.

Substituting the optimality condition (3.20) into the SNR expression (3.18) yields:

(3.21) SNR2
lin ≤ ȳ′

Π̌
−1 ȳ , SNR2

lin◦
.

The upper bound on the right-hand side of (3.21) is the maximum SNR attainable by any

linear observer and linear reconstructor in the detection task at hand.

For emission tomography, substituting (3.7) and (3.8) into (3.19) yields

(3.22) Π̌ = Π + AKfA
′,

where

Π , diag
{

A(f̄b + 1
2
f̄s) + r

}

is the imaging noise covariance for the unconditional mean object and

Kf , Kb + 1
2
Ks
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is the unconditional covariance of the object. Since Π, Kb and Ks are positive definite, so

is Π̌ in (3.22), thus the ratio in (3.18) is well-defined provided Z ′w is nonzero.

Substituting (3.6) and (3.22) into (3.21) yields the optimal SNR for the detection task

at hand in emission tomography:

(3.23) SNR2
lin◦

= f̄ ′
sF̌ f̄s,

where we define

F̌ , A′
Π̌

−1A = A′(Π + AKfA
′)−1A(3.24)

= (I + FKf )
−1F = F(I + KfF)−1,(3.25)

where I is the identity operator, and F , A′
Π

−1A. From (3.24) we derive (3.25) using

the “push-through” identity A(I+BA)−1 = (I+AB)−1A [58]. The operators F̌ and F

have a form analogous to that of the Fisher information matrix [132, p.80] for estimation

problems that involve a linear system and additive Gaussian noise. In the SKE/BKE case,

we have F̌ = F .

A simple combination that satisfies the optimality condition (3.20) is Z = I (which

is not a reconstruction method) and w = Π̌
−1 ȳ, which corresponds to the Hotelling ob-

server (2.28) for detection in the raw measurement domain rather than the reconstruction

domain. However, even when we restrict attention to observers that are applied to recon-

structed images, usually there are still many ways to satisfy (3.20), as the analysis that

follows indicates.

3.3.2 Fisher Observers and Reconstructors

As shown in more detail below, several of the mathematical observers that have been

proposed in the literature can achieve the optimal SNR when paired with simple recon-

structors that correspond to some power of the Fisher information operator F̌ applied to
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a backprojection of the data. For lack of a better term we refer to this family of recon-

struction methods as Fisher reconstructors and we allow them to include a regularization

component:

(3.26) Zq , H(q)A′
Π̌

−1 = (F̌ + R)(q)A′
Π̌

−1

for some q ∈ R and H , F̌ +R for some regularization operator R. We use the notation

H(q) ,











Hq, q ≥ 0

(H†)−q, q < 0.

where “†” denotes a pseudo-inverse1. Typically the regularizer R is chosen so that H

is nonsingular. The reason we allow H to be singular in the analysis that follows is to

accommodate the unregularized case R = 0, since F̌ itself may be singular.

The estimated image produced by the Fisher reconstructor (3.26) is

f̂ = Zqy = H(q)A′
Π̌

−1y = H(q)A′(Π + AKfA
′)−1y,

which is a kind of weighted backprojection with a (perhaps somewhat unusual) postfilter.

For q < 0, this postfilter is something like a regularized deconvolver. For q = −1 in

particular, the Fisher reconstructor yields

(3.27) f̂ = H†A′
Π̌

−1y,

so it is equivalent to the QPWLS estimator from (3.13) with W = Π̌
−1.

Interestingly, for any Fisher reconstructor, even an unregularized one, there is a cor-

responding linear observer that achieves optimal detection performance. We refer to this

observer family as Fisher observers:

(3.28) wp , H(p)f̄s

1We follow Definition 6.2.1 of the pseudo-inverse in [53]. An immediate result of this definition is that for non-
singular matrices the pseudo-inverse is the same as the inverse (Theorem 6.2.13 in [53].) In this notation, we have
H(−1)

= H†
= H−1 whenever H is nonsingular.
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Figure 3.1: Profiles through the center of (normalized) Fisher observer templates wp for p = 0, 0.5, 1. Note
that w0 = f̄s.

for some p ∈ R. For a reconstructor of the family (3.26) and an observer of the fam-

ily (3.28) we have

(3.29) Z ′
qwp = Π̌

−1AH(q)H(p)f̄s.

By comparing (3.29) with (3.20) for ȳ = Af̄s we see that the choice p = −q leads to

the optimal SNR, i.e., the observer w−q achieves optimal SNR when applied to images

produced by the reconstructor Z q. This is true even for R = 0 and singular F̌ , as we can

show by using the fact that

(3.30) B(B′B)(q)(B′B)(−q) = B

for any B, which we obtain by singular value decomposition of B. Substituting B =

Π̌
−1/2A in (3.30) yields the desired result. Fig. 3.1 shows template profiles for some of

the observers in (3.28). The profile shape for p = 0.5 especially is reminiscent of those

estimated from human observers (e.g., see [4]).

Fisher reconstructors with R = 0 appear to be largely devoid of regularization2. How-

2For R = 0 and q > −1, one could construe the Fisher reconstructor as being marginally regularized since it entails
somewhat “less deconvolution” than the unregularized WLS reconstructor. However, this type of “regularization” does
not improve the condition number in the case of singular F̌ , and it is unlike most regularization methods described in
the literature.
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ever, even for these reconstructors, there are corresponding observers that can achieve

optimal performance in the detection task considered here. As shown in the following sec-

tions, some well-known observers from the literature fall within this category. This means

that, if the reconstructed images are meant to be interpreted by these observers, regular-

ization is not essential in the reconstruction process, at least for the simple detection task

at hand.

3.3.3 Hotelling Observer

Substituting the moments of f̂ from (3.10) and (3.11) into the HO template from (2.28)

yields

(3.31) wHO = (ZΠ̌Z ′)†Z ȳ

and thus

(3.32) Z ′wHO = Z ′(ZΠ̌Z ′)†Z ȳ = Π̌
−1/2P

Π̌1/2Z ′(Π̌−1/2 ȳ),

where P
Π̌1/2Z ′(·) denotes the orthogonal projection of a vector onto R

Π̌1/2Z ′ , the range

space of Π̌
1/2Z ′. By comparing (3.32) with (3.20) we find that the HO achieves optimal

SNR for any Z that satisfies Π̌
−1/2 ȳ ∈ R

Π̌1/2Z ′ or, equivalently,

(3.33) Π̌
−1 ȳ ∈ RZ ′ .

There are a multitude of choices of Z that satisfy the mild condition in (3.33). For

example, any Zq of the Fisher reconstructor family (3.26) satisfies (3.33), as long as ȳ is

in the range space of A (e.g., ȳ = A f̄s). This is true even for a Zq with R = 0 and

singular F̌ , following an argument similar to the previous section.

Thus the HO achieves the ideal SNR for any Fisher reconstructor, regularized or not.

This result is consistent with the fact that linear transformations of the data do not affect
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the performance of the optimal linear observer [44, §10.2] (except when the transformation

operator does not have a right inverse, in which case performance degrades). Note that for

ȳ = Af̄s, R = 0 and q 6= 0 the HO template in (3.31) becomes wHO = F̌
(−q)

f̄s, which

is the Fisher observer template in (3.28) with p = −q and the optimality of Z q for this

observer follows by the previous section.

3.3.4 Prewhitening Observer

Substituting the moments of f̂ from (3.10) and (3.11) into the PW template from (2.29)

yields

wPW = (ZΠ0Z
′)†Z ȳ

and thus

(3.34) Z ′wPW = Z ′(ZΠ0Z
′)†Z ȳ = Π

−1/2
0 P

Π
1/2
0 Z ′(Π

−1/2
0 ȳ).

By comparing (3.34) with (3.20) we find that the PW observer achieves optimal SNR for

any Z that satisfies

P
Π

1/2
0 Z ′(Π

−1/2
0 ȳ) ∝ Π

1/2
0 Π̌

−1 ȳ,

which in turn implies that Π
−1/2
0 ȳ−cΠ1/2

0 Π̌
−1 ȳ must be orthogonal to R

Π
1/2
0 Z ′ for any

constant c. This finally leads to the requirement that

Z ȳ ∝ ZΠ0Π̌
−1 ȳ,

i.e., that the sinograms ȳ and Π0Π̌
−1 ȳ yield the same reconstructed image but for a scaling

constant. Thus, in general there is no linear reconstructor Z that leads to optimal SNR for

the PW observer.

An exception to this is the SKE case, where Π̌ = Π0 and the PW observer is the same

as the HO, so it can achieve optimal SNR for infinitely many choices of Z . The minimal

dependence of the SNR on Z for the HO is consistent with the observation of Qi et al.
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that performance of the PW observer in the SKE task is independent of smoothing method

in the MAP case [106].

3.3.5 Non-Prewhitening Observer

Substituting the moments of f̂ from (3.10) into the NPW template from (2.30) yields

(3.35) wNPW = Z ȳ

and thus by (3.20) the NPW observer achieves optimal SNR for any Z that satisfies

(3.36) Z ′Z ȳ ∝ Π̌
−1 ȳ .

For a Zq of the Fisher reconstructor family (3.26) and ȳ = Af̄s, we have

Z ′Z ȳ = Π̌
−1AH(2q)F̌ f̄s,

so the optimal SNR is achieved when R = 0 and q = −1/2. This corresponds to the

somewhat unusual Fisher reconstructor

(3.37) Z = F̌
(−1/2)

A′
Π̌

−1.

Whether there are other solutions that satisfy (3.36) is an open problem. (There is also

the choice of Z = Π̌
−1/2, which is not a reconstruction method. It is equivalent to the

Hotelling observer for sinogram-based detection.) Note that for the reconstructor (3.37)

the NPW template in (3.35) becomes wNPW = F̌
1/2

f̄s, which is the Fisher observer

template in (3.28) with p = 1/2.

The reconstructor in (3.37) yields the estimated image

(3.38) f̂ = F̌
(−1/2)

A′
Π̌

−1y = F̌
1/2

(F̌
†
A′

Π̌
−1y),

which is the unregularized WLS estimate, given in (3.27) for R = 0, followed by the

unusual shift-variant post-filter F̌
1/2. This estimator is impractical for two reasons. Firstly,
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even if A happens to have full rank, F̌ is usually very ill-conditioned, so computing

the WLS solution (3.27) will require a multitude of iterations for any practical iterative

algorithm. Secondly, the shift-variant post-filter F̌
1/2 would be computationally intensive

to implement for typical problem sizes.

3.3.6 Region-of-Interest Observer

From (2.31) the template of the ROI observer is given by

wROI = f̄s.

Then by (3.20) the ROI observer achieves optimal SNR for any Z that satisfies

Z ′f̄s ∝ Π̌
−1 ȳ .

Since the ROI template corresponds to the Fisher observer in (3.28) with p = 0, the

optimal SNR for ȳ = Af̄s is achieved by the Fisher reconstructor with q = 0, i.e.,

(3.39) Z = A′
Π̌

−1.

Curiously, in this case

f̂ = A′
Π̌

−1y.

This is a very blurry estimate of f , being simply unfiltered backprojection. Yet for the

ROI observer it is optimal, and no amount of deconvolution will improve the SNR for

this detection task, which is an indication that the task is too simple. The optimality of

this blurry estimate is consistent with the demonstration in Qi et al. of the ROI observer

(for a penalized-likelihood reconstructor with R = βI) approaching the PW observer’s

performance as β → ∞ [106].

Alternatively to (2.31), the ROI template may be defined as containing 1’s wherever f̄s

is non-zero and 0’s everywhere else. In this case, the optimal Z would be the backprojector
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Observer q R Best estimator Interpretation
Hotelling R � 0 (F̌ + R)(q)A′

Π̌
−1y Any Fisher reconstructor (e.g., WLS)

NPW −1/2 0 F̌
(−1/2)

A
′
Π̌

−1y Partly deconvolved backprojection
ROI 0 - A

′
Π̌

−1y Backprojection

Table 3.1: Known-location observer models and the corresponding optimal Fisher reconstructors. These
reconstructors allow the respective observers to achieve the optimal SNR in known-location de-
tection tasks.

in (3.39) followed by a diagonal operator that weighs the reconstructed image by the shape

of f̄s, i.e., Z = diag
{

f̄s

}

A′
Π̌

−1. This weighting does not improve the resolution of the

backprojection, so for either definition of the ROI template the conclusion remains that

optimal performance is achieved with a very blurry estimator.

3.3.7 Summary

For three of the specific observer models considered above, at least one reconstructor

of the Fisher family (3.26) was found to achieve the highest SNR possible for linear ob-

servers. Table 3.1 summarizes these findings, which show that the linear reconstructors

Z that yield optimal detection performance for the HO, NPW, and ROI models need not

include any form of regularization. This is true even if the system operator A is a matrix

with less than full column rank. We conclude on theoretical grounds that regularization is

not absolutely essential for the HO, NPW, and ROI observer models in the task of detecting

a statistically varying signal of known location on a statistically varying background.

The optimality of blurry backprojections with respect to detection performance for

the HO, NPW, and ROI models implies that spatial resolution is not important for these

known-location tasks. This is consistent with the findings of Wagner et al., who attempted

to optimize imaging systems with respect to performance in such a task, only to find that

a pinhole of very large size would be optimal [136]. Although Wagner et al. considered a

SKE/BKE task, our analysis above shows that spatial resolution does not play an important

role even in the presence of signal and background variability.
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Furthermore, there is a strong dependence of the optimal reconstruction method on

the specific observer model considered. This implies that there is no universally optimal

reconstruction method, even for the simple detection task considered here. As discussed in

chapter 2, the apparent premise of human-observer studies in the literature is that humans

do not perform as well as the ideal observer. Therefore, the fact that there exist “simple”

reconstruction methods that allow the HO, NPW, and ROI observer models to achieve the

ideal linear-detection SNR (which is also the overall ideal SNR for SKE tasks) suggests

that these observer models, the tasks, or both are somehow inappropriate. We proceed with

analyzing the effect of regularization on the performance of channelized observer models,

which are known to correlate well with human observers for known-location tasks.

3.4 Channelized Linear Observers
3.4.1 Overview

We now consider linear observers that extract their feature vector from the recon-

structed image through a noisy, dimension-reducing operation, as in (2.32). Following

convention, we assume that the internal noise vector εint is zero-mean Gaussian, with

some covariance matrix Πint.

For a linear reconstruction method Z , combining the reconstruction moments from (3.10)

and (3.11) with the channelized linear discriminant in (2.33) yields the following expres-

sions for the moments of tch:

E[tch|H1]−E[tch|H0] = w′C′Z ȳ(3.40)

Var{tch|Hi} = w′C′ZΠiZ
′Cw + w′

Πintw, i = 0, 1.(3.41)

Combining expressions (3.40) and (3.41) with (2.19) yields the SNR of the channelized



63

observer:

(3.42) SNR2
ch =

(w′C′Z ȳ)2

w′C′ZΠ̌Z ′Cw + w′Πintw
.

We would like to find a reconstructor Z that optimizes the SNR in (3.42). However, if

Πint 6= 0 is independent of Z , then a Z of infinitely large norm would be optimal. Thus

one would need some constraint on Z to optimize the SNR in its most general form (3.42),

but it is unclear what constraints would be suitable.

A special case occurs if we assume that the covariance of the internal noise in the chan-

nels is proportional to the covariance of C ′f̂ due to imaging noise and object variability.

Specifically, we assume

(3.43) Πint = cintC
′Z ′

Π̌ZC

for some constant of proportionality cint, which includes the special case of no internal

noise for cint = 0. The model (3.43) is similar to the one proposed in [1], except that (3.43)

does not presume independence of the internal noise in individual channels. Under the

assumption (3.43) the SNR of the channelized linear observer in (3.42) becomes

(3.44) SNR2
ch =

1

1 + cint

(w′C′Z ȳ)2

w′C′ZΠ̌Z ′Cw
≤ 1

1 + cint

ȳ′
Π̌

−1 ȳ =
SNR2

lin◦

1 + cint

.

The SNR upper bound in (3.44) is achieved for any Z that satisfies

(3.45) Z ′Cw ∝ Π̌
−1 ȳ,

similarly to the non-channelized version in (3.18) and (3.20).

3.4.2 Channelized Hotelling Observer

Combining the moments of f̂ from (3.10) and (3.11) with the channelized feature vec-

tor from (2.32) and substituting into the CHO template from (2.34) yields

(3.46) wCHO = (C′ZΠ̌Z ′C + Πint)
†C′Z ȳ .
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(The filters involved in C typically correspond to distinct frequency bands. If this is the

case, then the covariance Πĉ can be assumed to be nonsingular even when Πint = 0, so

its pseudo-inverse is the same as its inverse. Nevertheless, we use a pseudo-inverse in

the interest of generality.) By substituting the CHO template from (3.46) into the SNR

expression (3.42), we find this observer’s SNR:

(3.47) SNR2
CHO = ȳ′ Z ′C(C′ZΠ̌Z ′C + Πint)

†C′Z ȳ .

In the special case of the internal noise model (3.43) we have

(3.48) Z ′CwCHO ∝ Z ′C(C′ZΠ̌Z ′C)†C′Z ȳ = Π̌
−1/2P

Π̌1/2Z ′C(Π̌−1/2 ȳ).

By comparing (3.48) to the optimality condition (3.45), we find that the SNR upper bound

in (3.44) is achieved when Z satisfies Π̌
−1/2 ȳ ∈ R

Π̌1/2Z ′C or, equivalently,

(3.49) Π̌
−1 ȳ ∈ RZ ′C,

which is similar to (3.33). To find a Z that satisfies (3.49), consider a reconstructor of the

form

(3.50) Z = WC(C′WC)−1G′A′
Π̌

−1,

where W is any image-domain weighting operator and G is a mapping from C
M to object

space. For the Z in (3.50), we have Z ′C = Π̌
−1AG, so the optimality condition (3.49) is

satisfied if

(3.51) ȳ ∈ RAG.

As long as G can be chosen to satisfy (3.51), the unregularized reconstructor Z given

in (3.50) allows the CHO to achieve the optimal SNR. For emission tomography, where

ȳ = Af̄s, there is always a way to choose G to satisfy (3.51); choosing G so that one of

its “columns” is proportional to f̄s is the most obvious way.
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The rather unconventional family of reconstructors in (3.50), although ensuring optimal

SNR for the CHO under the internal noise model (3.43), does not produce what we usually

consider to be reconstructed images. In essence, the HO template for detection in the raw

measurement domain (w = Π̌
−1 ȳ) is hidden in one of the rows of such a reconstructor.

Thus it is of interest to know whether reconstructors that are more conventional than (3.50)

can be combined with the CHO to achieve SNR values close to the optimal and, if so,

whether these reconstructors must include regularization. As shown below, such insight

can be gained by using approximations to the SNR expression in (3.47) that are based

on local Fourier-domain analysis. Such approximations also facilitate analysis of internal

noise models other than (3.43). In the following, we first provide a brief review of local

Fourier-domain approximations and we then use them to analyze the SNR of the CHO for

one unregularized and one regularized reconstructor example.

3.4.3 Local Fourier Analysis of Detection Performance

For the purposes of the Fourier analysis that follows, we will assume to have a discrete

representation of the object3 f ∈ R
np . Let U be a discrete Fourier operator, mapping

an object in R
np to some vector in C

np known as the spectrum of the object. The Fourier

operator U is linear and, due to the shift property of the Fourier transform, it can be defined

through its action on an object e0 that consists of an impulse centered at the origin:

(3.52) Ue0 =
1

√
np

1,

where 1 is the vector of np ones. Without loss of generality, we choose the origin of

the Fourier transform to coincide with the location where the signal f̄s is centered. (The

1/
√
np factor results simply from using the orthonormal form of the DFT.)

3Nevertheless, it is possible to generalize this analysis for an infinite-dimensional object space.
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Let λ ∈ C
np be the local frequency response of the Fisher information operator F at

the origin, defined by

(3.53) λ ,
√
np UFe0.

In general, the operator F is shift-variant, so its behavior when applied to an object other

the impulse e0 cannot be fully defined through λ. However, if the operator F is applied

to an object that is contained within a small spatial extent around the origin, we can ap-

proximate the behavior of F using λ, i.e., we can approximate F as shift-invariant within

the spatial extent of the object. The closer the object comes to resembling an impulse, the

greater the accuracy of this approximation. Thus we approximate the operator F within a

small spatial extent around the origin as

F ≈ U−1
Λ U ,(3.54)

where Λ , diag{λ}. The elements of λ, λk, k = 1, . . . , np, contain the local frequency

response of F . Since F is symmetric nonnegative definite, we force the λk’s to be real

and nonnegative by discarding imaginary parts and setting negatives to zero. Locally shift-

invariant approximations of F have proven to be useful and accurate in several cases [19,

36, 38, 40, 106, 108, 109, 124].

We also use a locally shift-invariant approximation of the object covariance:

(3.55) Kf ≈ U−1N U ,

where N , diag{νk, k = 1, . . . , np}. The νk’s contain the local frequency response of

Kf (i.e., the local power spectrum of the object f ) around the location of f̄s. Although

it may be reasonable to approximate the background fb as locally stationary within the

spatial extent of the signal, approximating the signal fs itself as locally stationary would

be less reasonable. That is, the approximation in (3.55) is much more accurate when the
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signal fs is deterministic or when the signal covariance Ks is negligible in comparison

to the background covariance Kb. Therefore, the Fourier analysis that follows applies to

detection tasks where the target signal is somewhat variable in its shape but remains weak

and spatially localized. It does not apply to tasks with significant signal magnitude and/or

width variability.

Using the approximations (3.54) and (3.55), we can start from (3.25) to derive the

following locally shift-invariant approximation for the Fisher information operator F̌ :

F̌ = F(I + KfF)−1

≈ U−1
Λ(I + NΛ)−1U = U−1

Λ̌ U ,(3.56)

where Λ̌ , diag
{

λ̌k, k = 1, . . . , np

}

and

(3.57) λ̌k ,
λk

1 + νkλk

,

which reduces to Λ̌ = Λ in the SKE/BKE case.

