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CHAPTER I

Introduction

1.1 Motivation

Image recovery is a technique for recovering an approximation of an original

object distribution from observed data and other prior information. Regardless of

the observed data, image recovery can refer to both image restoration and image

reconstruction because they both aim toward the same goal. For image restoration,

the observed data are in the form of images that are often corrupted by blur and

noise during formation and acquisition processes in optical or electronic systems.

For image reconstruction, the observed data come in different forms that need to be

reconstructed to view images, and these data are degraded as well. Image recovery

techniques are very attractive for many applications, such as microscopy, astronomy,

and medical imaging, because they can be performed easily on a computer to improve

the quality of the image without needing to alter the optical system itself, such as a

microscope.

Image recovery techniques involve a mathematical procedure that exploits the in-

formation available in degraded data to achieve an image that is as close as possible

to the original object distribution. In some applications, time is an important factor.

Therefore, one desires to use image recovery techniques that produce good quality

1
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images and are computationally fast. Many image recovery techniques have been pro-

posed to achieve these goals. However, the tradeoff between the image quality and

computation time always arises when evaluating existing recovery techniques. Based

on the noise information used to solve recovery problems, we can categorize image

recovery techniques into deterministic and statistical approaches. Deterministic tech-

niques require little or no information about noise, while statistical techniques require

knowledge of the characteristics of noise in order to estimate the original object distri-

bution. Examples of deterministic techniques include nearest neighbors [2, 3, 31, 67],

inverse filter [3,56,67,71,88], and constrained least squares [24,67,70,78]. Although

these techniques are very fast and simple, they either lack noise models or have fixed

noise models that may not agree with the actual physical system. This is a con-

cern because using inaccurate knowledge of the degradation process can reduce the

quality of the recovered image.

Unlike deterministic techniques, statistical techniques can be based on the phys-

ical model of the system, so that a good combination of the statistical and physical

models can produce superior recovery. As a result, statistical techniques tend to

provide better image quality than do deterministic techniques. Examples of statis-

tical techniques include maximum likelihood (ML) [39, 65, 67], penalized-likelihood

(PL) [36, 49, 59, 125], maximum a posteriori (MAP) [13, 55, 62, 63], and Wiener fil-

ter [3,8,56,71,88]. Even though the Wiener filter incorporates a statistical model of

the system, it uses a stationary noise model, and this is unrealistic for an object, thus

resulting in poor restoration. The nonlinear ML, PL, and MAP methods have been

shown to dramatically improve the quality of images compared with deterministic

approaches [24, 27, 67]. The drawbacks of these methods compared with determin-

istic methods are high complexity and large computation time. Therefore, one of
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the main goals in this dissertation is to develop statistical techniques for which these

drawbacks are minimized.

Although the statistical image recovery techniques developed in this disserta-

tion can be generalized for use with many applications, here we specifically apply

them to confocal microscopy and image plane holography [7, 83, 84, 86, 116]. Both

of these systems can provide the optical sectioning property for viewing a three-

dimensional (3-D) image of a thick object without the need for dissection. However,

images acquired by these systems are compromised by poor spatial resolution due to

out-of-focus contributions from other planes and by unavoidable optical noise. As

described above, statistical image recovery techniques have been shown to produce

high quality recovered images. While these techniques have been developed for con-

focal microscopy, statistical image recovery techniques for image plane holography

(as well as digital holography) have barely been explored. Thus another goal of this

dissertation is to develop a statistical image reconstruction technique suitable for use

in digital holography.

1.2 Proposed Solutions for Image Recovery Problems

In this dissertation we use nonlinear statistical image recovery techniques, in-

cluding ML and PL estimation, to circumvent the resolution and noise problems

of confocal microscopy and image plane holography. Due to the ill-posed nature of

recovery problems, the resulting image using the ML method is improved as the solu-

tion is approached iteratively, but noise is also amplified. To suppress noise, we add

a roughness penalty function to the log-likelihood function to compensate between

the smoothness and accuracy of the data fit. This technique is called PL estimation,

which is the focus of this dissertation. Because closed-form solutions for ML/PL
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estimation are usually unavailable, iterative algorithms are needed [28,65,73,80,98].

As long as different iterative algorithms are based on the same objective function

and are convergent, they do not affect the final image quality. Thus, one desires to

have efficient iterative algorithms that converge quickly to the right solution.

Many algorithms for ML/PL image recovery have been constructed; however,

no existing algorithm has all the properties of an “ideal” algorithm, including fast

convergence rate, quick computation time, stability, simplicity, and parallelizability.

Therefore, our first goal is to find new algorithms that overcome the drawbacks of

existing algorithms. In this dissertation, we first propose a new, fast-converging,

parallelizable algorithm called partitioned-separable paraboloidal surrogate coordi-

nate ascent (PPCA) [108,109] to overcome the convergence rate and parallelizability

tradeoff of existing algorithms. This algorithm is based on paraboloidal surrogate

functions and a concavity technique. The paraboloidal surrogates simplify the op-

timization problem. The idea of the concavity technique is to partition pixels into

subsets that can be updated in parallel to reduce the computation time. For fast

convergence, pixels within each subset are updated sequentially using a coordinate

ascent (CA) algorithm. Unlike the CA algorithm, the PPCA algorithm converges

rapidly while remaining parallelizable. We originally develop this algorithm based

on the long-term interest in space-variant systems; however, in the applications of

confocal microscopy and image plane holography, space-invariant systems are usually

assumed for simplicity, and the fast Fourier transform (FFT) can be integrated for

further acceleration.

To be compatible with the FFT, we adapt another fast converging algorithm

called relaxed ordered-subset separable paraboloidal surrogate (OS-SPS) that was

first introduced in image reconstruction for tomography [4] to the problem of pixel-
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based image recovery [110, 111]. This algorithm has been shown in tomographic

reconstruction to converge to the optimal point while providing fast convergence. Be-

cause data acquisition is different in image restoration than in tomography, we need

to employ a different strategy for choosing subsets, using pixel locations rather than

projection angles. As in tomography, the relaxed OS-SPS algorithm for pixel-based

image recovery can provide an order-of-magnitude acceleration over the nonordered-

subset version at the early iterations, thus increasing the convergence rate. The

proposed PPCA and relaxed OS-SPS algorithms are generalizable to a variety of ap-

plications. In this dissertation, we demonstrate them through confocal microscopy

problems and achieve good restoration with faster convergence and less computation

time than existing iterative algorithms.

For image plane holography, a naive approach to trying to improve degraded

holographic images would be to apply image restoration techniques to reconstructed

holographic images as input data; however, such reconstructed images are further

degraded, in addition to degradation from the recording process, by a spatial fil-

tering technique commonly used in numerical conventional reconstruction. Using

such a two-step is unlikely to yield good restored images. A better approach is to

directly reconstruct holographic images from hologram intensity data using a statis-

tical technique. In the last part of this dissertation, we develop a novel statistical

image reconstruction technique based on Poisson models for image plane holography,

as well as general digital holography [112]. Because holography can record both the

amplitude and phase of the entire optical wave field, a full recovery of the object can

be expected, unlike in confocal microscopy for which only the amplitude is available.

In this holographic problem, we use PL estimation to reconstruct the complex-valued

wave of the object from the real-valued hologram intensity data. Specifically, we de-
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velop a Poisson statistical model for this problem and derive an optimization transfer

algorithm that monotonically decreases the cost function each iteration and ensures

convergence to a local minimizer. This approach provides the benefits of improving

reconstructed holographic images relative to the conventional reconstruction tech-

nique, and can be generalized to many applications of digital holography as well as

phase retrieval problems.

1.3 Original Contributions

This dissertation provides several original contributions to the fields of image re-

covery, microscopy, and holography. These contributions are summarized as follows:

• Development of a fast converging parallelizable algorithm (PPCA) that over-

comes the tradeoff between the convergence rate and parallelizability.

• Implementation of parallel code using message-passing interface (MPI) and its

portable version (MPICH) to run parallelizable algorithms on parallel proces-

sors.

• Adaptation of another fast converging algorithm (relaxed OS-SPS ), which is

used widely in projection-based image reconstruction for tomography, to the

problem of pixel-based image recovery.

• Comparison of the computational complexity and convergence rates of the two

proposed, iterative algorithms and other converging iterative algorithms.

• Construction of a statistical model and development of a new statistical recon-

struction technique for digital holography, specifically image plane holography,

by statistically reconstructing a holographic image directly from hologram in-

tensity data.
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• Analysis of the 3-D PSF of image plane holography, a system that allows for

optical sectioning.

• Development of a new choice of curvatures for parabolic surrogate functions

to simplify the optimization problem and to ensure the convergence of the

algorithm.

1.4 Dissertation Organization

This dissertation begins by reviewing background information of optical systems

and statistical techniques, and then presents new methods in later chapters. Chap-

ter II reviews some background of confocal microscopy and image plane hologra-

phy, and examines their limiting factors that cause resolution and noise problems.

Chapter III describes statistical image restoration techniques, such as ML and PL

estimation, and reviews some existing algorithms. Statistical models for incoher-

ent imagery (e.g., confocal microscopy) and digital holography (e.g., image plane

holography) are presented as well. Chapter IV presents a new fast converging paral-

lelizable algorithm (PPCA) based on optimization transfer and concavity techniques.

