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CHAPTER 1 

Dynamic Contrast-Enhanced (DCE) MRI of Breast Lesions 

 
1.1 Clinical Importance 

 
Breast cancer is the second most prevalent disease in women and was the cause of 

17% of all cancer deaths in American women in 2003.  It is the leading cause of death for 

women ages 40-59 [1].  It is widely accepted that reduction in breast cancer mortality is 

best achieved by early detection and treatment [2-4].  Palpation, including self-exams, is 

the most preliminary step in breast lesion detection.  Even though some very small 

tumors can be detected by palpation or clinical examinations alone, the majority of 

palpable lesions exceed 1 cm in size.  Below this size it is difficult to distinguish between 

normal individual variations and abnormal lumps.  By the time a tumor grows to 1 cm in 

size however, there is an increased risk of associated metastatic disease [5].  A primary 

objective for breast cancer diagnostics is very early detection and differentiation of 

malignant lesions.    

 
1.2 Motivation 

 
Dynamic contrast-enhanced Magnetic Resonance Imaging (DCE-MRI) has become 

an area of keen interest and investigation for detection as well as differentiation of breast 

tumors. This method is based on the observation that tumors tend to exhibit signal 

enhancement after administration of contrast media such as gadolinium-DTPA.  Analysis 

of the enhancement characteristics using pharmacokinetic models has been performed to 

further evaluate suspicious lesions.  Various single and multi-parametric indicators have 
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been developed to quantify the nature of contrast-induced enhancement in a breast lesion.  

These parameters have been correlated to histopathologic results with varying sensitivity 

(88–100%) and specificity (37-97%).  Accurate quantification of these parameters is 

contingent upon a number of factors that include: adequate temporal resolution, full 

volume coverage to include both breasts and appropriate imaging technique that 

optimizes contrast.  Ideally, enhancement characteristics are measured at high temporal 

resolution.  On the other hand, researchers have attempted tumor classification based on 

architectural features such smooth vs. spiculated margins or homogeneous vs. 

heterogeneous masses. The assessment of morphologic features requires images with 

high spatial resolution.  In general, MRI is useful for assessing spatial as well as 

functional characteristics of breast tumors.   

Conventional high-resolution imaging has been performed to yield high anatomic 

detail with sparse sampling of the enhancement profile.   Attempts have been made to 

increase the temporal sampling rate by subsampling k-space during the dynamic 

acquisition.  These methods are limited in that the loss of enhancement resolution due to 

incomplete sampling of k-space cannot be fully recovered by the reconstruction process.   

Several rapid imaging methods have also been develop to decrease scan durations and 

consequently improve temporal resolution at any given spatial resolution. 

Ultimately, due to system dependent limitations on MR imaging machines that 

result in finite scan durations, there is an inherent tradeoff between the number of 

temporal sampling points and the overall spatial resolution, or equivalently, the 

volume of imaged tissue.  
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The objective of this work is to increase the diagnostic potential of dynamic 

Gadolinium enhanced three-dimensional breast MRI, relative to existing techniques, by 

devising a novel approach to balancing the spatio-temporal constraints of dynamic 

imaging.  It involves the design of a segmented dynamic acquisition in k-space, with 

subsequent temporally interpolated reconstruction, that is not biased towards either high 

spatial or high temporal resolution imaging. The proposed scheme will be compared to 

two currently used techniques: 

a) Conventional high spatial resolution imaging, at relative low temporal resolution. 

b) Dynamic “Keyhole” imaging as applied in a clinical study that was conducted at our 

institution. 

This scheme will be assessed in relation to these existing methods under a range of 

tumor enhancement patterns and tumor anatomic configurations.  The rest of this chapter 

deals with the some relevant basics of MRI, concepts in DCE-MRI and rapid imaging 

methods applicable to dynamic imaging of breast tumors.  Chapter 2 describes the 

theoretical basis underlying the spatio-temporal bandwidth-based approach to dynamic 

imaging.  In Chapter 3 an acquisition scheme based on this formalism is developed to 

image a class of tumors.  Computer simulations studies, as well as an experimental 

validation, conducted to assess the performance of this scheme relative to the two 

techniques mentioned above, are also discussed in this chapter.  Chapter 4 details a 

method to handle artifacts due to motion that are typically encountered during a DCE-

MRI experiment that extends over several minutes. Chapter 5 deals with an analysis of 

the effect of inhomogeneities in the B1 field on quantification of pharmacokinetic 

parameters based on signal enhancement profiles.  Chapter 6 provides a summary of the 
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research work presented in this thesis and outlines several areas with potential for future 

work. 

 
1.3 Fundamentals of NMR  

1.3.1 The NMR Signal 

 
All materials consist of nuclei, which are protons, neutrons or a combination of both.  

Nuclei that possess an odd number of protons, such as 1H, 19F, 23Na, 31P, have a net 

ionic charge distribution due to the unpaired nucleon, which produces a magnetic 

moment.  At any given state, a nucleus also possesses angular momentum due its 

spinning about a central axis.  This is commonly referred to as nuclear spin or spin.  The 

spin number is in multiples of half.  For example the 1H atom, with one unpaired proton, 

and zero electrons has a spin number equal to ½. When placed in a magnetic field of 

strength Bo, a particle with a net spin can absorb a photon of frequency, ν, which is 

termed the Larmor frequency, that depends on the gyromagnetic ratio, γ  

γBoν =                                                              (1.1) 

For hydrogen, γ = 42.58 MHz / T. 

If we now consider a macroscopic sample of nuclear spins, the spins will distribute 

among two possible energy states parallel or anti-parallel to the external magnetic field 

Bo.  The parallel or spin-up state is a lower energy state.  The population ratio of protons 

in the two energy states is determined by the equation [6]: 
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(1.3)                                                              
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where, N
o
−

and N
o
+ are the thermal equilibrium populations of protons in the m = - ½ and 

m = + ½ states, respectively.  ∆E is the energy difference between the two states, T is the 

absolute temperature in Kelvin of the surrounding lattice and K is the Boltzmann 

constant.  The summation of spins in the sample yields a net macroscopic magnetization 

vector that is aligned with the external magnetic field.  This quantifiable magnetization is 

given by the formula [6]: 

 

           

The net magnetization vector can be detected by introducing a perturbation in the 

form of rf irradiation at the Larmor precessional frequency, applied perpendicular to the 

net magnetization.  The rf pulse must be at the Larmor frequency in order to be in phase 

with the magnetization, often referred to as being on resonance.  The rf pulse produces an 

oscillating magnetic field in a plane perpendicular to the sample magnetization vector. 

The oscillating field will have the effect of tipping the magnetization away from its 

thermal equilibrium position due to energy absorptions resulting in transitions in spin 

states from lower to higher energy.  The magnitude of the transverse field is usually small 

compared to the static magnetic field Bo, however if the rf pulse lasts for a time large 

compared to the Larmor precessional period, it can significantly nutate the net 

magnetization such that the entire magnetization can be tipped into the transverse plane.  

The magnetization, Mo, will then precess around Bo at the resonance, Larmor, frequency.  

The macroscopic magnetization that now lies in the transverse plane can be detected by a 

coil placed perpendicular to its axis of rotation.  Once the rf energy perturbation ceases 

the transverse magnetization will decay to zero as the spin system returns to its 
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equilibrium state, inducing an emf in the detection coil.  This process is termed as free 

induction decay [7] and is the fundamental phenomenon underlying MRI. 

 
1.3.2 T1 and T2 relaxation Times [7] 

 
Once the net magnetization has been tipped away from alignment with the static 

external magnetic field it has both a longitudinal (MZ) and transverse (MXY) component.  

The process that returns the longitudinal component to the thermal equilibrium is termed 

as spin-lattice relaxation. The process that describes the change of transverse 

magnetization from a non-zero to zero value is termed as spin-spin relaxation.  Both 

forms of relaxation are molecular processes that are stimulated by internal fluctuating 

fields that have frequency components at the resonant (Larmor) frequency.  These result 

in de-excitation of the protons in the upper energy states, as energy is transferred from the 

proton to the surrounding lattice.  The fluctuating fields may be produced by dipole-

dipole interactions between nuclear spins as they tumble due to random thermal motion.  

Paramagnetic ions that have an unpaired electron produce a magnetic moment 700 times 

that of a proton and hence can generate a very large fluctuating field.  Of critical 

importance in driving spin-spin relaxation is the correlation time, which is a measure of 

the average time for a change in lattice environment, as well as the mean square 

amplitude (or spectral power) of the random field fluctuations.  If the lattice molecules 

are tumbling very slowly i.e. correlation times are long there will be few field 

fluctuations that are at the Larmor frequency.  On the other hand, rapid thermal molecular 

motion is associated with short correlation times i.e. a wide range of frequencies that 

consequently have lower spectral power due to conservation of total thermal energy.  The 
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time required to establish thermal equilibrium between the spins and their surroundings is 

most efficient, i.e. shortest, when the field fluctuations are on the order of the Larmor 

frequency. The time constant that describes how MZ returns to its equilibrium value is 

called the spin lattice relaxation time (T1). The equation governing this behavior as a 

function of the time t after its displacement is: 

                                                   )t/eMo(1Mz 1T−=                                                    (1.4) 

The spin-spin relaxation process results in loss of coherence of the transverse component 

of magnetization.  The characteristic relaxation time, T2, is a measure of the time of 

disappearance of the transverse magnetization. Processes such as spin flip with net 

energy transitions, which cause T1 relaxation also affect T2 relaxation.  The primary 

mechanism of T2 relaxation however is not by interactions that transfer energy from the 

spin system to the lattice.  The loss of transverse coherence is due to a phase dispersion of 

the nuclear spins as they experience slightly different local magnetic fields.  It is in fact 

the static or zero-frequency component of the power spectrum of local fluctuating fields 

that is the dominant factor in determining T2 relaxation times. The time constant that 

describes the return to equilibrium of the transverse magnetization, Mxy, is called the 

spin-spin relaxation time, T2. 

                                                     t/T2
oeMMxy =                                                            (1.5) 

T2 is always less than or equal to T1. The net magnetization in the XY plane goes to zero 

and then the longitudinal magnetization grows in until we have Mo along Z.  Both T1 and 

T2 are specific to the type of tissue and it is these parameters that are used as the basis for 

image contrast in MRI.  
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1.4 MRI of the Breast Tumors 

 
Magnetic resonance imaging holds great potential as a non-invasive tool for the 

detection and diagnosis of breast lesions.  It is particularly attractive for the following 

reasons: 1) It permits imaging both breast in their natural anatomic configuration, unlike 

for example, mammography which severely distorts the breast. 2) It has a theoretic 

capability to image the breast at very high spatial (< 1mm). 3) It is completely non-

invasive and uses no ionizing radiation and 4) Apparent contrast between different types 

of tissues can be varied during imaging.   

Conventional MRI techniques attempt to characterize tissues based on proton density 

signal intensity (essentially, the water content), as modulated by effects of the molecular 

structure and associated microscopic magnetic field environment.  Initially, this was 

believed to have high potential diagnostic potential for breast lesions. In early studies, 

McSweeney et. al. measured T2 relaxation times of 393 in vitro breast samples.  They 

were able to establish a range of values for normal tissues, benign lesions and carcinoma 

[8].  However their technique involved very long data acquisition and analysis time with 

high degree of complexity in the parameters, limiting clinical application.  With clinically 

employed imaging techniques the contrast for normal breast tissue components was fairly 

high, but the information provided was of little value in detection and diagnosis of breast 

cancer.  Histopathologic correlation studies have shown that there is a wide overlap 

between T1-weighted and T2-weighted values calculated from signal intensities for a 

variety of pulse sequences, for benign and malignant lesions [9-12].  Heywang et al. [13] 

explain this unexpected result as follows.  They have observed that the signal intensity of 

lesions is predominantly determined by the water content and fibrous cell matter of 
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individual tissues, rather than by specific cellular characteristics.  Because both benign 

and malignant lesions may have high water content and cellular or fibrous content, they 

exhibit similar signal behaviors and consequently have similar T1-weighted and T2-

weighted measurements.  This also accounts for the wide variations in signals within 

benign and malignant classes of lesions.  These various studies have now led to the 

conclusion that reliable tissue characterization for detection and diagnosis of breast 

lesions, based on tissue contrast by plain MRI is not feasible.      

 
1.4.1 Gadolininium-DTPA Enhanced Imaging 

 
Over the last decade attention has shifted from plain MRI to contrast-enhanced MRI 

using paramagnetic contrast agents, typically Gadolinium chelates.  The most commonly 

used FDA approved agent is Gadoliniumdiethylenetriamine penta-acetic acid (Gd-DTPA) 

[14-15].  Paramagnetic compounds have a much larger magnetic moment that the water 

molecule.  Thus, in the presence of a paramagnetic agent, the magnetic field environment 

for the proton (H) is drastically changed.  This produces changes in relaxivity due to 

dipole-dipole interactions between the contrast agent and the proton nuclei, even for very 

small concentrations of contrast agent.  Typically, the relaxation effect is shortening of 

the T1 relaxation time constant.  The effect can be approximated by the relation:  

 

where R is the relaxivity constant specific to the contrast agent and Ct is the tissue 

concentration of the agent.  Thus tracking changes in tissue T1 can be used monitor 

contrast agent concentration.  It is important to note that the effect of the paramagnetic 

                      Ct,R
T1Gd

1
T1
1

⋅=− (1.6) 
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compound is largely dependent on the ability of water atoms to come in relative 

proximity with the large magnetic moment.   

 
1.4.2 Angiogenesis Concepts 

 
 The application of contrast-enhanced MRI to breast tumor diagnosis has evolved 

with an increased understanding of the underlying angiogenic mechanisms driving tumor 

growth and development.  The formation of new blood supply is considered essential to 

the unrestricted growth of tumors.  Folkman [16] has shown that tumors can attain a size 

of only 1-2 mm by simple diffusion of nutrients, following which angiogenesis is turned 

on.  Angiogenic factors stimulate new capillary buds and prepare the local environment 

for ingrowth.  More angiogenic tumors possess a greater number and size of microvessels 

[17].  In addition, these new capillary densities exhibit hyperpermeability [18].  Given 

this knowledge of tumor growth dynamics, the blood-delivered contrast material Gd-

DTPA has been used to produce pronounced T1 shortening effects in malignant tissues as 

compared with most benign entities [19].  With an appropriate dosage of Gd-DTPA, the 

signal intensity of enhancing lesions is much higher compared to other normal breast 

tissue (e.g. parenchyma and fat), leading to improved visibility.  Fat suppression 

techniques have been employed to highlight contrast changes [20, 21].  Most commonly 

images are acquired pre- and post-contrast injection and subsequent evaluations are 

performed on subtraction images. Fat has low vascularity and therefore is eliminated on 

post-subtraction images. This helps in defining lesion with poorly defined margins or 

inhomogeneous enhancement. Small tumors are also better visualized [22]. Several 

researchers have focused on pharmacokinetic modeling of the multi-compartmental 
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exchange dynamics between the blood plasma, lesion and extra-cellular spaces [23-24] 

for which it is necessary to track contrast kinetics within the tumor.  This has led to the 

development of dynamic contrast-enhanced MRI (DCE-MRI) methods wherein repeated 

imaging of the same volume/slice of interest, is performed at regular time intervals.  In 

order to understand the potential and challenges of DCE-MRI it is valuable to get an 

appreciation of the specific features, morphologic and pharmacokinetic, of diagnostic 

significance that can be elicited using this technique.   

 
1.4.3 Diagnostic Features of Breast Lesions 

 
Much of the understanding and insight of the complexities of DCE-MRI of breast 

tumors was obtained during a clinical study conducted at our institution to implement the 

“keyhole imaging” method for dynamic contrast-enhanced MRI of breast tumors.  The 

keyhole technique is explained in a subsequent section.  This technique was applied to 

study 102 women in whom a breast abnormality was detected by mammography, 

physical exam, or ultrasound.  Breast MR exams were performed on 1.5 Tesla General 

Electric Signa systems using a commercial (GE) bilateral phased-array breast coil with 

insert pads for mild anterio/posterior (A/P) compression. The dynamic series was built 

upon a 3D-volumetric rf-spoiled gradient recalled echo (3D SPGR) that offers excellent 

sensitivity to gadolinium-induced changes while producing high signal-to-noise images.  