As in [41, 104, 145], we also use the fact that C is a collection of filters to get its

frequency-domain representation. Let tm ∈ C
np denote the frequency response of the mth

bandpass filter. Then the mth operator in C has the form

(3.58) Cm = U−1 diag{tm}Ue0

and, combining (3.58) with (3.52), we get

C = U−1T , T =
1

√
np

[

t1 . . . tM
]

.(3.59)

3.4.4 CHO and Fisher Reconstructors

For an unregularized Fisher reconstructor Z q, given by (3.26) with R = 0, we can

use the Fourier decompositions (3.56) and (3.59) along with (3.6) to obtain the following
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approximations for the moments of the channel outputs:

E[ĉ|H1]−E[ĉ|H0] = C′Zq ȳ

= C′F̌
(1+q)

f̄s ≈ T ′
Λ̌

(1+q)X(3.60)

Πĉ = C′ZqΠ̌Z ′
qC + Πint

= C′F̌
(1+2q)

C + Πint ≈ T ′
Λ̌

(1+2q)T + Πint,(3.61)

where X = U f̄s is the spectrum of the mean target signal. The approximation (3.60)

assumes that f̄s is highly localized in space. The accuracy of the approximation (3.61)

depends on how localized in space the channel responses are. However, when Λ̌ is positive

definite, the expression (3.61) is exact for q = −1/2, so it may also be reasonable for q

near −1/2 (including q = −1 and q = 0, which are the two cases of greatest practical

interest). Approximation error plots for some values of q were presented in [41].

Substituting the approximations (3.61) and (3.60) into (3.47) yields the following ap-

proximation for the SNR of the CHO when combined with an unregularized Fisher recon-

structor:

(3.62) SNR2
CHO,F ≈ X ′

Λ̌
(1+q)T (T ′

Λ̌
(1+2q)T + Πint)

†T ′
Λ̌

(1+q)X.

Channels with Disjoint Passbands

The CHO filters are sometimes assumed to be bandpass filters with disjoint pass-

bands. In that case, the vectors tm have disjoint nonzero entries and the M ×M matrix

T ′
Λ̌

(1+2q)T on the right-hand side of (3.61) is diagonal, so we have

[T ′
Λ̌

(1+q)X]m =
1

√
np

∑

k∈Tm

(tmk )∗λ̌(1+q)
k Xk

[T ′
Λ̌

(1+2q)T ]mm =
1

np

∑

k∈Tm

|tmk |2λ̌(1+2q)
k ,

where Tm = {k : tmk 6= 0} is the passband of the mth filter and “∗” denotes complex con-

jugate.
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If we furthermore combine the assumption of disjoint passbands with the internal noise

model (3.43), the covariance Πint becomes diagonal (to within the approximations used to

derive (3.61)) and the model (3.43) coincides with the one proposed in [1]. Under these

assumptions the SNR approximation in (3.62) simplifies to

(3.63) SNR2
CHO,F ≈ SNR2

1 ,
1

1 + cint

M
∑

m=1

∣

∣

∣

∑

k∈Tm
Xk(t

m
k )∗λ̌(1+q)

k

∣

∣

∣

2

∑

k∈Tm
|tmk |2λ̌

(1+2q)
k

,

We now examine the conditions under which the approximate SNR in (3.63) can reach the

SNR upper bound in (3.44).

Achievability of the Optimal SNR

To determine how closely the approximate SNR in (3.63) can approach the SNR upper

bound, define vectors um and vm with elements

um
k , Xkλ̌

1/2
k 1{k∈Tm},

vm
k , tmk λ̌

(q+1/2)
k ,

respectively. Then rewriting (3.63) and using Cauchy’s inequality yields

SNR2
1 =

1

1 + cint

M
∑

m=1

|〈um, vm〉|2

‖vm‖2

≤ 1

1 + cint

M
∑

m=1

‖um‖2 =
1

1 + cint

∑

k∈T
|Xk|2λ̌k(3.64)

≤ 1

1 + cint

∑

k

|Xk|2λ̌k ≈ 1

1 + cint

f̄ ′
sF̌ f̄s =

SNR2
lin◦

1 + cint

,

where T = ∪M
m=1Tm denotes the combined passband of all M channels. If the combined

passband T does not contain all of the signal energy, then the SNR will be strictly less

than the optimal SNR. This suboptimality is expected due to the dimensionality decrease

caused by the channels.

Is there an unregularized Fisher reconstructor Z q for which the upper bound in (3.64)

can be achieved? Suppose that each channel filter has a flat passband, i.e., tmk = 1{k∈Tm}.
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Then there are two obvious cases where the SNR upper bound in (3.64) is achieved, as can

be verified by substitution or by using the requirement um ∝ vm ∀m :

• If the Xk’s are constant over each passband, then q = 0 (the unfiltered backprojector)

will be optimal.

• If the λ̌k’s are also constant over each passband, then any q ∈ R will be optimal.

In practice, it may be unlikely that either the λ̌k’s or the Xk’s are exactly uniform over

each channel’s passband, but if the passbands are reasonably narrow, then it is likely that

these spectra will be approximately uniform over each passband.

We conclude that to within the accuracy of the approximations considered above, one

or more unregularized reconstructors will nearly achieve the highest SNR obtainable for

the given CHO channels and internal noise model. Once again, regularization does not

seem to play a crucial role, even for the CHO.

3.4.5 CHO and QPWLS Reconstructors

The analysis in the previous section showed some situations in which one or more un-

regularized reconstructors allow the CHO to achieve (approximately) optimal SNR in the

detection task at hand. We next examine the QPWLS family of regularized reconstructors,

described in section 3.1.3, to explore how closely the CHO can approach the optimal SNR

with a practical regularized reconstruction method and to examine the optimal choice of

regularizer.

The general form of a QPWLS reconstructor is given in (3.13) and the commonly used

weighting matrix W is the one corresponding to MAP estimation, i.e.,

W = (Cov
{

y|f = f̄
}

)−1 = Π
−1,

where f̄ is the unconditional mean of the object. For this W , the reconstructor in (3.13)
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becomes

(3.65) Z = (F + R)−1A′
Π

−1.

Note that the QPWLS reconstructor in (3.65) is the same as the Fisher reconstructor (3.26)

with q = −1 only if Kf = 0, i.e., only if there is no object variability. We assume

throughout that the regularization operator R is chosen such that F + R is positive defi-

nite. We would like to design R to optimize CHO detection performance in the QPWLS-

reconstructed images.

To analyze CHO performance with QPWLS reconstruction, we assume that both F and

R are diagonalized locally by a common operator (the Fourier operator U ). Specifically,

we use (3.54), (3.55), (3.59) and also assume that

(3.66) R ≈ U−1
Ω U ,

where Ω , diag{ωk, k = 1, . . . , np}. The real, nonnegative ωk’s contain the local fre-

quency response of the regularizer around the location of f̄s. Approximations of simul-

taneous diagonalization of F and R have been used by other investigators to analyze

observer performance with penalized-likelihood reconstruction [19, 104, 145].

Substituting the QPWLS reconstructor (3.65) and the emission tomography measure-

ment moments (3.6) and (3.22) into the SNR of the CHO from (3.47) yields

(3.67) SNR2
CHO,QPWLS = f̄ ′

sFH−1C[C′H−1(F + FKfF)H−1C + Πint]
†C′H−1F f̄s,

where H , F + R. Similarly to section 3.4.4, we use the local Fourier approxima-

tions (3.54), (3.55), (3.66) to obtain the following expressions for the moments of the
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channel outputs:

E[ĉ|H1]−E[ĉ|H0] = C′H−1F f̄s(3.68)

≈ T ′H−1
ΛX(3.69)

Πĉ = C′H−1(F + FKfF)H−1C + Πint(3.70)

≈ T ′H−1(Λ + Λ
2N )H−1T + Πint,(3.71)

where H , Λ + Ω = diag{λk + ωk, k = 1, . . . , np}. Substituting (3.69) and (3.71)

into (3.67) yields the following approximation for the SNR of the CHO when combined

with a QPWLS reconstructor:

(3.72) SNR2
CHO,QPWLS ≈ X ′

ΛH−1T [T ′H−1(Λ + Λ
2N )H−1T + Πint]

†T ′H−1
ΛX.

Channels with Disjoint Passbands

Similarly to section 3.4.4, when the CHO channels have disjoint frequency responses,

the M×M matrix T ′H−1(Λ+Λ
2N )H−1T in (3.71) becomes diagonal. We assume that

its diagonal elements are nonzero, i.e., the system has some nonzero λk for each passband.

(If not, the noninformative passband could be eliminated.)

As in section 3.4.4, we combine the assumption of disjoint passbands with the internal

noise model (3.43). Then the approximate SNR expression in (3.72) becomes

(3.73) SNR2
CHO,QPWLS ≈ SNR2

2 ,
1

1 + cint

M
∑

m=1

∣

∣

∣

∑

k∈Tm
Xk(t

m
k )∗ λk

λk+ωk

∣

∣

∣

2

∑

k∈Tm
|tmk |2

λ2
k

λ̌k(λk+ωk)2

.

We now examine the conditions under which the approximate SNR in (3.73) can reach the

SNR upper bound in (3.44).
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Achievability of the Optimal SNR

To determine how closely the approximate SNR in (3.73) can approach the SNR upper

bound, define vectors um and vm with elements

um
k , Xkλ̌

1/2
k 1{k∈Tm},

vm
k , tmk λk/λ̌

1/2
k (λk + ωk),

respectively. Then rewriting (3.73) and using Cauchy’s inequality yields

SNR2
2 =

1

1 + cint

M
∑

m=1

|〈um, vm〉|2

‖vm‖2

≤ 1

1 + cint

M
∑

m=1

‖um‖2 =
1

1 + cint

∑

k∈T
|Xk|2λ̌k(3.74)

≤ 1

1 + cint

∑

k

|Xk|2λ̌k ≈ 1

1 + cint

f̄ ′
sF̌ f̄s =

SNR2
lin◦

1 + cint

.(3.75)

Once again, if the combined passband T = ∪M
m=1Tm does not contain all of the signal

energy, then the SNR will be strictly less than the optimal SNR.

The intermediate inequality in (3.74) becomes an equality if um ∝ vm ∀m. Suppose

that each channel filter is an ideal bandpass filter over some frequency band, i.e., tmk =

1{k∈Tm}. Then, for λk 6= 0, Xk 6= 0, the intermediate upper bound in (3.74) is achieved for

example when

ωk = α
λk

Xkλ̌k

− λk,(3.76)

where the constant α 6= 0 can be chosen arbitrarily. Choosing

α > max
k
Xkλ̌k

would keep the ωk’s positive. To within approximations (3.54), (3.55) and (3.66), the local

frequency response in (3.76) corresponds to the following nonnegative definite regularizer:

(3.77) R = α(I + FKf )(U
−1 diag{X}−1

U) − F .
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The R in (3.77) usually has a high-pass characteristic, so it could be construed as a regu-

larization operator, but it is quite different from standard forms of regularization studied in

the literature. Furthermore, substituting the R from (3.77) into the QPWLS reconstructor

in (3.65) yields the estimator

(3.78) f̂ =
1

α
(U−1 diag{X}U)A′

Π̌
−1y.

Therefore the “optimal” choice of R in (3.77) results in an unregularized estimator that is

simply a weighted backprojection followed by the application of a “matched” filter (con-

volution with f̄s). This agrees with the conclusion from section 3.4.4 that regularization is

not essential for the CHO, if the passbands of the CHO channels are flat, non-overlapping

and with internal noise covariance of the form (3.43).

Similarly to section 3.4.4, a degenerate case occurs when the channel passbands are flat

and the mean signal spectrum {Xk}, system spectrum {λk}, and object power spectrum

{νk} are all constant over each channel’s passband. Then the first upper bound in (3.74)

is achieved for any choice of regularization {ωk} that is also constant over each passband,

including ωk = 0. Once again, under the internal noise model (3.43), the choice of regu-

larization is not important in this detection task if there is little within-passband variation

of the mean signal spectrum, the system spectrum, the object power spectrum, and/or the

channel response itself.

3.4.6 CHO and QPWLS with a Roughness Penalty

In the previous section, where we placed no constraints on the form of the regularizer

R, we ended up with an “optimal” R that yielded the unregularized estimator in (3.78).

We now constrain the regularizer to the commonly used form of a uniform quadratic rough-
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ness penalty. In this case, the regularization operator R in (2.14) is such that

(3.79) R(f) = −β
np
∑

j=1

∑

k∈Nj

(fj − fk)
2,

where fj is the jth sample of the object f , Nj a neighborhood of pixels around the jth

pixel, and β ≥ 0 the regularization parameter. A regularization term of the form (3.79)

penalizes differences between neighboring image pixels, thus favoring smoother images.

For simplicity, we consider here a first-order neighborhood Nj , consisting of the four

closest (top, bottom, left and right) neighboring pixels. The only free parameter in the

regularizer (3.79) is thus the regularization parameter β.

We now provide an example of how β affects the SNR of the CHO with overlapping

or non-overlapping passbands in the presence of two different types of internal noise. In

this example, A corresponds to a 2-D PET system model with the characteristics of a

CTI ECAT 931 scanner (matrix size 128 × 128, pixel size 4.7mm, 192 radial samples

with 3.1mm spacing, 160 projection angles over 180o), generated by the ASPIRE software

package [34].

We assume that the target signal fs has a known Gaussian shape with a FWHM of

4 pixels and amplitude 0.1, the background fb has a Gaussian autocorrelation function

with a FWHM of 8 pixels and a standard deviation of 0.05, and the mean background f̄b is

the anthropomorphic phantom shown in Fig. 3.2, which corresponds to a slice of the Zubal

phantom [157]. We determine measurement variance by assuming that the signal intensity

is weak with respect to the background intensity, so we can approximate

Π = Cov
{

y|f̄
}

≈ Cov
{

y|f̄b

}

= diag
{

Af̄b + r
}

.

We scale A to produce a total of 5 × 105 recorded counts.

We consider three different models for the CHO channels: Non-overlapping square

channels with M = 4 (SQR) and overlapping difference-of-Gaussians channels with
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Figure 3.2: Mean background and target signal for an example of a known-location task. The figure shows
the mean background (left) and a profile through the mean background with the target signal
superimposed (right).

M = 3 (S-DOG) and M = 10 (D-DOG), as defined by Abbey et al. [1] and plotted

in Fig. 2.6. With each of these three channel sets, we consider two different models for

the internal noise: (i) White internal noise, i.e., Πint = σ2 I , where we choose the con-

stant, reconstructor-independent variance of the channels to be σ2 = 0.005, or (ii) The

proportional internal noise covariance of (3.43). To facilitate comparison, we choose the

proportionality constant cint in (3.43) so that the peak SNR achieved with either of the two

internal noise models is the same for a particular channel set.

Fig. 3.3 shows plots of the SNR of the CHO for QPWLS reconstruction with the rough-

ness penalty in (3.79) and various values of β. The plots on the left are produced with the

white internal noise model, whereas the ones on the right are produced with the propor-

tional internal noise model. All the SNR values in the plots are normalized with respect to

the ideal SNR in (3.23). The abscissa of the plots represents the resolution of the QPWLS

reconstruction, defined as the FWHM (in pixels) of the reconstructed image when the true

object is a noiseless impulse at the location of the target signal. This local FWHM is a
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measure of the amount of smoothing imposed by QPWLS. The resolution equals 1 pixel

for β = 0, which corresponds to unregularized WLS, and it increases as β increases.

The plots show similar SNR behavior when comparing different channel sets under the

same internal noise model. However, when the internal noise model changes, so does the

behavior of the SNR versus resolution. Therefore, internal noise is an important factor to

consider when optimizing regularization methods with respect to detectability. One should

use the model that correlates best with humans for the task of interest. Since establishing

correlation with humans is beyond the scope of this thesis, we present results with both

models.

Fig. 3.3(a), 3.3(c), and 3.3(e) show that, with a constant, reconstructor-independent

internal noise variance, a fast SNR drop occurs for very large amounts of regularization.

This is due to the fact that, with a Πint 6= 0 that is independent of β, the SNR in (3.67)

vanishes as β → ∞. Similar behavior was reported by Qi with this type of internal

noise [104]. However, no similarly fast drop in SNR occurs for very small amounts of

regularization. In other words, with this type of internal noise and any of the three channel

sets, the peak SNR achieved by QPWLS is only slightly higher than the SNR achieved

by unregularized WLS (β = 0). We also investigated different amounts of imaging noise

and/or background variability and obtained very similar results (not shown here). That is,

unregularized WLS led to SNR very close to the peak SNR attainable with QPWLS and

the roughness penalty in (3.79). Once again, we have a situation in which regularization

is of minimal benefit in the known-location detection task – even with a CHO model that

includes overlapping channel passbands and internal noise.

Fig. 3.3(b), 3.3(d), and 3.3(f) show that, with a proportional internal noise covariance,

the SNR versus resolution plots are relatively flat. Under this model, the internal noise

covariance decreases as β increases. As a result, the SNR does not drop fast for large
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Figure 3.3: SNR of the CHO versus QPWLS reconstruction resolution. Results are shown for three different
channel sets and two different internal noise models. The exact and approximate SNR is com-
puted from (3.67) and (3.72) respectively. All SNR values are normalized with respect to the
upper bound (ideal SNR for the internal-noise-free observer) in (3.23).
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amounts of regularization as it did with the constant internal covariance, where the inter-

nal noise dominated as β increased. With the proportional model, peak or near-peak SNR

can be achieved with very large amounts of regularization. The SNR achieved with un-

regularized WLS is not much lower than the peak, although the difference is slightly more

pronounced than with the constant internal covariance. Note that under the proportional

internal covariance model, as seen from (3.44), changing the amount of internal noise

would only scale the SNR plots, not altering their variation with resolution. This includes

the case where there is no internal observer noise (cint = 0). The optimality of a large

amount of regularization, as seen in Fig. 3.3(b), 3.3(d), and 3.3(f), is consistent with the

optimality of blurry backprojections, as shown for the CHO with the proportional internal

covariance model in sections 3.4.4 and 3.4.5.

Note that there is a third possibility for the internal noise covariance, namely assuming

that it is proportional to the diagonal of the left-hand side of (3.43), as Abbey and Barrett

do in [1]. With this choice of internal noise covariance, the SNR drop that occurs for large

amounts of regularization is faster than with the proportional covariance in Fig. 3.3(b),

3.3(d), and 3.3(f), but slower than with the white, reconstruction-independent covariance

in Fig. 3.3(a), 3.3(c), and 3.3(e).

The plots in Fig. 3.3 also compare the exact SNR, computed from (3.67), to the ap-

proximate SNR, computed from (3.72). There is reasonable agreement between the two

in all cases. This confirms the accuracy of the Fourier-domain approximations on which

our results in sections 3.4.4 and 3.4.5 were based.
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3.4.7 Channelized Non-Prewhitening Observer

Combining the moments of f̂ from (3.10) with the channelized feature vector from (2.32)

and substituting into the CNPW template from (2.35) yields

(3.80) wCNPW = C′Z ȳ .

By substituting the CNPW template from (3.80) into the SNR expression (3.42), we find

this observer’s SNR:

(3.81) SNR2
CNPW =

(ȳ′ Z ′CC′Z ȳ)2

ȳ′ Z ′C(C′ZΠ̌Z ′C + Πint)C
′Z ȳ

.

It is straightforward to show that the SNR of the CNPW observer is bounded above by

the SNR of the CHO. Using

(3.82) c̄ = C′Z ȳ, Πĉ = C′ZΠ̌Z ′C + Πint

and the SNR expressions from (3.47) and (3.81), we have

SNR2
CNPW =

|〈c̄, c̄〉|2
∥

∥

∥
Π

(−1/2)
ĉ c̄

∥

∥

∥

2 =

∣

∣

∣
〈Π(−1/2)

ĉ c̄, Π
1/2
ĉ c̄〉

∣

∣

∣

2

∥

∥

∥
Π

1/2
ĉ c̄

∥

∥

∥

2(3.83)

≤
∥

∥

∥
Π

(−1/2)
ĉ c̄

∥

∥

∥

2

= SNR2
CHO,(3.84)

where we use (3.30) with B = Π̌
1/2Z ′C to get the right-hand side of (3.83) and we use

the Cauchy-Schwarz inequality to get (3.84). The upper bound in (3.84) is achieved when

(3.85) Π
†
ĉc̄ ∝ c̄,

in which case the CHO and CNPW templates become equivalent. This holds when the

channel outputs are white.

We now examine the existence of a reconstructor that allows the CNPW observer to

achieve the optimal SNR in (3.44). In the special case of the internal noise model (3.43),
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using (3.80), we have

(3.86) Z ′CwCNPW ∝ Z ′CC′Z ȳ .

By comparing (3.86) to the optimality condition (3.45), we find that the SNR upper bound

in (3.44) is achieved when Z satisfies

(3.87) Z ′CC′Z ȳ ∝ Π̌
−1 ȳ,

which is similar to (3.36). To find a Z that satisfies (3.87), consider once again a re-

constructor of the form (3.50). For the Z in (3.50), with any image-domain weighting

operator W , the optimality condition (3.87) is satisfied if

(3.88) AGG ′A′
Π̌

−1 ȳ ∝ ȳ .

As long as G can be chosen to satisfy (3.88), the unregularized reconstructor Z given

in (3.50) allows the CNPW observer to achieve the optimal SNR. For emission tomogra-

phy, where ȳ = Af̄s, the condition (3.88) is satisfied if

(3.89) GG ′F̌ f̄s ∝ f̄s.

Choosing G so that one of its “columns” is proportional to f̄s and the remaining columns,

Gm, m = 2, . . . ,M, satisfy G ′
mF̌ f̄s = 0, m = 2, . . . ,M, is one way to satisfy (3.89).

Since SNR2
CNPW ≤ SNR2

CHO ≤ 1
1+cint

SNR2
lin◦

, it is reasonable that the requirements on G

derived in section 3.4.2 for the CHO are a subset of those derived here for the CNPW.

Therefore, under the internal noise model (3.43), the family of reconstructors in (3.50)

with an appropriately chosen G can ensure optimal SNR for the CNPW observer. Note

that, with a reconstructor of the form (3.50) and G chosen as discussed in the previous
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paragraph, the moments of the channel outputs become:

wCNPW = E[ĉ|H1]−E[ĉ|H0] = C′Z ȳ

= G′F̌ f̄s = [f̄ ′
sF̌ f̄s 0 0 . . . 0]′(3.90)

Πĉ = (1 + cint)C
′ZΠ̌Z ′C = (1 + cint)G

′F̌G.(3.91)

As seen on the right-hand side of (3.91), the reconstructor at hand does not necessarily

result in white channel outputs. However, the reconstructor transforms the data so that the

output of a single channel (the first channel in the above notation) becomes uncorrelated

from the outputs of the remaining channels. Then detection can be performed with a

template that, as seen on the right-hand side of (3.90), uses only this uncorrelated channel,

disregarding the rest. Then the second-order statistics of the outputs of the remaining

channels become irrelevant. Thus the CNPW observer is not handicapped by its lack of

knowledge about these second-order statistics and it achieves the same performance as the

CHO.