Chapter V presents another fast converging algorithm (relaxed OS-SPS) that is used

conventionally in tomographic image reconstruction for use in image restoration.

Chapter VI compares our proposed iterative algorithms with other existing converg-

ing algorithms for space-variant and space-invariant systems by determining their

computational complexity and convergence rates. Chapter VII presents a new sta-

tistical image reconstruction technique for digital holography, specifically image plane

holography. Finally, Chapter VIII summarizes the entire thesis and presents future

work.



CHAPTER II

Background on Optical Imaging Systems

In this dissertation, we apply new statistical image recovery techniques to two

specific optical imaging systems: confocal microscopy and image plane holography.

The former system is available commercially, while the latter system is still at the

research stage. Although both of these systems have nice optical sectioning properties

for viewing a 3-D image of a thick object without the need for dissection, they operate

differently and have different requirements. Under ideal conditions, both confocal

microscopy and image plane holography can produce sharp images. In practice,

however, most images produced by these techniques contain out-of-focus signals and

noise that arise from the limitations of the systems. Thus, in this chapter we review

these systems to understand how they work and their limitations so that a better

image recovery technique can be developed to overcome these limitations.

2.1 Confocal Scanning Microscopy

Conventional optical microscopes are inapplicable for viewing a true 3-D image

of a thick object because of their finite depth of focus and limited resolution. Even

though they can view a 3-D object, their optical sectioning is very poor. The image

at each plane contains a lot of noise and an incredibly large amount of out-of-focus

8
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contributions from other planes. In other words, the spatial resolution is very poor,

especially in the axial direction . To overcome this problem, the idea of confocal

microscopy was first proposed by Minsky in 1957 [30, 60, 93, 94, 97] and then highly

developed in the late 1970s [15, 16, 30, 60, 97, 101, 103] for the further improvement

and production of useful images. The details of confocal microscopy are discussed

next.

2.1.1 Design and Operation

A confocal microscope is excellent for directly visualizing 3-D objects due to its

optical sectioning ability, which is also called confocal effect and depth discrimi-

nation property. The basic requirements for confocal scanning microscope are point

illumination, point detection, a scanned image and a confocal lens system (two lenses

sharing a common focus). Confocal means the image of the illumination or excitation

pinhole and the backprojection of the detector pinhole have a common focus in the

object [16]. Confocal microscopy can be operated in three different modes: reflec-

tion, transmission, and fluorescence. The fluorescence mode is used widely since the

biological samples are usually labeled with fluorescent materials so that only specific

parts of the samples appear on the microscope. A schematic diagram of confocal

fluorescence microscope is illustrated in Figure 2.1.

In the fluorescence mode, light originating from the excitation pinhole is focused

by an objective lens onto a point in the object and the emitted light focused onto a

photodetector via a dichroic mirror. The Krypton/Argon mixed gas laser produces

primary wavelengths of 488 nm (blue), 568 nm (yellow/green), and 647 nm (red).

The 488 nm line can be used to excite a single fluorophore, fluorescein isothiocyanate

(FITC), producing an emission spectrum centered at 520 nm (green) [23]. There-
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Confocal Fluorescence Microscope

Figure 2.1: Point illumination, point detection, scanning and a confocal lens system
are the basic requirements for confocal scanning microscope. The pinhole
is placed in front of the photodetector to suppress out-of-focus signals
from other planes.

fore, the excitation filter is needed to transmit only the 488 nm wavelength. When

the fluorescent molecules absorb the 488 nm wavelength, they emit light at a longer

wavelength due to loss in energy as heat. In this way, the green light for FITC is

detected. The dichroic mirror deflects the excitation light as well as the reflected

light and lets the fluorescently emitted light pass through. The barrier filter further

attenuates the excitation and reflected light that passes through the dichroic mirror

but transmits the emitted light into the direction of the photodetector, such as a

photomultiplier tube (PMT) and a charged-coupled-device (CCD) camera. A confo-

cal aperture or a detector pinhole is placed in front of the photodetector so that the



11

out-of-focus light will be largely obstructed by the pinhole. Light emitted from be-

low the focal plane focuses in front of the detector pinhole, while light emitted from

above the focal plane focuses behind. Therefore, most of that light is not detected

at the photodetector: only light from the in-focus plane is detected (Figure 2.2).

Out−Of−Focus and In−Focus Paths of Confocal Microscope

 PMT

focal plane

out−of−focus rays

out−of−focus rays

in−focus rays

dichroic mirror

confocal aperture

objective lens

excitation pinhole

Figure 2.2: Confocal technique eliminates the out-of-focus signals from other planes
by placing the confocal aperture in front of the photomultiplier tube such
that only the signals from the focal plane are detected at the photode-
tector.

To construct a 3-D image, the microscope is focused onto a single plane to collect

a 2-D image of that plane. Then it is refocused to the next plane. This scanning

and refocusing process is repeated until the entire specimen is scanned. The point-

by-point scanning is responsible for the confocal property obtained at each plane.
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2.1.2 Resolution and Limiting Factors

For an ideal confocal case of an infinitesimal pinhole, the lateral resolution in the

focal plane is proportional to the wavelength and inversely proportional to the numer-

ical aperture (NA), whereas the axial resolution along the optical axis is proportional

to the wavelength and the refractive index of the lens, yet inversely proportional to

the square of the NA [23,30,114]. The NA of a lens system is defined as the relation-

ship between the objective light collection angle (α) and the refractive index (n) of

the medium between the objective and specimen: NA = n sinα. A rough estimate

for the lateral or transverse resolution 4xy of a confocal microscope in terms of the

full width at half maximum (FWHM) is [23]:

4xy =
0.61λ
√
2(NA)

where λ is the wavelength of the illuminating light. This resolution is about 40% bet-

ter than in a conventional microscope. The axial resolution 4z is roughly estimated

in terms of the FWHM as [23]:

4z =
1.5nλ

(NA)2
.

The factor of 1.5 depends on the ratio of the excitation and emission wavelengths.

Even in the ideal case, the axial resolution is not as good as the lateral resolution.

The axial FWHM is about 2-3 times larger than the lateral FWHM. However, when

the detector pinhole is opened up, the resolution becomes even worse, especially in

the axial direction.

The degree of confocal effect depends on the NA of the objective lens and the

size of detector pinhole, thus strongly relating to the resolution. The higher the NA

is, the thinner the optical section and the higher the resolution will be. When the
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detector pinhole is very small, the contributions from out-of-focus regions above and

below the focal plane are effectively suppressed, due to the confocal property. In

this way, the system behaves as an ideal confocal microscope. However, for a large

pinhole, it is similar to the conventional microscope (nonconfocal microscope): the

out-of-focus contributions from other planes superimpose on the in-focus plane.

Although a small pinhole provides a good resolution, it allows only a small amount

of light to pass through. This would reduce the signal-to-noise ratio (SNR) and the

contrast of the image. Therefore, there exists a tradeoff between the resolution and

signal-to-noise ration (SNR). The larger the aperture size, the higher the SNR, but

with a degradation of resolution. In many biological studies, weakly fluorescent

specimens require a larger pinhole to increase the strength of the signal and the SNR

at the expense of resolution.

The resolution of the image can be analyzed from the study of a point spread

function (PSF) of a microscope system. The PSF is the response of the system when

using a point object as an input. Because the PSF plays a very important role in

image recovery, we examine its characteristics in the next section.

2.1.3 Theoretical PSF and Its Transfer Function

In the reflection and transmission modes, a confocal microscope is coherent if a

point detector and a point source are used [60]. However, introducing a finite-sized

detector pinhole leads to a partially-coherent system. Furthermore, the coherence

of the system is completely destroyed when a specimen is labeled with fluorescent

materials [60, 102]. Therefore, a confocal fluorescence microscope with any size of a

detector pinhole is an incoherent system. While a coherent system is linear in field,

and its associated PSF is regarded as an amplitude PSF, an incoherent system is
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linear in intensity, and its associated PSF is regarded as an intensity PSF.

When a point source and a point detector are used, the theoretical 3-D amplitude

PSF in the reflection and transmission modes is given by:

h(x,y, z) = h1(x,y, z)h2(x,y, z)

where h1 is the 3-D amplitude PSF of the objective lens, and h2 is the 3-D amplitude

PSF of the collector lens (or the same objective lens). For circular lenses, this am-

plitude PSF has an Airy disk pattern and is circularly symmetric at each z location,

but the size of the PSF increases with the distance from the focal plane. Thus, there

is elongation in the z (axial) direction, and this produces poor resolution in the axial

direction.

Because the frequency domain of the PSF can provide additional information of

the PSF characteristics, we often study its Fourier transform as well. The Fourier

transform of the amplitude PSF is called the coherent transfer function (CTF), and

the Fourier transform of the intensity PSF is called the optical transfer function

(OTF). The 3-D CTF of the reflection confocal microscopy system is the auto-

convolution of the 3-D CTF of a conventional coherent microscopy system [60],

which produces twice the frequency bandwidth as the CTF for conventional co-

herent microscopy. As a result, the reflection confocal microscope can provide a

better resolution than the conventional microscope can. However, the CTF in the

transmission mode is the same as the 3-D OTF of the nonconfocal microscope (See

Appendix A. This CTF exhibits a missing cone around the origin. As a result, the-

oretically, the transmission mode of a confocal microscope does not have an optical

sectioning property as in the reflection mode [60].