A standard dose of gadolinium-contrast material (0.1mMol/kg; Magnevist, Berlex Labs, 

Wayne, NJ.) was manually injected as a bolus at a specified time.  For each of the 

subjects in the study regions-of-interest (ROIs) were drawn in areas where either 

significant signal enhancement was observed or there was suspicious morphology.  
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Lesion ROI enhancement vs. time curves were automatically fit to generate enhancement 

rates.  The overall enhancement amplitude (i.e. degree of signal change) was also 

recorded.  The next sections outline the specific morphologic and pharmacokinetic 

parameters that have been reported by other investigators and include examples and 

results from our institutional study as well. One of the observations over the course of 

this study was that the ROI analysis used to generate contrast enhancement parameters 

can have inaccuracies if the patient does not remain still during the entire dynamic 

acquisition.  It was our experience that this was often the case.  In order to correct for this 

a simple linear motion correction algorithm in three dimensions was implemented.  This 

method will be discussed in Chapter 4.  

 
Histopathologic Architectural Features  

 
The simplest feature of interest is the tumor size.  It has been shown that there is a 

relationship between tumor size and its histological type [25].  While palpation may often 

overestimate the tumor size, mammography and ultrasonography can significantly 

underestimate size.   Morphology is the main method to clarify the type of tumor growth.  

There are two morphological patterns for malignant masses: stellate and circumscribed 

[26].  An infiltrating growth shows irregular and spiculated margins.  This is most 

distinctively diagnostic of cancer, having a reported 99.4% specificity [27].  

Circumscribed masses have a rounded or oval shape, slightly blurred or well-defined 

margins.  Certain benign lesion, such as fibroadenomas also have smooth or lobulated, 

well defined borders [Figure 1.1].  The presence of microcalifications, which are calcium 

deposits in various breast tissues, are considered diagnostic for both malignant and 
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benign disease.  These are usually microscopic structures that can exist in clusters or 

scattered diffusely. The cluster size and configuration of the individual 

microcalcifications is used for diagnostic inference [28].   

 

 

The internal architecture of the lesion is also used as a diagnostic marker.  

Heterogeneous or clumped regions and internal septations within are considered 

diagnostic for carcinoma as compared to a homogeneous appearance.  Finally, 

carcinomas will tend to be multi-focal or multi-centric, such that there are several 

unbridged tumors in one more quadrants of the breast, or even occur bilaterally [29].  For 

MRI to be effective in eliciting histopathologic features of breast carcinomas as well as 

identifying benign lesions, high spatial-resolution imaging of both breasts including chest 

wall and axillae is essential.  Researchers have employed feature analysis of breast lesion 

using Gd-enhanced MRI and reported positive predictive value in the range of 76-88% 

for malignant disease and as much as 97-100% for benign disease [30-32]. 

 

c.b. a. 

Figure 1.1. Morphologic features of breast lesions. a) Smooth - benign fibroadenoma.  
b) Irregular - ductal carcinoma in situ. c) Spiculated - invasive ductal carcinoma. 
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 Pharmacokinetic Features  

 
MR imaging using contrast agents, such as gadolinium-DTPA, provides high 

sensitivity for the detection of breast cancers.   Using multi-compartmental analysis, 

attempts have been made to summarize tumor contrast uptake characteristics with a few 

quantifiable parameters.  These parameters are related to the lesion vascularity, 

permeability and size of extra-cellular leakage spaces.  The rate of gadolinium 

enhancement has been studied as a potential discriminator of benign and malignant 

neoplasms [32, 33].  At our institution we have noted, that malignancies exhibit a rapid 

enhancement profile, whereas benign lesions have a slower rate of contrast-uptake 
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Figure 1.2.  Pharmacokinetic features of breast lesions. a) Invasive ductal carcinoma.  
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[Figure 1.2].  Some researchers have reported sensitivity and specificity for cancer 

detection greater than 95% [33].  In other MR imaging studies, higher false-positive rates 

were observed [34, 35].   At our institution, ROC on quantitative (non-morphologic) data 

suggests a Sensitivity ≈85% and Specificity ≈75% (data to be published). Researchers 

have tried to improve the predictive value of the rate parameter by estimating the 

minimum sampling rate requirements based on simulations using compartmental models 

[36, 37].  Although their results are specific to the model and method of quantification, 

they conclude that to effectively characterize the enhancement function, a certain 

minimum temporal sampling rate should be achieved. 

The patterns of enhancement within tumors have also been correlated with 

histopathologic findings and tumor angiogenesis.  It has been observed that differential 

enhancement rates between peripheral and central compartments has predictive value for 

detecting malignant lesions.  Carcinomas show a higher peripheral enhancement than 

benign lesions [38, 39].    

It has been reported that comparing the timing of signal enhancement in the tumor 

and a large vascular structure could be diagnostically useful [40].  Further investigations 

have involved the estimation of kinetic parameters by simultaneous modeling of the 

concentration-time course of the contrast medium (CM) in the tumor as well as blood.  

These models, including as many as four compartments, have shown that consideration of 

contrast kinetics in arterial blood is necessary for assessing tumor contrast uptake 

characteristics [41].  These studies suggest that temporal sampling rates of MR imaging 

must be sufficient to track the rapid dynamic profile of the arterial contrast input 

function.  
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NxFOVxx /=∆

NyFOVyy /=∆

                                                              / NzFOVzz =∆ (1.7)

  

1.4.4 Factors Affecting Scan Times in Three-Dimensional (3D) DCE-MRI 

 
There are a number of factors involved in the design of a 3D MRI sequence, that 

influence the spatial resolution and total acquisition times.  A few of these factors such as 

desired image contrast, imaging volume, NEX and SNR are discussed in this section.  Let 

us consider a 3D imaging volume of interest, with spatial dimensions i.e. fields of view 

(FOV), along the x, y and z axes chosen to be FOVx, FOVy and FOVz, respectively.  If 

the corresponding image acquisition matrix is Nx, Ny, Nz, the best achievable spatial 

resolution is given in pixels sizes as:                                                     

 

 

 

The total acquisition time (T), determined by the readout resolution (Nx) the number of 

phase encoding steps (Ny and Nz), number of excitations (Nex) as well as the pulse 

repetition time (TR) is, given as:  

    T = NexNxNyNzTR                                                                 (1.8) 

The selected TR is typically based on the desired image contrast, whether T1, T2 or 

proton density weighted.  In general maximum TR selection is based on the longest T1 

species contained in the sample.  Any further increase in TR will yield no additional 

contrast differentiation between tissue types.  The lower limit on the TR is set by the 

bandwidth (BW) required to excite the desired slice profile.  The thicker the slab (FOVz) 

that is to be excited, the broader the bandwidth, resulting in both radio-frequency (rf) 

excitation pulse and readout sampling time (Ts = 1/BW) of shorter duration.  This implies 

that the sequence of pulses can be repeated at a faster rate i.e. at a shorter TR.   
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.Nex

Another factor that has an impact on the selection of scan timing is the signal to noise 

ratio (SNR) which can be expressed as [42], 

  

 

Any attempts to alter imaging times or spatial resolution will result in either improved or 

compromised SNR.  For example, overall scan time could simply be halved by going 

from double to single Nex, but with an attendant reduction in SNR by a factor equal to 

An increase in pixel sizes would produce a proportionate increase in SNR, but 

result in a loss in spatial resolution.  Lengthening the readout sampling window would 

reduce bandwidth and therefore improve SNR, but cause longer scan times.   

Thus, a number of parameters interplay in producing MR images of desired contrast 

characteristics, SNR, spatial and temporal resolution, resulting in a finite scan duration.   

For DCE-MRI one usually wishes to obtain a desired 3D spatial resolution with 

minimum corresponding volume acquisition time, and generate predominantly T1-

weighted images, since we are primarily trying to elicit the T1-shortening effects induced 

by the contrast agent.  It should be noted that image contrast is also controlled by the 

readout echo time (TE) delay, which does not affect the overall scan time, but is usually 

be minimized to produce the desired T1-weighting. 

 
1.4.5 Rapid Imaging Methods 

The field of rapid MRI techniques has been steadily evolving and encompasses a 

wide variety of techniques.  These methods can be considered under two broad 

categories: a) pulse sequences that provide improvements in image acquisition times and 

b) reconstruction methods that permit reduced sampling while acquiring data.   The next 

                                           NexNxNyNz
BW

zyxSNR ∆∆∆α (1.9) 
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section provides background on a few specific methods that have applied previously been 

breast imaging, and discusses some of the relative merits. 

1.4.5.1 Pulse Sequences  

Spoiled Gradient Recalled Echo (SPGR) Imaging 

 
The SPGR sequence, which falls into the broad class of steady state acquisition 

schemes [43-45], is currently employed at our institution for DCE-MRI.   There are two 

primary time saving mechanisms involved in this acquisition that lead to a shortened TR.  

First, rephasing of spins for echo formation is achieved by applying a dephasing gradient 

along the frequency encoding axis, as opposed to spin echo (SE) imaging in which a 180° 

rf pulse is employed.  The gradient, which can be on simultaneously with the phase 

encoding gradient, is followed immediately by the refocusing readout gradient, thus 

eliminating the time for 180° rf refocusing pulse [Figure 1.3].  Eco formation is achieved 

by a set of gradients of opposite sign, hence the term gradient-recalled echo.   

 

a. 

b. 

Figure 1.3. a) Spin echo.  b) Gradient recalled echo.  The prephasing negative 
frequency encoding gradient, permits a reduction in overall TR. 
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For a desired T1- or T2-weighting the TR and TE, respectively, must be the same as 

that for spin-echo imaging.  This is where the second aspect of SPGR, i.e. steady-state 

acquisition, comes into play.  In order to get a consistent signal, all of the longitudinal 

magnetization (Mz) should recover to its thermal equilibrium position before each rf 

pulse repetition.  When the T1 is long, this can significantly lengthen the imaging times.  

In steady state imaging, a series of rf pulses are applied at reduced TR intervals, until the 

net longitudinal magnetization reaches a steady state equilibrium value.  There will be an 

associated loss in overall signal strength from that for TR >= T1. Additionally, if the rf 

pulses were applied such that the magnetization is rotated by an angle less than 90°, Mz 

will recover to the same steady state equilibrium strength more rapidly thereby permitting 

an even shorter TR.  The number of pulses needed to reach steady state is a function of 

the TR, T1 and the angle through which the magnetization is rotated – the flip angle.  If 

the TR is much shorter than even the T2, then the residual transverse magnetization must 

be destroyed by spoiling mechanisms [46].  The steady-state SPGR signal is given as: 

      
)exp)cos(1(

exp)()exp1()(
1

*21

T
TR

T
TE

T
TR

SintS
θ

θ

−

−=                                     (1.10)                               

Under the assumption of short TE, from equation (1.10), the signal contrast is a function 

of both TR and flip angle.  This implies that the T1-weighting can be controlled by 

adjusting the flip angle to produce contrast similar to SE imaging at a lower TR.  

Spoiling of transverse magnetization can be achieved in two ways: gradient and rf 

spoiling [7].  Gradient spoiling involves the application of a gradient pulse of increasing 

amplitude, dependent of the rf pulse number, such that the phase dispersal of spins within 

a voxel equals 2π, leaving no transverse coherence prior to the next rf pulse.  
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Alternatively, the phase of the rf pulse can be varied as a linear function of the pulse 

number, producing rf spoiling.  This will again ensure that there is no contribution to the 

signal from persistent transverse magnetization produced during a previous rf pulse.  Rf 

spoiling is more effective than gradient spoiling and is the commonly employed method.  

 
Echo-Planar Imaging (EPI) 

 
The preceding section discussed a method to reduce scan time for acquisition of a 

single echo per rf excitation.  In a unique approach to scan time reduction, EPI [47] 

imaging involves the acquisition of a “train” of echoes per rf pulse (Figure 1.4).  A short 

gradient blip between each echo is used to achieve phase encoding.  The total imaging 

time for a two-dimensional acquisition is: 

                                        T2D = Ny(Tf + 2τrt)                                                               (1.11) 

where, Tf is the duration of the frequency encoding gradient and τrt is the gradient rise 

time to peak.  It is obvious that the echoes are progressively weighted by T2 decay.  In 

actuality, since the gradient reversal method of echo formation does not reverse the 

effects of phase dispersion due to static field inhomogeneities, the signal decays more 

rapidly according to what is termed as T2*-decay.  Given that the largest signal comes 

from sampling data near the center of k-space, the TE and therefore T2*-weighting is 

determined by the time at which the center of k-space is sampled.  The maximum number 

of echoes, in effect the spatial resolution in the phase encoding direction, is limited by 

T2* times.  3D cartesian imaging using EPI is usually only performed as a 2D multi-slice 

experiment.  Thus the total scan time for a 3D acquisition is: 

    T = T2DNz                                                                      (1.12) 



 21

 

In order to increase spatial resolution, multiple excitations are used, with only a fraction 

of k-space lines collected per excitation, resulting in an increase in imaging time.  There 

is also effectively no T1 weighting since, the entire acquisition is completed in a single 

TR.  Repeated acquisitions at TR intervals can be performed in order to introduce T1 

weighting.  Again this results in an increase in scan time.  A number of artifacts such as 

geometric distortions, ghosting and blurring are often associated with echo planar 

imaging.   While some of these effects can be corrected to a certain degree, they must be 

considered in determining the best obtainable spatial resolution.  For these reasons, the 

SPGR sequence has several advantages over EPI, for dynamic contrast-enhanced MR 

imaging of tumors. 

 
1.4.5.2 Reconstruction Methods 

Partial Fourier imaging  

 
So far methods to minimize overall scan times as related to imaging sequence 

parameters, under the assumption of a nominal adequate spatial resolution, have been 

reviewed.   

Figure 1.4.  Echo-planar imaging sequence.  
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Partial Fourier imaging is an entirely differently fast imaging technique that exploits the 

knowledge that the k-space spectrum, in the absence of noise, T2* and other such effects, 

is perfectly symmetric.   Imaging time can be minimized by asymmetric coverage of k-

space in the phase encoding direction, i.e., the k-space origin is not centered within the 

acquisition window.  Since phase encoding lines are usually separated in time by TR, 

collecting fewer phase encodings implies a shortening of the total imaging time.  The 

amount of time saved is determined by the degree of asymmetry.  This idea can be 

applied equally to obtain asymmetric echoes in the frequency encoding direction, 

resulting in shortened gradient echo times.  In the idealized case, when the image data, 

ρ(x,y,z), is a real function, reconstruction involves calculating the unacquired phase 

encodings (or echo-fraction) using the complex conjugate symmetry relation: 

s(-k) = s*(k)                                                                  (1.13) 

In practice, owing to field inhomogeneties, ρ(x,y,z), is effectively a complex function and 

the assumption of perfect complex conjugate symmetry does not hold.  There are a 

number of partial Fourier reconstruction algorithms [48-50], which take into 

consideration the effects of the complex image data not being perfectly symmetric.  Most 

of these methods obtain a low frequency phase estimate which is used either iteratively, 

or in a single step, to determine the missing data, such that phase in the reconstructed data 

deviates little from original phase estimate.  The homodyne detection technique, which is 

an example of this type of reconstruction, will be discussed in detail in Chapter 2. 

Reduced Encoding Imaging and Reconstruction 

 
The underlying assumption in these methods is that dynamic changes can be tracked 

by reduced coverage of k-space and reconstruction can be performed by using k-space 
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information from a reference dataset acquired at the desired spatial resolution. Keyhole 

Imaging [51-53], for example, is based on the acquisition of a high resolution k-space 

dataset prior to contrast agent injection, followed by resampling of the central regions of 

k-space are regular intervals.  The assumption is that the bulk of the rapid contrast 

enhancement changes are encoded in the low spatial frequency data.  The final set of 

dynamic images is created by combining the high spatial-frequency phase-encodes from 

the reference data with the dynamic low-spatial-frequency datasets.  In effect, the keyhole 

technique provides images with a spatial frequency-dependent temporal resolution. The 

SNR of keyhole imaging is improved due to larger voxel sizes, but the overall resolution 

of contrast changes is compromised.  The extents of central k-space as well sampling 

rates are somewhat arbitrarily selected.  While reconstructing variably sampled data, 

peripheral k-space lines that are not acquired, are approximated in different ways.  In  

“keyhole” acquisition, for example, a single pre-contrast full-matrix acquisition is used to 

provide peripheral k-space data that is combined with each central k-space dynamic 

dataset to generate a high resolution dataset. Other sparse sampling methods such as 

CURE [54] and variable sampling rate spiral imaging [55], reconstruct a full k-space 

matrix by substituting data from a nearest k-space region.  Reduced-Encoding MR 

Imaging with Generalized-Series Reconstruction (RIGR), similar to keyhole imaging, 

involves the acquisition of a pre-contrast high resolution image followed by a series of 

reduced-encoding dynamic images.  Image reconstruction is accomplished by using a 

generalized series (GS) model [56-58].   According to the GS model, for each dynamic 

image, coefficients for a set of basis functions, which are constrained complex sinusoids, 

are determined.  The constraint function is chosen to be the magnitude of the reference 
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image.  This set of basis functions, in conjunction with the reference image, is then used 

for reconstruction.  The spatial resolution in the GS model is based on both the basis 

functions and the number of terms in the series, unlike in the Fourier series reconstruction 

where it is dependent solely on the number of terms available.  Ultimately, the spatial 

resolution in RIGR is limited by the initial contrast and presence of edges between 

regions of signal change and the background. 