As discussed in section 3.4.2, the reconstructor family (3.50) does not produce what

we usually consider to be reconstructed images. Thus it is of interest to know whether

more conventional reconstructors can be combined with the CNPW observer to achieve

SNR values close to the optimal and, if so, whether these reconstructors must include reg-

ularization. As before, we do this with the use of approximations to the SNR expression

in (3.81) obtained through local Fourier-domain analysis. In the following, we apply such

approximations to analyze the SNR of the CNPW observer with regularized reconstruc-

tion.

3.4.8 CNPW Observer and QPWLS Reconstructors

As with the CHO in section 3.4.5, we now explore how closely the CNPW observer can

approach the optimal SNR with a practical regularized reconstruction method and examine
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the optimal choice of regularizer. We consider the QPWLS reconstructor given in (3.65),

assuming as usual that the regularization operator R is chosen such that F +R is positive

definite.

This time we would like to design R to optimize the CNPW observer’s detection

performance in the QPWLS-reconstructed images. Substituting the QPWLS reconstruc-

tor (3.65) and the emission tomography measurement moments (3.6) and (3.22) into the

SNR of the CNPW observer from (3.81) yields

(3.92)

SNR2
CNPW,QPWLS =

(f̄ ′
sFH−1CC′H−1F f̄s)

2

f̄ ′
sFH−1C[C′H−1(F + FKfF)H−1C + Πint]C

′H−1F f̄s

,

where H , F + R.

Similarly to section 3.4.5, we assume that the operators F , Kf , and R are approx-

imately diagonalized by the Fourier transform around the location of the target signal

according to (3.54), (3.55), and (3.66) respectively. This allows us to use the approxi-

mations (3.69) and (3.71) for the moments of the channel outputs. Substituting (3.69)

and (3.71) into (3.92) yields the following approximation for the SNR of the CNPW when

combined with a QPWLS reconstructor:

(3.93)

SNR2
CNPW,QPWLS ≈ (X ′

ΛH−1TT ′H−1
ΛX)2

X ′ΛH−1T [T ′H−1(Λ + Λ2N )H−1T + Πint]T ′H−1ΛX
,

where H , Λ + Ω = diag{λk + ωk, k = 1, . . . , np}.
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Channels with Disjoint Passbands

Based on (3.69) and (3.71), the moments of individual channel outputs can be approx-

imated as

[c̄]m ≈ cm ,
1

√
np

∑

k∈Tm

Xk(t
m
k )∗

λk

λk + ωk

, m = 1, . . . ,M(3.94)

[Πĉ]mm ≈ s2
m ,

1

np

∑

k∈Tm

|tmk |2
λ2

k

λ̌k(λk + ωk)2
+ σ2

m, m = 1, . . . ,M,(3.95)

where σ2
m , [Πint]mm is the internal noise variance of the mth channel.

Similarly to section 3.4.5, we consider the case where the channels of the CNPW ob-

server have disjoint frequency responses, and the internal noise covariance has the pro-

portional form of (3.43). In this special case, the approximate covariance matrix in (3.71)

becomes diagonal. Then the approximate SNR expression in (3.93) can be written as

(3.96) SNR2
CNPW,QPWLS ≈ SNR2

3 ,
1

1 + cint

(

∑M
m=1 |cm|

2
)2

∑M
m=1 |cm|

2 s2
m

with cm and s2
m as defined in (3.94) and (3.95) respectively. We now examine the condi-

tions under which the approximate SNR in (3.96) can reach the SNR upper bound in (3.44).

Achievability of the Optimal SNR

To determine how closely the approximate SNR of the CNPW observer in (3.96) can

approach the SNR upper bound, we first examine the conditions under which (3.96) can

approach the approximate SNR of the CHO in (3.73).

As usual, we assume that the system has some nonzero λk’s for each channel passband.

(If not, the noninformative passband could be eliminated.) If the mean signal f̄s is well-

localized in space, we can assume similarly that there is no passband within which theXk’s

are all zero. This implies that the elements of c̄, as approximated in (3.94), are generally

non-zero for QPWLS reconstruction.
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When all elements of c̄ are non-zero and Πĉ is diagonal, the only way to satisfy (3.85)

is with Πĉ ∝ I . Therefore, assuming disjoint channel passbands and to within approxi-

mations (3.94) and (3.95), the CNPW observer achieves the same SNR as the CHO only

if the channel outputs are white:

(3.97) s2
m = const., m = 1, . . . ,M.

Consider the case where the internal noise variance is either proportional to the variance

due to the channel inputs, as in (3.43), or input-independent but constant, i.e., Πint = σ2I .

Then, due to (3.95), the requirement (3.97) is equivalent to

(3.98)
∑

k∈Tm

|tmk |2λ2
k

λ̌k(λk + ωk)2
= const., m = 1, . . . ,M.

A choice of ωk that satisfies the requirement (3.98) is

ωk = αξk
λk

λ̌
1/2
k

− λk,(3.99)

where

ξk ,











‖tm‖ , k ∈ Tm

ξo
k, k /∈ T , ∪M

m=1Tm

and α 6= 0, ξo
k 6= 0 can be chosen arbitrarily. Choosing

α > max
k

λ̌
1/2
k

ξk
, ξo

k > 0

would keep the ωk’s positive.

To within approximations (3.54), (3.55) and (3.66), the local frequency response in (3.99)

corresponds to the following nonnegative definite regularizer:

(3.100) R = αFF̌
(−1/2)

(U−1
ΞU) − F ,

where Ξ , diag{ξk, k = 1, . . . , np}. The R in (3.100) may have a high-pass character-

istic, but, other than that, it is quite different from standard forms of regularization in the



86

literature. Substituting the R from (3.100) into the QPWLS reconstructor in (3.65) yields

the estimator

(3.101) f̂ =
1

α
(U−1

Ξ
−1U)F̌

1/2
(F †A′

Π
−1y).

Therefore the “optimal” choice of R in (3.100) results in an unregularized WLS estimator

followed by the postfilter F̌
1/2, similarly to the non-channelized NPW case in (3.38), and

then convolution with a shift-invariant filter whose frequency response Ξ
−1 depends on

the channel filters. In typical channel models, such as the ones shown in Fig. 2.6, higher-

frequency channels tm have wider passbands, therefore ‖tm‖ increases with frequency.

This means that within the combined channel passband T (or everywhere, if the ξo
k’s are

chosen accordingly) the frequency response Ξ corresponds to a high-pass filter, therefore

Ξ
−1 in (3.101) corresponds to a low-pass filter.

Because it satisfies (3.97), the regularizer choice in (3.100) ensures that the channel out-

puts are white and therefore (for disjoint channel passbands) that the SNR of the CNPW

observer becomes equal to the SNR of the CHO. Under the internal noise model (3.43), in

particular, (3.92) becomes equal to (3.67). Furthermore, as discussed in the last paragraph

of section 3.4.5, if the channel passbands are flat and the mean signal spectrum {Xk},

system spectrum {λk}, and object power spectrum {νk} are all constant over each chan-

nel’s passband, the SNR in (3.67) achieves the first upper bound in (3.74) for any choice

of regularization {ωk} that is also constant over each passband. This includes the {ωk}

in (3.99), when there is little within-passband variation of the mean signal spectrum, the

system spectrum, and the object power spectrum. In this case, the SNR of the CNPW ob-

server also reaches the overall optimal SNR attainable with the given channel passbands

and internal noise. As usual, if the combined channel passband T does not contain all of

the signal energy, then this SNR will be strictly less than the optimal SNR in (3.75).

We conclude there are some situations where regularization in the usual sense seems
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to not be essential for the CNPW. In these cases, the CNPW observer can (approximately)

achieve optimal SNR in the detection task at hand with an unregularized WLS reconstruc-

tor. However, because the optimal reconstructor must now compensate for the prewhiten-

ing that the CNPW observer cannot perform, these cases are more limited than the ones in

which the CHO achieves the same SNR without regularization.

3.4.9 CNPW Observer and QPWLS with a Roughness Penalty

As in section (3.4.6), we now constrain the regularizer to the practical form of the uni-

form quadratic roughness penalty in (3.79), which penalizes differences between neigh-

boring image pixels. Once again, we consider a first-order pixel neighborhood Nj . We

are interested in tuning the only free parameter in the regularizer (3.79), the regularization

parameter β, so that the SNR of the CNPW observer is maximized.

The first-order quadratic penalty in (3.79) corresponds to

(3.102) ωk = 2β
[

2 − cos(2πkx/np)− cos(2πky/np)
]

,

where (kx, ky) are the discrete 2-D spatial frequency coordinates of the kth sample of the

frequency response. As is the case with typical roughness penalties, (3.102) is of a high-

pass nature. Because of the white channel output condition that needs to be met in order to

achieve optimality for the CNPW observer, one should expect the value of β to have more

of an impact on the SNR of this observer than it has on the SNR of the CHO.

For a simple illustration of this property, consider the case where the detection task is

SKE/BKE (λ̌k = λk) and the channel passbands are disjoint and flat (tmk = 1{k∈Tm}). Then

the whitening condition in (3.98) becomes

(3.103)
∑

k∈Tm

λk

(λk + ωk)2
= const., m = 1, . . . ,M.
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In the unregularized case where ωk = 0∀k, this becomes

(3.104)
∑

k∈Tm

1

λk

= const., m = 1, . . . ,M.

However, not only is the system frequency response {λk} low-pass, but also the passbands

Tm of higher-frequency channels are typically wider. Therefore, both the values and the

number of the positive summands on the left-hand side of (3.104) increase with increasing

m. As a result, the whitening condition cannot be satisfied with ωk = 0∀k. The pres-

ence of appropriately chosen, high-pass, non-zero ωk’s decreases the values of the higher-

frequency summands on the left-hand side of (3.103) so that the whitening condition can

be satisfied.

The analysis of CNPW performance in the previous section showed that, if we place no

constraints on the form of the regularizer R, we end up with the “optimal” R in (3.100),

which may be high-pass and non-zero, but yields the unregularized estimator in (3.101).

However, if we constrain the regularizer to the form of a roughness penalty such as the one

in (3.79), we expect, due to the previous discussion, that regularized reconstruction with

β > 0 will lead to better CNPW performance than the unregularized β = 0.

We provide here an example of how β affects the SNR of the CNPW with overlapping

or non-overlapping passbands in the presence of two different types of internal noise. This

example follows the same assumptions for the system model A, the target signal fs, the

background fb, and the imaging noise level (number of counts) as the CHO example of

section 3.4.6.

We also consider the same three models for the CNPW channels, i.e., the non-overlapping

SQR and overlapping S-DOG and D-DOG channels from [1]. With each of these chan-

nel sets, we apply the two models for the internal noise covariance that we discussed in

section 3.4.6, i.e., white or proportional.

In Fig. 3.4 we show plots of the SNR of the CNPW observer for QPWLS reconstruc-
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tion with the roughness penalty in (3.79) and various values of β. The plots on the left

are produced with the white internal noise model, whereas the ones on the right are pro-

duced with the proportional internal noise model. All the SNR values in these plots are

normalized with respect to the ideal SNR in (3.23). The abscissa of the plots represents

the resolution of the QPWLS reconstruction at the location of the target signal, as defined

in section 3.4.6.

As was the case with the CHO, Fig. 3.4 shows that the three different channel sets that

we consider lead to similar SNR behavior for the CNPW observer. Compared to the CHO,

however, the CNPW observer has a more consistent behavior across the two different

internal noise models, in that it exhibits a clear SNR peak with either noise model. The

existence of this peak is related to the fact that the inability to prewhiten leads the CNPW

observer to suboptimal performance and the reconstructor needs to compensate for this

inability.

For no regularization (β = 0), the channel outputs are not white, since the outputs of

higher-frequency channels have higher variance, so the CPNW observer performs subop-

timally. As the amount of regularization increases, the variances of the channel outputs

decrease, with those of higher-frequency channels decreasing faster. For some intermedi-

ate amount of regularization the variances will become closer to uniform, mitigating the

effect of the observer’s inability to prewhiten and leading to improved SNR. However, for

very large amounts of regularization, as the variances of higher-frequency channels de-

crease excessively, the channel variances become non-uniform again. Furthermore, as the

amount of regularization increases, so do the correlations between channel outputs. Thus

the channel outputs veer away from whiteness for too much regularization, leading to the

SNR drop seen in all plots of Fig. 3.4 as β → ∞.

Whether the internal noise covariance is constantly white or proportional affects this
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Figure 3.4: SNR of the CNPW observer versus QPWLS reconstruction resolution. Results are shown for
three different channel sets and two different internal noise models. The exact and approximate
SNR is computed from (3.92) and (3.93) respectively. All SNR values are normalized with
respect to the upper bound (ideal SNR for the internal-noise-free observer) in (3.23).
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process as well. The SNR drops faster under the white internal covariance model, as the

internal noise dominates for β → ∞ in this case. As a result, the SNR peak occurs at

a lower β in Fig. 3.4(a), 3.4(c), and 3.4(e) than it does under the proportional internal

covariance model in Fig. 3.4(b), 3.4(d), and 3.4(f) respectively.

The plots in Fig. 3.4 also compare the exact SNR, computed from (3.92), to the ap-

proximate SNR, computed from (3.93). The good agreement between the two confirms

the accuracy of the Fourier-domain approximations on which our results in section 3.4.8

were based.

In general, we find here that regularization can be beneficial in a known-location de-

tection task for the CNPW observer, much more so than for the CHO. This applies for

non-overlapping or overlapping channel passbands, with or without internal noise (as the

proportional internal covariance model encompasses the case cint = 0).

Thus an important factor to consider when optimizing regularization with respect to

observer performance is whether the observer of interest can do prewhitening or not. As

discussed in section 2.3.9, human observers have been found to perform more like the

CHO than the CNPW observer in known-location tasks. This implies that human ob-

servers have some knowledge of the second-order statistics of the reconstructed images

and are able to use this knowledge when performing known-location tasks. However, one

can imagine that this knowledge may be imperfect. Furthermore, since the MaCNPW

observer (see sections 2.3.8, 2.3.9) has been found to be well-correlated with humans in

unknown-location tasks, it is plausible that humans are less capable of incorporating their

knowledge of second-order statistics in some tasks than in others. Finally, when applying

the CHO model itself to images produced from real data, the second-order statistics may

be difficult to estimate accurately. For all these reasons, one may be interested in the effect

of regularized reconstruction on observers that have imperfect prewhitening capabilities.
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We consider an example of such an observer model in the following section.

3.4.10 Channelized Observers with Imperfect Prewhitening

To illustrate the effect of an imperfect knowledge of second-order statistics on the ob-

server side, we define here a channelized partially prewhitening (CPPW) observer with

template

(3.105) wCPPW ,

[

(1 − γ)I + γΠĉ

]†(
E[ĉ|H1]−E[ĉ|H0]

)

,

for some γ ∈ [0, 1]. For γ = 0 the above becomes equal to the CNPW template in (2.35)

and for γ = 1 it becomes equal to the CHO template in (2.34). Intermediate values of γ

yield intermediate prewhitening accuracy.

The expression in (3.105) is only one of several ways in which a prewhitening defi-

ciency could possibly be introduced in the channelized observer’s template. We use (3.105)

here simply to illustrate our point, without making any claims about correlation with hu-

man observers.

The SNR of a CPPW observer applied to QPWLS-reconstructed images can be com-

puted by substituting the reconstructor (3.65) and the channel moments (3.68), (3.70) into

the template (3.105) and the channelized SNR expression (3.42). We revisit here the ex-

ample from sections 3.4.6 and 3.4.9, this time examining the SNR of CPPW observers

with various values of γ in the same task. In Fig. 3.5 we plot the SNR of some of these ob-

servers for QPWLS reconstruction with the roughness penalty in (3.79) and various values

of β. The SNR is plotted for CPPW observers with S-DOG channels and the two internal

noise models considered in sections 3.4.6 and 3.4.9.

With both internal noise models, as seen in Fig. 3.5(a) and Fig. 3.5(b), the effect of

imperfect prewhitening is similar. For unregularized WLS (β = 0), the SNR varies widely

with the level of prewhitening performed by the observer. For some intermediate range of
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Figure 3.5: SNR of CPPW observers versus QPWLS reconstruction resolution. Results are shown for five
different degrees of prewhitening accuracy and two different internal noise models. All SNR
values are computed from the exact expression (3.42) and normalized with respect to the upper
bound (ideal SNR for the internal-noise-free observer) in (3.23).

β’s, albeit a different range with each internal noise model, the SNR curves for different

CPPW observers all lie close to each other and to the peak SNR attainable by the CHO.

For this range of β’s the observer’s SNR performance in this known-location task is more

robust to imperfect prewhitening by the observer.

Note that, in each of Fig. 3.5(a) and Fig. 3.5(b), the peak SNR occurs at the same β for

all imperfectly prewhitening observers. Therefore, one could optimize regularization for

the CNPW observer without the need to know the exact γ of an observer of interest. This

invariance of the optimal β is a consequence of the specific form adopted for the CPPW

template in (3.105) and may not hold exactly for other forms of prewhitening errors.

3.4.11 Rapid Computation of the Local Frequency Response of F

The expression (3.53) implies that the local frequency response λ of the Fisher informa-

tion operator F is computed by applying the operator directly to an object e0 consisting of

an impulse centered at the desired location. However, for large object sizes, this approach

can become time-consuming if one wants to repeat it for a number of different locations
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(e.g., if one wants to optimize regularization locally for every pixel in the reconstructed

image).

However, approximations of λ have been developed that are faster to compute and that

involve a factorization of the frequency response. A key component of this factorization

is a local certainty κ(x0, y0) that depends on the location (x0, y0) of e0 [40]. In [19, 41,

104, 106, 145], where such analyses are incorporated into the calculation of detectability

measures, they are performed entirely in the discrete domain. These analyses utilize a

factorization of λ that involves uniform (angle-independent) local certainties κ(x0, y0).

One can also adopt the strategy followed in [36] for roughness penalty design, i.e., per-

form the analysis entirely in the continuous domain and discretize the final result. The

continuous approach leads to a refinement of the fast approximation of λ that is not pos-

sible with the discrete approach. Alternatively, one can adopt a hybrid formulation and

extend the analysis of [36] to the most realistic scenario where the true object is con-

tinuous but the measurements are discrete. We present this extension in Appendix B.

This analysis derives a factorization of λ that involves angle-dependent local certainties

κϕj
(x0, y0), j = 1, . . . , nϕ. Since a practical implementation would employ DFT’s, one

would use a discretized version of the frequency response derived in Appendix B.

Fig. 3.6 compares these approximations for the PET example of previous sections.

Since all approximations show very good agreement when they are used to compute the

SNR of the CNPW observer, we show here an example where they are used to compute

the SNR of the CHO (with D-DOG channels and both internal noise models). We obtain

the approximate SNR from (3.72) as usual, but now we compute λ in three different ways:

(i) Using (3.53) directly and applying F to an impulse, as we did in previous examples,

(ii) Using the angle-independent local certainty κ0 from (B.3), as in other work [41, 104,

145], and (iii) Using the angle-dependent local certainties κϕj
, j = 1, . . . , nϕ, from (B.2).
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Figure 3.6: Various approximations for the SNR of the CHO versus QPWLS reconstruction resolution. Re-
sults are shown for two different internal noise models. The exact and approximate SNR is
computed from (3.67) and (3.72) respectively. Three different approximations for the local fre-
quency response λ are used. All SNR values are normalized with respect to the upper bound
(ideal SNR for the internal-noise-free observer) in (3.23).

As can be seen in Fig. 3.6, there is good agreement for all approximations, but approx-

imation I follows the contour of the exact SNR curve somewhat more accurately. Approx-

imation II generally leads to a reduction of the approximation error when compared with

approximation III, while the two involve the same amount of computation, as can be seen

by comparing (B.2) to (B.3).

3.5 Discussion

We have analyzed the performance of various commonly used mathematical observer

models in the task of known-location signal detection. Our analysis shows that there are

unregularized reconstruction methods that can lead to exactly optimal SNR in this task for

several linear observer models from the literature (HO, NPW, ROI). Even for the CHO

and the CNPW observer with internal noise, we have found (somewhat unconventional)

unregularized reconstructors that lead exactly to the optimal SNR attainable with a given

internal noise level. We also showed that, under some assumptions, some conventional
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unregularized reconstructors also lead approximately to this optimal SNR for these chan-

nelized observers.

When reconstruction is constrained to a penalized-likelihood method with a conven-

tional roughness penalty, the CHO and the CNPW observer behave differently as the

amount of regularization is varied. In the case of the CHO, unregularized WLS can lead

to SNR very close to the peak SNR attainable with QPWLS for a given channel set and

internal noise level. Therefore, optimizing regularized reconstruction does not lead to any

significant improvement of SNR performance in comparison to unregularized reconstruc-

tion for the CHO in known-location detection tasks. This conclusion is in agreement with

experimental results showing that the post-smoothing of noisy images does not lead to

significant benefit for human observers, as far as performance in a known-location task is

concerned [1].

This is in contrast to the case of the CNPW observer, where unregularized WLS leads

to SNR significantly lower than the peak attainable with optimal QPWLS reconstruction.

More generally, when regularization is constrained to a roughness penalty, channelized

observers that perform less than perfect prewhitening can benefit from optimizing regular-

ization.

Our conclusions about the CHO can also be contrasted to the results of Qi and Leahy,

who analyzed the effect of regularization on the contrast-to noise ratio (CNR) [108]. As

opposed to the SNR of the CHO, the CNR exhibits a pronounced peak for an intermediate

amount of regularization. This may be explained by the fact that the CNR is equivalent

to the SNR of an observer that utilizes an impulse as its template. Since this template

performs no smoothing of its own, it is reasonable to expect that the optimal reconstructor

should perform some smoothing. On the other hand, the template of the CHO is an opti-

mally prewhitened version of the mean signal f̄s (typically not an impulse), so it smoothes
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the reconstructed image in an optimal manner itself. As a result, there is little benefit in

terms of the SNR of the CHO from additional smoothing performed by the reconstructor.

The relatively small significance of regularization for many of the observer models

throughout our analysis indicates that detection performance in tasks where the target sig-

nal location is known exactly is of limited use as a criterion for optimizing the free param-

eters of regularized reconstruction methods. Furthermore, the finding that some form or

another of unfiltered backprojection is an optimal reconstructor for several of the observer

models considered here, shows that resolution is not an essential image quality for these

observers as far as known-location detectability is concerned.

Since known-location tasks are easy enough for several observers to perform optimally

with poor resolution, it is important to examine whether there are more complicated tasks

where regularization has a more significant effect. A relevant area of investigation is the

analysis of regularized image reconstruction methods with respect to detectability in tasks

with location uncertainty, which is discussed in the following chapter.