For an incoherent system, the 3-D intensity PSF of the confocal fluorescence
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microscope with a point source and a point detector is given by [60, 75, 76]:

h(x,y, z) = |h1(x,y, z)h2(x,y, z)|
2.

Similar to the behavior of the amplitude PSF in the reflection and transmission

modes, the intensity PSF for confocal fluorescence microscopy also exhibits elonga-

tion in the axial direction. The 3-D OTF of a confocal fluorescence microscope is

the auto-convolution of the 3-D OTF of a nonconfocal microscope. With a point

detector pinhole, the former OTF does not exhibit a missing cone region as in the

nonconfocal microscope.

In practice, the detector is not a single point but has a finite size that is adjusted

by the pinhole in front of the detector. When a finite-sized circular detector is

considered, the intensity PSF in any mode is

h(x,y, z) = |h1(x,y, z)|
2[|h2(x,y, z)|

2 ∗∗D(x,y)]

where D(x,y) is the intensity sensitivity of the detector and [∗∗] represents the 2-D

convolution operator. Figure 2.3 shows the theoretical PSFs of the confocal and

nonconfocal fluorescence microscopes. Elongation in the z direction appears in both

systems; however, the nonconfocal PSF exhibits highly dispersed tails that lead to

very poor resolution in the axial direction. Detailed mathematical expressions for

the PSFs, CTFs, and OTFs are given in Appendix A.

Due to a finite-sized detector pinhole, the OTF of any microscope is a band-

limited function which vanishes outside a prescribed region. When a point detector

is used, there exists no missing cone region of the OTF. However, as the detector size

(the circular pinhole size) increases, the bandwidth of the 3-D OTF decreases, and a

missing cone region appears on the spatial frequency axis around the origin, where
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z

x

Confocal Microscope Nonconfocal Microscope

Figure 2.3: Theoretical PSFs of confocal and nonconfocal fluorescence microscopes
in the xz plane. “Confocal” means that the pinhole is totally closed,
whereas “nonconfocal” means that the pinhole is totally open (conven-
tional microscope).

the Fourier components are zero. The support region of the 3-D OTFs of confocal

and nonconfocal microscopes are shown in Figure 2.4.
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Figure 2.4: Schematic representation of the support region of the OTFs for confocal
and nonconfocal microscopes. The missing cone region, where the fre-
quency response is zero, decreases the resolution of the images, especially
in the axial direction.

When enlarging the pinhole to increase the SNR of the signal, the bandwidth of
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the OTF is reduced and the resolution of the image is degraded. The poor resolution

in the axial direction is caused by elongation of the PSF and the missing cone region

of the OTF. Because of these limitations in the system, restoration techniques are

often used to remedy the compromised image resolution (even in the closed pinhole

case).

2.1.4 Existing Image Restoration Techniques

Ideal confocal images are sharp and have high resolution. However, most obtain-

able images contain low resolution and noise due to an increase in size of the detector

pinhole so that more signal can be detected. This reduces the resolution, especially in

the axial direction. Therefore, many image restoration techniques have been applied

to increase the resolution of and reduce the noise in the image, even in the closed

pinhole case. Some people may refer to image restoration as deconvolution. How-

ever, we consider deconvolution as a debluring process without attention to noise. In

this section, we will discuss some common image restoration techniques for confocal

microscopy. The PSF is assumed to be known in this discussion. Image restoration

with an unknown PSF is called as blind restoration [29, 61, 66, 77, 90, 121, 133], in

which the PSF needs to be estimated somehow in the restoration process.

Nearest Neighbors Method

In the nearest neighbors method [2,3,31,67], the restored image at each plane is

obtained by subtracting the degraded image on that plane with the blurring version

of the 2-D degraded images from other planes and then convolving the result with

the 2-D inverse filter from the in-focus plane. The explicit expression for this method

is shown as follows:

x̂p = {yp − c[yp−1 + yp+1] ∗∗h1} ∗∗g (2.1)
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where x̂ is the the restored image, yp is the degraded image at plane p, h1 is the

2-D PSF of adjacent planes, g is the 2-D inverse filter of the PSF at the in-focus

plane, and c is an empirically determined constant. The nearest neighbors method

assumes that out-of-focus light affect only intermediate adjacent planes. Although

this method is quick and easy, it is not able to restore the missing cone information

and the nonnegativity of the image is not guaranteed.

Linear Filtering Methods

Linear filters include inverse filter, constrained least-squares, and Wiener filter.

These filters are simple to implement and require little computation time.

The inverse filtering method simply deblurs the image by using a spatial filter as

follows:

x̂ = y ∗∗∗ hr (2.2)

where hr is the PSF of the inverse filter and [∗∗∗] represents the 3-D convolution.

Inverse filter, in fact, considers only the blurring function and ignores noise in the

degradation model; therefore, it cannot operate properly in the presence of noise. To

avoid the pitfalls of an inverse filter in a noisy case, the pseudo-inverse filter is used

instead and has the following form [3, 67]:

Hr =
|H|

|H|2 + γ

where H is the overall transfer function of the system and γ is an empirical constant

to prevent the blowup of the inverse filter.

The constrained least-squares (CLS) or Tikhonov-Miller method [8,120] is based

on minimizing the squared difference between a degraded image and a blurred esti-

mate of the original image with the use of regularization to overcome an ill-posed
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problem of image restoration. The CLS method assumes that the acquired image

is distorted by an additive Gaussian noise. The estimate of the original image x̂ is

obtained by minimizing the following cost function:

Φ(x̂) = ||y −Ax̂||2 + α||Cx̂||2

where A is the system matrix, which represents the 3-D convolution between the

PSF and the original for a space-invariant system, α is the regularization parameter,

and C is a regularization matrix. By setting the derivative of Φ(x̂) with respect to

x̂ to zero, the estimate x̂ is determined from the following expression:

x̂ = (ATA+ αCTC)−1ATy.

If αCTC = γ, then CLS becomes a pseudo-inverse filter. If CTC = R−1f Rn where

Rf and Rn are the correlation matrices of the object and noise, then CLS becomes

a Wiener filter, which is a linear optimal filter in the mean square error sense.

Similar to the nearest neighbors method, these linear filtering methods can only

restore frequencies inside the bandwidth of the OTF; therefore, they are not capable

of restoring the missing cone information. Moreover, nonnegativity is not guaranteed

in the image.

Jansson-van Citter Method

The Jansson-van Citter method [3,67,72] is an iterative nonlinear technique. The

nth iteration update of the unknown parameters is expressed as follows:

xn+1 = [xn + γ(ynh)(y − y
n
h)]+ (2.3)

where the nonnegativity constraint [t]+ = t if t ≥ 0 and 0 elsewhere. The parameter

ynh is updated at every iteration: y
n
h = xn ∗∗∗ h, where h is the 3-D PSF of the
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microscope. The term γ(ynh) is defined as γ(y
n
h) = 1−

(ynh−ζ)
2

ζ2
, where ζ is the maximum

value of y/2. The Jansson-van Citter method can partially restore the missing cone

information; however, its results are not as good as the ML method because no

particular noise model is considered in the restoration technique [26].

Maximum Likelihood Method

Unlike all of the above methods which belong to the class of deterministic meth-

ods, the ML method is a statistical method that estimates the unknown image or

an approximation of the original image by maximizing its log-likelihood function. It

is based on a Poisson noise model which is the dominant source of noise in confocal

microscopy. The detail of the ML method is given in Chapter III. This nonlinear

method was shown to be able to partially restore the missing Fourier components in

the missing cone region [24, 65, 67, 122]. Moreover, the nonnegativity constraint can

be enforced easily in the ML method. Another advantage of ML estimation is that

one can extend the noise model easily for further improvement by including addi-

tional effects, such as dark current, detector quantum efficient and photobleaching.

The ML solution turns out to be equivalent to the Richardson-Lucy method [89,98];

however, their mathematical optimization criterion and derivation are different [67].

Because of the ill-posed nature of restoration problems, ML estimation can produce

noisy images if iterated too long. Therefore, some form of regularization is necessary,

which will be discussed in Chapter III.

2.2 Image Plane Holography

Although confocal microscopy can provide the optical sectioning property for

viewing a 3-D image, its point-by-point scanning required to achieve this property

slows down the acquisition process and disrupts the real-time visualization. Unlike
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the conventional confocal microscope which operates on a scanning principle, im-

age plane holography is capable of capturing the same images one slice at a time

while retaining the optical sectioning property. This technique significantly reduces

the acquisition time necessary to obtain the image and can be beneficial in real-

time imaging. We start this section by reviewing the concept behind conventional

holography. Later, we introduce image plane holography and study its concept and

limiting factors.