In this section several methods that have been employed to increase temporal 

resolution for any given desired spatial resolution have been outlined. In all these 

methods, a minimum desired spatial resolution is specified, and attempts are made to 

improve the temporal resolution in sampling the dynamic event.  The next chapter deals 

with the development of a method that addresses the spatio-temporal tradeoff in DCE-

MRI based solely on an overall scan duration constraint, without pre-selecting either the 

spatial or temporal resolution.   

 



1This chapter based primarily on work found in [75] 

CHAPTER 2 

Spatio-Temporal Bandwidth-Based (STBB) Analysis of Dynamic MRI1 

 
2.1 Introduction 

 
The dynamic imaging methods discussed in Chapter 1 (Section 1.4) lack a definite 

rationale in selection of spatial and temporal sampling rates.  A k-space representation of 

dynamic imaging that could be used to provide such a rationale, was first presented by 

Xiang and Henkelman [59].  They represented the dynamic object in a multi-dimensional, 

kx-ky-t, space as a combined function of the spatial frequencies and an additional temporal 

variable, to effectively describe the dynamic imaging process.  They then looked at the 

reciprocal Fourier space, x-y-ω, which is equivalent in terms of energy content based on 

Parseval’s theorem [60] to the kx-ky-t space, and noted that dynamic events such as 

cardiac cycles and respiration have sparse energy distributions in this space.  This 

suggested the potential to trade off spatial and temporal samples.  They, and subsequently 

others, have used this approach for imaging periodically varying objects based on 

satisfying a minimum Nyquist criterion for sampling the temporal function [61, 62].   

When the temporal functions are inherently bandlimited, a Nyquist frequency can be 

calculated.  This is however, not the case for the enhancement changes that occur in 

tumors due to contrast uptake, which are continuous aperiodic functions.  A method that 

is applicable to dynamic imaging in the case of non-bandlimited temporal changes is 

focus of this research work.  While it is has been developed specifically for the case of 

contrast enhancing breast tumors, the technique is applicable to any similar dynamic 

imaging condition.  We consider a combined enhancement modulated object, modeled a 
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priori, i.e. we anticipate the spatial features and temporal enhancement.   The total energy 

of this object can be represented equivalently in the Fourier domain.  The 

multidimensional dynamic imaging experiment is now posed in terms of traversing this 

spatio-temporal Fourier space.  Selection of appropriate spatial and temporal sampling 

rates is done such that maximal energy coverage of the combined Fourier space is 

achieved over the course of the dynamic acquisition.  In Section 2.2, the STBB formalism 

is developed by modeling a specific combination of tumor spatial characteristics and 

contrast enhancement, for a given set of imaging parameters.   The application of the 

STBB analysis to a few additional examples of object-enhancement combinations is also 

demonstrated. In Section 2.3 the formalism is compared to the two cases of dynamic 

imaging, one laying emphasis on high temporal resolution (termed Keyhole) and the 

other on high spatial resolution (termed Conventional), described in Chapter 1, Section 

1.2.  In the Section 2.4 results of this comparison for an ensemble of morphologic 

features and pharmacokinetic properties of breast lesions is presented. 

 
2.2 Theory          

 
The STBB formalism is developed by considering spatial and temporal characteristics 

of a targeted object, as well as specifying a set of imaging constraints.  The analysis can 

be divided into several steps as follows: 

I. A specific set of imaging parameters such as pulse sequence, TR, fields of view 

(FOV’s) and scan duration are selected. 

II. The targeted object is modeled a priori. Spatial characteristics are defined by 

assuming a spherical shape of specific diameter. Temporal characteristics are 
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described in terms of pharmacokinetic parameters associated with a specific 

model. 

III. Based on the imaging parameters, the limits on the spatial and temporal imaging 

bandwidths for the chosen object and enhancement combination are established.  

Further, the total number of samples that can be acquired is also determined. 

IV. A multi-dimensional spatio-temporal object is defined such that it encompasses 

both spatial and temporal properties of the lesion, limited in resolution by the 

maximum number of samples that can be acquired over the scan duration. The 

multi-dimensional spatio-temporal object is transformed into the Fourier domain.  

This Fourier spaces encompasses all possible sampling schemes for the dynamic 

imaging sequence. 

V.  The multi-dimensional Fourier space is thresholded using an energy 

maximization criterion such that the total energy coverage, constrained by the 

image acquisition parameters, is maximal.    

VI. A spatio-temporal k-space traversal scheme is derived from the thresholded 

Fourier space, i.e. criteria for variable-rate sampling along both spatial and 

temporal axes are established. 

 
2.2.1 Definition of Imaging Constraints 

 
The first step involves setting up the imaging constraints in terms of TR and overall 

imaging duration.  The pulse sequence used is a three-dimensional fast spoiled gradient-

recalled echo (3D-FSPGR) described in Chapter 1 (Section 2.4) that was used for a 

clinical breast study conducted at our institution.  This sequence has several advantages 

in its application to contrast-enhanced imaging.  First, it permits a reduction in TR due to 
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gradient refocusing.  Further reduction in TR is obtained by choosing a flip angle less that 

90º since this hastens achievement of a steady-state signal.  The fast optimization feature 

allows the TE to be minimized, yielding higher sensitivity to the T1-shortening effects of 

contrast agents.  In breast tissue the primary contrast is between fat and parenchyma.  The 

optimal flip angle that achieves maximum contrast is 40º. At the time of this research 

work, the minimum TR that could be achieved with an FSPGR sequence was 10 

milliseconds.  The overall duration of scanning is related to the time it takes for contrast 

enhancement to reach steady state.  Based on our clinical experience this duration was ~ 

4 minutes.  The three dimensional acquisition consists of a volume excitation 

encompassing all the breast tissue of interest.  This defines the fields of view along each 

of the spatial dimensions.  For purposes of modeling we choose field of view along the x-

axis (FOVx) to be 30 cm (fairly typical in clinical scanning) with FOVy = ½ FOVx.  The 

x-axis is chosen to be the frequency encoding axis, the y and z axes are the phase-

encoding axes.  The next stage in developing the STBB formalism is to model the spatial 

and temporal characteristics of the lesion.  

 
2.2.2  Modeling of Temporally Enhancing Object 

 
To simplify the STBB analysis, three-dimensional imaging is reduced to a single 

spatial axis, by the following arguments.  For the chosen pulse sequence since the TR is 

extremely short, 10 milliseconds, frequency encoding is considered to be instantaneous.  

Furthermore, for a conventional 3D phase-encoding acquisition, it can be assumed that 

the faster phase encoding, chosen to be the z-axis, also occurs fairly rapidly (typically < 

0.5 sec) relative to the rate of contrast uptake.  The most significant contrast change can 

now be modeled as occurring during the “slow” phase-encoding dimension, i.e. the y-
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axis.  The lesion morphologic feature is now modeled in one dimension by a simple rect 

function, rect width being equal to the cross-sectional diameter of the lesion. For 

modeling this is chosen to be equal to 2mm.  This object is created by generating the k-

space spectrum using a sinc function in Matlab (Natick, MA) and inverse Fourier 

transforming to produce the spatial function.  

The simulated enhancement profile is generated using a multi-compartmental 

pharmacokinetic model developed by Tofts and Kermode [63].  In this model the changes 

in tracer concentration are described as an interchange between two primary 

compartments (Figure 2.1).   

 

 

 

 

 

 

 

 

The first compartment is the blood plasma volume into which the contrast material is 

injected.  This is connected to a large extracellular space which is distributed throughout 

the body, while the kidneys drain the Gd-DTPA from the both spaces.  The lesion is 

modeled as being connected to the plasma through a leaky membrane.  It is assumed that 

the bolus injection is of a very short duration and that there is complete mixing in all 

compartments.  The time course of tracer concentration in the plasma is described 

theoretically as: 

Plasma 
Cp(t) 

Kidneys 

Lesion Leakage space 
Cl(t)  

Volume v per unit 

Bolus injection  
of Gd-DTPA 

k 

Figure 2.1. Compartmental model of Gd-DTPA tracer distribution 
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    t))mexp(a  t)mexp((aD  (t)C 2211p −⋅+−⋅⋅= 

where, 

D is the Gd-DTPA dose (mM/kg body wt); a1, a2 are the amplitudes and m1, m2 are rate 

constants that were derived empirically. The flow of tracer from plasma to the leakage 

space is then described as: 

 

where, k/v is the rate constant for the filling of the leakage space.  

In current terminology [64], the lesion contrast kinetics are quantified by two 

standardized parameters: volume transfer constant Ktrans (equivalent to k) and 

extracellular volume fraction νe (equivalent to v).   Figure 2.2 a. shows the enhancement 

profile, C(t), generated using this model with Ktrans  = 0.4 min-1 and νe = 0.3, that is used 

as describe the temporal characteristics in this analysis. 

 

(2.1) 

   t/v))kexp((1C  C pl ⋅−−= (2.2) 

Figure 2.2. a) Simulation of moderately enhancing lesion, C(t). Ktrans = 0.4 min-1, νe = 0.3. 
                   b) K-space power spectrum C(kt). 
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Kt = 1/∆t = N/T                                                      (2.6) 

 

2.2.3 Definition of Imaging Bandwidths   

 

The rate of imaging limits the achievable sampling bandwidths along the spatial and 

temporal axes.  For the spatial axis, based on the simplified one-dimensional model, the 

rate of imaging along ky alone is of interest.  The sampling interval ∆t between k-space 

acquisitions along ky is the time taken to acquire one frame in the kx-kz plane, given as:  

                                                           ∆t  = TR x Nz                                                      (2.3) 

where Nz is the chosen matrix size along the z encoding axis.  

Let the total duration of the DCE experiment, within which most of the dynamic change 

of interest occurs, be denoted as T.   The total number of sample points that can be 

acquired, N, is given by: 

                                                              N =  T/∆t.                                                         (2.4)  

The maximum allowable spatial bandwidth Ky is then given as: 

                                                           Ky = N/FOVy                                                      (2.5) 

Thus, at the nominal values of Nz = 32, TR = 10 ms and T ~ 4 minutes, N = 640 total 

measurements can be made at sampling intervals ∆t = 0.32”.  For these imaging 

parameters, the small 2mm lesion, approximately 2% of the nominal field FOV (12) 

pixels in a 640 matrix), with the spatial profile M(y), is shown in Figure 2.3 a. The 

corresponding k-space spectrum, M(ky), obtained by taking the Fourier transform of the 

one-dimensional object function, is limited in extent from –Ky/2 to Ky/2 ( Figure 2.3 b). 

Analogous to the spatial arguments, the maximal temporal bandwidth also defined by the 

rate of digitization, is given as: 
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For the lesion enhancement profile shown in Figure 2.2 a, the corresponding spectral 

profile is its Fourier transform, C(kt), limited in extent to ± Kt /2 is shown in Figure 2.2 b.  

The maximal spectral bandwidths, in effect, describe the theoretical limits on the 

sampling rate for each of the spatial and temporal functions individually.  

 
2.2.4  Spatio-temporal ky-kt-space Representation   

 
We begin by modeling the spatial and temporal functions up to N-point resolution, i.e. 

it is assumed that each function is sampled at the theoretical maximum rate permitted by 

the imaging constraints.  The instantaneous signal from a lesion is the product of the 

spatial amplitude M(y) and the modulating contrast C(t).  However, the spatial features are 

completely unrelated to the temporal characteristics, i.e. M(y) and C(t) are completely 

distinct functions (M(y,t) = M(y)• C(t)).  Thus, it is possible to construct a combined two  

b. a. 

Figure 2.3 a) Spatial profile, M(y), of object 12 pixels wide along y axis.   b) K-space 
power spectrum, M(kt). 
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Figure 2.4. a) Combined two-dimensional spatio-temporal object.  b) “ky-kt ” 
representation of spectral power  in dual object.  c) Thresholded region encompassing N 
sample points containing maximal spectral energy in ky-kt. d) Spatial and temporal 
sampling bandwidth pairs.   
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one axis, and the temporal change, that amplitude modulates the spatial profile, is 

represented along an independent dimension (Figure 2.4 a).  Fourier transformation of the 

two-dimensional (N × N) space-time object yields the ky -kt spectral map (Figure 2.4 b).  

This is mathematically the outer product of the Fourier spectra of the object spatial and 

enhancement profiles, 
∧∧

• )C(kM(ky) t
T

 .  The ky-kt map, in effect, encompasses the spectral 

space that would be sampled if both spatial and temporal functions were simultaneously 

sampled at the maximum allowable bandwidths. i.e. N2 samples were acquired.  This 

establishes the spectral space that can potentially be sampled during the imaging 

experiment.  In practice, it is not possible to sample this entire space, since we are 

constrained by the imaging experiment to a maximum of N samples.  However, all 

possible schemes of temporal and spatial sampling are included within the ky -kt map.  For 

example, in the limit, we could sample the spatial function up to N-point resolution and 

acquire a single temporal sample or vice versa. 

 

2.2.5  Segmentation of ky -kt  Fourier Space   

 
The ky -kt spectral map is a representation of the combined spectra of N temporal and 

N spatial samples.  For the given imaging constraints, it is possible to obtain a total of 

only N measurements within the ky -kt space.  The objective is to choose the subset of N 

points from within the ky -kt space, independent of bias toward either the spatial or 

temporal function.  The following energy maximization criterion is chosen as the basis 

for sampling the ky -kt map:   
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where, 
22

)()(
∧∧

ty kCkM  is the instantaneous spectral power in the enhancement 

modulated object and S   is the cardinality of S.  This yields an area plot within the ky-kt  

domain that contains the greatest total spectral power for the given spatio-temporal 

object, constrained by N samples.  

 
2.2.6 Variable-rate Spatio-Temporal K-space Sampling Prescription 

 
The variable rate sampling prescription is now developed from the segmented ky-kt 

map.  For any given spatial bandwidth included in the segmented ky-kt space the 

corresponding temporal bandwidth prescription is automatically selected. Likewise, for 

any given temporal bandwidth included in the segmented ky-kt space the corresponding 

spatial bandwidth prescription is known, i.e. we can determine ky-kt bandwidth pairs.  For 

the enhancing object in Figure 2.4 a), a binary thresholded map representing the optimal 

energy sampling region, is shown in Figure 2.4 c).   It is convenient to look at a binary 

thresholded map because this directly yields the sampling prescription, since each 

bandwidth corresponds to a specific number of measurements, or index point along the kt  

or ky axis.  Thus for the given spatio-temporal object, the sampling prescription can be 

summarized in a plot of the temporal samples/bandwidth per spatial index/bandwidth 

(Figure 2.d).  We interpret these plots as yielding the number of temporal samples to be 

acquired at a given spatial frequency index.  Thus, for the simulated spatio-temporal 

(2.7) 
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object (Figure 2.4 a), the prescribed variable-rate acquisition is as follows: the central 36 

ky lines should be sampled at least 7 times (252 samples), the next 11 lines on each side 

of the symmetric ky axis at least 5 times (55 samples).  Beyond a ky index of 40 lines a 

single (DC) temporal sample is prescribed.  Typically, the sampling rate for the central ky 

lines is highest and determines the overall temporal sampling rate. This result is 

consistent with the notion that the bulk of the dynamic change information is encoded in 

the lower spatial frequencies.  Figure 2.5 shows two additional examples of enhancing 

lesions.  The ky -kt analysis suggests that fewer central k-space lines should be imaged at a 

higher temporal rate for a rapidly enhancing large object.  Conversely, for the slowly 

enhancing small object, larger central spatial bandwidth should be acquired at a relatively 

slower temporal rate.  This is fairly intuitive since it is expected that rapid dynamic 

change will possess higher energies over a larger bandwidth, as will a small spatial 

object.  It also underscores the point that the STBB formalism is an objective mechanism 

to balance spatial and temporal samples rather than a numerical optimization scheme 

based on a specific pharmacokinetic model and given object.  Neither the temporal nor 

the spatial properties alone determine the resulting coverage prescriptions.  Since the 

spectral samples in ky-kt space are weighted by both the spatial and temporal spectral 

density, it is the net energy contribution of a given ky-kt sample that serves as the 

inclusion criterion.    