CHAPTER 4

Unknown Signal Location

We now turn our attention to tasks where the location of the target signal is unknown

to the observer. This location uncertainty reflects medical practice more realistically, but it

complicates the mathematical analysis of model observer performance significantly. As in

the previous chapter, we begin by establishing our notation for the objects, measurements,

and reconstruction methods that we will be considering. We then analyze the detection

performance of the observer models for unknown-location tasks that were described in

chapter 2, with the objective of optimizing regularized reconstruction methods with re-

spect to this performance. We propose using tail probability approximations to facilitate

analytical evaluation of the detection performance of these observers. We illustrate how

these approximations can be used to evaluate the probability of detection (for low proba-

bility of false alarm operating points) for observer models that use channelized linear local

test statistics.

4.1 The Detection Task

As in chapter 3, we adopt an additive model for the background fb and the target signal.

We assume that, when the target signal is present within the object, it is centered at one of

a finite set of locations ` = 1, . . . , nL. We denote the target signal centered at location ` by

fs,`. The detection/localization task at hand is thus a decision among the following nL + 1

98
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hypotheses:

H0 : f = fb (signal absent)

H` : f = fb + fs,` (signal present at location `, ` = 1, . . . , nL).(4.1)

The background fb and the signal fs,` are random and statistically independent under any

of the signal present hypotheses H`, ` = 1, . . . , nL. We denote the expectations of fb and

fs,` by f̄b and f̄s,` respectively. We denote their covariances by Kb and Ks,` respectively.

The covariances Ks,`, ` = 1, . . . , nL express variability in the profile of the target signal

and not in its location.

We focus as usual on observer models that are applied on the reconstructed image f̂ .

We assume that f̂ is reconstructed from a measurement y that is acquired by a tomographic

imaging system. Thus the moments of y under some hypothesis Hi are given by (3.4)

and (3.5). Once again, we assume that the reconstructed image is given by f̂(y) = Zy

as in (3.9), for some linear reconstructor Z . As discussed in 3.1.3, the linearity assump-

tion holds either exactly or approximately for several common tomographic reconstruction

techniques.

Following the literature, we consider observers whose decision rule relies on computing

a scalar local test statistic t` = t`(f̂(y)) for each of the candidate locations ` = 1, . . . , nL

and then comparing the maximum test statistic tmax = max`=1,...,nL
t` from (2.37) to a data-

independent threshold τ . If tmax > τ , it is decided that the signal is present, otherwise it

is decided that the signal is absent.

Our goal is to optimize the reconstructor Z with respect to the detection performance of

such an observer. Since we are ultimately interested in optimizing reconstruction locally,

we quantify the observer’s signal detection performance by a ROC curve defined around

a given location ` ∈ {1, . . . , nL}. This would be a plot of the probability of detection
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(deciding that the signal is present when it is actually present at `),

PD(τ) , P{tmax ≥ τ |H`}, for some ` ∈ {1, . . . , nL} ,(4.2)

versus the probability of false alarm,

PFA(τ) , P{tmax ≥ τ |H0} .(4.3)

The curve is traced by varying the decision threshold τ .

4.2 Threshold-Exceeding Probabilities of the Maximum Test Statistic

To trace a ROC or LROC curve for the test statistic tmax, one must be able to calculate

the CDF of tmax, from which threshold-exceeding probabilities such as (4.2) and (4.3) can

then be obtained.

The CDF of tmax is straightforward to compute if the local test statistics t`, ` =

1, . . . , nL, are statistically independent, because then the CDF of their maximum is given

simply by the product of their individual CDFs. Khurd and Gindi used this fact to calculate

the area under the LROC curve for observer models of the form (2.37)-(2.38) and images

reconstructed with penalized-likelihood methods, under the assumption of independent,

Gaussian-distributed local test statistics [69].

Swensson investigated an assumption weaker than the independence of the t`’s. Specif-

ically, he assumed that the maximum of the t`’s over all locations that do not contain the

signal is (i) Independent of the presence or absence of the signal in the object and (ii) Inde-

pendent of the value of t` at a location containing the signal [126]. Under these conditions,

Swensson derived the probabilities of false alarm, detection, and correct localization and

showed that there is a point-to-point correspondence between the last two. Thus, maxi-

mizing the probability of detection is equivalent to maximizing the probability of correct
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localization. Consequently, maximizing the area under the ROC curve of tmax is equivalent

to maximizing the area under its LROC curve.

Typical image reconstruction methods, and regularized ones in particular, produce im-

ages where the intensities at neighboring locations are correlated. Thus local test statistics

at neighboring locations are also correlated, with more regularization leading to a wider

autocorrelation function. Analyses that use independence assumptions apply only to tasks

where the candidate locations are at a distance from each other that is greater than the au-

tocorrelation width. For tasks where all the pixels within some search area are candidate

locations, correlations between the local test statistics must be taken into account.

Threshold-exceeding probabilities such as (4.2) and (4.3) are difficult to obtain in

closed form when the t`’s are correlated, even if their joint distribution is available, since

the exact distribution of the maximum of correlated random variables has the form of a

multiple integral. When the CDF of tmax is not easy to compute, the “brute-force” ap-

proach to evaluating these probabilities is to perform a large number of time-consuming

tomographic reconstructions of Monte Carlo simulated projection data and produce re-

alizations of tmax from the reconstructed images. When optimizing some reconstruction

parameter with respect to detection performance, this simulation has to be repeated for

every value of the parameter of interest.

To avoid performing multiple reconstructions, investigators have proposed analytical

approximations of the moments of the local test statistics and used these moments to di-

rectly produce Monte Carlo simulated realizations of the local test statistics. This strategy

has been used to trace the LROC of tmax for images reconstructed from tomographic data

using penalized-likelihood methods [70, 107]. It results in significant time savings when

compared to the brute-force method, but it still requires performing simulations that add

up in terms of computation when they are repeated for various values of one or more
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parameters of interest.

We propose an alternative approach to evaluating the performance of the maximum

observer. Although a closed-form expression for the threshold-exceeding probabilities of

tmax is generally not available for correlated Gaussian random fields, approximations of

these probabilities for high values of the threshold τ have been developed. We use them

here to trace a portion of the ROC curve.

By analyzing the Euler characteristic of excursion sets, Adler has derived approxima-

tions for the distribution tails of the maximum of a correlated random field [5, 6]. In

particular, if tmax = maxx∈S T (x) is the maximum value of a 2-D stationary random field

T (x) = T (x1, x2) over a set S, then the probability of tmax exceeding a high threshold τ

is approximately

(4.4) P{tmax ≥ τ} ≈
2

∑

d=0

Rd(S)ρd(τ),

where the factors Rd(S), d = 0, 1, 2, depend on the geometry of the search area S and the

functions ρd(τ), d = 0, 1, 2, depend on the distribution of T (x).

If the search area S is a disk of radius r, then

R0(S) = 1, R1(S) = πr, R2(S) = πr2.

The approximation (4.4) is most accurate for search areas that are convex with sufficiently

smooth boundaries, as discussed in [6]. If the stationary field T (x) is Gaussian-distributed

with zero mean, variance σ2
T , and autocovariance function RT (x) = RT (x1, x2), then we

can denote the dependence of ρd(·) on the moments of the field by writing

ρd(τ) = ρd(τ ;σT ,ΛT ),

where ΛT is the matrix with ij-th element equal to

{ΛT}ij = −∂2RT (0, 0)/∂xi∂xj, i, j = 1, 2.
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In particular, we have

ρ0(τ ;σT ,ΛT ) , 1 − Φ(τ/σT )(4.5)

ρ1(τ ;σT ,ΛT ) ,
| det ΛT |1/4

2πσT

e−τ2/2σ2
T(4.6)

ρ2(τ ;σT ,ΛT ) ,
| det ΛT |1/2

(2π)3/2σ3
T

τ e−τ2/2σ2
T ,(4.7)

where Φ(·) is the standard normal CDF. Approximations of the form (4.4) have been ap-

plied to the problem of detecting activation in functional neuroimaging [143, 144]. Ac-

cording to Worsley et al., they lead to satisfactory accuracy for tail probabilities as high as

0.2 [144].

The analysis leading to the approximation in (4.4) assumes a continuous random field.

When the field is defined solely on a lattice, the results hold asymptotically as the lattice

becomes finer [6]. Thus, the expression above can be applied to approximate the tail

distribution of the maximum test statistic in (2.37) when the discrete local test statistics

t`, ` = 1, . . . , nL can be considered stationary and their mean and autocovariance is known.

Under the signal-absent hypothesis, the t`’s may be considered stationary to within the

accuracy of some local shift invariance approximations discussed in the following section.

The same can be said in terms of the second-order statistics of the t`’s under the signal-

present hypothesis, assuming that the contribution of the signal profile variability to the

covariance of the t`’s is insignificant. However, the mean of the t`’s cannot be considered

constant throughout the search area in the presence of a spatially localized target signal

like the ones that we are interested in. Thus, (4.4) is not appropriate for the signal-present

hypothesis.

An alternative approach for approximating threshold-exceeding probabilities in the

signal-present case follows the argument of Siegmund and Worsley in [119]. This ap-
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proach decomposes the probability of detection at some location x` as

P{tmax ≥ τ |H`}

= P{T (x`) ≥ τ |H`}+ P{tmax ≥ τ, T (x`) < τ |H`}

= 1 − Φ
(τ − µT (x`)

σT

)

+

∫ ∞

0

P
{

tmax ≥ τ
∣

∣T (x`) = τ − s,H`

}

φ
(τ − s− µT (x`)

σT

)

ds,(4.8)

where Φ(·) and φ(·) are the standard normal CDF and PDF respectively, and µT (x) ,

E[T (x)|H`]. Assuming that the maximum is most likely to occur near x`, i.e., near the

center of the target signal, the integrand in (4.8) will be non-negligible only for small

values of s.

To derive an expression for the conditional probability inside the integral, Siegmund

and Worsley also assume that the field T (x), in the signal-present case and in the immedi-

ate neighborhood of the target signal, can be approximated as quadratic in x. Under these

assumptions, they show that the conditional probability of interest is approximately

P
{

tmax ≥ τ
∣

∣T (x`) = τ − s
}

≈ P

{

−Ṫ (x`)
′ E

[

T̈ (x`)
∣

∣T (x`) = τ − s
]−1

Ṫ (x`) ≥ 2s

}

,(4.9)

where Ṫ (·) and T̈ (·) denote the gradient and Hessian respectively. The conditional expec-

tation in (4.9) can be obtained using

E
[

T̈ (x)
∣

∣T (x)
]

= E
[

T̈ (x)
]

+ Cov
{

T̈ (x), T (x)
} T (x) − E[T (x)]

Var{T (x)}

and the linearity of derivatives. If this conditional expectation is proportional to the identity

matrix, then (4.9) corresponds to a χ2 CDF. Substituting this CDF in (4.8) results in the

following approximation for the probability of detection:

P{tmax > τ |H`} ≈ 1 − Φ
(τ − µT (x`)

σT

)

+ φ
(τ − µT (x`)

σT

) 1

σT

[∂2RT (0)

∂2xi

]/[∂2µT (x`)

∂2xi

]

.(4.10)
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In the following, we will combine (4.4) and (4.10) with locally shift-invariant approx-

imations to compute, respectively, the probabilities of false alarm and detection for ob-

servers with channelized linear local test statistics.

4.3 Channelized Linear Local Test Statistics

As mentioned in section 2.3.8, the observer models commonly used in the literature to

predict human performance in unknown-location tasks utilize a linear channelized local

test statistic. Similarly to channelized linear observers for known-location tasks, such

observer models include a set ofM bandpass filters, attempting to mimic the human visual

system, and some template that typically has the form of a matched filter.

For every location of interest `, the observer samples the output of the M bandpass

filters to obtain a new local feature vector ĉ` ∈ R
M , to which the corresponding local

template w` ∈ R
M is then applied:

t` = w′
`ĉ`,(4.11)

ĉ` = C′
`

(

f̂ − E
[

f̂b

] )

+ ε`,(4.12)

where C` = [C1,`, . . . ,CM,`] consists of M operators. The mth of these operators applies

the impulse response of the mth bandpass filter and samples the output at location `. The

internal noise vector ε` ∈ R
M models inherent uncertainty in the observer’s decisions.

Similarly to [70, 107], the mean of the reconstructed background,

f̂b , Z(Afb + r),

is subtracted from the reconstructed image in (4.12) to signify that the observer determines

the most suspicious location by comparing intensities relative to the background, rather

than by considering absolute intensities.
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From (4.11) and (4.12), we can also view the local test statistic t` as the output of an

image-domain local template v` applied to the background-corrected reconstructed image

and corrupted by noise:

t` = v′
`

(

f̂ − E
[

f̂b

] )

+ δ`,(4.13)

where the image-domain template, a vector in the same space as f̂ , is simply a linear

combination of the channel responses:

(4.14) v` = C`w`,

and the noise is a linear combination of the internal noise of individual channels:

δ` = w′
`ε`.

We can now write (4.13) in matrix-vector form as

(4.15) t = V ′
(

f̂ − E
[

f̂b

] )

+ δ,

where the vector t ∈ R
nL contains the local test statistics t`, ` = 1, . . . , nL, the vector

δ ∈ R
nL contains the noise samples δ`, ` = 1, . . . , nL, and V = [v1, . . . ,vnL

] contains the

nL local templates.

Typically, the internal observer noise vectors ε`, ` = 1, . . . , nL, are assumed to have

Gaussian-distributed entries, in which case δ is also Gaussian. Regardless of the exact

distribution of the data, the term V ′
(

f̂ − E
[

f̂b

] )

can be considered approximately Gaus-

sian due to its linearity and the central limit theorem. Thus the local test statistics can

be considered approximately Gaussian. Assuming that the t`’s form a correlated Gaus-

sian random field, we will use the approximation in (4.4) to evaluate the probabilities of

detection and false alarm in (4.2), (4.3).

The approximation in (4.4) assumes stationarity. For a typical shift-variant tomographic

system, the t`’s are not globally stationary. However, as in chapter (3), we will consider
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the system to be locally shift-invariant and the object background to be locally stationary

over a small area around each of the candidate locations ` = 1, . . . , nL. This implies that

the t`’s are approximately stationary locally around each of the candidate locations.

4.3.1 Moments of the local test statistics

The internal observer noise vectors ε`, ` = 1, . . . , nL, are typically modeled as zero-

mean and statistically independent of each other. Following these assumptions on the

internal noise, we find the mean µt and covariance Πt of the test statistic vector t in (4.15)

to be, respectively,

µt = V ′
(

E
[

f̂
]

−E
[

f̂b

] )

(4.16)

Πt = V ′ Cov
{

f̂
}

V + Πδ,(4.17)

where

Πδ = diag{w′
`Πε`

w`, ` = 1, . . . , nL}

is the nL × nL covariance matrix of δ and Πε`
is the M ×M covariance matrix of the

internal noise vector ε`.

Combining (3.4) and (3.5) with the linear reconstructor (3.9) and the assumption that

fb and fs,` are independent, yields the moments of the reconstructed image f̂ for emission

tomography under the each of the hypotheses in (4.1):

E
[

f̂
∣

∣

∣
H0

]

= Z(Af̄b + r) = E
[

f̂b

]

(4.18)

E
[

f̂
∣

∣

∣
H`

]

= E
[

f̂b

]

+ ZAf̄s,`, ` = 1, . . . , nL(4.19)

Cov
{

f̂
∣

∣

∣
H`

}

= ZΠ`Z
′, ` = 0, . . . , nL,(4.20)

where Π` , Cov{y|H`}. In particular,

Π0 = diag
{

Af̄b + r
}

+AKbA
′(4.21)

Π` = Π0 + diag
{

Af̄s,`

}

+AKs,`A
′, ` = 1, . . . , nL.(4.22)
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Combining (4.18) and (4.19) with (4.16) yields the following forms for the mean of the

test statistic vector under the signal absent and present hypotheses respectively:

µt|H0
= 0(4.23)

µt|H`
= V ′ZAf̄s,`, ` = 1, . . . , nL.(4.24)

Similarly, combining (4.20) with (4.17) yields the following form for the covariance of the

test statistic vector under any of the nL + 1 hypotheses:

(4.25) Πt|H`
= V ′ZΠ`Z

′V + Πδ, ` = 0, . . . , nL.

For typical problem sizes, applying the operators ZA and ZΠ`Z
′ explicitly to com-

pute the moments of t in (4.24) and (4.25) is time-consuming for common statistical image

reconstruction methods. Therefore, this approach is not practical when one needs these

moments to compute measures of detectability for many values of some reconstruction

parameter that is to be optimized.

As in section 3.4, we use locally shift-invariant analysis once again, this time to derive

Fourier-domain approximations to the moments in (4.24) and (4.25). A similar approach to

computing the moments of the local test statistics has been followed in [70, 107]. We will

eventually combine these moment approximations with (4.4) to speed up the computation

of the ROC-related probabilities (4.2) and (4.3), much like we did in section 3.4 to speed

up the computation of the SNR in known-location tasks.

We illustrate the use of this approach in the case where the reconstructor Z belongs

to the QPWLS family in (3.65). Since we are interested in detecting small perturbations

on the object background, we assume that the signal intensity is weak with respect to the

background intensity. Then we can approximate

(4.26) Π , diag{A E[f ] +r} ≈ diag
{

Af̄b + r
}

.
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For a Z of the form (3.65) and under the weak-signal assumption (4.26), the operators of

interest become

ZA = (F + R)−1F(4.27)

ZΠ0Z
′ ≈ (F + R)−1(F + FKbF)(F + R)−1(4.28)

ZΠ`Z
′ ≈ (F + R)−1[F + F(Kb + Ks,`)F ](F + R)−1, ` = 1, . . . , nL.(4.29)

In the following, we will apply locally shift-invariant approximations to the three op-

erators above. As in section 3.4.3, we will assume to have a discrete representation of the

object f ∈ R
np for the purposes of our Fourier-domain analysis.

4.3.2 Signal and Channel Spectra

We consider tasks where the mean target signal f̄s,` has the same shape at all candidate

locations ` = 1, . . . , nL. Then f̄s,` is a copy of a common mean signal profile f̄s shifted to

location `. Similarly, we assume that the responses of the observer’s channels at different

locations in the image are shifted copies of each other.

The above assumptions imply that

f̄s,` = U−1E`X0(4.30)

C` = U−1E`T0,(4.31)

where U is the discrete Fourier operator from (3.52),

E` ,
√
np diag{Ue`}

consists of the complex exponential that corresponds to a circular shift from the origin

(0, 0) to location `, and e` is an impulse centered at location `. Finally, X0 is the spectrum

of f̄s, when the latter is assumed centered at (0, 0), and the M columns of T0 contain

the frequency responses of the observer’s M channels, when their impulse responses are

assumed centered at (0, 0).
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4.3.3 Locally Shift-Invariant Approximations

We now assume that the mean target signal profile f̄s is well-localized in space. Simi-

larly to section 3.4.3, we approximate the system as locally shift-invariant around each of

the locations ` = 1, . . . , nL. We also assume that, under any single hypothesis, the object

can be approximated as locally stationary around each of the locations ` = 1, . . . , nL. The

latter approximation is more likely to be accurate when the signal profile is deterministic

under all signal present hypotheses (i.e., Ks,` = 0, ` = 1, . . . , nL) or when the signal profile

variability is negligible when compared to the background variability.

Thus we approximate, within some small spatial extent, the Fisher operator F by (3.54),

the regularization operator R by (3.66), and the object covariance by

Kb ≈ U−1N0 U(4.32)

Kb + Ks,` ≈ U−1N` U , ` = 1, . . . , nL,(4.33)

where N` , diag
{

ν`
k, k = 1, . . . , np

}

. The ν`
k’s contain the local power spectrum of the

object under hypothesis H`.

Applying the locally shift-invariant approximations (3.54), (3.66), (4.32) and (4.33) to

the right-hand sides of (4.27) and (4.28) yields, respectively,

ZA ≈ U−1H−1
Λ U(4.34)

ZΠ`Z
′ ≈ U−1H−2(Λ + Λ

2N`)U , ` = 0, . . . , nL,(4.35)

where H , Λ + Ω.

4.3.4 Local Templates

As mentioned in section 2.3.8, observer models that compute the maximum of CHO- or

CNPW-type local test statistics are the ones whose correlation with humans in unknown-
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location tasks has been investigated in the literature. These are the observer models on

which we focus hereafter.

Maximum Channelized Hotelling Observer

The MaCHO applies a local template of the CHO form (2.34) at each candidate location

within the search area and then compares the maximum test statistic to a threshold. The

local template applied by this observer at some location ` is thus

wCHO,` ,

(1

2
Cov{ĉ`|H`}+

1

2
Cov{ĉ`|H0}

)†(
E[ĉ`|H`]−E[ĉ`|H0]

)

= (C′
`ZΠ̌`Z

′C` + Πε`
)†C′

`ZAf̄s,`,(4.36)

where Π̌` , 1
2
Π` + 1

2
Π0.

In the case of a reconstructor Z of the QPWLS family (3.65), applying the locally-shift

invariant approximations of (4.34) and (4.35) yields the following approximation to the

MaCHO local template in (4.36):

(4.37) wCHO,` ≈
[

T ′
0H

−2(Λ + Λ
2Ň`)T0 + Πε`

]†
T ′

0H
−1

ΛX0,

where Ň` , 1
2
N` + 1

2
N0.

Maximum Channelized Non-Prewhitening Observer

The MaCNPW observer applies a local template of the CNPW form (2.35) at each

candidate location within the search area and then compares the maximum test statistic to

a threshold. The local template applied by this observer at a location ` is thus

wCNPW,` , E[ĉ`|H1,`]−E[ĉ`|H0]

= C′
`ZAf̄s,`.(4.38)

In the case of a reconstructor Z of the QPWLS family (3.65), applying the locally-shift

invariant approximation of (4.34) yields the following approximation to the MaCNPW
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local template in (4.38):

(4.39) wCNPW,` ≈ T ′
0H

−1
ΛX0.

4.3.5 Internal Observer Noise

Similarly to the known-location case in chapter 3, we consider here two different mod-

els for the observer’s internal noise. For the first model,

(4.40) Πε`
= σ2

intI ,

that is, some constant internal noise variance σ2
int is assumed for all channels and all loca-

tions `.

For the second model,

(4.41) Πε`
= cintT

′
`ZΠ̌`Z

′T`,

that is, the internal noise covariance is assumed to be proportional to the covariance in

the channel outputs due to imaging noise and object variability, for some constant of pro-

portionality cint. In this case, we can also apply the locally shift-invariant approximation

in (4.35) to rewrite the covariance (4.41) as

(4.42) Πε`
≈ cintT

′
0H

−2(Λ + Λ
2Ň`)T0.