2.2.1 Conventional Holography

Holography is a process of recording both the amplitude and phase of a wave

field so that the entire wave field can be regenerated. The holographic process con-

sists of two processes: recording and reconstruction (Figure 2.5). The recording

of the interference pattern between the object and reference beams is regarded as

a hologram. The interference of two beams produces a fringe pattern, which is a

sequence of light and dark areas corresponding to the constructive and destructive

interferences, respectively. The fringe spacing depends on the angle between those

two beams: the larger the angle, the finer the fringe pattern. The fringes are formed

in the direction that bisects the angle between the two interfering waves within the

medium [57]. Since photographic film is insensitive to the shape of the wave front,

which is essentially the phase, the holographic process using the reference beam con-

verts phase variations into amplitude variations through an interference process. The

photographic material used to record the interference pattern is assumed to linearly

map an intensity in the detection process into an amplitude in the reconstruction

process. In the reconstruction process, the hologram is illuminated by a wave that

is similar to the reference wave. The holographic process creates two images: the
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primary (virtual) and conjugate (real) images.

Off−Axis Holography

(a) Recording a hologram

(b) Reconstructing holographic images

object beam
object

reference beam

recording medium

reference beam

hologram
primary image conjugate image

Figure 2.5: Two processes required in holography are recording and reconstruct-
ing processes. The recording process records the interference pattern
between the object beam and the reference beam onto the recording
medium. The reconstructing process produces the primary image be-
hind the hologram and the conjugate image in front of the hologram by
illuminating the hologram with the reference beam.

In-line holography, the first holography invented by Gabor [50–52], creates a low

contrast image due to the superimposition of the primary and conjugate images, i.e.,

they form on the same optical axis. In this holography, the object is generally a

transparency in which the major portion of the incident wave is transmitted without

scattering. Since the reference beam is in the same direction as the object beam,

a twin-image problem arises: the primary and conjugate images are superimposed,
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causing a strong ambient background which reduces the image contrast.

To eliminate the twin image problem, off-axis holography was first introduced

by Leith and Upatnieks [85]. In this technique, the reference beam impinges on the

recording surface at some angle with respect to the object beam. Thus, the primary

and conjugate images are formed at angularly different locations and are separated

from other undesired components. Let uo be the field of the object beam and uref be

the field of the reference beam including incident illumination at angle θ with respect

to the optical axis. The total field incident on the recording plane is given by:

u(~r) = uo(~r) + uref(~r)

where ~r denotes spatial coordinates. A common example of an off-axis reference

beam is a plane wave: uref = Urefe
−ı2π~r~α where Uref is the amplitude of the reference

beam, and ~α = sin θ
λ
is the spatial carrier frequency of the reference beam. Thus, the

intensity distribution across the recording plane is

I(~r) = |u(~r)|2

= |uo(~r)|
2 +U2ref + uo(~r)Urefe

ı2π~r~α + u∗o(~r)Urefe
−ı2π~r~α (2.4)

where ∗ stands for the complex conjugate. The third term, which is proportional

to uo(~r), generates the primary image. Similarly, the fourth term generates the

conjugate image. To view the primary image, we illuminate the hologram with

an exact duplicate of the original reference wave, in which case the primary image

appears behind the photographic plate at exactly the same location where the object

was originally located. To view the conjugate image, we illuminate the hologram with

a wave that is the complex conjugate of the original reference wave. In this case,

the conjugate image appears in front of the photographic plate. Both conventional

in-line and off-axis holography records a hologram on photographic film; therefore,
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one needs to use time-consuming chemical processing. This inconvenient process can

be avoided when a digital detector is used as a recording medium.

2.2.2 Digital Holography

Instead of recording a hologram on photographic film, digital holography uses a

digital detector, such as a CCD array, thus reducing some additional tasks required

when using photographic film. Digital holography has become attractive for imaging

living cells due to its rapid acquisition time and accessibility to a computer [22, 82].

With the digital detector, the reconstruction of the hologram can be performed on a

computer. According to (2.4), the frequency domain of the hologram intensity turns

the spatial-frequency spectrum of the recorded interference pattern into an angular

spectrum of diffracted waves. In conventional numerical reconstruction, one often

performs a mask in the frequency domain to extract the frequency components that

relate to either the primary image or the conjugate image, thus eliminating the twin

image problem.

In addition to the possibility to numerically reconstruct a holographic image,

digital holography overcomes some limitations of conventional holography. In con-

ventional holography, exposure time for recording a hologram is limited by stability

time of an object motion. The stability time for living tissue is quite short for holo-

gram recording time. The problem of short stability time of living tissue is avoided

with digital holography because the sensitivity of the digital detector allows the cap-

ture of the object with moderate light and short exposure time [22, 82]. Therefore,

there is no need for high power light, which can damage living cells. Since the ex-

posure time of each hologram is shorter than the stability time of tissues, many

holograms are recorded and averaged to reduce noise and increase SNR. Although
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the digital detector has a large dynamic range (14-18 bits) which can image even the

low-contrast fringe, its resolution is not as good as the photographic film.

In both conventional and digital holography, one can classify different types of

holograms according to the diffraction or imaging conditions that exist between the

object and the recording medium [57]. Examples of this class of holograms include

Fresnel, Fourier, and image plane holography. When the recording plane lies in the

Fresnel zone of the illuminated object, the process is called Fresnel holography. When

the recording plane yields the Fourier transform of the object, the process is called

Fourier holography. When a hologram records an image of the object, the process is

called image plane holography.

2.2.3 Image Plane Holography with Incoherent Light

Although conventional holography with coherent light can generate the entire

3-D image in one exposure, it does not have a confocal effect and, thus imagery will

contain out-of-focus scatters from other planes. Image plane holography, recently

developed by Leith et al., is illuminated by incoherent light and provides a confocal

property that can reject the out-of-focus signals from other planes in a similar man-

ner as confocal microscopy [7, 83, 84, 86, 116]. The confocal process of image plane

holography is illustrated in Figure 2.6.

The idea of image plane holography can be explained by the Van Cittert-Zernike

theorem. Light from any two points in the field can interfere if they are within the

same coherence area. The size of the coherence area is proportional to the distance

from the source and inversely proportional to the area of the source. By way of

illustration, we assume that the coherence area is very small and the plane P1 in the

object is the plane of interest. Point x1 is only coherent with point x
′
1 because they
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Image Plane Holography Process

P1 P2

1x

1P’

x2

1x’

incoherent
source

P1

x3

object

2x’

object beam
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. hologram

Figure 2.6: The object beam is coherent only with the reference beam that comes
from the same point source. If plane P1 is the in-focus plane, then x1
will be coherent with x′1 only and x2 will be coherent with x

′
2 only. Thus

only plane P1 will appear on the hologram.

originate from the same point source and they are equidistant. Likewise point x2

is only coherent with point x′2. Point x3 on plane P2 will not be coherent with any

points on plane P′1; therefore it will not form the fringe pattern and will not appear

on the hologram. With the small coherence area, plane P2 will not be recorded on the

hologram. Therefore, only information on plane P1 will appear on the hologram and

the out-of-focus signals from other planes will get suppressed. Each plane of interest

will be recorded on the digital detector at a time, and the scan in the z direction to

the next plane is required to obtain the 3-D image. Then numerical reconstruction

is performed to view a holographic image.

Even though the entire 3-D image cannot be constructed in one exposure using

this technique, a selected plane can be captured at once without scanning, a definite

advantage for temporal analysis of specimens and real-time imaging. In addition,

the aberrations due to off-axis scanning, which occurs in confocal microscopy, can

be avoided. Furthermore, the use of a broad-spectrum source can also support a
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multispectral framework. For the current set-up, image plane holography only works

in the transmission mode, not in the fluorescence mode. However, it is still useful

because the transmission mode in the conventional confocal microscope does not

have the confocal property (see pp.60-61 in [60]).

The degree of confocal effect or depth discrimination for image plane holography

is directly proportional to the fringe spacing in the fringe pattern, which is, in turn,

proportional to the angle between the object and reference beams and the incoherent

source illumination [132]. There are two basic regimes of volume-recorded fringes

(Figure 2.7). In the first, the two interfering beams impinge from the same side of

the recording medium. In this case, the fringe spacing is very coarse, i.e., about the

wavelength of the illumination. In the second, the two beams impinge from opposite

sides of the recording medium, as in Denisyuk volume reflection holography [132]. In

this regime, the fringe pattern is very fine, spacing in the order of λ/2n, where n is

the refractive index of the recording medium. The fringe pattern lies nearly parallel

to the emulsion surface. When the object and reference beams are introduced from

the opposite side of the recording medium, the angle between these two beams can

be wider than when the two beams interfere from the same side, thus better degree

of noise suppression. However, a digital detector cannot be used to record such a

hologram. To take advantage of a digital detector, we consider only the regime where

the two beams impinge on the same side in this dissertation.

In addition to the angle between the object and reference beams, the size of

the source also directly effects the fringe localization: the larger the source, the

smaller the coherence area, and thus the fringes are more localized. Hence, with

a spatially broad source, the fringe localization suppresses light from out-of-focus

planes much like the conventional confocal process [7, 115, 116]. A spectrally broad
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a) Two beams on the same side b) Two beams on the opposite side

Two Different Fringe Patterns in Image Plane Holography

reference beam

object beam

recording medium

object beam reference beam

recording medium

Figure 2.7: The fringe pattern is finer when the angle between the object beam and
the reference beam is wider. The fringe direction is determined from the
angle that bisects both beams.

source eliminates considerable scattering noise and also leads to fringe localization in

depth. The use of simultaneous broad-source and broad-spectrum illumination thus

further reduces the out-of-plane scattering noise [116]. For simplicity, here we focus

only on the broad-source illumination.