 
2.3 Methods 

 
The STBB k-space traversal scheme was compared with two other methods of k-

space traversal – “conventional” and “keyhole”, discussed in Chapter 1, Section 1.2.  The 

imaging parameters described in Section 2.2.1 established the maximum number of  
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sample points as 640.  For comparisons, the conventional and keyhole matrix sizes were 
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Figure 2.5. a) Large size (30 pixel) object exhibiting,  b) rapid enhancement, Ktrans = 1.5 
min-1, νe = 0.3 and c) associated spatio-temporal sampling prescription.  d)-e) Similar 
analysis for small object (3pixel) with slow enhancement, Ktrans = 0.2 min-1, νe = 0.3.  
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set equal to values that were used at our institution for a clinical breast study. The 

conventional acquisition ky matrix size was 128 lines, which permitted 5 volume 

acquisitions or equivalently 5 temporal sample points were obtained.  The keyhole ky 

matrix size was 32 lines, which permitted 20 volume acquisitions (Figure 2.6).  A wide 

range of spatio-temporal objects were considered in this comparison.  Object sizes ranged 

from 2 to 40 mm and k values ranged from 0.1 min-1 to 6 min-1, ν was held at 0.3.  For 

each of the spatio-temporal objects the corresponding ky-kt was generated.  The total 

energy coverage in the segmented ky-kt map was computed for each of the methods under 

comparison.   

 
2.4 Results 

 
Figure 2.7 shows the results of the comparison in overall energy coverage 

between the three schemes: Keyhole, conventional and STBB.  The total energy coverage  

0 40 80 120 160 200
Time, Seconds

Ky =  0 

Figure 2.6. Schematic of keyhole and conventional imaging. 
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is plotted as a function of object spatial size.  The one-sided error bars (shown positive 

and negative for purposes of clarity only), shows the variation over the range of 

enhancement rates.  Figure 2.8 shows the results of this comparison as a function of 

enhancement rate, the error bars indicate variation over the range of object sizes.   In both 

figures, it is clear that the total energy encompassed in the STBB prescription is maximal.  

In Figure 2.7 we see that there is crossover point between the conventional and keyhole 

energy coverage indicating that neither is optimal, in terms of spectral energy coverage, 

over the entire range of spatio-temporal objects under consideration.   

 In summary, this chapter outlines a method to express the tradeoff in spatial and 

temporal sampling criteria in terms optimizing the coverage of a combined ky-kt spectral 

space.    A simple energy maximization metric is used to select the appropriate k-space  

 

Figure 2.7.  Total energy contained in segmented ky-kt space as a function of lesion 
diameter.  The error bars show the variation due different enhancement rates. The error 
bars are shown one-sided for clarity.
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sample. This approach is not biased towards characterizing either the spatial or temporal 

function.   

 
 
 
 
 
 

Figure 2.8.  Total energy contained in segmented ky-kt space as a function of 
enhancement rate.  The error bars show the variation due different lesion diameters. The 
error bars are shown one-sided for clarity. 
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Chapter 3 

STBB Acquisition for DCE-MRI of Breast Lesions 

 
3.1 Introduction 

 
In Chapter 2 spatio-temporal bandwidth-based (STBB) analysis for a combined 

space-time object has been described in detail.  Briefly, the object spatial features are 

modeled along one dimension and temporal enhancement changes are modeled along an 

independent dimension.  The corresponding ky-kt spectral space representations are 

generated for individual objects, modeled a priori.  The k-space sampling prescription for 

a particular spatio-temporal object is derived by segmenting the ky-kt spectral map, to 

include a fixed number of data samples permitted by a given imaging experiment.  This 

approach is applicable when one can define a single targeted object.  That is, we can 

anticipate the signal enhancement as well as the spatial features that should be 

characterized.  However, in practice, one may wish to image a range of spatio-temporal 

objects.  Ideally the variable rate acquisition should be designed such that it is applicable 

to a continuum of spatial features and enhancement profiles.  This chapter deals with 

designing an acquisition scheme that is applicable to such a class of space-time object, 

specifically breast tumors.  Again, a priori modeling is first used to define a set of breast 

lesions.  A method to design a k-space acquisition scheme for the ensemble is then 

demonstrated.  The devised k-space acquisition scheme was investigated using computer 

simulations applied to a set of modeled spatio-temporal objects (Section 3.4).  The STBB 

approach was evaluated in relation to the “keyhole” and corresponding high-spatial 

resolution, “conventional”, methods described in Chapter 1.  Error metrics devised to 
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evaluate the performance are detailed in Section 3.4.1 and the results are presented in 

Section 3.4.2.  In Section 3.5 methods used to perform an experimental validation using a 

lesion-simulating phantom are described.  The results of experimental data are presented 

in Section 3.5.2.  Section 3.6 provides a discussion on the outcome of simulation studies. 

 

3.2 Design of k-space Acquisition for Ensemble of Space-Time Objects 

 

The first stage in designing the k-space acquisition is to define the ensemble of 

spatio-temporal objects.  For breast lesions, past clinical experience was used to 

determine an adequate set of temporal enhancement characteristics as well as spatial 

features.  Based on the pharmacokinetic modeling outlined in Chapter 2, lesions are 

classified according to the rate of enhancement.  This rate was broadly characterized as 

ranging from slow to medium to rapid.  As was discussed in Chapter 1, the rates of 

enhancement do not necessarily correlate with diagnostic outcome in every instance. 

However, for the purposes of our analysis, they provide the a priori set of enhancement 

parameters that we would expect to encounter in DCE-MRI of a breast lesion.  Hence, in 

modeling the temporal changes, rates of enhancement (Ktrans) ranging from 0.2 min-1 

(slow) to 3 min-1 (rapid) were chosen.  In modeling the spatial features, the simplest 

feature, which is size of the lesion, is considered.  The size feature relates closely to 

diagnostic accuracy in identifying and further classifying lesion architectural features. In 

this analysis the cross-sectional diameter of spherical lesions is used as a simplified 

surrogate to define lesion spatial features in one dimension. Lesions are classified as 

small (2-10 mm), medium (10,12,14,16,18,20 mm) or large  (25, 20 mm) in diameter.  

Permutations of the chosen spatial and temporal features produce a set of spatio-temporal 
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objects that define a class of breast lesions.  Next, the ky-kt representation for each 

enhancing object is generated and the corresponding k-space sampling prescription is 

obtained.  Figure 3.1 shows these prescriptions for a few specific examples of these 

objects.  It is informative to look closely at these graphs and interpret the relative 

contribution of the spectral content of the spatial/temporal feature to the resulting k-space 

prescriptions.  Figure 3.1 a) shows the prescriptions for rapid enhancement (Ktrans = 3 

min-1) in a small (2 mm) and large (30 mm) lesion. The spectral energy of rapid 

enhancement is expected to extend over a wide bandwidth. When the object is large its 

spectral energy is mainly concentrated in the lower spatial frequencies.  The combination 

of these effects results in a prescription of high number of temporal samples over a 

narrow bandwidth in ky.  On the other hand, when the lesion is small, its spectral energy 

content extends over a large spatial bandwidth, thus forcing the prescriptions to extend 

further along the spatial along, thereby allowing correspondingly fewer temporal samples 

per spatial index.  Now consider Figure 3.1 b), which shows the prescriptions for slow 

enhancement (Ktrans = 0.2 min-1), in the small and large lesions.  The prescriptions appear 

similar to those in Figure 3.1 a), except that fewer temporal samples are prescribed along 

central ky lines, with a corresponding increase in the overall spatial bandwidth 

prescription.  This reflects the fact that the spectral energy content of the slow 

enhancement function is concentrated over a narrower bandwidth.  Remembering that the 

thresholding criterion in the STBB analysis (Chapter 2) is to maximize the spatial energy 

content in a finite number of samples, it follows that a reduction in coverage along the 

temporal spectral axis will permit an increase in spatial bandwidth extent.   Figure 3.1 c) 

shows the prescription for a moderately enhancing lesion (Ktrans = 0.6 min-1) of medium  
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size (15 mm).  Here, there is a reduction in number of temporal samples prescribed for 

the central ky lines, relative to that for the rapid enhancement examples, for reasons 

similar to the slow enhancement cases.  Concurrently, the maximal extent along the 

spatial frequency is reduced compared to that for a small object, again because the 

spectral energy of the larger object is concentrated in a narrower bandwidth.  Finally, it is 
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noted that the “shape” of the sampling prescriptions itself, is in each case a function of 

the instantaneous weighting of the combined ky-kt spectra of both the spatial and temporal 

function.  Thus, there is a tradeoff between the spatial and temporal criteria based on their 

individual spectral contents. For the same rapid enhancement, for example, different 

sampling prescriptions are obtained, depending on the spatial function. 

To design the overall prescription applicable to the ensemble of simulated objects the 

preceding analysis is taken into consideration. The unbiased “best-case” prescription is 

found to vary from one spatio-temporal object to another.  In an attempt to resolve this, 

the highest temporal sampling rate for a given spatial index, over all simulated objects, is 

chosen to be the overall prescription.  Thus in all instances the temporal frequency 

prescription at a given spatial frequency for any given spatio-temporal object, is either 

satisfied, as per its individual prescription, or exceeded.  It should be noted, that this is in 

effect identical to the converse process of choosing the highest spatial frequency extent 

for a given temporal frequency index.  Since it is more intuitive to think in terms of the 

number of temporal samples for a given spatial frequency index, all further discussions 

are done in this format.  Figure 3.2 shows the resulting overall sampling prescription for 

the ensemble of objects included in this simulation of a representative set of breast 

lesions. The plot of mean temporal sampling prescriptions shows that at all spatial 

frequencies the mean value is much lower than the maximum temporal sampling 

prescriptions, and that beyond a certain spatial bandwidth, the average prescription is a 

single temporal sample.  In the next section an acquisition scheme that is a practical 

implementation based on the guidelines provided by this overall sampling prescription is 

developed. 
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3.3.  Practical Implementation of STBB-based Acquisition Scheme 

 

The imaging constraints, described in Chapter 2, and used throughout the STBB 

analysis, establish that the maximum number of samples, spatial or temporal, that can be 

acquired over the duration of the imaging experiment is limited to N = 640.  Proceeding 

as per the guidelines shown in Figure 3.2, the maximum allowable number of samples is 

exceeded (668) within a spatial bandwidth of 34 lines in ky.  It is also noted that beyond ky 

index = 72, only 2 temporal samples are prescribed per spatial frequency index.  The 

overall maximum number of temporal samples (16) is prescribed for the central ky lines. 

Based on these observations, the k-space acquisition is designed such that: 

1) Using standard Fourier image acquisition, the total number of ky lines acquired 

should be held constant for each volume acquisition.  Subject to this constraint, a 
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maximum of 40 spatial frequencies can be encoded at a given timepoint, to allow 

a maximum of 16 temporal samples for the central ky lines.   

2) Since a single pre- and post-dynamic acquisition can be used to increase spatial 

resolution beyond ky index = 72, the acquisition matrix is limited to have a 

maximal reconstructed resolution of 144 spatial (ky) frequency encodings.   

3) In order to overcome the limitation of exceeding the allowable number of samples 

beyond a spatial bandwidth of 34 lines in ky, a partial Fourier technique termed as 

homodyne detection [49], discussed in further detail in the next section is 

incorporated.  The STBB analysis does not inherently preclude the inclusion of 

such a partial Fourier acquisition.   

 

3.3.1 Homodyne Detection 

 
Homodyne detection is a partial Fourier reconstruction schemes that exploit the 

Hermitian symmetry property inherent in MR image data [71]. In this method it is 

assumed that the phase characteristics in image space are slowly varying.  Hence a 

lowpass filtered version of the partial k-space data is used to obtain a phase map that 

estimates the overall incidental phase variations.  The partial k-space data is multiplied by 

an appropriate filter (e.g. step), such that the amplitude of the asymmetric portion is 

doubled, in effect restoring the amplitude information for the k-space lines that were not 

acquired.  It is now possible to achieve a real reconstruction by inverse transforming the 

filtered k-space data and multiplying it with the inverse of the calculated phase map.  

This real reconstruction is then represented as an amplitude image. 
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The use of homodyne detection was investigated on a test object that was imaged 

using the clinical imaging sequence (image matrix: 256x128) discussed in this study.  

Partial k-space acquisition was simulated by truncating the data in ky (5/8ths) and then 

zero padding up to the full resolution.  A step-weighting filter applied to the partial 

Fourier data could potentially produce artifact  

such as “Gibbs phenomenon”, particularly if the 

 k-space data is miscentered.  To assess the level  

of observable artifact the partial k-space 

reconstruction was subtracted from an original 

 high-resolution dataset.  This subtraction image  

can be seen in Figure 3.3. The ringing artifact is visibly present in the reconstruction 

using a step weighting function.  

The effect of filter width on the degree of spatial artifact was further investigated 

for object sizes ranging from  2- 30 mm. 1-D simulations were performed with filter 

a.                   b. 
Figure 3.3. a) Original unsubtracted 
                    image. b) Step filter weighted  
                    reconstruction. 
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widths equal to 8 and 16 central ky lines.  The matrix size was 144 along the y-axis 

(FOVy = 15 cm). For larger objects the level of artifact, was observed to be relatively 

high at a filter width of 8 ky lines.  Figure 3.4 shows this result for the 25 mm wide object.   

 
3.3.2 K-space Traversal Scheme 

 
Based on the results of filter width effects on homodyne reconstruction, the minimum 

number of central ky lines that should be acquired was increased to 16.  The resulting 

overall prescription adjusted to accommodate this requirement is shown in Figure 3.2.  

This prescription can be interpreted as follows: the central 16 lines in ky should be 

acquired 16 times, the next 4 line should be acquired 14 times and so on.  The resulting 

acquisition, shown in Figure 3.5, is limited to a maximum of 640 samples stipulated by   

the  imaging constraints  and has a reconstructed  resolution of 144 lines along the y-axis. 
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Figure 3.5. STBB acquisition scheme.  The corresponding partial Fourier 
                   Keyhole acquisition is also shown. 
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The patchwork of segments was manually determined, conforming to the dual 

constraints of obtaining a prescribed number of temporal samples per segment, and a 

limit of 40 samples at any given timepoint.  Missing segments in ky at a given timepoint 

are generated by linearly interpolating between the nearest acquired segments.  For 

missing data at the first timepoint, data from a full matrix pre-contrast image is used.  

Similarly, for missing data at the last timepoint, a post-contrast full matrix dataset is used.  

For the keyhole datasets, the pre-contrast dataset is used to provide all missing k-space 

data.  Finally, homodyne reconstruction is performed on this partial k-space acquisition. 

 

3.4 Computer Simulations 

 
The k-space scheme acquisition scheme designed in the preceding section was 

investigated using computer simulations performed in Matlab (Natick, MA).  This 

scheme was compared to the two methods: “Keyhole” and full-matrix acquisition 

described in Chapter 1.  The partial Fourier keyhole acquisition is shown in Figure 3.5.  

The keyhole width was 40 spatial samples, yielding 16 overall temporal samples.  The 

full-matrix acquisition obtained 144 spatial samples at each timepoint permitting a total 

of ~5 temporal samples.   

 
3.4.1 Methods 

 
In developing the parameter set for computer simulations some observations from the 

clinical breast study conducted at our institution were incorporated. The simulation 

parameters were as follows: 
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1) Homogeneous spherical lesions were simulated as ranging from 2-30 mm in 

diameter.  Objects were simulated in k-space, using a matrix size of 256x144 at 

nominal fields of view (FOV), 30x15 cm. 

2) The rates of enhancement, Ktrans, were modeled as varying from 0.2 – 6 min-1.  

The leakage factor νe, which relates to the overall amplitude of enhancement, was 

selected to be = [0.15 0.3 0.5].  These values correspond to ~100, 150 and 200 % 

signal change.  Contrast-enhancement curves were generated using the Tofts-

Kermode model described in Chapter 1.  