4.3.6 Frequency-Domain Approximations to Test Statistic Moments

Substituting the frequency-domain representations (4.30), (4.31), (4.34) and (4.35) into

the moments (4.24) and (4.25) yields

µt|H`
≈ V ′U−1E`H

−1
ΛX0, ` = 1, . . . , nL, ,(4.43)

Πt|H`
≈ V ′U−1H−2(Λ + Λ

2N`)UV + Πδ, ` = 0, . . . , nL.(4.44)
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In the approximations (4.43) and (4.44), we take Λ, N`, and Ω to contain the local fre-

quency responses of the respective operators at location `c, where `c ∈ {1, . . . , nL} cor-

responds to the center of the observer’s search area. We assume that these frequency

responses capture the approximate behavior of the respective operators throughout the

search area, if the latter is not too big.

We can simplify further by using locally shift-invariant approximations for the tem-

plates w` as well, such as (4.37) for MaCHO or (4.39) for MaCNPW. If we use the same

versions of Λ, N`, and Ω (i.e., the ones corresponding to the center `c) in these expres-

sions for every w`, ` = 1, . . . , nL, then we are approximating the templates as location-

independent throughout the search area, i.e., w` ≈ w`c , ` = 1, . . . , nL. In the case of the

MaCHO, for the templates to be location-independent, the internal noise covariance Πε`

must be so as well. This is exactly true in the case (4.40) or holds approximately in the

case (4.42). So we can write

v` ≈ C`w`c = U−1E`T0w`c = U−1E`V0

=
√
np U−1 diag{V0}Ue`,

where V0 , T0w`c . This implies

(4.45) V ≈ √
np U−1 diag{V0}UISA,

where ISA , [e1| . . . |enL
] has as its columns the impulses e`, ` = 1, . . . , nL, correspond-

ing to the nL locations in the search area.

We can now combine (4.45) with the moment approximations in (4.43) and (4.44) to

write

µt|H`
≈ np I ′

SAU−1
Φ Ue`, ` = 1, . . . , nL,(4.46)

Πt|H`
≈ np I ′

SAU−1
Ψ UISA + (w′

`c
Πε`c

w`c)I , ` = 0, . . . , nL,(4.47)
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where

Φ , diag

{

V ∗
k Xkλk

λk + ωk

, k = 1, . . . , np

}

Ψ , diag

{ |Vk|2λk(1 + λkν
`
k)

(λk + ωk)2
, k = 1, . . . , np

}

,

and Vk, Xk are the kth elements of V0, X0 respectively.

4.4 Approximations of Detection Performance

We use the approximation in (4.4) to calculate the probability of false alarm (4.3) for

channelized linear local test statistics and high detection thresholds τ . In particular, we

write:

(4.48) PFA(τ) ≈
2

∑

d=0

Rd(S)ρd(τ ;σT |0,ΛT |0),

where we obtain σT |`, ΛT |`, ` = 0, from the local Fourier approximation (4.47):

(4.49) σ2
T |` ≈

np
∑

k=1

|Vk|2λk(1 + λkν
`
k)

(λk + ωk)2
+ w′

`c
Πε`c

w`c .

In the special case where the target signal is variable in its location only and not in its

shape, i.e., Ks,`c = 0, we have ν`c
k = ν0

k . As a result, σT |`c = σT |0 and ΛT |`c = ΛT |0.

It would be possible, as in [148], to construct a similar approximation for the probability

of detection (4.2), i.e., to write

(4.50) PD(τ) ≈
2

∑

d=0

Rd(S)ρd(τ − µT |`c ;σT |`c ,ΛT |`c),

obtaining σT |`c , ΛT |`c as above and µT |`c from the local Fourier approximation (4.46):

(4.51) µT |`c ≈
np
∑

k=1

V ∗
k Xkλk

λk + ωk

.

The approximation in (4.50) would be satisfactory if the mean of the test statistic field,

µT (x) , E[T (x)|H`], were constant throughout the search area under each of the signal
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present hypotheses. However, as mentioned previously, the mean cannot be considered

constant throughout the search area in the presence of a spatially localized target signal.

In this case, using a constant µT (x) = µT (x`c), as implied by (4.50), would lead to an

overestimation of the probability of detection. The right-hand side of (4.50) is thus an

upper bound for PD(τ), but it is by no means a tight one.

Thus, instead of using (4.50) for the probability of detection, we follow the approxi-

mation (4.10) for threshold-exceeding probabilities in the signal-present case, combining

it with locally shift-invariant approximations of the local test statistic moments:

PD(τ) ≈ 1 − Φ
(τ − µT |`c

σT |`c

)

+ φ
(τ − µT |`c

σT |`c

) 1

σT |`c

[∂2RT |`c(0)

∂2xi

]/[∂2µT |`c(x`c)

∂2xi

]

.(4.52)

We use (4.51) and (4.49) for µT |`c and σT |`c respectively. Finally, we obtain the two deriva-

tives in (4.52) by applying finite differences to (4.47) and (4.51) respectively.

4.5 Results

We provide an example of using the above approximations to evaluate the effect of

regularization on the detection performance of the MaCHO and the MaCNPW observer,

when applied to QPWLS-reconstructed images. We consider the same 2-D PET system

model and mean background as in the examples of the previous chapter. The background

fb has a Gaussian autocorrelation function with a FWHM of 12 pixels and a standard

deviation of 0.075. The target signal fs,` has a known Gaussian profile with a FWHM of

4 pixels and an amplitude of 0.3, but unknown location `. The search area is assumed to be

a disk. Any pixel inside the disk is a candidate location for the target signal. Fig. 4.1 shows

the mean background, the signal profile, and the largest of the concentric disk search areas

that we consider here.
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Figure 4.1: Mean background and target signal for an example of an unknown-location task. The figure
shows the mean background (left) and a profile through the mean background (right) with the
target signal superimposed. The largest of the search areas considered (diameter of 23 pixels) is
also shown on the left.

We investigate observer models that combine CHO or CNPW local templates with

one of the three channel sets (SQR, S-DOG, or D-DOG) and one of the two internal noise

models (constant-variance or proportional-variance) discussed in section 4.3.5. We assume

a variance of σ2
int = 0.005 with the model in (4.40) and a proportionality constant of

cint = 1.5 with the model in (4.41). Detection performance is evaluated for QPWLS

reconstruction with the uniform quadratic regularizer in (3.79) and various values of the

regularization parameter β.

We first show plots of the AUC, to illustrate that the conclusions from our analysis of

the SNR for the known-location task (chapter 3) generalize to the AUC for the unknown-

location task.
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4.5.1 Area Under the ROC Curve

The analytical approximations (4.48) and (4.52) apply only to high thresholds τ , so

they cannot be used to trace the entire ROC and find the AUC. As a result, the AUC has to

be computed by simulations.

Instead of reconstructing simulated data sets, we obtain the moments of the local

test statistics for a range of different β’s from the local shift-invariant approximations

in (4.46) and (4.47). We then produce 5 × 105 realizations of the local test statistics, t`,

` = 1, . . . , nL, under each of the signal present and signal absent hypotheses, drawing

from a Gaussian distribution with the respective moments. This yields multiple realiza-

tions of tmax under each hypothesis. For each β, we compare the realizations of tmax to a

range of different thresholds τ to estimate PD(τ) and PFA(τ). We then compute the AUC

for each β by numerical integration of PD(τ) versus PFA(τ).

Khurd and Gindi followed a similar approach to compute the area under the LROC

curve, using local shift-invariant approximations of the local test statistic moments for

HO, CHO, NPW, and CNPW local templates [70]. They compared the results to those

produced by applying the observer templates to reconstructions of multiple noisy data

sets. They reported very good agreement (for a range of signal contrasts) and a 103-fold

reduction in computation time when using local shift-invariant analysis. Thus, we will not

repeat the comparison of this method to reconstructions of simulated data sets.

We perform simulations to find the AUC of the MaCHO and the MaCNPW observer

versus the amount of regularization. We also consider MaCPPW observers, i.e., maximum-

statistic observers that use a local test statistic of the CPPW form in (3.105), for three in-

termediate values of γ. Fig. 4.2 shows the AUC for each of these observers, with a search

area diameter of 9 pixels and QPWLS reconstruction with the roughness penalty in (3.79)

and various values of β. The plots on the left correspond to the constant internal vari-
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Figure 4.2: AUC of MaCPPW observers versus QPWLS reconstruction resolution. Results are shown for
five different degrees of prewhitening accuracy and two different internal noise models. The
search area is a disk with a diameter of 9 pixels. The AUC is computed by simulations, using
the moment approximations in (4.46) and (4.47).

ance model, whereas the ones on the right correspond to the proportional internal variance

model. The abscissa of the plots represents the resolution of the QPWLS reconstruction at

the center of the search area, as defined in section 3.4.6. We show only plots for the SQR

channel set, but the results are similar with the S-DOG and D-DOG channel sets.

These plots show a pattern similar to the one seen in the SNR plots of section 3.4.10.

That is, for the MaCHO observer, the peak AUC achieved with regularized QPWLS is very

close to the AUC achieved with unregularized WLS. However, as the prewhitening capa-

bilities of the observer deteriorate, the improvement in the AUC achieved by the optimal

amount regularization becomes more and more significant.

The improvement afforded by optimal regularization for observers with imperfect pre-

whitening varies somewhat with the size of the search area. Fig. 4.3 shows the maximum

increase in the AUC of the MaCNPW observer versus the diameter of the search area, for

the SQR channel set and two different internal noise models. The increase is defined as the

ratio (AUC∗ − AUC0)/AUC0, where AUC∗ and AUC0 denote the AUC achieved by the
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Figure 4.3: AUC improvement of the MaCNPW observer versus search area diameter. Results are shown
for two different internal noise models. The improvement is quantified as the ratio (AUC∗ −
AUC0)/AUC0, where AUC∗ and AUC0 denote the AUC achieved with optimally regularized
QPWLS and unregularized WLS respectively. The AUC is computed by simulations, using the
moment approximations in (4.46) and (4.47).

MaCNPW observer with optimally regularized QPWLS and unregularized WLS respec-

tively. The plots show that, with both internal noise models, the maximum improvement

is achieved for some intermediate search diameter (in this case, 9 pixels).

Fig. 4.4 shows how the optimal amount of regularization varies with the size of the

search area. Considering the range of QPWLS resolutions that achieve near-peak AUC for

the MaCNPW observer, as seen in Fig. 4.2, the variation in optimal QPWLS resolution

versus search diameter, as seen in Fig. 4.4, is not dramatic. Thus, a moderate uncertainty

about the observer’s search area would not result in a significantly different conclusion

about the optimal amount of regularization.

The optimal QPWLS resolution in Fig. 4.4 ranges between 3 and 5 pixels, in most

cases being closer to 4 pixels. Fig. 4.5 shows examples of QPWLS reconstructions with

resolutions of 3, 4, and 5 pixels, all from the same data set with Poisson noise and the

signal present in the center of the search area.
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Figure 4.4: Optimal QPWLS resolution for the MaCNPW observer versus search area diameter. Resolution
is optimized in a maximum-AUC sense. Results are shown for two different internal noise
models. The AUC is computed by simulations, using the moment approximations in (4.46)
and (4.47).

4.5.2 High-Threshold Segment of the ROC Curve

Besides the area under the entire ROC curve, a partial area under the curve or even a

single point on the curve (i.e., the probability of detection at a fixed probability of false

alarm) can be used as alternative figures of merit for detection performance. For example,

one may be interested only in the observer’s performance at low probabilities of false

alarm. In the following, we use both the simulation method outlined in the previous section

and the analytical approximations (4.52), (4.48) to plot the probability of detection at a

fixed probability of false alarm versus the amount of regularization. Both the empirical and

analytical methods perform a fast computation of the moments of the local test statistics

based on local shift-invariance approximations. Thus the comparison herein focuses on the

approximation introduced by (4.52) and (4.48), rather than the approximation introduced

by assuming a shift-variant system to be locally shift-invariant. (As mentioned above, the

latter approximation is investigated in [70].)

As an example, we consider the MaCNPW observer with the SQR channel set and no
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Figure 4.5: QPWLS reconstructions of a noisy Poisson data set with a resolution of 3, 4, or 5 pixels. The
signal is present in the center of the search area.
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Figure 4.6: Empirical and analytical probabilities of false alarm and detection versus detection threshold.
Results are shown for the MaCNPW observer with the SQR channel set, without internal noise,
and for two different search area sizes.

internal noise. Using the analytical approximations (4.52) and (4.48), we calculate PD(τ)

and PFA(τ) for different values of the threshold τ . We repeat this for each value of β.

Fig. 4.6 compares these results to the empirical PD(τ) and PFA(τ) obtained from the sim-

ulations, for an intermediate QPWLS resolution of 3 pixels and for two different search

area sizes. Fig. 4.6(a) and Fig. 4.6(c) show the probabilities of false alarm and detec-

tion, respectively, for a search diameter of 7 pixels. Fig. 4.6(b) and Fig. 4.6(d) show the

probabilities of false alarm and detection, respectively, for a search diameter of 15 pixels.

The approximation (4.52) to the probability of detection assumes that the test statistic

field is quadratic around the target signal location. This quadratic approximation is more
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Figure 4.7: Plot of PD (with error bars) versus QPWLS resolution for a fixed PFA = 0.02. Results are
shown for the MaCNPW observer with the SQR channel set and without internal noise, for two
different search area sizes.

accurate for a search diameter of 7 pixels, as shown in Fig. 4.6(c), since this search area

size is comparable to the support of the target signal. For a larger search area, however,

this approximation breaks down, as shown in Fig. 4.6(d).

We can now apply interpolation to these results, to find the probability of detection at

a fixed value of the probability of false alarm for every β. Fig. 4.7 shows the linearly

interpolated PD for a fixed PFA = 0.02 versus QPWLS resolution, as obtained separately

from the empirical and analytical results.

Even if the analytical approximations are not always accurate at predicting the value of

the probability of detection, they follow the shape of the empirical curves and are maxi-

mized at nearly the same QWPLS resolution. Thus, analytically computed plots like the

ones in Fig. 4.7 can be useful for choosing the regularization parameter β to optimize the

probability of detection for a given low probability of false alarm within a small search

area around some pixel. By increasing the probability of detection at some probability of

false alarm, the area under the entire ROC curve is also increased.

For the small search diameter of 7 pixels, the analytical approach offers a 10-fold re-



124

1 2 3 4 5 60.02

0.04

0.06

0.08

0.1

0.12

0.14

P D fo
r f

ixe
d 

P FA
 =

 0
.0

2

Resolution (pixels)

Empirical PD
Analytical PD

(a) Search diameter: 7 pixels

1 2 3 4 5 60

0.01

0.02

0.03

0.04

0.05

0.06

P D fo
r f

ixe
d 

P FA
 =

 0
.0

2

Resolution (pixels)

Empirical PD
Analytical PD

(b) Search diameter: 15 pixels

Figure 4.8: Plot of PD (with error bars) versus QPWLS resolution for a fixed PFA = 0.02. Results are
shown for the MaCNPW observer with the SQR channel set and the constant internal variance
model, for two different search area sizes.

duction in computation, when compared to the empirical approach of simulating the local

test statistics from the Fourier approximations of their moments. The computational sav-

ings increase with the size of the search area. They also increase with the number of

realizations produced for the empirical approach.

For the example presented above, we did not include internal noise in the observer

model. The reason is that internal noise would manifest itself as an impulse at the center

RT (0) of the autocovariance function. In this case, the analytical approximations would

break down, because they require the autocovariance function to be smooth so that its

second derivative can be computed. Fig. 4.8 plots the interpolated PD for a fixed PFA =

0.02 versus QPWLS resolution, for the same observer as above but with the addition of

internal noise with constant covariance and σ2
int = 0.005.

Fig. 4.8 shows that the analytical approximation breaks down, especially for large

amounts of regularization, where the internal noise dominates. The amount of internal

noise determines whether the approximation is still usable for finding the optimal QPWLS

resolution. This issue arises because, following convention, we assumed that the inter-
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nal observer noise is uncorrelated between different candidate locations. Whether this

assumption is crucial, however, must ultimately be validated by human observer studies.

4.6 Discussion

As indicated by the results of this chapter, conclusions drawn from our analysis of the

SNR for the known-location task can be extended to the AUC for the unknown-location

task. In other words, the observer’s prewhitening capabilities are important in determin-

ing whether optimized regularization can improve detectability over unregularized recon-

struction. However, the size of the search area also plays a role, with regularization being

somewhat less beneficial for observers with very small or very large search areas.

We have considered here observers that search for the target signal within a local search

area, rather than within the entire image. We have made this choice for two reasons. First,

our locally shift invariant approximations to the moments of the local test statistics are

accurate within a local region. If the system is shift-variant and/or the object background is

not stationary, these approximations are not accurate within the entire image. Second, our

ultimate goal is to use the analyses above to optimize the amount of regularization locally

at each pixel in the image. It seems reasonable for the optimal amount of regularization at

some pixel to be determined by the image statistics within a local area around that pixel.

However, it is not clear whether an observer model that bases its decisions on a well-

delineated search area, disregarding pixels beyond this area, is an appropriate model for a

human. An unintuitive characteristic of such models is that when the search area is small

in comparison to the width of the autocorrelation function, the maximum tmax is most

likely to occur along the boundary of the search area. The nature of the search performed

by human observers in unknown-location tasks needs to be further investigated to improve

these models.
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Using the analytical approximations proposed in this chapter, one can rank and opti-

mize image reconstruction methods with respect to unknown-location detectability with-

out the need for time-consuming Monte Carlo simulations. Improving the accuracy of

these approximations for a wider range of search area sizes and for non-zero internal noise

are topics for future investigation. Furthermore, since the threshold-exceeding probability

approximations used here have been derived for continuous random fields, the analysis can

be applied naturally to tomographic reconstruction methods that yield continuous-space

images f̂ .



CHAPTER 5

Conclusion

5.1 Summary

Our analysis of tasks where the location of the target signal is known a priori shows

that regularization is not necessary for the HO, NPW, and ROI observers. These observers

can achieve exactly optimal detection performance in the known-location task on images

reconstructed by some form of unfiltered backprojection. This result holds even when the

background and/or the target signal profile is random.

The conclusion extends to the CHO and CNPW observers with a proportional inter-

nal covariance model. The difference is that the unregularized reconstructors that ensure

exactly optimal performance for these channelized observer models are more unconven-

tional than simple backprojection. In the case of the CHO, however, more conventional

unregularized reconstructors can be shown to approximately achieve the optimal perfor-

mance attainable with a certain channel set and internal noise level, to within the accuracy

of some approximations of local shift invariance.

Besides seeking image reconstruction methods that optimize the detection performance

of channelized observer models, we have also investigated the impact of a family of prac-

tical regularized reconstruction methods on this performance. We have shown that op-

timizing the amount of regularization applied by such a method has limited impact on

127



128

the CHO, which can achieve similar performance with the unregularized reconstructor in

this family and with the optimally regularized one. This is not the case for the CNPW

observer, however. Because of its inability to prewhiten, this observer can achieve perfor-

mance comparable to that of the CHO only when the channel outputs are close to white.

As we have illustrated, this occurs only for some intermediate amount of regularization.

We have extended this result to a family of observers that can only partially prewhiten

the channel outputs. Our conclusion is that the less accurate the observer’s prior knowledge

of second-order image statistics, the more significant the impact of choosing the optimal

amount of regularization for detection performance.

Other than the observer’s prewhitening capabilities, the statistics of its internal noise

also play an important role. The two internal noise models that we have considered, one

with covariance that changes with the reconstruction method and one with constant covari-

ance, have led to different behavior with respect to regularization. On the other hand, the

choice of channel profiles seems to be less important in this regard. The channel sets that

we have considered, either with non-overlapping or with overlapping radially symmetric

passbands, and with different numbers of channels, have led to similar general trends in

the variation of detection performance versus regularization.

Several of our arguments regarding the impact of regularization on signal detectability

are based on local shift invariance approximations. Comparisons of the approximate and

the exact expressions for the SNR indicate that these approximations can be trusted in a

variety of cases. Because the exact expressions become particularly cumbersome when

they must be applied to multiple values of a reconstruction parameter and multiple loca-

tions within the object, the frequency-domain approximations derived here facilitate the

theoretical evaluation and ranking of reconstruction methods significantly.

Finally, several of the conclusions we have drawn from analyzing detectability versus
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regularization for known-location tasks, also apply to unknown-location ones. This il-

lustrates the importance of the simple known-location task, which is more amenable to

analysis, in providing intuition about more complicated tasks. We have also investigated

analytical approximations which should facilitate the study of model observer performance

in tasks with location variability,

5.2 Future Work

Our analysis indicates that there is no universally optimal reconstruction method, since

the optimal choice varies with the observer and detection task at hand. In other words,

choosing the reconstruction method to optimize detection performance translates to choos-

ing the observer model and the detection task for which the reconstructed images will be

optimal. A necessary step towards applying our analyses to tune regularized reconstruction

methods is establishing appropriate choices for the observer and task. Also, it would be of

interest to investigate the sensitivity of the resulting optimal regularization parameters to

these choices.

When reconstructed images are to be viewed by human observers, the appropriate ob-

server model is the one that best predicts human performance. Note that the model does

not need to capture every possible aspect of the human visual system, but it needs to behave

similarly to humans in response to varying amounts of regularization in the reconstruction.

Our analysis provides several clues regarding the sensitivity of the optimal regularization

to the choice of observer model. In particular, our analysis illustrates the important effect

of the observer’s prewhitening capabilities and internal noise model on the optimal choice

of regularization. In tasks with location variability, the size of the search area also appears

to be important. Given a detection task, one should make sure that these aspects of the

observer model agree with the ones exhibited by humans in the specific task. Although
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we have focused here on 2-D observer models, our analysis can be extended to models

that act on 3-D reconstructed images. The analysis can serve as a guideline for observer

properties to investigate when designing experiments that test the correlation of model and

human observers.

The choice of an appropriate task involves various factors, such as target signal profile

and location variability, background variability, and imaging system properties. Appropri-

ate choices for these factors depend on the application of interest. Using our analysis, one

can investigate how the optimal regularization parameters vary with each of these factors,

e.g., with the width of the mean signal profile or with the resolution of the imaging system.

Various models for the background variability of medical images have been incorporated

in model observer templates either through ensemble statistics or through sample statistics

with the use of simulated images [2,18,113]. It would also be of interest to know whether

these different choices result in significantly different optimal regularization parameters.

Furthermore, it would be interesting to explore whether imperfect knowledge of any

properties of the target signal, background, and/or imaging system on the side of the ob-

server or the reconstructor results in an increased importance of optimizing regularization.