The purpose of broad source illumination is to reduce the coherence in the object

beam so that the depth discrimination and improvement in the resolution can be

achieved; however, practical sources cannot be arbitrarily large. Furthermore, even

for a large source, the coherence will be increased after light passes through a lens.

The coherence area increases when a small lens is used. Since lenses in a microscope

cannot be too large, an increase in coherence always arises. Moreover, if the source is

too big, not only the fringes will be very fine and make it difficult to align the detector

properly. Such fine fringes may cause a problem when using a digital detector to

record a hologram as well. Because the transverse resolution is determined by the size

of the source as seen at the hologram plane and the lateral resolution is determined

by the lenses, the resolution is compromised by these limiting factors. As a result,
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image recovery techniques can be applied to reduce the blur and noise problems.

Due to the important role of the PSF in image recovery, we study the overall system

PSF for image plane holography next.

2.2.4 Theoretical PSF of Image Plane Holography

The experimental setup for image plane holography is illustrated in Figure 2.8.

The source is adjusted in size by placing rotating ground glass in a diverging laser

beam. The source size is determined from the size of the diverging beam where it

intersects the ground glass. A quasi-monochromatic and spatially incoherent source

generates a partially coherent field. Light from the broad source is split into the

object and reference beams via a beam splitter. The lens in the object beam images

a selected plane of the object onto the hologram. In the reference path, the matching

lens to that in the object path is needed to balance the two beams so that the

interference can occur. Then the object and reference beams are brought back to

form the fringe pattern at the hologram plane.

object beam
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Figure 2.8: Experimental setup for recording an image plane hologram

The amplitude PSF of the overall system according to the above setup is deter-
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mined at the output of the reconstruction process. Under an ideal condition where

the source size is assumed to be infinitely large, the perfect depth discrimination at

each plane is achieved and the corresponding 3-D amplitude PSF can be expressed

as follows:

h(x,y, z) = ho(x,y, z)h
∗
ref(x,y, z) (2.5)

where ho and href are the amplitude PSF of the object and reference beams, respec-

tively. The detailed derivation of the PSF for image plane holography is given in

Appendix B. This PSF is similar to that of the reflection and transmission confo-

cal microscopes. Because image plane holography can provide the optical sectioning

property, its 3-D CTF follows the 3-D CTF of the reflection confocal microscope that

has no appearance of the missing cone region in an ideal confocal case. However,

when a finite-sized source is used, the amplitude PSF needs to consider the effect of

the source into account as well. Thus, the PSF becomes

h(x,y, z) = ho(x,y, z)[h
∗
ref(x,y, z) ∗∗D(x,y)] (2.6)

where D(x,y) is the response of the finite-sized source.

2.2.5 Comparison between Confocal Microscopy and Image Plane Holog-
raphy

In this section, we compare the similarities and differences between image plane

holography and conventional confocal microscopy. Conventional confocal microscopy,

in general, provides the nice property of optical sectioning, but in fact its transmission

mode lacks this property. On the other hand, image plane holography offers the

optical sectioning property in the transmission mode. In additional to the confocal

effect, the most significant contribution of image plane holography is the absence

of the scanning process in the object plane as required in conventional confocal
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microscopy. Another advantage of image plane holography over confocal microscopy

is the opportunity to capture both the phase and amplitude of a complex object. The

latter can view only the amplitude part of an object. Figure 2.9 shows the layout of

these two optical systems. If the matching lenses are used in the two systems, and

the small pinhole and large source are assumed, then both systems will have the same

3-D amplitude PSF, h = h1h
∗
2 = hoh

∗
ref where h1 and h2 are the PSFs of the objective

and collector (objective) in transmission confocal microscopy and ho and href are the

PSFs of the object and reference beams in image plane holography. Although the

overall PSFs are equivalent if they use the same lenses, the configuration of individual

PSFs is different, i.e., for transmission confocal microscopy, h1 and h2 are in series,

while for image plane holography, ho and href are in parallel.

Detector
Pointh2h1

. .

Object

Source
 Point

Objective Collector

h

h

Object

Reference

Incoherent
Source

o

ref

Image Plane HolographyTransmission Confocal Microscopy

Figure 2.9: Configuration of transmission confocal microscopy and image plane
holography systems and their PSFs.

Even though both image plane holography and transmission confocal microscopy

belong to coherent systems, the light source requirement is opposite in the two sys-

tems. While transmission confocal microscopy requires a spatially coherent source,

image plane holography requires an incoherent source. The size of the broad source

in image plane holography determines the degree of the confocal effect, i.e., the larger

the source size, the stronger the degree of the confocal effect. Unlike image plane

holography, the confocal effect in confocal microscopy is limited by the increase in



32

size of the detector pinhole, i.e., the smaller the pinhole size, the stronger the de-

gree of the confocal effect. The summary of the differences in transmission confocal

microscopy and image plane holography is shown in Table 2.1.

Confocal Microscopy Image Plane Holography
(Transmission)

Optical sectioning property No Yes
Object-plane scanning Yes No
Imaging type Only amplitude Both amplitude and phase
Light source requirement Point source (coherent) Broad source (incoherent)
Confocal controller Pinhole size Source size

Table 2.1: Comparison of the differences between conventional confocal microscopy
and image plane holography

As with confocal microscopy, resolution and noise problems still appear in image

plane holography due to the limitation of the optical system. Here again image

recovery techniques offer an attractive solution.

2.2.6 Existing Reconstruction Techniques

Similar to confocal microscopy, practical image plane holography suffers from lim-

ited spatial resolution due to the out-of-focus contributions from other planes which

are limited by the size of the light source, and from optical noise in the photode-

tector. Therefore, image recovery offers a convenient approach to overcome these

problems. Because image plane holography is a new technique, not many proposed

recovery techniques have been explored. A simple approach to image recovery would

be to perform any typical image restoration technique on a reconstructed holographic

image. However, a reconstructed holographic image acquired through existing nu-

merical reconstruction may contain corrupted information. With this approach, good

restoration based on bad data might not be achieved. A better approach is to re-

cover the image directly from the complete data of the hologram. In this approach, a
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complex object is reconstructed from the real-valued hologram intensity data. Since

image reconstruction for image plane holography resembles that of digital hologra-

phy, we review some common existing numerical reconstruction techniques used in

digital holography instead.

Filtering Method

Conventional reconstruction is performed by using a digital filter applied in the

frequency domain to extract only the primary or conjugate image. Assuming the

reference beam is a plane wave at normal incident, the Fourier transform of the

hologram intensity in (2.4) is

I(f) = Io(f) +U
2
refδ(f) +UrefUo(f − α) + urU

∗
o (−f − α) (2.7)

where f denotes spatial frequencies, I, Io, and Uo denote the Fourier transform of

|u|2, |uo|2, and uo, respectively. Since the the intensity of the reference beam, U2ref , is

uniform (ideally), its Fourier transform is a Dirac function located at the origin. The

first two terms in (2.7) form the zero-order spectra located at the center of the Fourier

plane. The last two terms form the first-order spectra located at spatial frequencies

f = ±α away from the origin. Figure 2.10 shows an example of a hologram and

the magnitude of its Fourier transform. If α is large enough to separate the two

first-order spectra from the zero-order spectra, then a mask (a bandpass filter) can

be used to extract desired frequency components that yield the holographic image

corresponding to the primary or conjugate image for the case of image formation.

For Fresnel holography, one more step of Fresnel transform is needed to obtained the

reconstructed holographic image. Although, this approach is very simple and not

time-consuming, the resulting holographic image is degraded due to the effect of the

filter.
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Figure 2.10: Holographic reconstruction using a filtering method.

Phase-Shifting Method

Phase-shifting or phase-modulation method [35, 117, 131] was proposed to sup-

press the zero-order image and one of twin images in off-axis holography through the

use of several recording holograms. In this approach, many holograms are generated

from different incident angles of the reference beam and used for removing undesired

images. For example, one of the phase-shifting methods proposed by Takaki et al.

can extract the third term in (2.4) through the means of the following calculation:

Iθ1e
ıθ1 − Iθ2e

−ıθ2 + I[eıθ1 + e−ıθ2 ] =

[
eıθ1 − 1

e−ıθ1 − 1
−

eıθ2 − 1

e−ıθ2 − 1

]
uou

∗
ref

where θ1 and θ2 are angles of the reference beams, and the following three holograms

are captured

I = Io + Ir + uou
∗
ref + u

∗
ouref

Iθ1 = Io + Ir + uou
∗
refe

ıθ1 + u∗ourefe
−ıθ1

Iθ2 = Io + Ir + uou
∗
refe

ıθ2 + u∗ourefe
−ıθ2 .

Although this technique requires fewer holograms than other phase-shifting methods

proposed by De Nicola et al. [35] and by Yamaguchi and Zhang [131], using three
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holograms is still inconvenient for reconstructing just one holographic image.