3) In the clinical study, we observed that the initiation of contrast enhancement in 

the breast tissues varied from one subject to another, for the same start time of 

contrast injection.  This is attributed to physiologic variability.  The start delay,τ, 

was computed as the time between appearance of contrast in the heart and 

initiation of contrast-enhancement in the lesion.  The delays ranged from 14 – 71 

seconds with a mean of 41s and a standard deviation of 6.83s.  This start delay 

was included in the function used to simulate enhancements. 

4) The effects of systematic and physiologic noise were incorporated by adding 

Gaussian noise to the k-space datasets, i.e. additive complex noise was included.  

We considered two noise conditions: 1) High signal-to-noise, SNR ~ 40, and 2) 

Low signal-to-noise ratio, SNR ~ 5.  Again clinical data was used to determine to 

get a sense of appropriate high and low SNR.  The low SNR was caused largely 

by physiologic noise and patient motion.  The different SNR conditions were 

produced by adjusting the amplitude of the noise generated using the randn 
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function provided in Matlab to yield the desired SNR in an object of unit 

amplitude.     

5) Computer simulations were performed for 500 Monte Carlo repetitions, 

incorporating variable noise and start delays in each repetition.  The number of 

repetitions was chosen based on a pilot simulation, which showed that the mean 

and standard deviation of enhancement parameters did not vary significantly 

beyond 500 repetitions. 

A program written in Matlab simulated the contrast-enhancement process by 

amplitude modulating successive (as per the scheme shown in Figure 3.5) ky acquisitions 

by the instantaneous contrast, C(t), over the duration, T, of the dynamic experiment.  

Once the three dimensional (kx-ky-t) datasets were generated, data interpolation was 

performed to generate missing segments in k-space, followed by homodyne 

reconstruction for both the STBB and keyhole acquisitions.  The full matrix dataset was 

reconstructed using standard inverse Fourier transforms.  Contrast-enhancement curves 

were generated by computing mean values within selected regions of interest (ROI) for 

each reconstructed timepoint.  The ROI was determined based on the initial timepoint.  A 

threshold of 70% of maximum intensity within a radius slightly greater than the known 

object radius and centered at the object center was used to obtain an ROI mask for all 

subsequent timepoints.  The contrast enhancement curves were submitted to the curvefit 

algorithm in Matlab, which performed a Levenberg-Marquardt fit to the known 

(simulated) functional form of the enhancement profile. Fitting generated the three 

enhancement parameters considered in this analysis i.e.: Ktrans, νe, and τ, for each of the 
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permuted object and enhancement conditions.  This process was repeated for each of the 

500 Monte Carlo simulations.   

 
Error Metrics 

The performance of the three schemes under comparison was evaluated using the 

following measurements: 

Bias vs. Standard Deviation Plots for Estimated Ktrans 

As a method to assess performance in characterizing contrast uptake changes, the bias 

in mean estimated Ktrans values was plotted as a function of the standard deviation.  This 

gives a measure of both accuracy and reliability, for each of the three schemes.  While νe, 

and τ are enhancement parameters that are included as variables in the simulation, results 

in estimation of these parameters are not evaluated.  The νe, and τ  do however contribute 

to estimates of Ktrans.  This will be further discussed in the results section. 

Receiver-Operator Characteristic (ROC) 

The ROC plot is commonly used as a means to separate two classes such as disease 

(positive) vs. non-disease (negative).  The ROC is plotted as a function of two 

parameters:  

sensitivity, which is defined as: 

                          Sensitivity  = True Positive/(True Positive + False Negative), 

and specificity, which is defined as: 

                          Specificity = True Negative/(True Negative + False Positive). 

Hence sensitivity is the probability of determining the true presence of disease, whereas 

specificity is the probability of determining true absence of disease.  Typically, ROC 

plots are generated by determining the value of these parameters at different decision 
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criteria, from a known population including samples from both classes under 

consideration.  These plots can then be used to select decision criteria in the future.  If, 

for example, we wish to have high probability in detecting the presence of disease, we 

would choose a decision criterion that yields a high sensitivity and allow a potential loss 

in specificity.  To apply this approach to simulation data, an assumed value for Ktrans is 

chosen as the point that distinguishes malignant from benign lesions.   This generates a 

distribution of true disease and non-disease in the data.  ROC analysis is then performed 

on this data.  This process is repeated for two values of Ktrans = 1.5 min-1 and 0.6 min-1.  

While there is no conclusive data to support this, it has been observed in some studies 

that higher values of Ktrans are diagnostic for certain tumors [38], while Ktrans values in the 

range of 0.6 min-1, have value in separate benign and malignant tumors [39]. 

Mean Squared Error (MSE) Analysis 

The performance metric for fidelity in spatial features was chosen to be the mean 

squared error.  This was computed between the original object amplitude modulated to 

reflect enhancement at a given timepoint, and the corresponding reconstructed timepoint, 

for each of the three schemes under investigation.  The mean squared error was computed 

for two sets of ROIs: 1) a small ROI including only pixels that were considered to be 

object pixels as defined earlier when computing the mean object intensity. 2) a large ROI 

including  a fairly large area surrounding the object.  The first ROI is designed to 

determine within-object distortion/loss of resolution, whereas the second ROI will elicit 

spatial dispersion outside the object. 
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3.4.2. Results 

 
The results for bias vs. standard deviation in estimated Ktrans are presented Figure 

3.6 - 3.8.  The plot shown for Ktrans = 3 min-1, 0.6 min-1, and 0.2 min-1, are representative 

for rapid, moderate and slow enhancements, respectively.  The graphs show results for 

low and high SNR conditions for each of the 3 simulated values of νe.  For rapid 

enhancement, (Figures 3.6.), the bias in mean estimated Ktrans value was highest for the 

STBB scheme, while the standard deviation was highest for the high resolution scheme, 

for both high and low noise conditions.   As the leakage factor, νe, was decreased, the 

performance of all schemes degraded in terms of increased bias and standard deviation.  

Similarly, the standard deviation in parameter estimation increased with an increase in 

noise level.  Beyond an object size of approximately 10 mm, the performance of the 

individual schemes did not vary significantly for a given set of simulation parameters. 

These results are interpreted as follows: 

 The high standard deviation in fitted Ktrans for the high-resolution acquisition can be 

attributed to the effects of the start delay, τ. The temporal sampling rate being much 

higher for the keyhole and STBB acquisitions, the resulting uncertainty in estimating τ is 

much lower than for the hires acquisition.  For example the standard deviation of the 

fitted τ values for Ktrans  = 3 min-1, νe = 0.3 ( Figure 3.6 b.) were, 1.29, 1.78and  6.74, for 

the STBB, keyhole and high-resolution acquisitions respectively, in the high SNR case.  

This greater uncertainty in estimating τ propagates into the estimation of Ktrans.  By the 

same reasoning the standard deviation of Ktrans for the hires acquisition is comparatively 

higher than the other methods for the low noise condition (Figures 3.7).   The bias in 

mean estimated enhancement rate on the other hand, for Ktrans = 3 min–1, is lower for the 
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hires acquisition.  This is due to the fact that the original simulated enhancement function 

exhibits a rapid enhancement followed by a slow decay.  Typically, the hires acquisition 

obtains a single sample over the rapid edge of the enhancement curve and 2 or more 

samples along the decay.  As a result the fitting function, which uses a least squares 

minimization criterion, more closely follows the decay profile, resulting in fitted 

parameters that, on average, generate enhancement curves that include a decay 

component.  As per the Tofts-Kermode model used to describe the functional form of the 

enhancement, the decay component is associated mainly with rapid enhancement (the 

leakage factor, νe, contributes mainly to the amplitude of enhancement and the rate of 

decay).  Hence the fitted Ktrans values tend to stay within the narrow range of values (6 to 

~1.0 min-1), which produce enhancements with decay.  This effect accounts for the 

increased bias in Ktrans estimates as νe is decreased because there is an associated 

reduction in decay rate.  In some cases, in the presence of additive noise, the decay 

component may be obscured, resulting in a broader range of estimated Ktrans values for 

the low SNR simulations. The high bias in the STBB acquisition, on the other hand, 

could be attributed to the reconstruction method involving linear interpolation between 

acquired timepoints to fill in missing timepoints.  Contributions from data acquired at an 

earlier low enhancement timepoint could have the effect of “blunting” the rapid edge of 

enhancement resulting in a reduction in estimated Ktrans.  A similar effect due to 

amplitude loss associated with keyhole acquisitions results in comparable results for 

keyhole and STBB acquisitions for objects smaller that 10 mm in size.  The higher error 

level seen in small sized objects for the STBB is due to the fact that k-space 
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discontinuities due to data interpolation have a greater impact on the broad spatial 

bandwidths of small objects.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a. b. 

d. 

f. 

c. 

e. 
Figure 3.6.  Bias vs. Std. Plots. Ktrans  = 3 min-1.  Plots on LHS are for high SNR. Plots on  
                     RHS are for low SNR.  a)-b). νe = 0.5, c)-d). νe = 0.3, e)-f) νe = 0.15. 
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a. b. 

f. e. 

c. d. 

Figure 3.7.  Bias vs. Std. Plots. Ktrans  = 0.6 min-1.  Plots on LHS are for high SNR. Plots on 
                    RHS are for low SNR.  a)-b) νe = 0.5, c)-d) νe = 0.3, e)-f) νe = 0.15. 



59 

 

a. b. 

c. d. 

e. f. 

Figure 3.8.  Bias vs. Std. Plots. Ktrans  = 0.2 min-1.  Plots on LHS are for high SNR. Plots on
                     RHS are for low SNR.  a)-b) νe = 0.5, c)-d) νe = 0.3, e)-f) νe = 0.15. 
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For the slower enhancement rates (Figures 3.7 and 3.8), the results show trends 

similar to the rapid enhancement condition.  The overall bias and standard deviation are 

progressively lower.  However the relative performances of the three schemes are similar.   

The Receiver-Operator Characteristic curves are plotted for the three classes of 

amplitude enhancement: νe = 0.15, 0.3 and 0.5 in Figures 3.9-3.11, separate for high and 

low SNR conditions.  For the two population distributions, based on the two chosen Ktrans 

value, the ROC curves show very little distinction between the three schemes. 

a. b. 

c. d. 
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Figure 3.9. ROC plots for νe = 0.5. Plots on LHS are for high SNR. Plots on RHS are 
                   for low SNR.a)-b) “Cutoff” criterion Ktrans = 0.6 min-1. c)-d) “Cutoff  
                   criterion Ktrans = 1.5 min-1.   
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 In general however, the following trends can be inferred.  In Figures 3.9 and 3.10, for 

the high SNR curves, when the decision criterion is set at Ktrans = 1.5 min-1, the 

corresponding sensitivities are fairly low, ranging from 0.4 – 0.7, with the hires 

acquisition having the highest sensitivity.  The corresponding specificity is 1.  All three 

methods tend to underestimate the rapid enhancement leading to reduced sensitivity and 

zero occurrence of false positives.  For the case of νe = 0.3, at low SNR (Figure 3.10b), 

for the hires acquisition, the sensitivity is further reduced to 0.3, and the specificity is 

a. b. 

c. d. 

 HIGH SNR, Ve = 0.3, Ktrans = 0.6 min-1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

1 -  Speci f i c i t y

HIRES

KEYHOLE

STBB

 HIGH SNR, Ve = 0.3, Ktrans = 1.5 min-1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

1 -  Speci f i c i t y

HIRES

KEYHOLE

STBB

 LOW SNR, Ve = 0.3, Ktrans = 0.6 min-1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

1 -  Speci f i c i t y

HIRES

KEYHOLE

STBB

LOW SNR, Ve = 0.3, Ktrans = 1.5 min-1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

1 -  Speci f i c i t y

HIRES

KEYHOLE

STBB

Figure 3.10. ROC plots for νe = 0.3. Plots on LHS are for high SNR. Plots on RHS are for  
                     low SNR. a)-b) “Cutoff” criterion Ktrans = 0.6 min-1. c)-d) “Cutoff criterion  
                     Ktrans = 1.5 min-1.   
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now 0.96.  The increased uncertainty in Ktrans estimation causes a very small number of 

false positive estimates.  The specificity for keyhole and STBB acquisitions remains 1.  

Likewise, for νe = 0.15, at low SNR (Figure 3.11b), the sensitivity is 0.24 and the 

corresponding specificity is 0.9, for the hires acquisition.  When the decision criterion is 

reduced to 0.6 min-1, the sensitivity improves (0.5 – 0.8) for all schemes, however the 

specificity deviates from 1 and is in the range of (0.7 – 0.9).   This is consistent with the  

reduced bias seen for Ktrans = 0.6 min-1 (Figure 3.7). 
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Figure 3.11.  ROC plots for νe = 0.15. Plots on LHS are for high SNR. Plots on RHS are for 
                       low SNR. a)-b) “Cutoff” criterion Ktrans = 0.6 min-1. c)-d) “Cutoff criterion  
                       Ktrans = 1.5 min-1.   
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The results of mean squared error (MSE) analysis shown in Figures 3.12-3.14., are 

based on using the small ROI including mostly object pixels.   The results using the 

larger ROI were almost identical and hence considered redundant.  The results presented 

for Ktrans = 3 min-1, and small (3mm), medium (10 mm) and large (30 mm) objects, are 

representative for the entire simulation.  All corresponding cases of νe and SNR are 

plotted.   In the case of high SNR: 1) For the keyhole acquisition, the MSE plot appears 

similar to the contrast enhancement profile, indicating the uniform systematic loss in 

enhancement amplitude at each time point.  2)  For the hires acquisition, the MSE is 

typically high at the first timepoint and rapidly tapers off.  The higher MSE at the first 

timepoint can be attributed to the fact that much of the rapid enhancement occurs across 

the single temporal acquisition resulting in spatial artifact.  3) For the STBB acquisition, 

amplitude errors due to interpolation between data segments produces similar errors for 

timepoints in the rapid uptake section of enhancement curve.  For the low SNR condition, 

these effects are greatly suppressed by the high noise contributions in each pixel.  As the 

νe decreased the MSE values also decreased.  This is probably due to relative lower signal 

loss for the lower enhancement amplitudes.  Over the ensemble of simulated conditions 

as the object size increased the overall MSE tended to decrease. Similarly as the Ktrans 

value decreased, the overall MSE was reduced for all three methods under consideration.   
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a. b. 

c. 

e. 

d. 

f. 

Figure 3.12.  MSE plot. Ktrans  = 3 min-1.  νe = 0.5. Plots on LHS are for high 
                       SNR. Plots on RHS are for low SNR. a)-b) Object size = 3 mm, c)-d) 
                      Object size = 10 mm, e)-f) Object size = 30 mm. 
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a. b. 

c. d. 

e. f. 

Figure 3.13.  MSE plot. Ktrans  = 3 min-1.  νe = 0.3. Plots on LHS are for high SNR. Plots 
                      on RHS are for low SNR. a)-b) Object size = 3 mm, c)-d) Object size = 10   
                      mm, e)-f) Object size = 30 mm. 
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f. 

c. d. 

e. 

a. b. 

Figure 3.14:  MSE plot. Ktrans  = 3 min-1.  νe = 0.15. Plots on LHS are for high SNR. Plots 
                     on RHS are for low SNR.  a)-b) Object size = 3 mm. c)-d) Object size = 10 mm.  
                     e)-f) Object size = 30 mm. 
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3.5 Experimental Validation 

 
A limited experimental validation of the computer simulations described in the 

previous section was performed.  A contrast-enhancement simulating lesion phantom was 

devised.  Furthermore, methods alternative to implementing a pulse sequence design on 

the MR scanner, were developed.   