For example, we have already shown in section 3.4.10 that imperfect knowledge of the

second-order image statistics on the side of the observer makes it more important to choose

an optimal, non-zero value for the regularization parameter.

Another example of this would be imperfect knowledge about the imaging system on

the side of the reconstructor. We have shown that a simple backprojection is the optimal

reconstruction method for several observers and tasks, but this holds for a backprojection

that uses the exact adjoint A′ of the system operator A that produced the data. In practice,

even if the exact system operator were known, it would be typically very difficult to im-

plement. As a result, practical reconstruction methods use simplified models of imaging
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systems, leading to less than optimal detection performance. It would thus be of interest to

know how errors in the system model used by the reconstructor affect the optimal regular-

ization parameters with respect to detection performance. Furthermore, it is plausible that

different system models result in improved detectability for different kinds of signals. For

example, one could design the volume elements assumed by the system model to achieve

optimal detectability of specific signal profiles.

Our locally shift-invariant analysis has focused on tasks where the mean signal profile

f̄s resembles an impulse. However, it is straightforward to extend it to a f̄s that is a

linear combination of signals resembling impulses. This model encompasses the so called

Rayleigh tasks, where the observer must discriminate between a signal consisting of one

bump and a signal consisting of two bumps. Rayleigh tasks have been analyzed for ideal

(GLRT) observers [117]. These tasks, potentially combined with location uncertainty, are

intuitively appealing for the purposes of optimizing parameters that control resolution in

reconstructed images.

The approximations to the probabilities of detection and false alarm that we used in

chapter 4 assume that the observer searches for the maximum local test statistic over a set

of possible locations. However, generalizations to this approximation exist that support

searching over signal width uncertainty [119] or even rotation uncertainty [116] in addition

to location uncertainty. These generalizations could be used to incorporate more flexible

models in the optimization of regularization with respect to unknown-location detection

performance.

Furthermore, the asymptotic approximations for the distribution tails of tmax that we

used in chapter 4 hold for the maximum of Gaussian random fields. The justification for

the approximate Gaussianity of the local test statistics was based either on the linearity

of the t`’s and the central limit theorem, or on the approximate Gaussianity of images
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reconstructed by penalized-likelihood methods. However, it is plausible that such assump-

tions of approximate Gaussianity might not be accurate enough when one is dealing with

distribution tails. For such cases, it should be noted that the literature provides asymp-

totic approximations for the distribution of the maximum of random fields with different

statistics, including smoothed Poisson [110].

The analytical performance approximations that we have proposed can be applied to

tune user-specified parameters of image reconstruction methods, or even design parame-

ters of tomographic imaging systems, with respect to detection performance in known- or

unknown-location tasks. In particular, we would like to establish methods for designing

the penalty functions of penalized-likelihood image reconstruction methods with respect

to detection performance. The resulting penalties would most likely be space-variant, as

is the case when adjusting the penalty to achieve uniform and isotropic spatial resolu-

tion [124]. However, the detectability and spatial-resolution criteria would not necessarily

yield the same optimal penalties, as suggested by preliminary results of Qi [105], where

penalties that achieve isotropic resolution are shown to degrade detection performance in a

simple SKE/BKE task. Extending the analysis to penalized-likelihood reconstruction with

non-quadratic, edge-preserving penalties is a topic for future investigation.

Developing analytical methods for optimal penalty design with respect to signal de-

tectability would eliminate the need for a subjective and time-consuming trial-and-error

search and thus increase the usability of penalized-likelihood image reconstruction algo-

rithms. Similar methods can be developed to tune the resolution of other reconstructor

families, such as the popular post-filtered maximum-likelihood. Ultimately, the effective-

ness of such methods in improving detection performance would have to be validated by

experiments with human observers.
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APPENDIX A

A Comparison of Two System Models for 3-D SPECT

A.1 Introduction

In this appendix we compare system models for 3-D Single-Photon Emission Com-

puted Tomography (SPECT) that compensate for non-uniform photon attenuation as well

as the depth-dependent response inherent in SPECT systems. In particular, we consider

here rotation- and blob-based implementations of the system model.

Several rotation-based models have been found to achieve superior accuracy when com-

pared to the simple line-integral model in 2-D reconstruction [30]. Furthermore, mod-

els that represent images in terms of spherically symmetric blobs have been applied to

3-D Positron-Emission Tomography (PET) and have been found to possess better bias-

variance properties than models using cubic voxel representations [91]. The blob-based

methods are computationally tractable for shift-variant PET system models when the “foot-

print” (2-D projection) of the 3-D blob is pre-computed and saved. However, it is not clear

if the same holds true for SPECT, where the depth-dependent blur causes these footprints

to expand considerably with increasing distance from the detector. Also, for the purpose

of SPECT reconstructions, it is of interest to know how these blob-based models compare

in terms of bias-variance properties and speed to the rotation-based models.

We have implemented both types of system models for fully 3-D SPECT. We present
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an overview of the two implementations in Section A.2 and we analyze them in terms of

computational load and memory usage in Sections A.3 and A.4 respectively. We present

results from reconstructions of simulated phantom data in Section A.5 and further discuss

those results in Section A.6.

A.2 System Models

For both types of system models we have implemented the back-projector as the exact

adjoint of the respective projector. Using a simpler back-projector can speed up recon-

struction but it does not preserve the convergence properties of the iterative reconstruction

algorithm and it introduces artifacts that may accumulate with every iteration [155]. To

ensure a comparison untarnished of such artifacts, we utilized adjoint pairs.

Both types of system models compensate for non-uniform attenuation. For the sake

of speed, the attenuation factors are pre-computed for every volume element (cubic voxel

or blob) at every projection angle. Utilizing the central ray approximation, an attenuation

factor is computed by summing over the attenuation map along the perpendicular line from

the center of the volume element to the detector.

A.2.1 Rotation-Based Projector

The rotation-based projector we use follows the processing steps listed in [154] and

performs the rotation step using the fast and accurate three-pass separable rotation method

described in [130]. The three-pass method decomposes the rotation of a 2-D image into

three sets of 1-D interpolations. These interpolations are equivalent to applying appropri-

ate non-integer shifts first to each row, then to each column, and then again to each row of

the image.

Projectors utilizing the three-pass method with linear and cubic interpolation have been

compared in [30] and the latter outperformed the line-integral projector in projection accu-
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racy. However, cubic interpolation introduces negative values in the rotated image, which

is unnatural in emission tomography, where image values represent photon counts. Thus,

we use linear interpolation hereafter.

The rotation-based 3-D SPECT projector implemented for this comparison compen-

sates for depth-dependent detector response. For every projection angle, it first rotates the

input emission volume around its z-axis by applying the three-pass method to every slice

of the volume separately. It then applies to every voxel the appropriate attenuation factor.

Subsequently, every image plane that corresponds to a different distance from the detector

face is blurred by a 2-D convolution kernel that models the detector response at the corre-

sponding distance. Finally, the voxels are summed along the direction that is perpendicular

to the detector to produce a 2-D projection of the emission volume.

A.2.2 Blob-Based Projector

Rotationally symmetric volume elements can provide a basis that is more natural than

cubic voxels for representing smooth radioactivity distributions. Moreover, their symme-

try makes them appealing for some image reconstruction applications since the line inte-

grals through them are independent of projection angle and only depend on the distance of

the line of integration from the center of the element [82, 83].

Desired properties of the rotationally symmetric basis functions are effective band-

limitedness (to match the band-limitedness of tomographic data) and finite spatial support

(to facilitate computation). By these criteria, a choice that is nearly optimal yet easy to

compute is the Kaiser-Bessel blob:

bR,α,m(r) =











[
√

1 − ( r
R
)2]m Im[α

√

1 − ( r
R
)2] / Im(α), 0 ≤ r ≤ R

0, otherwise,
(A.1)

where Im denotes the modified Bessel function of the first kind of order m, R controls
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the blob support, α controls the blob taper, and m controls the number of continuous

derivatives at r = R.

We have implemented a 3-D SPECT projector utilizing Kaiser-Bessel blobs, similar to

the one described for PET in [91]. The additional step in our projector is that the blobs

at each different distance from the detector now need to be blurred by the corresponding

point-spread function (PSF) of the SPECT detector.

Of course, different points within a 3-D blob lie at different distances from the detec-

tor and therefore correspond to different PSFs. However, when the Full Width at Half-

Maximum (FWHM) of the depth-dependent system blur changes slowly with distance

relatively to the blob size, as illustrated in Fig. A.1, we can assume that the blur FWHM

is approximately the same throughout a blob as it is at the blob’s center. This approxima-

tion simplifies the implementation significantly, since it makes projecting the blurred blob

equivalent to blurring the projections of the blob. Thus, we can pre-compute and save a

set of finely sampled 2-D footprints of the blob, blurred by the detector PSF at each of a

set of distances from the detector.

The spacing of the stored samples for a single footprint, as well as the number of dif-

ferent distances for which footprints are stored, depends on the required accuracy of the

implementation. Clearly, although the continuous projections of the rotationally symmet-

ric volume elements are angle-independent, the discrete projections are not necessarily so.

In general, the same footprint is sampled at slightly different points (by a small shift) at

different angles. However, we do not have to store a different footprint for each angle, as

we may have done if applying this method to, say, cubic voxels. Storing a finely sampled

version of the footprint and picking out samples based on the nearest-neighbor criterion

will yield adequate accuracy for SPECT. A similar nearest-neighbor approach is taken

with respect to distance from the detector when choosing which of the stored footprints to
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Figure A.1: Approximating the FWHM of the system blur as constant throughout a single blob. If the
FWHM of the system blur does not increase very fast with distance (relatively to the size of the
blob), we assume that it is approximately constant throughout the blob.

use. In some sense, this approximation is used implicitly by the rotation-based model as

well, since after rotation by a non-trivial angle, some edges of the cubic voxel will be at

different distances from the detector than others.

We also model the attenuation as being constant throughout a single blob, as we did

for cubic voxels in the rotation-based implementation. We arrange the blobs over a uni-

form 3-D Cartesian grid for simplicity, although more efficient blob arrangements are also

possible [90].

Taking all of the above into account, a projection operation with the blob-based model

is performed as follows. At each projection angle and for each blob in the volume, we

select the footprint that corresponds to the distance of the blob from the detector in a

nearest-neighbor sense. For every sample on this footprint that corresponds to a projection

bin in a nearest-neighbor sense, we multiply the sample by the appropriate attenuation

factor and the coefficient cj of the blob and add the product onto the projection plane.

In general, we assume that the object x(~r) can be represented as a linear combination

of shifted copies of some volume element b(~r):

x(~r) =
∑

j

cjb(~r − ~rj)

and we attempt to reconstruct the coefficients cj from noisy projections of the object. The

rotation-based model assumes b(~r) to be a rect function, whereas the blob-based model as-
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sumes b(~r) to have the form (A.1), where r = ||~r||. Therefore, an extra step of convolving

the reconstructed coefficients with the blob function is needed when using the blob-based

model, if the images are to be displayed or compared to images represented in voxel space.

A.3 Computation

We provide here an assessment of the number of floating-point operations (additions

and multiplications) required by each implementation to compute one projection of an

nx × ny × nz image.

The operations performed by the rotation-based projector are as follows.

• Rotation: Let ni be the length of the 1-D interpolation filter used by the separable

three-pass rotation method. To rotate one nx ×ny slice of the input volume, each of the

three passes convolves the interpolation filter with all rows or all columns of the slice.

This amounts to a total of 3π
4

(2ni − 1)nxnynz operations to rotate all slices of the input

volume. The π
4

factor stems from the fact that the rotation algorithm is not applied to all

nxny voxels in a slice but only to those that lie within the circle inscribed in the slice.

More computation is required when the interpolation filter must be preceded by an IIR

filter, e.g., for cubic interpolation [129]. For linear interpolation, where ni = 2 and no

IIR pre-processing is needed, the rotation requires 9π
4
nxnynz ≈ 7.1nxnynz operations.

• Attenuation: Applying the pre-computed attenuation factors to all voxels of the rotated

volume requires nxnynz multiplications.

• Blurring: In general, convolving all ny planes in the volume with 2-D PSFs of average

size nh × nh, requires (2n2
h − 1)nxnynz operations. However, this step can be signifi-

cantly speeded up for certain convenient PSF shapes. If, for example, the system PSFs

are separable, each 2-D convolution is reduced to two 1-D convolutions, in which case

this step can be implemented with as few as 2(2nh − 1)nxnynz operations.
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• Projection: Summing the ny blurred planes of size nx × nz requires nxnynz additions.

Therefore, with linear interpolation in the rotation step, the rotation-based projector

performs a total of (2n2
h + 8.1)nxnynz operations in the general case of non-separable

PSFs or (4nh + 7.1)nxnynz operations in the case of separable PSFs.

On the other hand, the blob-based projector has to perform the following operations for

each blob in the object support.

• Attenuation: 1 multiplication of the blob coefficient by a pre-computed attenuation

factor.

• Projection: n2
bb multiplications to scale the blob footprint by the blob coefficient and

n2
bb additions to add it onto the projection view, where nbb × nbb is the average size of

the blob footprint after it has been blurred by the appropriate PSF.

On paper, the 2n2
bb operations needed for the projection step above could be reduced

to π
2
n2

bb, if we only projected the footprint samples that lay within the circular support of

the footprint, rather than the entire nbb × nbb square. However, we do not consider this

reduction further, as it is not trivial to implement. In the rotation-based projector, the π
4

improvement corresponds to a unique circle, the one inscribed in the image matrix, and

it is simple to pre-compute its limits and reuse them throughout the computations. In the

blob-based case, the π
4

factor would correspond to a different circle for each blob, whose

limits change with blob position from angle to angle. Pre-computing and reusing those

limits would require a large amount of memory and the overhead due to memory access

would undermine the computational savings.

Therefore the operations add up to 2n2
bb +1 per blob. Assuming that the blob grid is the

same as the voxel grid used by the rotation-based projector above, the blob-based projector

performs a total of (2n2
bb + 1)nxnynz operations for the entire projection view. If nb is the

width of the basic blob before blurring, then nbb = nb + nh − 1. For any blob radius
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between 1 and 2 times the grid spacing, nb = 3 and therefore the blob-based projector

performs a total of (2n2
h + 8nh + 9)nxnynz operations.

Based on the calculations above, the rotation-based implementation would always be

faster than the blob-based implementation with a regular cubic grid of the same size. How-

ever, when the blobs are arranged on a body-centered cubic (BCC) grid instead of the

Cartesian grid, the operations required by the blob-based method can be reduced by a

factor of
√

2 without loss in image quality, as described in [90].

If the system PSFs are separable (e.g., Gaussian), the rotation-based model with sep-

arable 1-D convolutions would be faster than the blob-based model even with the BCC

arrangement. In the general case of non-separable PSFs, the blob-based model with the

BCC grid will be faster only when 2n2
h + 8nh + 9 <

√
2(2n2

h + 8.1), which is true for

nh ≥ 10 pixels. Whether this is a realistic PSF size will depend on the properties of the

imaging system, the radius of the detector orbit and the size of the reconstruction. For ex-

ample, in the case of the two SPECT reconstruction problems tackled in the simulations of

Section A.5 below (technetium and iodine studies), where the diameter of the system PSF

at the center of the field of view was about 31 and 52mm respectively, this would mean

that the blobs would be faster for a pixel size smaller than 3.1 and 5.2mm respectively,

which would be true for matrix sizes of 128 × 128 or larger.

Furthermore, because the blob-based implementation processes the blobs in the image

grid sequentially, it can very naturally take advantage of the object support, which is read-

ily available in SPECT from the attenuation map. If λ ≤ 1 is the ratio of blobs inside the

object support, the projector or back-projector only needs to process λnxnynz blobs (or

approximately 1√
2
λnxnynz blobs when using the BCC grid). The rotation-based projector

could also be modified to take advantage of the object support to some extent. However, it

would be less natural than it would be in the blob case and it would significantly increase
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the complexity of the rotation-based implementation and its underlying data structure.

A.4 Memory Usage

Both system models pre-compute and store attenuation factors corresponding to all

volume elements at all angles, to reuse them over iterations. This amounts to an array of

type float and size nθnxnynz, where nθ is the number of projection views, and it is the

dominant term in the total memory usage of both models. For a total of 128 × 128 × 50

volume elements and 120 projection views, this requires roughly 400Mbytes of memory,

which is reasonable for modern workstations.

A.5 Simulation Results

The CPU time required to calculate a full projection set with each system model on a

3 GHz Xeon processor with 2 GB RAM, gcc and Linux is shown in Table A.1. Times

are reported for a system with a pixel size of 4mm and 2mm in the 64 × 64 × 25 and

128 × 128 × 50 case respectively, and PSF widths identical to the ones described for

the simulations below. We assume the object support to be the circle that is inscribed in

the nx × ny image matrix, therefore the blob-based model benefits by only processing

π
4
nxnynz grid positions. Since our blob-based implementation uses a Cartesian grid, we

also provide a prediction of the speed that could be attained with the BCC grid by dividing

the practical CPU times by a factor of
√

2. CPU times for the rotation-based model are

reported both for separable PSFs (implemented with 1-D separable convolutions as in the

analysis above) and for non-separable PSFs (implemented here with 2-D FFTs). For the

64 × 64 × 25 matrix the computational savings afforded by the BCC grid and the circular

object support make the blob-based model faster than the rotation-based model with 2-

D FFTs, whereas this is not the case for the 128 × 128 × 50 matrix. The blob-based
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Table A.1: Projection speeds (sec) with different system models on a 3GHz Xeon processor. Column 3:
CPU times for blob-based model with R = 2 times the grid spacing, α = 10.4, m = 2, and
the same Cartesian grid as the rotation-based model. Column 4: CPU times from column 3
divided by

√
2 (a prediction of CPU times for blobs with the BCC grid). Column 5: CPU times

for rotation-based model with 2-D FFTs Column 6: CPU times for rotation-based model with
separable 1-D convolutions

nx × ny × nz nθ Blob Blob BCC Rot 2-D Rot 1-D
64 × 64 × 25 60 3.3 2.3 3.2 1.6

128 × 128 × 50 120 113. 80. 69. 31.

model with a Cartesian grid is consistently the slowest and the rotation-based model with

separable 1-D convolution is consistently the fastest.

To evaluate the two models in terms of the bias-variance trade-off, we reconstructed

64 × 64 × 23 images of an anthropomorphic chest phantom (shown in Fig. A.2) from

projections taken at 60 uniformly spaced angles over a [0, 2π) range. The heart, liver,

lungs, spine, and surrounding tissue in the phantom have uniform radioactivity densities

with ratio 4:3:1:0:2 and uniform attenuation coefficients equal to 0.15, 0.15, 0.027, 0.191

and 0.15cm−1 respectively, values appropriate for the 140KeV photons emitted by Tc-

99m.

The pixel size of the system was set to 4mm. The depth-dependent PSFs were assumed

to be 2-D Gaussians with a FWHM increasing from 9.4 at the plane of the emission volume

that is nearest to the detector to 22.6mm at the one that is furthest. The same set of PSFs

were used at all projection angles, as in a circular orbit.

The noiseless 256 × 256 projections were generated from a high-resolution version of

the phantom image using the rotation-based projector (therefore the central ray approxi-

mation used by both system models to apply attenuation is here consistent with the data)

and were then downsampled to 64 × 64 by averaging.1 We normalized this set of down-

1Since the 2-D projections are downsampled along two dimensions, if the reconstructed images are to be compared
to the true 3-D object, a scaling factor equal to the downsampling ratio must be applied. The bias in the reconstructed
images as they appear in [147] is due to lack of this scaling.
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Figure A.2: Anthropomorphic chest phantom used for comparison of system models. The figure shows the
phantom downsampled to 64 × 64 × 23.

sampled projections to a total of 5×106 counts. To crudely simulate scatter, we uniformly

added to the projection set a number of scattered counts equal to 10% of the total true

counts. We used this new projection set to generate Poisson-distributed measurements.

We reconstructed images from 200 realizations of the noisy Poisson data using each

system model and the Ordered Subsets Expectation Maximization (OSEM) algorithm with

6 subsets. The system models that we used in the OSEM reconstructions assumed the same

PSFs as the system that we used to generate the noiseless projections. Although it would be

of interest to compare the performance of the system models under PSF mismatch, this was

beyond the scope of this paper. Our intention here was to isolate the effects of the choice

of volume elements from the effects of such a mismatch. The OSEM reconstructions also

assumed knowledge of the average scattered counts in the measurements [28].

We produced two different sets of bias vs. standard deviation plots by varying two



145

different parameters that are commonly used to control the bias-variance trade-off, namely

the number of iterations or the FWHM of a post-filter. In the first case we initialized the

OSEM reconstructions with a uniform image and plotted the bias and standard deviation

of the total uptake in the heart area per iteration, up to 50 iterations. In the second case

we initialized the OSEM reconstructions with a smooth FBP image (whose non-positive

values had been set to a very small positive value) and allowed the algorithm to run for

1000 iterations. We then smoothed the reconstructed images (in the blob-based case after

synthesizing them from the reconstructed coefficients) using 3-D Gaussian post-filters of

various FWHMs, up to 7 pixels. Similarly, we recorded the bias and standard deviation of

the total uptake in the heart area for each post-filter FWHM.

Fig. A.3 shows plots of the the standard deviation vs. bias normalized as a percentage

of the true total heart activity. The FBP curve in Fig. A.3 was acquired from plain FBP re-

constructions with a Hanning window of variable width and Chang attenuation correction

but no attempt to compensate for the depth-dependent system blur. These curves are just

provided for reference, as the focus here was on comparing the blob- and rotation-based

system models rather than iterative reconstruction and FBP.

Fig. A.4 shows the seventh slice from an image reconstructed with OSEM using the

rotation-based model and two different blob-based models. The images were chosen at

different iterations to have a similar bias level (about 16.5%) on the per iteration bias-

variance plot. A profile of these slices through the heart area is also shown, superimposed

on the corresponding profile of the noiseless high-resolution phantom. Similarly, Fig. A.5

shows the seventh slice from a set of the post-smoothed 1000-iteration OSEM reconstruc-

tions with the three different system models, chosen to have a similar bias level (about

19%) on the per FWHM bias-variance plot. All images in Fig. A.4 and Fig. A.5 were

reconstructed from the same realization of the noisy data.
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Figure A.4: Images reconstructed with OSEM and different system models. The figure shows a slice and
profiles through OSEM-reconstructed images of a single realization of the noisy data. Super-
imposed on the profile of the true high-resolution phantom (x) are those of the images recon-
structed with the rotation-based model (x̂R, NMSE = 3.26%), the blob-based model with α = 0
(x̂B0, NMSE = 2.76%), and the blob-based model with α = 10.4 (x̂B1, NMSE = 2.87%).
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Figure A.5: Images reconstructed with post-smoothed OSEM and different system models. The figure shows
a slice and profiles through over-iterated and post-smoothed OSEM-reconstructed images of a
single realization of the noisy data. Superimposed on the profile of the true high-resolution
phantom (x) are those of the images reconstructed with the rotation-based model (x̂R, NMSE
= 4.12%), the blob-based model with α = 0 (x̂B0, NMSE = 2.99%), and the blob-based model
with α = 10.4 (x̂B1, NMSE = 3.60%).
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A.6 Discussion

For the blob-based reconstructions above, we tried two different blob shapes, both of

them with radius R = 2 times the grid increment and m = 2 (continuous and with contin-

uous first derivative at r = 2) but with different taper parameters and therefore FWHMs.