Statistical Method

A primary drawback of the above methods is the lack of random noise in the

model. Unlike filtering and phase-shifting methods, a statistical method includes

characteristics of noise into its model to reconstruct the image. Statistical recon-

struction for holography introduced by Çetin et al. [20] is based on additive Gaussian

noise model and uses least-squares approach to solve the problem. This technique

was applied to Fourier holography. In Chapter VII of the dissertation, we propose

a statistical reconstruction technique based on Poisson statistics, which is a major

source of noise, to reconstruct the complex-valued object from the real-valued holo-

gram intensity data [112]. Our statistical reconstruction technique can be applied to

many types of digital holography including Fresnel and Fourier holography.

With knowledge of the background and limitations in the optical systems, we

can use statistical image recovery techniques. Before proposing new, fast, converging

algorithms and a new statistical reconstruction technique, we will review the concept

of statistical techniques used in this dissertation and construct statistical models in

the next chapter.



CHAPTER III

Statistical Techniques for Image Recovery

As mentioned in the previous chapters, deterministic techniques for image re-

covery, though simple to implement and computationally fast, are not based on

any particular noise model of the optical system. Therefore, they cannot efficiently

improve the resolution of degraded images, and thus do not provide good image

recovery. Unlike deterministic techniques, statistical techniques, such as maximum

likelihood (ML) [65, 67], maximum a posteriori (MAP) [62], and penalized likeli-

hood (PL) [49,125] estimation, are based on a specific noise model that characterizes

the physical model of the optical system. In this way, better image recovery can be

achieved. However, most statistical techniques are complex to implement and require

large amounts of computation time. Thus, the main goal for this dissertation is to

construct statistical techniques that simplify the image recovery problem and require

less computation time, while still providing a good quality image. In this chapter, we

first analyze the physical and measurement models for confocal microscopy (includ-

ing incoherent imagery) and image plane holography (including digital holography),

and develop statistical models for these systems. After that, we review the concepts

behind relevant statistical techniques, and examine some existing iterative algorithms

for solving the problems associated with statistical image recovery.

36
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3.1 Models for Confocal Microscopy and Other Incoherent
Imagery

For ML/PL estimation, one needs to specify a statistical model of an optical

system. A statistical image model that matches physical and measurement models

of a system well tends to produce a good quality image. In this section, we describe

the physical and measurement models for confocal microscopy, which can also be

generalized to other incoherent imagery, and design its statistical model based on

the noise characteristics and measurement model.

3.1.1 Physical and Measurement Models

Confocal fluorescence microscopy and other similar incoherent imagery acquire

images of photon intensity through a photodetector, such as a PMT or a CCD

camera. These images usually deviate from the true object intensity due to the

imaging process as illustrated in Figure 3.1.

λtrue
Intensity
Object 

System
h

Imaging Output
Intensity

g

Record on

a photodetector

Figure 3.1: Diagram of incoherent imagery

From Figure 3.1, the (fluorescent) intensity of the object in the continuous space

is denoted by λtrue(~r, z) and the corresponding output intensity g(~r, z) is determined

by using a superposition integral of the object intensity and the PSF of the system

as follows:

g(~r, z) =

∫∫
h(~r, z;~r′, z′)λtrue(~r′, z′)d~r′dz′ (3.1)

where ~r represents 2-D spatial coordinates, z represents the scanning plane of interest,

and h(~r, z;~r′, z) represents the 3-D intensity PSF of the system. To discretize the
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object space, we approximate the true object intensity in terms of basis functions

λtrue(~r, z) ≈ λ(~r, z) =

P∑
j=1

xjχj(~r, z) (3.2)

where λ(~r, z) is an approximation of the true object intensity in the continuous

space, xj is the unknown coefficient of the jth basis function, P is the total number

of unknown parameters to be estimated, and χj(~r, z) is the jth continuous-spaced

basis function, such as an indicator function (a rect function). Because the output

g(~r, z) is recorded on a photodetector, the discrete version of g(~r, z) in the detector

space can be written in the following form:

g(~r, z)
∣∣∣
(~r,z)=(~ri,zi)

=

∫∫
h(~ri, zi;~r

′, z′)

P∑
j=1

xjχj(~r
′, z)d~r′dz′

=
P∑
j=1

aijxj = [Ax]i, i = 1, . . . , N (3.3)

where ~ri is the center location of the ith element of the photodetector, zi is the ith

focal plane, N is the total number of measured pixels for all planes, and aij is the

ijth component of the system matrix A, which can be expressed in terms of basis

functions

aij =

∫∫
h(~ri, zi;~r

′, z′)χj(~r
′, z′)d~r′dz′. (3.4)

For simplicity, we assume that the response of the photodetector itself is a Dirac

function located at the center of each detector element so that the PSF of the pho-

todetector hardly affects the overall PSF of the system. Since the measurement data

usually contains noise, we can regard them as random variables having the mean

according to (3.3):

E[Yi] = [Ax]i + bi, i = 1, . . . , N (3.5)
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where Yi denotes the ith pixel of the measurement data, and bi denotes an offset due

to effects, such as dark current and background noise. The goal is to estimate the

unknown image x from the measurement data Y . Owing to existence of noise in the

measurement data, we consider the characteristics of noise in the statistical model

for solving this inverse problem.

3.1.2 Statistical Models

Due to noise in the measurement, one can use the statistical characteristics of the

measurement to construct its noise model. In this section, we first consider the com-

plete statistical model of the confocal microscope system by combining all possible

sources of noise. Since there exists a variety of statistical distributions, statistical

image restoration for confocal microscopy becomes a complicated optimization prob-

lem. Therefore, an approximation of these complex distributions becomes another

alternative model to simplify the optimization problem. These statistical models

play an important role for achieving a good quality image.

Complete Model

For confocal microscopy as well as other incoherent imagery, the photodetector

behind the detector pinhole collects light. Images acquired through the detector may

be contaminated by a variety of noise sources, and many of these noise sources follow

different statistical distributions.

• Photon noise is due to photon emissions and detections, and is a Poisson pro-

cess. This is a major source of noise.

• Thermal noise or dark current is due to the finite temperature of the elements of

the detector system, which occurs even when no light is present. Dark current
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is a Poisson process.

• Readout noise in the amplifier is an additive Gaussian noise, and independent

of the signal [104,105].

• Black level is a deterministic constant offset for adjusting the lowest pixel value

to lie above zero.

• Analog-to-digital (A/D) quantization noise is caused by conversion from an

analog signal to a digital number. This noise is not considered in most image

recovery methods, including the work presented here, because uniform distribu-

tion of quantization noise is difficult to integrate with Poisson and Gaussian dis-

tributions, and its importance on the quality of estimates is unclear [104,105].

Therefore, the complete model of the measurement data at each pixel, Y ′i , is:

Y ′i ∼ α1

{
Poisson{fi[A(h)x]i + b

′
i}+ b

′′
i

}
+N (m, σ2), i = 1, . . . , N (3.6)

where:

• Y ′ denotes the degraded image (noisy measurement), which is ordered lexico-

graphically by stacking a 3-D image into a vector.

• x denotes the true object corresponding to a number of fluorescent photons per

second, and is ordered lexicographically by stacking a 3-D image into a vector.

• A(h) denotes the 3-D system matrix which is a function of a 3-D PSF (h)

of a microscope. [A(h)x]i is a shorthand notation for the ith entry of the

vector A(h)x or [A(h)x]i =
∑P

j=1 aijxj . This notation is generalized to both

shift-variant and shift-invariant systems.
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• α1 denotes the scaling factor which adjusts the output image into a 0-255 range

(for 8 bits).

• fi denotes the scan time factor proportional to an amount of scanning time and

quantum efficiency of the photodetector. With the same quantum efficiency,

the longer we scan, the better the SNR of the image.

• b′i denotes the mean of the dark current.

• b′′i denotes the black level.

• N (m, σ2) denotes the Gaussian readout noise with mean m and variance σ2.

Approximate Model

Since the Poisson-Gaussian mixture model provides a very complicated optimiza-

tion problem and the major source of noise has a Poisson distribution, we reform the

noise model of the measurement, combine different terms, and then ignore the Gaus-

sian noise. To simplify the Poisson-Gaussian model, we define the ith measurement,

Yi, in terms of Y
′
i as follows:

Yi
4
=
Y ′i − α1b

′′
i −m

α1
+
σ2

α1
, i = 1, . . . , N. (3.7)

Thus the model of the measurement becomes

Yi ∼ Poisson{fi[A(h)x]i + b
′
i}+N

(
σ2

α1
,
σ2

α1

)
, i = 1, . . . , N. (3.8)

Combining the readout noise variance into the background noise and dark current

term and ignoring the Gaussian noise [104], we end up with the simpler model of the

measurement at each pixel:

Yi ∼ Poisson{fi[A(h)x]i + bi}, i = 1, . . . , N (3.9)
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where bi = b
′
i+

σ2

α1
denotes the mean of the dark current and background noise. Since

this model has been shown to provide good restoration [25, 28, 104], we mostly use

this model for confocal microscopy throughout this dissertation.

System Matrix and PSF

The PSF of the system plays a very important role in the recovery process.