 
3.5.1 Methods 

 
Lesion Phantom 

A rectangular plexiglass holder, 9 cm x 24 cm, filled with lightly doped ([Gd] = 0.2 

mm) distilled water was used to simulate the breast background tissue.  Six syringes of 

diameter = 5.2, 8.6, 11.4, 15.1, 22.8 and 28 mm were chosen as lesion phantoms.  These 

phantoms were placed in holes drilled into a plexiglass plate that was fixed on top of the 

holder. Three representative enhancement functions were modeled: 

a) Rapid enhancement: Ktrans = 3 min-1, νe = 0.5; 

b) Moderate enhancement: Ktrans = 0.6 min-1, νe = 0.3; 

c) Slow enhancement: Ktrans = 0.2 min-1, νe = 0.15; 

Changes in contrast were modeled by mixing up Gadolinium concentrations in 

distilled water that corresponded to those in the contrast-uptake curves.  Since it is 

technically challenging to mix [Gd] that mimic the concentrations at each point along the 

contrast-uptake curves, each of the three curves were pseudo-linearized (Figure 3.15).   It 

was assumed that in regions where the contrast-uptake curve is linear, intermediate data 

could be generated by linear interpolation between the two end-point concentrations.   
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The resulting set of [Gd] was: [ 0.2 0.4 0.6 1 1.5 2 2.5 3.3 3.9 4.4] mM, for the three 

simulated curves.  The theoretical desired Gadolinium concentrations were calibrated 

using an inversion recovery sequence to determine true concentrations.  For the inversion 

recovery sequence, the parameters were TR = 6000 ms,  TE = min full and TI = [50 80 

100 150 300 500 1000 2000].  The inversion-recovery data was fitted to the functional 

form:  

 

where c, it the fitted value for T1.  At a TR of 6000 ms, the image acquisition times for 

the inversion-recovery sequence are considerably long.  To hasten the calibration process, 

the auto-prescan feature provided on the 1.5 T GE scanners was used.  The frequency 

encoding direction was set to be right-to-left (R/L), and the tubes that were to be 

calibrated were place axially in the head-coil.  In the scan TR mode of auto-prescan, the 

signal strength is determined as a 1-D profile along the frequency encoding (R/L) 

)1.3(                                      )/*exp(21( cTIbaS −=

Figure 3.15.  Psuedo-linearization of enhancement curves. Selected [Gd] = 0.2,  
                       0.4, 0.6, 1.0, 1.5, 2.0, 2.5, 3.3, 3.9 an 4.4 mM 
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direction, and is proportional to the signal for each [Gd] at the particular T1.  Hence, this 

was directly used as a measure of the mean signal in each tube.  Figure 3.16a show the 

examples of inversion-recovery signal profiles for [Gd] = 0.5, 3.9 mM.  These profiles 

were submitted to the fitting algorithm to obtain T1 values that were converted back to 

Gadolinium concentrations using Eqn. 1.5.  The resulting calibrated [Gd] are shown in 

Figure 3.16b. show fairly close agreement between calibrated and theoretical values. 

 Data Acquisition and Reconstruction 

A single slice 2D SPGR acquisition (TR = 10ms, TE = 4.3 ms , flip angle = 40°),  

was prescribed from an initial saggittal locator image, Figure 3.17a.  A coronal slice (10 

mm thick) , matrix size 256 x160 (24 x 15 cm FOV), shown in Figure 3.17b, centered in 

most homogenous region of the phantom was prescribed.  In order to provide ky 

measurements with independent noise, for data interpolation between Gadolinium 

concentrations, several repeated acquisitions were made at the each concentration.  To 
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Figure 3.16. a) Inversion-recovery signal vs. TI.   b)Gadolinium concentrations determined 
                     using an inversion-recovery calibration sequence vs. nominal [Gd] used in  
                     experimental simulations. 
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maintain the same signal-to-noise ratio, the same number of ky measurements should be 

averaged to generate an intermediate [Gd], consequently, the number of repeated 

acquisitions was further increased.   

To maintain consistency across data acquired at each of the [Gd], the system scan 

parameters determined by auto-prescan were held constant over the entire duration of the 

experiment.  The highest signal phantom was used to set prescan parameters, to prevent 

signal saturation errors, resulting from higher gain settings for the lower signal phantoms.  

For each [Gd], the lesion phantoms were carefully replaced in the plexiglass holder and 

the scans were repeated.  When reconstructing data the missing [Gd] concentrations were 

linearly interpolated.  The three schemes under consideration were then simulated and 

reconstructed, identical to the methods described in Section 3.4.  A contrast-enhancement 

curve was generated for each syringe size, based on the mean of a selected ROI 
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S/
I (

Y
)A

xi
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a. b. 

Figure 3.17 a) Saggittal locator used to prescribe coronal slice. Slice is centered at a  region 
                         of uniform signal in the phantom. b) Coronal slice acquisition showing  
                         cross-section of tubes. Tubes of different [Gd] were serially placed in the 
                         holders. The same slice was repeatedly imaged in a multi-slice acquisition. 
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(described in Section 3.4.1), and the corresponding enhancement parameters were 

computed.  The errors in [Gd] were corrected by applying an amplitude modulation factor 

to the computed mean ROI for each lesion phantoms.   

 Technical Considerations 

For a 2D SPGR sequence there will be a finite time before steady state signal is 

reached.  This time is a complex function of the T1.  In practice, it is assumed that 

steady-state is reached at a time equal to 5T1.  Hence, for our longest T1 species, [Gd] = 

0.2 mM and T1 ~ 600ms, at a TR of 10 ms and 160 ky lines, it was anticipated that an 

additional ~5 acquisitions should be made before steady state is reached.  In total, at each 

[Gd], 100 repeated acquisitions of the same slice were made. 

The lesion phantoms were centered in the R/L direction. However in the axial 

direction, they are placed along a length of the head coil.  Hence, the measurements 

within the lesion ROIs will be susceptible to errors in B1-inhomogeneity along the S/I 

direction.  While, this effect was neither quantified nor consequently corrected, visual 

inspection of the profile was done to inspect its severity.  Further analysis of effect of B1-

inhomogeneity on estimation of enhancement parameters is presented in Chapter 5. 

The scanner tuning parameters were held constant over the entire duration of the 

experiment.  Over this long duration (~ 1 hour), a center frequency drift could potentially 

be encountered.  The GE scanners specifications state that the field drifts should not 

exceed more than 0.05 ppm/hour.  At 1.5T this translates to a frequency shift of 3.2 Hz 

over the time of the experiment.  At the scan TE of ~ 5ms, the corresponding phase drift 

is ~ 5° .  This phase drift should be taken into account prior to reconstruction. 
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3.5.2 Results 

 
The time to achieve steady-state was observed by plotting the peak (dc) signal in the  

image for each of the 100 repeated acquisitions.  The results are shown in Figure 3.18. 

Steady state was reached within the first 12 images for the longest T1 [0.2 mM] phantom.  

Hence the first 10 images were discarded from the reconstructions. 

Figure 3.19 shows a sample of the B1-inhomogeneity along the S/I axis.  There is a 

typical signal increase on one side of coil center and signal loss on the other side.  

However, there is no extreme drop-off in signal with any region of the phantom, 

therefore, all simulated lesions could be analyzed. 
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Figure 3.18. Echo peak (dc values) for each of the repeated acquisitions of the single  
                      slice.  The signal appears to reach steady-state for the long T1 (0.2 mM) 
                      phantom at image number 12.  This settling in time is longer than  
                      expected because, the 0.2 mM was calibrated as being lower in  
                      concentration (0.14 mM). 
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Noise ROI 

Object ROI 

Figure 3.20. a) ROIs used to compute phase drifts due to field inhomogeneities.  An ROI  
                     placed in the region of noise was used to estimate the mean phase of the noise. 
                     b) Mean phase shift between first data set and subsequent datasets acquired at  
                     an average of 7 minutes apart. 
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Figure 3.19. Signal profile along S/I axis shows variation due to B1-inhomogeneity. 
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The center frequency drift was quantified by measuring the mean phase in a slowly 

varying (homogeneous) region of the phantom shown in Figure 3.20a.  The difference in 

mean phase between the acquisition of the 4.4 mM Gadolinium phantoms and subsequent 

phantoms is shown in Figure 3.20b.  As expected there is an approximately linear phase 

drift.  The maximum phase drift was ~ 3° over the course of the experiment.  This phase 

drift is roughly in the range of the mean phase of the noise, 7.9°, computed in the ROI 

shown in figure 3.20a.  The results of drift were therefore neglected while reconstructing 

data.   

Sample reconstructed enhancement curves for simulated rapid, moderate and slow 

enhancements are shown in Figures 3.21.  Figure 3.21a. shows the expected signal loss in 

keyhole reconstruction for rapid enhancement in the small 5.2 mm lesion.  The STBB 

reconstruction shows some artifact due to data interpolation.  Figure 3.21b. which shows 

the results for the 28 mm object indicates a relative reduction in loss of enhancement 

amplitude for the keyhole reconstruction.  The fitted Ktrans values are shown in Table 3.1. 

These values show a similar trend to computer simulation data.  Direct comparisons 

between computer and experiment cannot however be, made due to differences in 

5.2 8.6 11.4 15.1 22.8 28
HIRES 3.15 3.46 2.22 2.26 2.87 2.11

3 KEYHOLE 2.34 2.48 2.64 2.48 2.32 2.51
STBB 1.94 2.24 2.35 2.31 2.11 2.34
HIRES 0.49 0.73 0.51 0.52 0.54 0.52

0.6 KEYHOLE 0.37 0.35 0.64 0.49 0.53 0.54
STBB 0.42 0.49 0.53 0.37 0.53 0.64
HIRES 0.19 0.18 0.22 0.16 0.23 0.19

0.2 KEYHOLE 0.16 0.17 0.17 0.19 0.16 0.19
STBB 0.16 0.18 0.18 0.26 0.21 0.18

OBJECT SIZE, mmKtrans, -m Acq.Sch.

Table 3.1.  Fitted estimates of Ktrans from experimental data. 
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simulated object sizes and also due to the fact that  Ktrans is computed from signal 

intensity curves rather than contrast-uptake concentration curves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a. 

Figure 3.21. Reconstructed enhancement profiles for experimental data. 
                      Ktrans = 3 min-1, νe = 0.5. a) Small object (5.2 mm). 
                      b) Large object (28 mm).    
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3.6.  Discussion 

 
The results from the computer simulation while proving largely inconclusive in 

distinguishing the three schemes under investigation, yields a few insights.  Some 

previous researchers have chosen to estimate a parameter termed Kep which is the ratio of 

Ktrans and νe.  In this study we have demonstrated that the leakage factor, which is tumor 

specific, is closely coupled with Ktrans estimation.  Measurement of Kep alone will 

therefore be insensitive to the contributions of the individual parameters.  All three 

methods tend to underestimate the rates of rapid enhancement, however the keyhole 

method has the most consistent performance over all the simulated conditions.  The 

specificity of the high-resolution acquisition can be improved by measuring the start 

delay, τ, thereby eliminating its effect on the uncertainty in estimation of Ktrans.  The 

STBB method is least susceptible to variations in τ, and hence has the lowest standard 

deviation in parameter estimation.   

The scheme developed in Section 3.3 was for an ensemble of objects.  It was assumed 

that exceeding the prescriptions for temporal sampling at any given spatial frequency for 

a given spatio-temporal object would result in a performance equivalent to that for a 

scheme specific to that object.  This assumption was tested using two cases: 1) A rapidly 

enhancing large object and 2) a slowly enhancing small object.  Figure 3.22 shows plot of 

the resulting STBB acquisition schemes.  The schemes were tested in simulation for the 

two test cases and one additional moderately enhancing medium-sized lesion (Ktrans = 1.0 

min-1, object size = 10 mm).  In Figure 3.23a, it is noted  that the prescription for a small 
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slowly enhancing object results in better performance in terms of reduced bias compared 

to the ensemble prescription.  However when the specific  

 

 

 

 

 

 

 

 

 

 

 

prescription is applied to other objects, there is greater bias in parameter estimation 

relative to the ensemble based scheme.  For the large rapidly enhancing object (Figure 

3.23b.) on the other hand, the performance of both ensemble and object specific schemes 

are similar with overlap in the standard deviation of the bias. Returning to Figure 3.22, it 

is noted that the prescription for the large rapidly enhancing object is very close to the 

ensemble prescription, hence the two schemes perform similarly over the simulated 

spatio-temporal objects.  The prescription for the small slowly enhancing object, on the 

other hand deviates significantly from the ensemble scheme, becoming “sub-optimal”, for 

other object-enhancement combinations.   These results, reinforce the rationale for 

Figure 3.22. STBB prescriptions for individual objects: rapidly enhancing large object  
                      and slowly enhancing small object, compared to the ensemble prescription. 
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choosing the ensemble prescription based on the maximal temporal sampling rate at a 

given spatial frequency index and vice-versa. 

 

 

 

  

Figure 3.23.  Comparison of bias in estimated Ktrans for object-specific and  
                       ensemble schemes.  Standard deviations of the mean are plotted one- 
                       sided for clarity.  a) Slowly enhancing small object (Ktrans = 0.2 min-1,  
                       Obj. size = 3 mm). b) Rapidly enhancing large object (Ktrans = 3 min-1, 
                                  Obj. size = 30 mm). 
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1This chapter based primarily on work found in [71] 

Chapter 4 

Linear Motion Correction in 3 Dimensions Applied to DCE-MRI of Breast1 

 

4.1 Introduction   

 
 Dynamic contrast-enhanced imaging involves repeated acquisition of a selected volume 

of tissue, typically acquired over a period of several minutes.  When data from different 

timepoints are combined, such as in keyhole imaging, significant errors could due to motion 

over the total acquisition period.  This will manifest as phase differences between the 

reference and dynamic datasets.  For contrast enhanced MRI, quantitative analysis is 

commonly performed on subtraction images that emphasize temporal changes.  Keyhole 

reconstruction of the phase-deviant datasets will result in substantial edge artifacts and 

blurring in the subsequent subtraction images used for quantitative analysis [66].  A number 

of motion models and corresponding post-processing techniques have been proposed to 

reduce motion artifact for 2-Dimensional Fourier Transform imaging [67-70].  

In this chapter a 3-Dimensional (3D) model for motion during the rapid dynamic 

acquisition is developed [71].  A method of estimation and correction for the phase artifacts 

introduced by motion is also presented.  We consider linear translational motion along each 

of the three imaging dimensions individually.  The motion-correction algorithm was tested 

using computer simulations.  Further experiments were conducted on a dataset generated by a 

phantom experiment.  Finally, the method was applied to a number of clinical breast studies, 

wherein motion artifacts were clearly visible of subtraction images.  
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4.2 Methods 

4.2.1 Motion Correction 

 
Dynamic breast imaging data was acquired using a dual phased array coil, which 

permitted processing of data from the right and left coils separately.  Thus motion correction 

was applied individually to each breast.  The motion model was based on a consideration of 

the patient configuration and imaging rates.  With some mild compression most patients were 

reasonably well constrained within the breast coil.  The 3D SPGR imaging sequence acquired 

a single 3D volume once every ~10s.  Since the patients were cautioned to hold still, the most 

likely causes of motion were gradual positional shifts that evolved on a time scale longer 

than the dynamic temporal sampling rate.  Thus, we assume negligible intra-keyhole motion 

and consider a mean position over each dynamic volume acquisition.  Based on visual 

inspection of the subtraction edge artifacts observed, we further limit our analysis to simple 

translations in each of the three orthogonal dimensions.  Our primary focus, therefore, was to 

detect and correct linear displacements that occurred over the duration of the overall dynamic 

acquisition on a per keyhole basis.  Thus, the model assumed that after the reference 

acquisition and between each subsequent dynamic acquisition, the individual breasts were 

allowed to move independently as rigid bodies undergoing only translational motion. 

It is known that a simple displacement in space introduces a corresponding phase shift in 

the spatial frequency signal while the magnitude of the data remains unchanged [72-73].  

Thus there is a phase difference between the reference dataset and the dynamic dataset 

acquired after the object has been displaced.  Let S(kx,ky,kz) represent the reference dataset 

in the spatial frequency domain, given by:                                                          

(4.1) 
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Now, let the object, ρ(x,y,z), be displaced by ∆x, ∆y, ∆z at a given time point.  The new 

position of the object can be described as a convolution with a displaced delta function: 

 

 

Consequently, the k-space data from the object is now given by,                                                                

 

Thus the net phase shift due to 3D translation is given as,         

 

In keeping with our motion model, the objective of the motion correction algorithm was 

to estimate this linear phase shift of the entire keyhole k-space block relative to the reference 

data block per spatial frequency axis and apply a phase correction to each dataset prior to 

keyhole reconstruction.  The approach was to compute an averaged linear phase roll along 

each k-axis, (Eqn. 4.5) which is in effect the mean phase difference over the 3D dataset, 

projected onto each k-space axis.  

To implement the algorithm, first a phase difference matrix for each time point was 

generated by calculating the phase between a central (32x32x32) kernel extracted from the 

reference dataset and each dynamic time point.  The phase difference was estimated on 

reduced matrix spatial frequency datasets, to minimize the effect of random phase variations 

that are more likely to occur in the low amplitude regions of the signal.  The average phase 

difference along each spatial frequency axis was computed as follows, where, 

(4.2) 
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(4.4) 
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where, 

is the phase difference between reference and dynamic dataset, 

is the matrix size and, 

are the averaged phase deviations per k-space axis. 