The blob with α = 10.4 has a FWHM of 1.33 times the grid increment and has been

shown in [91] to possess good properties with respect to the approximation of the con-

stant 3-D function. The blob with α = 0 does not possess such properties and in fact is a

uniform sphere with a FWHM equal to its diameter.

Although the shape of these two blobs is quite different, their bias-variance perfor-

mance was not characterized by statistically significant differences at the commonly ac-

ceptable range of bias values, as shown by the error bars in Fig. A.3. In addition to these

two choices of blob shape, we also considered the other choices listed in Table I of [91]

and they resulted in similar performance, although these results are not shown here to

avoid excessive clutter in the plots. No further effort was made here to optimize the blob

parameters for SPECT reconstruction. It appears that the wide PSFs of the SPECT de-

tector dominated the bias-variance properties of the reconstruction and varying the blob

shape did not make a significant difference in the simulations presented here.

The plots do show, however, that the bias-variance performance of the blob-based pro-

jectors was somewhat better than that of the rotation-based one, similarly to what inves-

tigators have reported for PET [89, 91]. It is possible that spherically symmetric volume

elements were a better match for the contours of the shapes in the high-resolution phantom

used in our simulations. However, as shown by the bias-variance plots and confirmed by

the reconstructed images, the improvement is modest for SPECT.

The spacing of the pre-computed blob footprint samples that we used in all the simula-
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tions above was equal to 1
10

of the system pixel size. Decreasing this sample spacing did

not affect the quality of the reconstructed images.

Similar results (not shown here) were obtained when simulating an I-131 study with

the same phantom and system parameters appropriate for an ultra-high energy collimator

(PSF FWHM from 3 to 43mm, pixel size 7.2mm).

In general, our simulations indicated only a slightly superior performance of the blob-

based implementations of the 3-D SPECT system model in terms of the bias-variance

trade-off. On the other hand, the differences in terms of computational load were signif-

icant. When the system PSFs can be considered separable, such as the Gaussians used

above, the rotation-based model with 1-D separable convolutions will always be faster.

If we wanted to model collimator properties in greater detail with non-symmetric PSFs,

we would resort to 2-D convolutions, and in that case the blob-based model with an ef-

ficient grid could be faster for large PSF sizes. However, FFTs can be used instead of

2-D convolutions to speed up the rotation-based model with those larger PSFs.

The fact that use of the object support can be very naturally built into the blob-based

system model makes it very suitable for cases where we only need to reconstruct a few

or even a single volume element from the object, such as in a recently proposed method

for fast estimation of resolution and covariance in SPECT [125] and in algorithms that

perform element-by-element processing, such as the Space-Alternating Generalized EM

(SAGE) algorithm [39].

Finally, our simulations did not include realistic Compton scatter effects. We speculate

that since Compton scatter is relatively spatially smooth, and since scatter computations

are usually performed with relatively coarse sampling [14, 103, 139], including a realistic

scatter model would not significantly alter the outcome of our comparisons in favor of any

choice of basis function.
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APPENDIX B

Locally Shift-Invariant Approximation of A′
Π

−1A

We treat our model of the tomographic imaging system as a linear continuous-to-discrete

operator A mapping the object space into the measurement space. We assume that the

object can be written as a function f : R
2 → R, and the measurement can be written as a

vector p ∈ R
nd . We focus on the 2-D case where nd = nbnϕ, but the analysis below can

be easily generalized to higher-dimensional models. The measurement p is acquired by

the lexicographic ordering of elements pij, i = 1, . . . , nb, j = 1, . . . , nϕ.

In its most general form, the system operator A is defined by a superposition integral,

possibly accounting for position-dependent characteristics of the imaging system:

p = Af ⇔ pij =

∫ ∞

−∞

∫ ∞

−∞
a(ri, ϕj;x, y) f(x, y) dx dy, i = 1, . . . , nb, j = 1, . . . , nϕ,

where ri and ϕj are the radial position and angle corresponding to the (i, j) measurement

bin respectively. The adjoint operator A′ is then defined as follows:

f = A′p ⇔ f(x, y) =

nϕ
∑

j=1

nb
∑

i=1

a∗(ri, ϕj;x, y)pij , x, y ∈ R.

Consider a pixel of interest (x0, y0) and let e0 denote a Dirac impulse centered at this

point. We define the following impulse responses locally at (x0, y0):

h0 , A′
Π

−1Ae0

a0 , Ae0,
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where h0 corresponds to a function h0 : R
2 → R, and a0 ∈ R

nd . We write h(x, y;x0, y0) ,

h0(x, y). Then the value of h0 at some point (x, y) is

(B.1) h(x, y;x0, y0) =

nϕ
∑

j=1

nb
∑

i=1

a∗(ri, ϕj;x, y)a(ri, ϕj;x0, y0)

σ2
ij

,

where the variances σ2
ij, i = 1, . . . , nb, j = 1, . . . , nϕ, when lexicographically ordered,

yield the diagonal of Π.

We now define the following angle-dependent local certainties, cf. equation (19) in [124]:

(B.2) κϕj
(x, y) ,

√

√

√

√

∑nb

i=1 |a(ri, ϕj;x, y)|2 1
σ2

ij
∑nb

i=1 |a(ri, ϕj;x, y)|2
, j = 1, . . . , nϕ.

This reduces to κϕj
(x, y) = 1

σj
when the measurement variance σ2

j depends only on the

angle ϕj and not on the radial position ri. The local certainties in (B.2), used in [36, 149],

are a refinement of the single angle-independent local certainty,

(B.3) κ0(x, y) ,

√

√

√

√

∑nϕ

j=1

∑nb

i=1 |a(ri, ϕj;x, y)|2 1
σ2

ij
∑nϕ

j=1

∑nb

i=1 |a(ri, ϕj;x, y)|2
,

that other researchers have used in their locally shift-invariant approximations for lesion

detectability. Using (B.2) instead of (B.3) in the analysis that follows leads to more ac-

curate approximations by better capturing aspects of the system response that are angle-

dependent, e.g., non-uniform attenuation.

Along the “diagonal” of A′
Π

−1A we have:

h(x0, y0;x0, y0) =

nϕ
∑

j=1

nb
∑

i=1

κ2
ϕj

(x0, y0)|a(ri, ϕj;x0, y0)|2.

We now adopt the following approximation (cf. [40]), which is exact along the diagonal:

h(x, y;x0, y0) ≈
nϕ
∑

j=1

κϕj
(x, y)κϕj

(x0, y0)

nb
∑

i=1

a∗(ri, ϕj;x, y)a(ri, ϕj;x0, y0).

Since the local impulse response h0 takes its largest values around the pixel (x0, y0), we

are mostly interested in (x, y) in the neighborhood of (x0, y0). In that case, using the fact
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that typically the local certainties vary slowly, we can further approximate the above as

follows:

h(x, y;x0, y0) ≈
nϕ
∑

j=1

κ2
ϕj

(x0, y0)

nb
∑

i=1

a∗(ri, ϕj;x, y)a(ri, ϕj;x0, y0).

To further simplify, define the following “local detector response” function for the object

point (x0, y0):

b0(τ, ϕ) , a(τ + [x0 cosϕ+y0 sinϕ], ϕ;x0, y0),

so that

a(r, ϕ;x0, y0) = b0(r − [x0 cosϕ+y0 sinϕ], ϕ) .

Now assume that the detector response functions a(·) are locally shift-invariant in the

following sense

(B.4) a(r, ϕ;x, y) ≈ b0(r − [x cosϕ+y sinϕ], ϕ),

for (x, y) ≈ (x0, y0). This assumption leads to the following approximation for the inner

sum:

nb
∑

i=1

a(ri, ϕj;x, y)
∗a(ri, ϕj;x0, y0)

≈
nb
∑

i=1

b∗0(ri − [x cosϕj + y sinϕj], ϕj) b0(ri − [x0 cosϕj + y0 sinϕj], ϕj)

=

nb
∑

i=1

b∗0(τi, ϕj) b0(τi + (x− x0) cosϕj + (y − y0) sinϕj, ϕj)

= (b0 ? b0)[(x− x0) cosϕj + (y − y0) sinϕj],

where τi = ri − [x cosϕj + y sinϕj] and ? denotes discrete-space 1-D autocorrelation

(with respect to τi).
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This leads to our final approximation for the local impulse response:

h(x, y;x0, y0)

≈
nϕ
∑

j=1

κ2
ϕj

(x0, y0) (b0 ? b0)[(x− x0) cosϕj + (y − y0) sinϕj]

=

∫ π

0

nϕ
∑

j=1

δ(ϕ− ϕj)κ
2
ϕ(x0, y0) (b0 ? b0)[(x− x0) cosϕ+(y − y0) sinϕ] dϕ .(B.5)

This final shift-invariant approximation agrees with the exact expression (B.1) “along the

diagonal” of A′
Π

−1A, i.e., when (x, y) = (x0, y0). And it agrees everywhere if σij is

independent of i and if the detector response functions a(·) are shift-invariant in the sense

that (B.4) holds exactly.

If we are to apply the operator A′
Π

−1A to signals highly localized around (x0, y0), then

it is reasonable to approximate the operator as a convolution by the local impulse response

h0, to which we can apply Fourier analysis. So we approximate A′
Π

−1A locally around

(x0, y0) as

A′
Π

−1A ≈ U−1D {λ(ρ,Φ)}U ,

where D {·} denotes a “diagonal” operator and U a 2-D Fourier operator. The local fre-

quency response is given by

(B.6) λ(ρ,Φ) ,

nϕ
∑

j=1

κ2
ϕj

(x0, y0)
|B0(ρ, ϕj)|2

|ρ| δ(Φ − ϕj),

and B0(·, ϕ) denotes the 1-D FT of b0(·, ϕ).



BIBLIOGRAPHY

155



156

BIBLIOGRAPHY

[1] C. K. Abbey and H. H. Barrett. Human- and model-observer performance in ramp-spectrum noise:
effects of regularization and object variability. J. Opt. Soc. Am. A, 18(3):473–88, March 2001.

[2] C. K. Abbey, H. H. Barrett, and M. P. Eckstein. Practical issues and methodology in assessment of
image quality using model observers. In Proc. SPIE 3032, Med. Im. 1997: Phys. of Med. Im., pages
182–94, 1997.

[3] C. K. Abbey and M. P. Eckstein. Maximum-likelihood and maximum-a-posteriori estimates of
human-observer templates. In Proc. SPIE 4324, Medical Imaging 2001: Image Perc. and Perf.,
pages 114–22, 2001.

[4] C. K. Abbey and M. P. Eckstein. Optimal shifted estimates of human-observer templates in two-
alternative forced-choice experiments. IEEE Trans. Med. Imag., 21(5):429–40, May 2002.

[5] R. J. Adler. The geometry of random fields. Wiley, New York, 1981.

[6] R. J. Adler. On excursion sets, tube formulas and maxima of random fields. Ann. Appl. Probab.,
10(1):1–74, February 2000.

[7] H. H. Barrett. Objective assessment of image quality: effects of quantum noise and object variability.
J. Opt. Soc. Am. A, 7(7):1266–1278, July 1990.

[8] H. H. Barrett, C. K. Abbey, and E. Clarkson. Objective assessment of image quality III: ROC metrics,
ideal observers and likelihood-generating functions. J. Opt. Soc. Am. A, 15(6):1520–35, June 1998.

[9] H. H. Barrett, J. L. Denny, R. F. Wagner, and K. J. Myers. Objective assessment of image quality. II.
Fisher information, Fourier crosstalk, and figures of merit for task performance. J. Opt. Soc. Am. A,
12(5):834–52, May 1995.

[10] H. H. Barrett, T. Gooley, K. Girodias, J. Rolland, T. White, and J. Yao. Linear discriminants and
image quality. In A. C. F. Colchester and D. J. Hawkes, editors, Information Processing in Medical
Im., pages 458–73. Springer-Verlag, Berlin, 1991.

[11] H. H. Barrett and K. J. Myers. Foundations of image science. Wiley, New York, 2003.

[12] H. H. Barrett, D. W. Wilson, and B. M. W. Tsui. Noise properties of the EM algorithm: I. Theory.
Phys. Med. Biol., 39(5):833–46, May 1994.

[13] H. H. Barrett, J. Yao, J. P. Rolland, and K. J. Myers. Model observers for assessment of image quality.
Proc. Natl. Acad. Sci., 90:9758–65, November 1993.

[14] F. J. Beekman, H. W. A. M. de Jong, and S. van Geloven. Efficient fully 3D iterative SPECT re-
construction with Monte Carlo based scatter compensation. IEEE Trans. Med. Imag., 21(8):867–77,
August 2002.

[15] F. J. Beekman, E. T. P. Slijpen, H. W. A. M. . Jong, and M. A. Viergever. Estimation of the depth-
dependent component of the point spread function of SPECT. Med. Phys., 26(11):2311–22, Novem-
ber 1999.



157

[16] F. J. Beekman, E. T. P. Slijpen, and W. J. Niessen. Selection of task-dependent diffusion filters for the
post-processing of SPECT images. Phys. Med. Biol., 43(6):1713–30, June 1998.

[17] M. Belge, M. E. Kilmer, and E. L. Miller. Efficient determination of multiple regularization parame-
ters in a generalized L-curve framework. Inverse Prob., 18(4):1161–83, August 2002.

[18] F. O. Bochud, C. K. Abbey, and M. Eckstein. Statistical texture synthesis of mammographic images
with clustered lumpy backgrounds. Optics Express, 4(1):33–42, January 1999.

[19] P. Bonetto, J. Qi, and R. M. Leahy. Covariance approximation for fast and accurate computation of
channelized Hotelling observer statistics. IEEE Trans. Nuc. Sci., 47(4):1567–72, August 2000.

[20] A. B. Brill and R. N. Beck. Evolution of clinical emission tomography. In M N Wernick and J N
Aarsvold, editors, Emission tomography, chapter 3. Academic Press, San Diego, 2004.

[21] V. A. Brookerman and T. J. Bauer. Collimator performance for scintillation camera systems. J. Nuc.
Med., 14(1):21–5, January 1973.

[22] A. E. Burgess and B. Colborne. Visual signal detection. IV. Observer inconsistency. J. Opt. Soc. Am.
A, 5(4):617–, April 1988.

[23] A. E. Burgess, R. F. Wagner, R. J. Jennings, and H. B. Barlow. Efficiency of human visual signal
discrimination. Science, 214(4516):93–94, October 1981.

[24] Y. Censor. Row-action methods for huge and sparse systems and their applications. SIAM Review,
23(4):444–66, October 1981.

[25] L. T. Chang. A method for attenuation correction in radionuclide computed tomography. IEEE Trans.
Nuc. Sci., 25(1):638–643, February 1978.

[26] D. A. Chesler and S. J. Riederer. Ripple suppression during reconstruction in transverse tomography.
Phys. Med. Biol., 20(4):632–6, July 1975.

[27] M. S. Chesters. Human visual perception and ROC methodology in medical imaging. Phys. Med.
Biol., 37(7):1433–84, July 1992.

[28] M. E. Daube-Witherspoon, R. E. Carson, Y. Yan, and T. K. Yap. Scatter correction in maximum
likelihood reconstruction of PET data. In Proc. IEEE Nuc. Sci. Symp. Med. Im. Conf., volume 2,
pages 945–7, 1992.

[29] J. D. Daugman. Two-dimensional spectral analysis of cortical receptive field profiles. Vision Re-
search, 20(10):847–56, 1980.

[30] E. V. R. Di Bella, A. B. Barclay, R. L. Eisner, and R. W. Schafer. Comparison of rotation-based
methods for iterative reconstruction algorithms. In Proc. IEEE Nuc. Sci. Symp. Med. Im. Conf.,
volume 2, pages 1146–50, 1995.

[31] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification. Wiley, New York, 2001.

[32] M. P. Eckstein, C. K. Abbey, and F. O. Bochud. A practical guide to model observers for visual
detection in synthetic and natural noisy images. In J. Beutel, H. L. Kundel, and R. L. Van Metter,
editors, Handbook of Medical Imaging, Volume 1. Physics and Psychophysics, chapter 10. SPIE,
Bellingham, 2000.

[33] J. A. Fessler. Penalized weighted least-squares image reconstruction for positron emission tomogra-
phy. IEEE Trans. Med. Imag., 13(2):290–300, June 1994.

[34] J. A. Fessler. ASPIRE 3.0 user’s guide: A sparse iterative reconstruction library. Technical Report
293, Comm. and Sign. Proc. Lab., Dept. of EECS, Univ. of Michigan, Ann Arbor, MI, 48109-2122,
July 1995. Available from http://www.eecs.umich.edu/∼fessler.



158

[35] J. A. Fessler. Mean and variance of implicitly defined biased estimators (such as penalized maximum
likelihood): Applications to tomography. IEEE Trans. Im. Proc., 5(3):493–506, March 1996.

[36] J. A. Fessler. Analytical approach to regularization design for isotropic spatial resolution. In Proc.
IEEE Nuc. Sci. Symp. Med. Im. Conf., volume 3, pages 2022–6, 2003.

[37] J. A. Fessler. Image reconstruction: Algorithms and analysis. 2005. To be published.

[38] J. A. Fessler and S. D. Booth. Conjugate-gradient preconditioning methods for shift-variant PET
image reconstruction. IEEE Trans. Im. Proc., 8(5):688–99, May 1999.

[39] J. A. Fessler and A. O. Hero. Penalized maximum-likelihood image reconstruction using space-
alternating generalized EM algorithms. IEEE Trans. Im. Proc., 4(10):1417–29, October 1995.

[40] J. A. Fessler and W. L. Rogers. Spatial resolution properties of penalized-likelihood image recon-
struction methods: Space-invariant tomographs. IEEE Trans. Im. Proc., 5(9):1346–58, September
1996.

[41] J. A. Fessler and A. Yendiki. Channelized Hotelling observer performance for penalized-likelihood
image reconstruction. In Proc. IEEE Nuc. Sci. Symp. Med. Im. Conf., volume 2, pages 1040–4, 2002.

[42] R. D. Fiete, H. H. Barrett, W. E. Smith, and K. J. Myers. The Hotelling trace criterion and its
correlation with human observer performance. J. Opt. Soc. Am. A, 4:945–953, 1987.

[43] V. Fragkou. A generalization of fundamental concepts of metric spaces. PhD thesis, Aristotle Univ.
of Thessaloniki, Thessaloniki, Greece, 1969.

[44] K. Fukunaga. Introduction to statistical pattern recognition. Academic, Boston, 1990.

[45] B. D. Gallas and H. H. Barrett. Validating the use of channels to estimate the ideal linear observer,.
J. Opt. Soc. Am. A, 20(9):1725–38, September 2003.

[46] S. Geman and D. E. McClure. Bayesian image analysis: an application to single photon emission
tomography. In Proc. of Stat. Comp. Sect. of Amer. Stat. Assoc., pages 12–8, 1985.

[47] H. C. Gifford, P. E. Kinahan, C. Lartizien, and M. A. King. Evaluation of multiclass model observers
in PET LROC studies. In Proc. IEEE Nuc. Sci. Symp. Med. Im. Conf., volume 7, pages 4068–71,
2004.

[48] H. C. Gifford, M. A. King, D. J. de Vries, and E. J. Soares. Channelized Hotelling and human
observer correlation for lesion detection in hepatic SPECT imaging. J. Nuc. Med., 41(3):514–21,
March 2000.

[49] H. C. Gifford, M. A. King, P. H. Pretorius, and R. G. Wells. A comparison of human and model
observers in multislice LROC studies. IEEE Trans. Med. Imag., 24(2):160–9, February 2005.

[50] H. C. Gifford, M. A. King, R. G. Wells, W. G. Hawkins, M. V. Narayanan, and P. H. Pretorius. LROC
analysis of detector-response compensation in SPECT. IEEE Trans. Med. Imag., 19(5):463–73, May
2000.

[51] H. C. Gifford, P. H. Pretorius, and M. A. King. Comparison of human- and model-observer LROC
studies. In Proc. SPIE 5034: Medical Imaging 2003: Image Perc., Obs. Perf. and Tech. Assess., pages
112–22, 2003.

[52] H. C. Gifford, R. G. Wells, and M. A. King. A comparison of human observer LROC and numerical
observer ROC for tumor detection in SPECT images. IEEE Trans. Nuc. Sci., 46(4):1032–7, August
1999.

[53] F. A. Graybill. Matrices with applications in statistics. Wadsworth, Bellmont, CA, 2 edition, 1983.



159

[54] R. Gupta. Quantization strategies for low-power communications. PhD thesis, Univ. of Michigan,
Ann Arbor, MI, 2001.

[55] P. C. Hansen. Analysis of discrete ill-posed problems by means of the L-curve. SIAM Review,
34(4):561–580, December 1992.

[56] T. Hebert and R. Leahy. A generalized EM algorithm for 3-D Bayesian reconstruction from Poisson
data using Gibbs priors. IEEE Trans. Med. Imag., 8(2):194–202, June 1989.

[57] T. J. Hebert. Statistical stopping criteria for iterative maximum likelihood reconstruction of emission
images. Phys. Med. Biol., 35(9):1221–32, September 1990.

[58] H. V. Henderson and S. R. Searle. On deriving the inverse of a sum of matrices. SIAM Review,
23(1):53–60, January 1981.

[59] A. O. Hero, J. A. Fessler, and M. Usman. Exploring estimator bias-variance tradeoffs using the
uniform CR bound. IEEE Trans. Sig. Proc., 44(8):2026–41, August 1996.

[60] D. M. Higdon, J. E. Bowsher, V. E. Johnson, T. G. Turkington, D. R. Gilland, and R. J. Jaszczak.
Fully Bayesian estimation of Gibbs hyperparameters for emission computed tomography data. IEEE
Trans. Med. Imag., 16(5):516–26, October 1997.