Using an accurate PSF in the recovery techniques leads to a high quality image.

The PSF is either known or unknown. If the PSF is unknown, then it must be

estimated somehow in the restoration technique and this technique is regarded as

blind restoration [29,61,66,77,90,121,133]. Blind restoration is more difficult because

only the degraded image is used to simultaneously estimate both the image and

the PSF. Practically, the PSF of the system is usually unknown; however, one can

either derive the theoretical PSF [60,75, 76] from the optical system or measure the

experimental PSF [100] from a point-like object (small fluorescence beads) or a very

thin line object. Although the theoretical PSF has a closed form, it does not account

for defects in the system, such as aberration of lenses. Thus, ignoring noise, the

measured PSF tends to yield a closer approximation to the true PSF of the system.

Since estimating the image using partial information about the PSF tends to yield

better restoration than using no information about the PSF at all, we mainly focus

on non-blind restoration in this dissertation. The methods can be extended to the

case of blind restoration.

Regardless of whether the PSF is known or unknown, imaging systems can be

divided into two categories. If the PSFs are similar at any location of the image, then

the system is called space-invariant. In contrast, if the PSFs vary with locations,

then the system is called space-variant. Strictly speaking, optical systems are space-
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variant due to the nature of finite-sized lenses. However, it makes the problem

more complicated. If the PSFs do not vary too much, then an approximated model

using the space-invariant system can simplify the problem and still provide good

restoration.

According to the statistical model discussed above, if a linear space-invariant

system is assumed, then A(h) is a Toeplitz (or block-Toeplitz) matrix simply repre-

senting the linear convolution operator. Therefore, we can represent A(h)x as h ∗ x,

where ∗ is the convolution operator. For example, for a 1-D linear space-invariant

system, A becomes a Toeplitz matrix and we obtain the following equality:

Ax =




h(0) h(−1) 0 0

h(1) h(0) h(−1) 0

0 h(1) h(0) h(−1)

0 0 h(1) h(0)







x(0)

x(1)

x(2)

x(3)



=




(h ∗ x)(0)

(h ∗ x)(1)

(h ∗ x)(2)

(h ∗ x)(3)




However, for 2-D and 3-D, matrix A is more complicated. To illustrate, consider the

following 3× 3 PSF for a 2-D case:

h(−1,−1) h(−1, 0) h(−1, 1)

h(0,−1) h(0, 0) h(0, 1)

h(1,−1) h(1, 0) h(1, 1)


 .

If x is assumed to be anm×n matrix, then the corresponding system matrix becomes

an (mn)× (mn) block-Toeplitz matrix as follows:

A(h) =




H(0) H(−1) 0 · · · 0

H(1) H(0) H(−1)
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . H(−1)

0 · · · 0 H(1) H(0)
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where each m×m sub-matrix H(i) is itself a Toeplitz matrix,

H(i) =




h(0, i) h(−1, i) 0 · · · 0

h(1, i) h(0, i) h(−1, i)
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . h(−1, i)

0 · · · 0 h(1, i) h(0, i)



.

3.2 Models for Image Plane Holography and Other Digital

Holography

As discussed previously, the raw data recorded as the hologram intensity is more

complete than the data obtained from a reconstructed holographic image; therefore,

we use the raw hologram data directly to reconstruct a high quality holographic

image. In this section, we describe the physical and measurement models for digital

holography, in general, including image plane holography, and develop its statistical

model based on the measurement model and characteristics of noise in the system.

Because a digital detector is used for recording data, the statistical model for digital

holography closely follows the same noise sources as in confocal microscopy.

3.2.1 Physical and Measurement Models

The diagram of the recording process in digital holography is illustrated in Fig-

ure 3.2. After recording a hologram on a digital detector, numerical reconstruction

from the digitally recorded hologram is performed on the computer to reconstruct

the estimate of the object.

The relation between the object beam uo at the hologram plane and the object

field f at the object plane can be described through the system PSF as image for-

mation for the case of image plane holography, the Fourier transform for the case of
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Figure 3.2: Diagram of digital holography

Fourier or Fraunhoffer holography, or the Fresnel transform for the case of Fresnel

holography. Thus, the holographic image of the object to be reconstructed is em-

bedded in the object beam uo. In general, one can express the object beam uo in

Figure 3.2 in terms of the object using a superposition integral of the following form:

uo(~r, z) =

∫∫
h(~r, z;~r′, z′)f true(~r′, z′)d~r′dz′, (3.10)

where h(~r, z;~r′, z′) denotes the amplitude PSF of the system, and f true(~r, z) denotes

the true object field. This expression is generalized to both 2-D and 3-D objects. In

practice, the recording medium has finite thickness, but we ignore this effect here for

simplicity.

For conventional holography, the interference between the object and reference

beams at the recording plane has the following continuous-space intensity:

I(~r, z) = |uo(~r, z) + uref(~r)|
2

= |uo(~r, z)|
2 + |uref(~r)|

2 + uo(~r, z)u
∗
ref(~r) + u

∗
o(~r, z)uref(~r) (3.11)

where uref denotes the (known) field of the reference beam. The first two terms in

(3.11) relate to the zero-order image. The third term, which is proportional to uo,

relates to the primary image. The fourth term, which is proportional to u∗o, relates

to the conjugate image. For off-axis holography, the reference beam is oriented at
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some angle resulting in a known spatial carrier frequency denoted by ~α. An example

of such a reference beam is a plane wave that is tilted by an angle θ with respect to

the optical axis, i.e., uref(~r) = Urefe
−ı2π~r·~α and ~α = sin θ

λ
where Uref is the amplitude

of the reference wave and λ is the wavelength.

Let Y = [Y1, . . . , YN ] denote the hologram measurement data recorded on a

digital detector, where N is the total number of measurement elements for all planes.

Similar to confocal microscopy, because the measurement data are usually noisy, we

consider the measurement reported by the ith element of the digital detector to be

a random variable whose mean is modeled as follows:

E[Yi] = |uo(~r, z) + uref(~r)|
2 + bi

∣∣∣∣
(~r,z)=(~ri,zi)

, i = 1, . . . , N. (3.12)

For simplicity, we treat the digital detector response as a Dirac impulse at the center

of each element. Since conventional holography is in the continuous space, one needs

to convert the continuous space of (3.11) into a discrete space. The true object,

f true(~r, z), in (3.10) can be approximately represented in terms of basis functions:

f true(~r, z) ≈ f(~r, z) =
P∑
j=1

xjχj(~r, z) (3.13)

where f(~r, z) is an approximation of the true object in the continuous space, xj is

the unknown complex coefficient of the jth basis function, P is the total number of

parameters to be estimated, and χj(~r, z) is a basis function, such as a rect function.

Combining (3.10) and (3.13), we can write uo(~ri, zi) in the following discrete form:

uo(~ri, zi) =

∫∫
h(~ri, zi;~r

′, z′)

P∑
i=1

xjχj(~r
′, z′)d~r′dz′ =

P∑
j=1

aijxj = [Ax]i (3.14)

where aij is the ijth component of the system matrix A, which is the response of the

object beam uo(~ri, zi) to the input xj, and can be expressed in terms of the system



47

PSF and the basis functions as

aij =

∫∫
h(~ri, zi;~r

′, z′)χj(~r
′, z′)d~r′dz′. (3.15)

Combining these expressions with the definition ui
4
= uref(~ri, zi) leads to the following

model for the measurement means which we use in the statistical model for statistical

holographic reconstruction:

E[Yi] = |[Ax]i + ui|
2 + bi, i = 1, . . . , N. (3.16)

The goal is to estimate the complex unknown x from the real measured Yi, since x

parameterizes the unknown object f of interest.

3.2.2 Statistical Model

Similar to confocal microscopy, the hologram data acquired from the digital de-

tector are degraded by blur and noise; therefore, we can follow similar noise sources

when constructing the complete and approximate statistical measurement models for

image plane holography and other digital holography.

Complete Model

According to the complete model for confocal microscopy in (3.6) and the mea-

surement means of photon noise for digital holography in (3.16), we derive the similar

complete model of the measurement data, Yi, for digital holography as follows:

Yi ∼ α1{Poisson{fi|[Ax]i + ui|
2 + bi}}+N (m, σ

2), i = 1, . . . , N (3.17)

where fi represents the quantum efficiency of the digital detector only because xy

scanning is not needed here. Unlike confocal microscopy, this model involves the

magnitude squared of the field due to the coherent system, and thus the unknown

parameter to be estimated is the field of the object, i.e., both magnitude and phase

of the object are available, instead of the object intensity.
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Approximate Model

To simplify the Poisson-Gaussian mixture optimization problem, we approximate

the measurement model by using the same technique as discussed in confocal mi-

croscopy. Thus we model the noisy measurement data for digital holography as

Yi ∼ Poisson{|[Ax]i + ui|
2 + bi}, i = 1, . . . , N. (3.18)

In fact, the quantum efficiency factor can be ignored in the reconstruction process be-

cause it is merely a constant parameter. We will use this model for digital holography

throughout this thesis. To our knowledge, this Poisson model for digital holography

has not been explored yet. Moreover, it can be generalized to many applications of

digital holography, such as image plane holography, Fresnel holography and Fourier

holography, and to phase retrieval problems by changing the system matrix or the

PSF accordingly.