Thus we obtain a phase difference function per k-space axis which is the average of the 

summation of the phase difference between the reference and dynamic datasets along that 

particular axis over the 3D dataset.  For example, Figure 4.1b. shows a net averaged linear 

phase roll detected along the kx and kz dimensions and negligible phase deviations in ky.  

This implies linear displacement along the x and z dimensions which correspond to the  

ermconstant t ,,()
*
1()(    ) +∑ ∑= xy

k k y zkykxk
nxnzk φφ

ermconstant t ,,()
*
1()(    ) +∑ ∑= xk zk zkykxk

znxnyk φφ

(4.5) 
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Figure 4.1. a)  Reconstructed image of single (right) breast after separating dual    
                         phased array data.  Bottom image shows representative subtraction   
                         artifact on coronal slice of dynamic timepoint 14. 
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translational edge artifact seen on the coronal plane image in Figure 4.1a.  

The linear phase function could contain wrapped phase depending on the extent of 

motion along a particular spatial axis.  Thus, an unwrapping algorithm was applied to each 

function so that it increased or decreased monotonically.  These averaged phase deviation 
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Figure 4.1. b) Averaged phase deviations per spatial frequency axis for dynamic  
                        timepoint shown in Figure 1a, relative to the reference dataset. 
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functions were submitted to a linear least squares estimation algorithm from which a 

representative slope per spatial frequency axis was computed.  This slope was used to correct 

the phase deviant dataset by simply applying an inverse linear phase ramp such that, 

 

 
where, sx, sy and sz  were the fitted slopes in kx, ky and kz. 

The constant phase shift term between the reference and the slope-corrected datasets was 

also determined and incorporated in the phase correction algorithm. The correction algorithm 

was applied in two iterations to compensate for residual error that could be present due to 

phase differences along one or both orthogonal spatial frequency axes.   

 

4.2.2 MR imaging  

 

The breast studies were performed on a 1.5 T system (General Electric Medical Systems, 

Milwaukee, Wisconsin), using a dedicated breast dual phased array coil.  For the clinical 

data, T1 and T2 weighted axial scans were performed initially.  A pre-contrast coronal 

reference dataset was acquired using a locally developed 3D fast rf-spoiled GRE (3D SPGR) 

sequence, 40 degree flip angle.  Imaging parameters were a TR/TE of ~10/5 msec; 

acquisition matrix, 256x128x32 with 3-5mm thick sections and four excitations.  The 

dynamic contrast-enhanced series consisted of 20 serial 3D volumes acquisitions with a 

reduced matrix of 256x32x32 and single excitation, followed by one full matrix dataset.  The 

dynamic segment spanned ~5 minutes during which a bolus injection of Gd-DTPA was 

administered within the first 30-45 s of the scan, at a dose of 0.1 mmol per kilogram body 

weight.  Each dynamic 3D dataset was acquired at 12.3 s intervals, which is equivalent to the 

(4.6) 
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overall temporal resolution.  Finally a series of post-contrast coronal 3D SPGR and an axial 

T1 weighted scan were performed.   

Keyhole reconstruction of the data was performed offline using custom software 

programs developed in AVS (Advanced Visual Systems Inc., Waltham MA).  The low 

spatial frequencies from each dynamic dataset were spliced into the reference dataset to 

create the corresponding full matrix dynamic dataset, for subsequent 3D Fourier Transform 

reconstruction.  Cinegraphic loops of reconstructed anatomic and subtraction images were 

reviewed on the workstation.  A pre-contrast time point was used as the subtraction mask. 

 

4.2.3 Phantom Studies 

 

The motion-correction algorithm was calibrated experimentally.  Displacement was 

introduced in each of the 3 spatial axes using a lever arm rigidly attached to the experimental 

phantom located in the breast coil.  Motion was induced by translating the lever arm over a 

calibration scale such that the phantom was displaced by an exact amount, in increments of 2 

mm.  The maximum displacements introduced were 2 cm along the x and y axes, and 1 cm 

along the z axis. 

The 3D dynamic simulation experiment was performed on a breast-mimicking phantom, 

on the 1.5 T GE system.  Mineral oil was used to simulate breast fat and water to simulate 

breast parenchyma in each of the phantom compartments.  Motion was induced in only one 

breast phantom compartment by raising and laterally displacing a lever attached to the 

phantom.  Motions were designed to simulate the slow displacement commonly observed 

over the duration of the scan.  Uptake of contrast in a lesion was simulated by injection of 10 

cc of 2 mmol Gd-DTPA into 5cc vials located in each breast phantom compartment. 
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4.2.4 Patient Studies 

 

The clinical data included 64 breast patients who were scanned as part of an ongoing 

research project.  Study population consisted of patients with abnormal mammograms or 

ultrasonically detected suspicious masses who were referred for MR scans.  Patients were 

scanned prone with their breast suspended in the coil.  Mild compression was applied to the 

breasts but no rigid immobilization techniques were employed.  The standard clinical 

procedure was to caution the patients to hold still during and in between scans. 

 

4.2.5 Quantitative Assessment 

 

 The effectiveness of the motion correction algorithm was quantitatively assessed by 

comparing subtraction edge artifact prior to and after motion-correction.  A single measure 

that summarized edge artifact was devised and computed by the following procedure.  For 

each of the 64 breast cases a representative mid-breast slice was chosen.  Based on the 

subtraction images, a single ROI encompassing all of the noticeable motion artifact induced 

edge was defined (Figure 4.2).   

This ROI was used as a mask over the entire sequence of dynamic timepoints and a mean 

ROI intensity per time point was computed, for the corrected and uncorrected datasets at the 

selected slice of interest.  Next a baseline value equal to the mean ROI intensity from the 

second time point in a series was subtracted off from all other time points, providing the 

desired estimate of subtraction edge artifact.  This temporal series of mean ROI’s was further 

approximated to a single mean and peak ROI over the entire dynamic acquisition.  Similar 

mean ROI’s intensities were calculated for a region in each dynamic time point that 
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corresponded to the background noise signal, for both corrected and uncorrected datasets.  In 

order to compare the edge artifact correction across patients, the artifact ROI intensities were 

normalized by the mean background noise ROI intensity.   

 

 

 

c. 

b.a. 
Prescribed ROI 

           Time 

Figure 4.2. Coronal slice of 3D volume acquisition a) Anatomic image of uncorrected slice. 
                    b) Subtraction image of same slice with clearly visible subtraction edge artifact.  
                    c) Time series of edge artifact in slice prior to motion correction, 49.2 s intervals. 
                    d) Time series of edge artifact in slice after motion correction, 49.2 s intervals. 

d. 
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4.3 Results 

4.3.1 Phantom Studies 

 

The calibration experiment for the motion correction algorithm yielded the following 

results.  The correlation coefficient between the induced and detected displacements was 

0.999 for the x, y and z dimensions.  Thus, there was a close overall agreement between the 

induced and detected displacement along each of the spatial axes.  A minimum displacement 

of 2 mm was induced and detected along each spatial axis.  The theoretical limit to the 

maximum displacement that could be corrected for would be equivalent to a half field of 

view along that particular spatial axis.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b. 

a. 

Figure 4.3.   Phantom experiment with breast mimicking phantom, coronal slice of 3D  
                      volume. a) Unsubtracted original image. b) Unsubtracted image after motion

correction.
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The phase slopes in kx, ky and kz measured in the 3D dynamic experimental data, 

corresponded to a maximum displacement of approximately 6 mm along the anterior-

posterior direction (A/P), 2 mm along the right-left (R/L) direction and negligible motion 

along the superior-inferior (S/I) direction.  Figure 4.3 demonstrates the effect of motion 

correction on the phantom.  A marked reduction in motion-induced blurring and ghosting 

was observed on the subtracted and non-subtracted images. An overall improvement in the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c. 

d. 

Figure 4.3. c) Subtraction image prior to motion correction.  d) Subtraction  
                       image after motion correction. 



90  

edge artifact at breast boundaries as well as good background suppression was achieved for 

the motion-corrected subtraction images.  It is interesting to note that after motion correction 

the vial on the right (Figure 4.3d) is no longer visible.  

This is because the vial is truly outside the level of the selected slice in the 3D 

volume. It is visible on the uncorrected image due to subtraction artifact.  After motion 

correction the slice is reregistered to the appropriate cross sectional level. There was no 

significant difference in the mean ROI computed for each vial due to motion correction 

compared to the dataset without motion correction.  This result was expected since the size of 

the simulated lesion was fairly large and therefore keyhole imaging could accurately track 

dynamic changes. Also, there was no significant difference in the mean ROI computed in the 

vial located in the breast phantom compartment in which displacement was induced, 

compared to the non-moving phantom.  This verified the negligible effect of signal 

enhancement on phase difference estimation.   

 

4.3.2 Patient Studies 

There was a range of results for the clinical breast data, depending on the nature of 

the motion that might have occurred during the exams.  For a typical study we maintained a 

32 cm FOV with 4 mm thick slices with a (256x32x32) matrix size.  At these settings the 

maximum detected slopes, over all patients, corresponded to a displacement of 8 mm, 5 mm 

and 3 mm in A/P, S/I and R/L directions respectively.   

Qualitative visual assessment of the subtraction images showed that in certain cases 

there was substantial observable motion artifact in the uncorrected datasets, which was 

successfully removed in the corresponding motion-corrected images. The improvement was 
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most noticeable as a marked reduction in subtraction edge artifact.  Low amplitude ghost 

artifact and blurring in the background was also substantially reduced (Figure 4.4a-b). This 

effect was noticed by the improved clarity of features such as the nipples.  Motion correction 

also enhanced the visual quality of fine structures such as vessels seen in axial and cross-

sectional orientations (Figure 4.2).  From the plots of mean slope per time point in Figure 4.4 

c)-d), we see that the motion correction algorithm has the freedom to individually correct 

each breast.   In this example, greater displacements were detected for the right as compared 

to the left breast, providing the same overall degree of correction for both breasts.  

 

 

b. 

a. 

Figure 4.4. Coronal slice of 3D volume acquisition. a) Subtraction image before 
                        motion correction. b) Subtraction image after motion correction 
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Quantitative analysis of motion artifact reduction for the clinical cases is summarized 

in Figure 4.5.  The mean subtracted ROI intensity over all dynamic timepoints, normalized to 

the background noise signal intensity, motion corrected vs. uncorrected datasets, is plotted in 

Figure 4.5a.  The corresponding plot for the peak ROI is shown in Figure 4.5b.  The line of 

unity represents equivalent artifact in motion corrected and non-corrected datasets.  The 

filled circles in the graphs (Figure 4.5 a and b) correspond to the peak and mean artifact 

correction levels for the edge artifact seen in Figure 4.4.  For this representative artifact we 

see that there was a roughly 40% reduction in subtraction edge artifact, resulting in the 

improved visibility described earlier. We can summarize the results of motion correction in 

terms of the edge artifact measure as follows: 
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Figure 4.4. c) Mean slopes in kx,ky and kz, per time point in left breast. d) Mean slopes 
                    in kx, ky and kz, per time point in right breast 
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Figure 4.5.  Comparison per dynamic series between motion-corrected and uncorrected  
                     datasets of a) Mean artifact level. b) Peak artifact level. 
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Motion correction produced a reduction in mean artifact ROI in a number of cases, i.e. 

there was an improvement in edge artifact suppression.  For certain cases there was no 

significant difference between the mean ROI’s for the corrected and uncorrected datasets.  

This suggests that other sources of phase artifact, such as rotations and distortions, that did 

not fit the linear three-dimensional translational model, could be present in none of the cases 

was the mean artifact ROI greater for the motion corrected dataset compared to the 

uncorrected dataset.  This implies that the correction algorithm did not introduce any 

additional artifact.  

 

4.4 Discussion 

 

Contrast enhanced MRI is developing into a fairly useful tool for the detection and 

characterization of breast tumors.  The potential for breast MRI as a clinical diagnostic tool 

lies in the ability to achieve volume imaging of both breast at high spatial resolution, yielding 

good anatomic detail.  In addition contrast enhanced dynamic imaging provides functional 

information that could assist in tumor characterization.  The fidelity of the MRI image data is 

often limited by artifact sources including motion during the acquisition.  

In keyhole substitution MRI an effect of linear motion is to introduce phase 

discontinuities and shifts between the dynamic and reference datasets.  These phase 

deviations manifest as edge artifacts and cause blurring, rather than an observable gross 

displacement, of small lesions in subtraction images that are used for quantitative analysis.  

This is because the bulk (three fourths) of the spatial information is derived from the 

peripheral high frequencies in the reference dataset.  Figure 4.6 is an illustration of this 

effect. We observe that motion produces subtraction edge artifact and some amount of lesion 
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blurring, but retains most of the lesion contrast information.  The artifacts can however, 

obscure lesions or result in reduced visibility in subtraction images that normally offer the 

greatest lesion conspicuity.  Superficial lesions that lie near high contrast boundaries could 

remain undetected.  Furthermore, identifying lesion ROI’s in these artifactually blurred 

images could lead to inaccurate quantification of contrast uptake characteristics.  Thus, 

effective motion correction algorithms are desirable in contrast-enhanced breast MRI. 

The scope of this study was limited to gross translational rigid body motion of the 

breast.  The motion correction algorithm assumes no intra-keyhole motion, i.e. motion during 

the acquisition of a single dynamic block. In this context, calculating averaged phase slope 

tends to identify gross shifts between the reference and each subsequent dynamic acquisition.  

Further, averaging permits the algorithm to be less sensitive to random phase fluctuations 

a. b. 

Figure 4.6.  Example of subtraction edge due to keyhole reconstruction of motion corrupted  
                     dataset.  a) Uncorrected coronal slice, showing malignant lesion and broad  
                     subtraction edges. b) Same slice after correction, showing reduction in edge  
                     artifact, while maintaining lesion clarity and contrast. The detected  
                     displacements were 1.6 mm, 4.7 mm and 8.1 mm along the x, y and z axes. 
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that it would be highly susceptible to, if we were to perform a local phase correction per 

point in k-space. However, there are other degrees of motion such as rotation, distortions and 

respiratory and cardiac motions that are commonly encountered during the scan.  The 

assumption of no intra-keyhole motion itself does not strictly hold and this combined with 

heart motion contributes to the low amplitude flutter that is seen on many subtraction images.   

An established technique to adaptively correct for both intra and inter-view motion is the 

navigator echo acquisition [60].  In this method, an additional echo (NAV) is acquired per 

phase encoding echo.  For the 3D SPGR sequence used for in this study, acquisition of the 

additional navigator echoes would roughly double the acquisition time, thereby reducing the 

dynamic temporal sampling rate.  At the very least, a single navigator echo can be acquired 

along ky = 0, and kz = 0, kx = 0 being acquired as part of the dynamic acquisition.  This 

would add negligible time to the 3D acquisition, thereby satisfying the temporal sampling 

criteria for dynamic imaging.  In effect, this approach makes the assumption that a single set 

of displacements in x, y and z can summarize the motion artifact over the entire volume 

acquisition.  This is similar to the basic assumptions described in this paper.  Furthermore, 

since a linear displacement in space corresponds to a linear phase roll in k-space, the phase 

estimation technique described in this paper is considered adequate to detect and correct the 

expected motions.  The averaging over multiple echoes in the datablock serves to provide 

some degree of noise insensitivity.  

Phase differences between the dynamic and reference datasets could be caused by non-

motion related factors.  One such factor of particular interest, which could theoretically be 

misinterpreted as a phase shift, is the amplitude modulation of the data that is associated with 

uptake of Gd-DTPA.  Computer simulations were used to further analyze this effect.  We 
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investigated this by simulating a range of percent signal enhancements in the lesion under 2 

anatomic configurations of breast fat and lesion: 1) Variable ratio of lesion area to breast fat 

area (2 – 50 %) and 2) Variable displacement between the axes of the simulated breast fat 

and lesion (coaxial to half FOV separation).  We found that in practice, as long as the 

primary high signal source, which is mainly the unenhancing breast fat, was larger in area or 

mostly coaxial with the enhancing lesion, the measured phase deviations were governed by 

displacement of the unenhanced fat, rather than signal enhancement within the lesion.  In a 

couple of patient datasets we observed substantial enhancement in the breast parenchyma 

with contrast administration, however motion correction did not result in a mispositioning of 

this enhancing parenchyma, since it is mostly coaxial with breast fat.  This was further 

verified by the phantom experiment.  There was no significant difference between the mean 

ROI in the signal enhancing vial without motion, and the post correction mean ROI in the 

signal enhancing vial with induced motion. 