[61] H. Hotelling. The generalization of Student’s ratio. Ann. Math. Stat., 2(3):360–78, 1931.

[62] P. J. Huber. Robust statistics. Wiley, New York, 1981.

[63] H. M. Hudson and R. S. Larkin. Accelerated image reconstruction using ordered subsets of projection
data. IEEE Trans. Med. Imag., 13(4):601–9, December 1994.

[64] D. A. Hutton and R. N. Strickland. Channelized detection filters for detecting tumors in nuclear
medical images. In Proc. SPIE 3034: Medical Imaging 1997: Image Proc., pages 457–66, 1997.

[65] M. Jacobson, R. Levkovitz, A. Ben-Tal, K. Thielemans, T. Spinks, D. B. E. Pagani, V. Bettinardi,
M. C. Gilardi, A. Zverovich, and G. Mitra. Enhanced 3D PET OSEM reconstruction using inter-
update Metz filtering. Phys. Med. Biol., 45(8):2417–39, August 2000.

[66] M. C. Jones, J. S. Marron, and S. J. Sheather. A brief survey of bandwidth selection for density
estimation. J. Am. Stat. Ass., 91(433):401–7, March 1996.

[67] C-M. Kao and X. Pan. Non-iterative methods incorporating a priori source distribution and data infor-
mation for suppression of image noise and artefacts in 3D SPECT. Phys. Med. Biol., 45(10):2801–19,
October 2000.

[68] P. K. Khurd and G. Gindi. Decision strategies maximizing the area under the LROC curve. In spie-
5749, pages 150–61, 2005.

[69] P. K. Khurd and G. R. Gindi. Rapid computation of LROC figures of merit using numerical observers
(for SPECT/PET reconstruction). In Proc. IEEE Nuc. Sci. Symp. Med. Im. Conf., volume 4, pages
2516–20, 2003.

[70] P. K. Khurd and G. R. Gindi. LROC model observers for emission tomographic reconstruction. In
Proc. SPIE 5372, Medical Imaging 2004: Image Perception, Observer Performance, and Technology
Assessment, pages 509–20, 2004.

[71] M. A. King, S. J. Glick, P. H. Pretorius, R. G. Wells, H. C. Gifford, M. V. Narayanan, and T. Farn-
combe. Attenuation, scatter, and spatial resolution compensation in SPECT. In M N Wernick and J N
Aarsvold, editors, Emission tomography. Academic Press, San Diego, 2004. Chapter 22.

[72] K. F. Koral, Q. Lin, A. Yendiki, A. Akhtar, Y. K. Dewaraja, and J. A. Fessler. Application of unregu-
larized OSEM with 3D detector response to I-131 SPECT with ultra-high- and high-energy collima-
tion. J. Nuc. Med. (Abs. Book), 43(5):215, May 2002.



160

[73] K. F. Koral, A. Yendiki, Q. Lin, and Y. K. Dewaraja. Comparison of 3-D OSEM versus 1-D SAGE
for focal total-activity quantification in I-131 SPECT with HE collimation. IEEE Trans. Nuc. Sci.,
52(1):154–8, February 2005.

[74] K. F. Koral, A. Yendiki, Q. Lin, Y. K. Dewaraja, and J. A. Fessler. Update on HE vs UHE collimation
for focal total-activity quantification in I-131 SPECT using 3D OSEM. In Proc. IEEE Nuc. Sci. Symp.
Med. Im. Conf., volume 4, pages 2910–13, 2003.

[75] K. F. Koral, A. Yendiki, Q. Lin, Y. K. Dewaraja, and J. A. Fessler. Determining total I-131 activity
within a VoI using SPECT, a UHE collimator, OSEM, and a constant conversion factor. IEEE Trans.
Nuc. Sci., 51(3):611–8, June 2004.

[76] H. Kunsch. Robust priors for smoothing and image restoration. Ann. Inst. Stat. Math., 46(1):1–19,
1994.

[77] K. J. LaCroix and B. M. W. Tsui. An evaluation of the effect of nonuniform attenuation compensation
on defect detection for Tc-99m myocardial SPECT images. J. Nuc. Med. (Abs. Book), 38(5):19, May
1997.

[78] K. Lange. Convergence of EM image reconstruction algorithms with Gibbs smoothing. IEEE Trans.
Med. Imag., 9(4):439–46, December 1990. Corrections, T-MI, 10:2(288), June 1991.

[79] R. Lecomte, D. Schmitt, and G. Lamoureux. Geometry study of a high resolution PET detection
system using small detectors. IEEE Trans. Nuc. Sci., 31(1):556–61, February 1984.

[80] S-J. Lee, A. Rangarajan, and G. Gindi. Bayesian image reconstruction in SPECT using higher order
mechanical models as priors. IEEE Trans. Med. Imag., 14(4):669–80, December 1995.

[81] T. Lewellen and J. Carp. PET systems. In M N Wernick and J N Aarsvold, editors, Emission tomog-
raphy. Academic Press, San Diego, 2004. Chapter 10.

[82] R. M. Lewitt. Multidimensional digital image representations using generalized Kaiser-Bessel win-
dow functions. J. Opt. Soc. Am. A, 7(10):1834–46, October 1990.

[83] R. M. Lewitt. Alternatives to voxels for image representation in iterative reconstruction algorithms.
Phys. Med. Biol., 37(3):705–16, March 1992.

[84] R. M. Lewitt and S. Matej. Overview of methods for image reconstruction from projections in emis-
sion computed tomography. Proc. IEEE, 91(10):1588–611, October 2003.

[85] L. N. D. Loo, K. Doi, and C. E. Metz. A comparison of physical image comparison indices and
observer performance in the radiographic detection of nylon beads. Phys. Med. Biol., 29(7):837–57,
July 1984.

[86] L. B. Lusted. Signal detectability and medical decision-making. Science, 171(3977):1217–19, March
1971.

[87] A. Macovski. Medical imaging systems. Prentice-Hall, New Jersey, 1983.

[88] S. Marc̆elja. Mathematical description of the responses of simple cortical cells. J. Opt. Soc. Am.,
70(11):1297–300, 1980.

[89] S. Matej, G. T. Herman, T. K. Narayan, S. S. Furuie, R. M. Lewitt, and P. E. Kinahan. Evaluation
of task-oriented performance of several fully 3D PET reconstruction algorithms. Phys. Med. Biol.,
39(3):355–67, March 1994.

[90] S. Matej and R. M. Lewitt. Efficient 3D grids for image reconstruction using spherically-symmetric
volume elements. IEEE Trans. Nuc. Sci., 42(4):1361–70, August 1995.

[91] S. Matej and R. M. Lewitt. Practical considerations for 3-D image reconstruction using spherically
symmetric volume elements. IEEE Trans. Med. Imag., 15(1):68–78, February 1996.



161

[92] C. E. Metz. Basic principles of ROC analysis. Seminars in Nuclear Medicine, 8(4):283–98, October
1978.

[93] C. E. Metz, F. B. Atkins, and R. N. Beck. The geometric transfer function component for scintillation
camera collimators with straight parallel holes. Phys. Med. Biol., 25(6):242–50, November 1980.

[94] K. Millett. Sexual politics. Doubleday, New York, 1970.

[95] S. Mustafovic and K. Thielemans. Object dependency of resolution in reconstruction algorithms with
inter-iteration filtering applied to PET data. IEEE Trans. Med. Imag., 23(4):433–46, April 2004.

[96] K. J. Myers and H. H. Barrett. Addition of a channel mechanism to the ideal-observer model. J. Opt.
Soc. Am. A, 4(12):2447–57, December 1987.

[97] K. J. Myers and K. M. Hanson. Comparison of the algebraic reconstruction technique with the maxi-
mum entropy reconstruction technique for a variety of detection tasks. In Proc. SPIE 1231, Med. Im.
IV: Image Formation, pages 176–87, 1990.

[98] M. V. Narayanan, M. A. King, P. H. Pretorius, S. T. Dahlberg, F. Spencer, E. Simon, E. Ewald,
E. Healy, K. MacNaught, and J. A. Leppo. Human-observer receiver-operating-characteristic evalu-
ation of attenuation, scatter, and resolution compensation strategies for 99mTc myocardial perfusion
imaging. J. Nuc. Med., 44(11):1725–34, November 2003.

[99] F. Natterer. The mathematics of computerized tomography. Teubner-Wiley, Stuttgart, 1986.

[100] F. Natterer. Inversion of the attenuated Radon transform. Inverse Prob., 17(1):113–9, February 2001.

[101] R. G. Novikov. On the range characterization for the two-dimensional attenuated x-ray transforma-
tion. Inverse Prob., 18(3):677–700, June 2002.

[102] K. Ogawa, Y. Harata, T. Ichihara, A. Kubo, and S. Hashimoto. A practical method for position-
dependent Compton-scatter correction in single photon emission CT. IEEE Trans. Med. Imag.,
10(3):408–12, September 1991.

[103] J. M. Ollinger. Model-based scatter correction for fully 3D PET. Phys. Med. Biol., 41(1):153–76,
January 1996.

[104] J. Qi. Analysis of lesion detectability in Bayesian emission reconstruction with nonstationary object
variability. IEEE Trans. Med. Imag., 23(3):321–9, March 2004.

[105] J. Qi. Comparison of statistical reconstructions with isotropic and anisotropic resolution. In Proc.
IEEE Nuc. Sci. Symp. Med. Im. Conf., volume 6, pages 3624–8, 2004.

[106] J. Qi and R. H. Huesman. Theoretical study of lesion detectability of MAP reconstruction using
computer observers. IEEE Trans. Med. Imag., 20(8):815–22, August 2001.

[107] J. Qi and R. H. Huesman. Fast approach to evaluate MAP reconstruction for lesion detection and
localization. In Proc. SPIE 5372, Medical Imaging 2004: Image Perception, Observer Performance,
and Technology Assessment, pages 273–82, 2004.

[108] J. Qi and R. M. Leahy. A theoretical study of the contrast recovery and variance of MAP reconstruc-
tions with applications to the selection of smoothing parameters. IEEE Trans. Med. Imag., 18(4):293–
305, April 1999.

[109] J. Qi and R. M. Leahy. Resolution and noise properties of MAP reconstruction for fully 3D PET.
IEEE Trans. Med. Imag., 19(5):493–506, May 2000.

[110] D. Rabinowitz and D. Siegmund. The approximate distribution of the maximum of a smoothed
Poisson random field. Statistica Sinica, 7(1):167–80, January 1997.



162

[111] A. J. Rockmore and A. Macovski. A maximum likelihood approach to emission image reconstruction
from projections. IEEE Trans. Nuc. Sci., 23:1428–32, 1976.

[112] J. G. Rogers. A method for correcting the depth-of-interaction blurring in PET cameras. IEEE Trans.
Med. Imag., 14(1):146–50, March 1995.

[113] J. P. Rolland and H. H. Barrett. Effect of random background inhomogeneity on observer detection
performance. J. Opt. Soc. Am. A, 9(5):649–58, May 1992.

[114] S. Sankaran, E. C. Frey, K. L. Gilland, and B. M.W. Tsui. Optimum compensation method and filter
cutoff frequency in myocardial spect: A human observer study. J. Nuc. Med., 43(3):432–8, March
2002.

[115] S. S. Saquib, C. A. Bouman, and K. Sauer. ML parameter estimation for Markov random fields, with
applications to Bayesian tomography. IEEE Trans. Im. Proc., 7(7):1029–44, July 1998.

[116] K. Shafie, B. Sigal, D. Siegmund, and K. J. Worsley. Rotation space random fields with an application
to fMRI data. Ann. Stat., 31(6):1732–71, December 2003.

[117] M. Shahram and P. Milanfar. Imaging below the diffraction limit: a statistical analysis. IEEE Trans.
Im. Proc., 13(5):677–89, May 2004.

[118] L. A. Shepp and Y. Vardi. Maximum likelihood reconstruction for emission tomography. IEEE Trans.
Med. Imag., 1(2):113–22, October 1982.

[119] D. O. Siegmund and K. J. Worsley. Testing for a signal with unknown location and scale in a station-
ary Gaussian random field. Ann. Stat., 23(2):608–39, April 1995.

[120] B. W. Silverman, M. C. Jones, J. D. Wilson, and D. W. Nychka. A smoothed EM approach to indirect
estimation problems, with particular reference to stereology and emission tomography. J. Royal Stat.
Soc. Ser. B, 52(2):271–324, 1990.

[121] E. T. P. Slijpen and F. J. Beekman. Comparison of post-filtering and filtering between iterations for
SPECT reconstruction. IEEE Trans. Nuc. Sci., 46(6):2233–8, December 1999.

[122] D. L. Snyder and M. I. Miller. The use of sieves to stabilize images produced with the EM algorithm
for emission tomography. IEEE Trans. Nuc. Sci., 32(5):3864–71, October 1985.

[123] E. J. Soares, C. L. Byrne, S. J. Glick, C. R. Appledorn, and M. A. King. Implementation and evalu-
ation of and analytical solution to the photon attenuation and nonstationary resolution reconstruction
problem in SPECT. IEEE Trans. Nuc. Sci., 40(4):1231–1237, August 1993.

[124] J. W. Stayman and J. A. Fessler. Regularization for uniform spatial resolution properties in penalized-
likelihood image reconstruction. IEEE Trans. Med. Imag., 19(6):601–15, June 2000.

[125] J. W. Stayman and J. A. Fessler. Fast methods for approximation of resolution and covariance for
SPECT. In Proc. IEEE Nuc. Sci. Symp. Med. Im. Conf., volume 2, pages 786–8, 2002.

[126] R. G. Swensson. Unified measurement of observer performance in detecting and localizing target
objects on images. Med. Phys., 23(10):1709–25, October 1996.

[127] C. Tocharoenchai, B. M. W. Tsui, D. P. Lewis, E. C. Frey, and X. Zhao. Compensation for the
response function of medium energy collimator in /sup 67/Ga planar and SPECT imaging. In Proc.
IEEE Nuc. Sci. Symp. Med. Im. Conf., volume 3, pages 1405–8, 1998.

[128] G. D. Tourassi, B. S. Carey, C. E. Floyd, and M. T. Munley. Improved lesion detection in SPECT
using MLEM reconstruction. IEEE Trans. Nuc. Sci., 30(2):780–3, April 1991.

[129] M. Unser, A. Aldroubi, and M. Eden. B-spline signal processing: Part II—efficient design and appli-
cations. IEEE Trans. Sig. Proc., 41(2):834–48, February 1993.



163

[130] M. Unser, P. Thevenaz, and L. Yaroslavsky. Convolution-based interpolation for fast, high quality
rotation of images. IEEE Trans. Im. Proc., 4(10):1371–81, October 1995.

[131] L. van Elmbt and S. Walrand. Simultaneous correction of attenuation and distance-dependent resolu-
tion in SPECT: an analytical approach. Phys. Med. Biol., 38(9):1207–17, September 1993.

[132] H. L. Van Trees. Detection, estimation, and modulation theory. Wiley, New York, 1968.

[133] E. Veklerov and J. Llacer. Stopping rule for the MLE algorithm based on statistical hypothesis testing.
IEEE Trans. Med. Imag., 6(4):313–9, December 1987.

[134] E. Veklerov and J. Llacer. The feasibility of images reconstructed with the method of sieves. IEEE
Trans. Nuc. Sci., 37(2):835–41, April 1990.

[135] C. R. Vogel. Non-convergence of the L-curve regularization parameter selection method. Inverse
Prob., 12(4):535–47, August 1996.

[136] R. F. Wagner, D. G. Brown, and C. E. Metz. On the multiplex advantage of coded source/aperture
photon imaging. In Proc. SPIE 314, Digital Radiography, pages 72–6, 1981.

[137] R. F. Wagner, K. J. Myers, K. M. Hanson, et al. Toward optimal observer perfomance of detection
and discrimination tasks on reconstructions from sparse data. In K M Hanson and R N Silver, editors,
Maximum Entropy and Bayesian Methods. Kluwer, New York, 1996.

[138] W. Wang, W. Hawkins, and D. Gagnon. 3D RBI-EM reconstruction with spherically-symmetric basis
function for SPECT rotating slat collimator. Phys. Med. Biol., 49(11):2273–92, June 2004.

[139] C. C. Watson, A. Schaefer, W. K. Luk, and C. M. Kirsch. Clinical evaluation of single-photon atten-
uation correction for 3D whole-body PET. IEEE Trans. Nuc. Sci., 46(4-2):1024–31, August 1999.

[140] R. G. Wells, M. A. King, H. C. Gifford, and P. H. Pretorius. Single-slice versus multi-slice display
for human-observer lesion-detection studies. IEEE Trans. Nuc. Sci., 47(3):1037–44, June 2000.

[141] R. G. Wells, M. A. King, P. H. Simkin, P. F. Judy, A. B. Brill, H. C. Gifford, R. Licho, P. H. Pretorius,
P. Schneider, and D. W. Seldin. Comparing filtered backprojection and ordered-subsets expectation
maximization for small lesion detection and localization in Ga-67 SPECT. J. Nuc. Med., 41(8):1391–
9, August 2000.

[142] S. D. Wollenweber, B. M. W. Tsui, D. S. Lalush, E. C. Frey, K. J. LaCroix, and G. T. Gullberg.
Comparison of Hotelling observer models and human observers in defect detection from myocardial
SPECT imaging. IEEE Trans. Nuc. Sci., 46(6):2098–103, December 1999.

[143] K. J. Worsley. Detecting activation in fMRI data. Stat. Meth. Med. Res., 12(5):401–18, October 2003.

[144] K. J. Worsley, S. Marrett, P. Neelin, A. C. Vandal, K. J. Friston, and A. C. Evans. A unified statistical
approach for determining significant signals in images of cerebral activation. Hum. Brain Map.,
4(1):58–73, 1996.

[145] Y. Xing, I-T. Hsiao, and G. Gindi. Rapid calculation of detectability in Bayesian single photon
emission computed tomography. Phys. Med. Biol., 48(22):3755–74, November 2003.

[146] M. Yavuz and J. A. Fessler. Statistical image reconstruction methods for randoms-precorrected PET
scans. Med. Im. Anal., 2(4):369–78, December 1998.

[147] A. Yendiki and J. A. Fessler. A comparison of rotation- and blob-based system models for 3-D SPECT
with depth-dependent detector response. In Proc. Intl. Mtg. on Fully 3D Image Recon. in Rad. and
Nuc. Med, 2003.

[148] A. Yendiki and J. A. Fessler. Analysis of observer performance in detecting signals with location
uncertainty for regularized tomographic image reconstruction. In Proc. IEEE Nuc. Sci. Symp. Med.
Im. Conf., volume 4, pages 2620–4, 2004.



164

[149] A. Yendiki and J. A. Fessler. Analytical approach to channelized Hotelling observer performance for
regularized tomographic image reconstruction. In Proc. IEEE Intl. Symp. Biomedical Imaging, pages
360–3, 2004.

[150] A. Yendiki and J. A. Fessler. A comparison of rotation- and blob-based system models for 3D SPECT
with depth-dependent detector response. Phys. Med. Biol., 49(11):2157–68, June 2004.

[151] A. Yendiki and J. A. Fessler. Analysis of observer performance in known-location tasks for tomo-
graphic image reconstruction. IEEE Trans. Med. Imag., 2005. To appear.

[152] D. F. Yu and J. A. Fessler. Mean and variance of singles photon counting with deadtime. Phys. Med.
Biol., 45(7):2043–56, July 2000.

[153] G. L. Zeng, J. R. Galt, M. N. Wernick, R. A. Mintzer, and J. N. Aarsvold. Single-photon emission
computed tomography. In M N Wernick and J N Aarsvold, editors, Emission tomography, chapter 7.
Academic Press, San Diego, 2004.

[154] G. L. Zeng and G. T. Gullberg. Frequency domain implementation of the three-dimensional geometric
point response correction in SPECT imaging. IEEE Trans. Nuc. Sci., 39(5-1):1444–53, October 1992.

[155] G. L. Zeng and G. T. Gullberg. Unmatched projector/backprojector pairs in an iterative reconstruction
algorithm. IEEE Trans. Med. Imag., 19(5):548–55, May 2000.

[156] Z. Zhou, R. M. Leahy, and J. Qi. Approximate maximum likelihood hyperparameter estimation for
Gibbs priors. IEEE Trans. Im. Proc., 6(6):844–61, June 1997.

[157] G. Zubal, G. Gindi, M. Lee, C. Harrell, and E. Smith. High resolution anthropomorphic phantom for
Monte Carlo analysis of internal radiation sources. In IEEE Symposium on Computer-Based Medical
Systems, pages 540–7, 1990.



ABSTRACT

ANALYSIS OF SIGNAL DETECTABILITY IN STATISTICALLY RECONSTRUCTED
TOMOGRAPHIC IMAGES

by

Anastasia Yendiki

Chair: Jeffrey A. Fessler

Imaging in general, and emission tomography in particular, has become an important

tool in many areas of medical diagnosis. Several common applications of emission to-

mography, such as the diagnosis of lung tumors or myocardial perfusion defects, involve

the detection of a spatially localized target signal in an image reconstructed from noisy

data. Such detection tasks are affected by various design parameters of the imaging sys-

tem and reconstruction algorithm. This thesis is concerned with optimizing regularized

image reconstruction methods for emission tomography with respect to the detectability

of a spatially localized target signal in the reconstructed images.

We first consider the task of detecting a statistically varying signal of known location on

a statistically varying background in a reconstructed tomographic image. We show that a

broad family of linear observer models can achieve exactly optimal detection performance

in this task if one chooses a suitable reconstruction method. This conclusion encompasses

several well-known models from the literature, including those with a frequency-selective



channel mechanism. Interestingly, the “optimal” linear reconstruction methods for many

of these observer models are unregularized and in some cases quite unconventional. In the

case of channelized models in particular, the observer’s ability to prewhiten determines

the extent to which its detection performance can benefit from regularization. That is, reg-

ularization is more important for channelized observers that have incomplete knowledge

of the second-order statistics of the reconstructed images.

Subsequently, we investigate detection tasks where the location of the target signal is

unknown to the observer. This location uncertainty complicates the mathematical analysis

of observer performance significantly. We consider model observers whose decisions are

based on the maximum value of a linear local test statistic over all possible signal locations.

Several of our conclusions about the known-location task extend to this case. Previous ap-

proaches to this problem have used Monte Carlo simulations to evaluate the localization

performance of maximum-statistic observers. We propose an alternative approach, where

approximations of tail probabilities for the maximum of correlated Gaussian random fields

facilitate analytical evaluation of detection performance. We illustrate how these approx-

imations can be used to optimize the probability of detection (at low probabilities of false

alarm) for the observers of interest.