In summary, the motion correction algorithm presented in this paper successfully 

reduces gross translational motion by estimating an averaged linear phase deviation per 

spatial frequency axis, between the reference and dynamic datasets.  Where motion was 

negligible or could be attributed to other sources, implementation of the algorithm was not 

detrimental to the original data.  If the nature of motion was within the parameters of the 

model, fairly good correction in terms of improved visualization of structures of interest, 

reduction in subtraction edges and suppression of background ghost artifact and blurring was 

observed. 

 

 



Chapter 5 

Analysis of B1-Inhomogeneity Effects on Quantitative Assessment 

of Contrast Uptake Curves 

 

5.1  Introduction 

 
Dynamic contrast-enhanced MRI of breast lesions has been widely employed to track 

signal changes within tissues of interest.  For further diagnostic interpretation, several 

researchers have attempted to quantify these signal curves so that they correlate directly 

with pathology.  As discussed in Chapter 1, there has been wide variability in the results 

of these studies, some of which could be attributed to differences in methods of 

quantification.  In the early studies using DCE-MRI for breast lesions, the relative signal 

intensity change was used as a quantitative parameter for assessing contrast uptake.  For 

the SPGR sequence, commonly used for DCE-MRI, Hittmair et. al. [74] noted that the 

relative signal intensity change was not solely dependent on contrast uptake, suggesting 

another cause for inconsistent results in quantitative assessment.  While changes in 

contrast agent concentration are linearly related to ∆(T1)-1 in the tissue, signal intensity 

change due to contrast uptake has a strong dependence on native T1 relaxation time and 

imaging parameters such as flip angle and TR.   Figure 5.1 is an illustration of this effect.  

For a given contrast change, the signal intensity changes are greater when the native T1 

of the tissue is lower. Therefore, assessment of relative signal intensity changes to extract 

physiologic information could be misleading.  To overcome this limitation, Hittmair et. 

al. developed a method to determine a parameter, termed enhancement factor (EF), that 
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varies linearly with contrast enhancement, independent of the native T1.  This parameter 

is described by the following equation: 

                         1
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SS
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∆≈
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⋅
⋅

=                                           (5.1) 

Smax, is a pre-contrast image obtained from a proton density weighted image, using a low 

flip angle of 10°.  Snat and Spc are simulated native and post-contrast images.  K is a 

correction factor dependent on the flip angle (valid only for flip angles greater than 40°), 

which permits the SPGR signal equation to be approximated as: 

                                             ))exp(1( TRKSS maxapprox ⋅−−=                                           (5.2) 

                                 )sin()( α⋅= HNSmax                                                            (5.3) 

N(H) is the proton density. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.1.  Signal intensity curves for SPGR sequence showing flip angle dependence. 
                    A given contrast uptake C effects a higher signal change in native 
                    hypointense tissues than it causes in native hyperintense tissues [74]. 
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Even after accounting for the effects of native T1, TR and flip angle on relative 

contrast uptake, the effects of inhomogeneities in the B1 field persist.  When the field 

produced by the transmit- or receive coil, or both, are not uniform, the image intensity 

will vary as a function of position.  The flip angle is a function of the B1 field strength 

given as: 

                                                    ∫= dttrB ),(1θ                                                             (5.4) 

The flip angle will be constant over the entire imaged volume, only when the B1 field is 

uniform.  When the same coil is used for transmit and receive the effect of inhomogeneity 

is more complex and will be an approximately quadratic function.  The objective in this 

study was to investigate the effect of B1-inhomogeneity on EF quantification. This 

analysis is limited to errors in transmit rf field only.  The B1-inhomogeneity effect is 

modeled as an error in the “nominal” flip angle.  The resultant errors in EF due to these 

deviations in true flip angle were assessed using computer simulations and verified using 

an experimental phantom. 

 
5.2.  Methods 

5.2.1.  Computer Simulations 

 
Initial computer simulations were performed to investigate the effects of flip 

angle errors.  Simulations were conducted for nominal flip angles ranging from 40º-90º. 

Errors were modeled as ranging from -50% to 50% of nominal flip.  The native T1 was 

chosen to be 750 ms and TR was chosen as 7.5 ms.  A single change in contrast, ∆(T1)-1 , 

was investigated using a 0.5 mM gadolinium-DTPA concentration.  Smax, Snat and Spc 
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were then calculated for each erroneous flip.  The nominal K values for each flip angle 

determined in [74], were used in the EF calculations.  

  

5.2.2. Experimental Validation 

 
Experimental data was acquired using a fast spoiled gradient-recalled sequence 

(FSPGR), GE 1.5T system, using the head coil. 6 tubes containing distilled water H20 

doped with [Gd]: 0.2, 0.4, 0.6, 1.0 and 2.0 mM, were used to simulate contrast-

enhancement.  The [Gd] concentrations were calibrated using the inversion-recovery 

method described in Chapter 3.  The tubes were placed along the SI axis of head coil and 

placed centrally along the R/L and A/P directions.  It was assumed that the center of the 

coil is a region of homogeneous B1 field and hence inhomogeneity effects will manifest 

only along the SI axis.  Images were acquired in the coronal plane using a 30 cm FOV 

and 8mm slice thickness, TR = 7.5 ms.   The flip angle was chosen to be 40º.  This flip 

angle was of particular interest since it was employed for clinical breast scanning at our 

institution.   

Representative flip angle errors were computed using the high signal 2.0 mM [Gd] 

phantom.  The signal intensity plot along the SI direction was considered to indicate the 

B1-inhomogeneity profile.  Neglecting the effect of noise, any signal variation from the 

assumed homogeneous center of the coil, could be directly related to error in flip angle.  

Thus, an equivalent flip angle error profile was generated by numerical minimization of 

squared deviates between the acquired data signal intensity, Sexp and a simulated 

theoretical signal intensity Ssim, for the given acquisition parameters.  In this manner the 

error in flip angle along the SI axis over the length of the phantom was computed.  Five 
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sample locations along the SI axis were then chosen, corresponding to ~0, 5, 10, 20 and 

35% error in flip angle.  The enhancement factor EF was computed at each of these 

locations.  A corresponding theoretical EF, with the same percent errors in flip angle, was 

computed for purposes of comparison. 

 
5.3. Results 

 
The computer simulation data is presented in Figure 5.2.   For as little as nominal 

10% positive error in flip angle the error in computed EF can be as high as 20%.  The 

errors are more pronounced when the deviations result in a reduction in flip angle.  This 

is probably because the simple exponential approximation made in deriving the EF does 

not hold below for flip angles less than 40º. Hence, the EF itself deviates from its linear 

relationship with contrast uptake.   

 
  
 
 

 

 

 

 

Figure 5.3 shows the coronal profile of the high signal phantom [Gd] = 2.0 mM phantom.  

There is a roughly symmetric signal variation about the center of the phantom.  The 

signal abnormality on the left hand side is due to an air bubble in the phantom.  The 5 

locations, corresponding to flip angles ranging from 0 – 35 % are also shown.  The errors 

were negative and thus produced a reduction in flip angle from the nominal value.  The 

Figure 5.2. Error in computed EF due to error in flip angle. [Gd] = 0.5 mM,  
                   T1nat = 750 msec. 
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comparison between theoretical and experimental EF calculations shown in Figure 5.4. 

shows close agreement between the two, for [Gd] =0.4, 0.6, 1.0 and 2.0 mM. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

 

 

 

 

 

 

Deviations between experimental and theoretical values, particularly for the 0.2 mM 

phantom could be attributed to errors in doping of H20 resulting in incorrect [Gd], shown 

in Table 5.1. 
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Figure 5.4  EF Vs true [Gd] for varying flip angle errors (%).  Nominal Flip = 40º,  
                   The theoretical EF (for known flip angle error) compared to the  
                   experimental EF calculated at each of the sample locations in Figure 5.3. 

Figure 5.3. Sample signal amplitude profile along SI axis with associated flip angle 
                   error in region of B1 inhomogeneity.  Signal abnormality on left hand   
                   side is due to air bubble in phantom.  Nominal Flip = 40º. 
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5.4.  Discussion 

 
 In this work the effect of excitation flip angle errors in the case of a particular 

quantification parameter, EF, used in DCE-MRI, has been analyzed.  From our 

investigation we concluded that the EF computation is highly sensitive to errors in 

excitation flip angles.  For example, using the EF approach, a 20% percent error in true 

flip angle would result in  ~30% error in estimated [Gd].   

In conclusion, a simple correction algorithm that holds potential for correcting the 

effects of flip angle errors is proposed.  For very long values of TR, the SPGR signal 

given in Eqn.1.10, can be approximated as: 

                                                      θSinHNS )(≈                                                           (5.5) 

where, θ  is the nominal flip angle.  If we acquire two images S1 and S2, at flip angles θ 

and 2θ respectively, the ratio of the two images yields a measure of the true flip angle:  

                                                 )1/2arccos( SS=θ                                                         (5.6) 

This method is, however, susceptible to errors when the flip angles are small (< 10°), 

since the signal intensity approaches zero and might result in numerical errors. Hence, for 

low flip angles, this method cannot reliably used to map B1-inhomogeneity via 

measurements of flip angle variations. 

Simulated [Gd] IR Calib. [Gd]
0.2 0.1252
0.4 0.3311
0.6 0.5614

1 1.1436
2 2.1344

Table 5.1 [Gd] calibrated using IR sequence vs. theoretical simulated [Gd]. 



CHAPTER 6 

SUMMARY AND FUTURE WORK 

 

6.1. Dynamic Contrast-Enhanced MRI 

 
Dynamic contrast-enhanced MRI of tumors, particularly in the breast, has developed 

over the last decade and is still an area of active research.  However, a standardized 

method of using DCE-MRI for diagnostic purposes is yet to be established.  Several 

researchers have shown the importance of identifying architectural features to aid in 

tumor classification.  On the other hand, high sensitivities and specificities have been 

reported for enhancement parameters derived from applying pharmacokinetic models to 

the contrast-uptake curves.  It was the focus of this work to develop a method that is not 

biased towards either spatial or temporal criteria.  In Chapter 2 a novel method, for 

addressing the issue of simultaneous high resolution spatial and temporal imaging was 

presented.  This spatio-temporal bandwidth-based method can be extended to any 

dynamic imaging situation in which the temporal event is not band-limited.  In this 

method the instantaneous spectral content of the dynamically enhancing object is used as 

a surrogate for the “information” contained in both the spatial feature and temporal event.  

This is approach is uniquely different from methods such as Keyhole, which assume that 

the maximum information in concentrated in the lower spatial frequencies or RIGR 

which derives basis functions solely from the spatial contrast information.  It was 

demonstrated that in a spectral energy maximization sense, the STBB technique is more 

optimal than the Keyhole or high spatial resolution, conventional imaging methods.  In 
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Chapter 3 the method was tested in simulation to a class of breast lesions, relative to 

keyhole and conventional imaging.  Some of the results, both in parameter estimation and 

spatial feature definition were not as expected.  These can be attributed to factor that will 

be discussed in the next section which deals with future improvements that can be 

implemented.  For the parameter set used in simulation, it can be concluded that the 

keyhole technique is most effective.  In general, the improved temporal sampling of 

keyhole, compared to high resolution imaging, will provide better quantification of the 

enhancement rate parameter.  In conjunction, a high resolution post-contrast image can be 

used to provide information relating to spatial detail.  The keyhole method does however 

blur the enhancement function and will tend to fail in accurately quantifying very high 

enhancement rates, such as the rapid arterial contrast-uptake.  Newer pharmacokinetic 

models have included quantification of this uptake and believe that is important in further 

classifying the enhancement patterns in lesions.  Particularly under these circumstances, 

the STBB approach was expected to provide better performance.  However due to 

reconstruction related artifacts, this result was not obtained.  The next section describes 

several methods that may be employed in the future to make the STBB method more 

effective. 

Chapter 4 discusses a method to address motion artifacts typically encountered in a 

DCE-MRI of the breast.  The motion is modeled as being linear and the correction 

algorithm is quite effective in compensating for positional shifts over the course of the 

experiment.  Since the primary component of this method is to obtain a low frequency 

phase estimate, it can be easily extended to any variable-rate acquisition that acquires a 

minimum central k-space bandwidth for each volume acquisition.  In Chapter 5, some 
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important issues relating to quantification of enhancement parameters are addressed.  The 

native T1 of breast tissues has been mapped out previously.  However, tumor values can 

have a pre-contrast value that extends over a range.  Since the signal intensity, 

particularly for an SPGR sequence, will vary depending on the native T1, for the same 

TR, flip angle and contrast-change, physiologic information obtained from signal curves 

can be misleading.  In addition, the flip angle itself is subject to errors due to B1-field 

inhomogeneity.  Hence standardization across patients becomes very hard.   

 

6.2. Future Work 

 
The most obvious area for potential improvements is in the methods for 

reconstruction the data acquired using the STBB method.   

• The STBB acquisition in acquires a sparse dataset that contains spectral 

samples that contain information relating to both the spatial and temporal 

event.  Iterative regularization methods such as single value decomposition 

(SVD) and conjugate gradients (CG) have previously been implemented to 

produce high resolution reconstructed images.  These can be used to suppress 

the loss of information due to Gibbs artifact, when performing the inverse 

Fourier transform.   

• On the other hand deconvolution methods can be used to extract signal 

enhancement characteristics from the dynamic data.  This has been termed as 

blind source separation and includes techniques such as principal component 

analysis (PCA) and independent component analysis (ICA) which uses 

higher-order signal statistics than PCA.  The STBB method provides maximal 
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information content to these analyses and would be expected to yield better 

results.   

In Chapter 2, it was shown that the performance of the STBB method for a scheme 

based on a given spatio-temporal object was better for that object, as compared to an 

ensemble scheme.  Given this, a better approach might be to obtain approximate signal 

characteristics using a test-bolus of contrast agent to tailor a specific STBB acquisition 

scheme.  A second contrast bolus will be administered during the STBB acquisition.  Due 

to the long persistence time of the contrast agent in the tissue, the relative of signal 

change might not be as high as with the first bolus.  The contrast-uptake profile however, 

will be driven by the inherent pharmacokinetic parameters defining contrast exchange 

within tumor and blood compartments.   
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ABSTRACT 

 

K-Space Acquisition Method for Dynamic Contrast-Enhanced MRI: Application 

to Breast Tumors 

 

by 

Sumati Krishnan 

 

Chairs: Jeffrey A. Fessler and Thomas L. Chenevert  

 

Dynamic contrast-enhanced (DCE)-MRI is increasingly being used for detection and 

diagnosis of tumors.  The primary objective is to elicit diagnostically significant 

architectural and pharmacokinetic features of lesions.  Hence, DCE-MRI of tumors is 

ideally performed at high spatial resolution while sampling a time-varying event at high 

temporal resolution.  A variety of variable rate sampling strategies and associated 

reconstructive schemes have been developed to resolve the conflicting demands of 

simultaneous high resolution sampling of temporal and spatial detail.  In all these 

methods, a minimum desired spatial resolution is specified, and attempts are made to 

improve the temporal resolution in sampling the dynamic event.  In this work a novel 

method, termed spatio-temporal bandwidth-based (STBB) acquisition, is developed to 

address the trade-off inherent in DCE-MRI.  This technique is constrained only by the 

overall scan duration, within which the temporal event is expected to reach steady-state, 

and the imaging sequence repetition time, TR.  Neither the spatial nor temporal resolution 
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is preselected. The STBB formalism, which is applicable to any dynamic contrast-

enhanced imaging condition, is demonstrated using a priori modeling of breast tumors.  

The k-space traversal scheme is obtained by maximizing energy coverage of the Fourier 

space that encompasses the instantaneous spectral energy of the temporally enhancing 

object during the DCE experiment.  A method to use the energy maximization concept in 

designing an acquisition scheme that is adequate for a class of space-time objects is also 

demonstrated in this work.  

In addition, two issues that closely impact the accuracy in quantification of 

pharmacokinetic parameters measured using DCE-MRI are addressed:  motion artifact 

and B1-field inhomogeneity.  A linear three-dimensional motion-correction algorithm to 

compensate for patient motion over the course of the dynamic acquisition is developed.  

The errors in parameter estimation due to B1-field inhomogeneity are investigated and a 

correction method is proposed. 

 

 

 

 

 

 

 