3.3 Maximum Likelihood Estimates

Based on the noise models of the measurements designed above, one can apply

statistical image recovery techniques to recover an approximation of the original

image. In ML estimation, the parameter that we wish to estimate is obtained by

maximizing the log-likelihood function:

x̂ = argmax
x
Φ(x). (3.19)

In this case, the objective function is the concave log-likelihood function, which is

the data-fit term. The objective function can be either maximized or minimized

depending on the shape of the objective function. If the objective function has a

minimum, then the ML problem becomes the minimization of the objective function
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instead. An example of the objective function for ML estimation based on the model

(3.9) of confocal microscopy is

L(x) =

N∑
i=1

(yi log ȳi(x)− ȳi(x)− log yi!) (3.20)

where ȳi = fi[A(h)x]i + bi. This function is concave but not necessarily strictly

concave so there may be multiple values of x that all maximize L. When the likeli-

hood function corresponds to a Gaussian distribution, the ML estimation becomes

the least-squares method. If the true object is known priori to always be nonnega-

tive, such as in confocal microscopy, then a nonnegativity constraint can be imposed

on the estimation in (3.19) which can sometimes lead to faster convergence. Di-

rectly maximizing the likelihood function with respect to x is cumbersome due to

the nested sums with logarithms. Since closed-form solution for the maximizer x̂ is

not available, iterative algorithms are needed to compute x̂. The most common ap-

proach to maximizing the likelihood function is the expectation-maximization (EM)

algorithm [39].

3.3.1 Expectation-Maximization Algorithm

The basic idea of an EM algorithm is as follows. The measurement, or observed

data, is a random vector Y that has the probability density function g(Y ; x), where

x is a true parameter to be estimated. Since it is difficult to maximize g(Y ; x) with

respect to x, the sample space of Y is embedded in a larger sample space where

optimization problems are easier to solve. Thus, the EM algorithm postulates a

complete (unobservable) data, a random vector Z, such that Y is a function of

Z, and Z has a probability function f(Z; x). Each iteration of an EM algorithm

consists of two steps: the expectation step (E-step) and maximization step (M-step).

The E-step comes first and forms the Q function which is the following conditional
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expectation of the log-likelihood function:

QZ(x; x
n) = E[log f(Z; x)|Y = y; xn] (3.21)

where xn is a current parameter estimate. The M-step comes second and maximizes

the Q function with respect to x to obtain a new estimate

xn+1 = argmax
x

QZ(x; x
n).

One can show that with this approach the log-likelihood function is guaranteed to

increase at each iteration [39]. Furthermore, the following equality is satisfied at each

iteration:

∂

∂xj
QZ(x; x

n)
∣∣∣
x=xn

=
∂

∂xj
log f(Y ; xn). (3.22)

One can also find sufficient conditions for convergence [129]. The next section will

show a derivation example of the EM algorithm to the application of confocal mi-

croscopy.

E-Step

In the classical EM algorithm (ML-EM) for image restoration, the PSF of the

system is assumed to be known. In the E-step, the Q function is derived by taking

the conditional expectation of the log-likelihood function of Z1 with respect to Y ,

where Z1 is the set of complete or unobservable data given by:

Z1 =
{
{Zij}

P
j=1 , {Bi}

N
i=1

}
(3.23)

where Zij ∼ Poisson{fiaij(h)xj} and Bi ∼ Poisson{bi}. Thus, from (3.21), the Q

function is

QZ1(x; x
n) =

N∑
i=1

P∑
j=1

{−fiaij(h)xj +N
n
ij log(fiaij(h)xj)}+ constant (3.24)
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where

Nn
ij = E

[
Zij

∣∣∣Y = y; xn] = fiaij(h)xnj yiȳni (3.25)

and

ȳni = fi

P∑
l=1

ail(h)x
n
l + bi. (3.26)

M-Step

In the M-step, the Q function is maximized with respect to xj by taking its deriva-

tive and then setting it to zero. Therefore, the pixel update at the next iteration,

xn+1j , is:

xn+1j = argmax
xj

QZ1(x; x
n) =

xnj∑N
i=1 fiaij(h)

N∑
i=1

fiaij(h)
yi

ȳni
.

Even though this EM algorithm converges globally if initiated with a positive image

[123], it converges very slowly. Therefore, faster algorithms have been investigated.

After performing many iterations of the ML-EM, the resolution of the image is

improved, but noise is also amplified. This is because image recovery is an ill-posed

problem where the existence, uniqueness, and stability of the solution are not guar-

anteed. The ill-posedness of the continuous problem results in an ill-conditioned

system matrix. Small changes in the data may result in a significant change in the

solution [8,9]. As a result, a regularization technique for the ML problem is necessary.

Examples of regularization approaches include stopping the iteration before conver-

gence [64, 124], post-smoothing the image [107], and adding a roughness penalty

function to the log-likelihood function [49, 81, 106]. The last method is called pe-

nalized likelihood (PL) estimation. The PL estimation can be viewed as maximum

a posteriori (MAP) estimation with a Gibbs (Gauss-Markov) prior [62, 63], where
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the log prior corresponds to the penalty function. The next section will discuss PL

estimation.

3.4 Penalized-Likelihood Estimates

Regularizing the ML problem by including a penalty function in the likelihood

function can help iterative algorithms to converge faster. A variety of penalty func-

tions are available, and one can choose as desired. This approach is stable and

predictable, and furthermore, it allows us to control the resolution of the recovered

image as well. Therefore, we focus on PL estimation in this thesis.

As with ML estimation, PL estimation is based on optimizing an objective func-

tion. The PL method, however, involves an additional term to the objective function

we saw earlier. Thus, for the concave likelihood function, the objective function

using PL estimation becomes

Φ(x) = L(x)− βR(x) (3.27)

where R(x) is the roughness penalty function, which is convex, and β denotes a

parameter that controls the tradeoff between resolution and noise in the recovered

image. In this case, the goal is to estimate x by finding the maximizer of the objective

function as follows:

x̂
4
= argmax

x
Φ(x). (3.28)

Similarly, for the convex likelihood function, the objective function is:

Φ(x) = L(x) + βR(x), (3.29)

and the goal is to estimate x by minimizing the objective function:

x̂
4
= argmin

x
Φ(x). (3.30)
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Unlike in the ML case, by choosing R properly, the objective function Φ can be made

strictly concave, so x̂ is unique. The design of the penalty function is discussed next.

3.4.1 Penalty Functions

In general, penalty functions are used to remove the effects of noise caused by

the ill-posed nature of the problem. A simple penalty approach is to penalize the

differences between neighboring pixels that might cause noise. In this thesis, we

consider only convex penalty functions because they lead to a unique maximum and

are easier to optimize than nonconvex penalty functions. Our roughness penalty

function can be represented in the following general form:

R(x) =
∑
i

ψ([Cx]i), (3.31)

where the potential function ψ characterizes the behavior of the penalty function

and the penalty matrix C defines the adjacent neighboring pairs of pixels. For a

2-D image, a penalty involving pixels that consist of horizontal and vertical adjacent

neighbors of pixels is known as the first-order neighborhood. If the diagonal adjacent

neighbors are included beside the horizontal and vertical neighbors, then it is called

the second-order neighborhood. Figure 3.3 shows the neighborhood system of the

first and second orders for a 2-D image.

The weighting elements in matrix C is determined from the inverse of the pixel

distance, i.e., the further the distance, the smaller weight. For the first-order neigh-

borhood in a 2-D image, matrix C consists of horizontal and vertical adjacent neigh-

bors with the weighting of 1. For example, with a 2× 2 image, the matrix C can be
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o

Figure 3.3: Illustration of the first-order and second-order neighborhood on one pixel
of a 2-D image. The solid lines represents the pairs of penalized pixels
in the first-order neighborhood. The solid plus dash lines illustrate the
second-order neighborhood.

written as follows:

Cx =




−1 1 0 0

0 0 −1 1

−1 0 1 0

0 −1 0 1







x1

x2

x3

x4



=




x2 − x1

x4 − x3

x3 − x1

x4 − x2



.

For the second-order neighborhood, matrix C consists of horizontal, vertical, and

diagonal cliques, where the element entries of the diagonal neighbors in matrix C are

±1/
√
2.

The potential function ψ(t) is designed according to the degree of smoothness on

the smooth region and edges. We assume that each potential penalty function ψ(t)

satisfies the following conditions [40, 43, 68]:

• ψ(t) is symmetric.

• ψ(t) is everywhere differentiable (and therefore continuous).

• ψ̇(t) = d
dt
ψ(t) is non-decreasing (and hence ψ(t) is convex).

• ω(t) = ψ̇(t)
t
is non-increasing for t ≥ 0.

• ω(0) = limt→0
ψ̇(t)
t
is finite and nonzero.
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Mathematically, there are two types of convex penalty functions: quadratic and

nonquadratic. These two differ only on how the potential functions has an effect on

the edges. Each of these is discussed in detail below.

Quadratic Penalty Function

The quadratic penalty function is simple to optimize. It merely applies a quadratic

term to the difference of pixel neighbors. Thus, the quadratic potential function is

ψ(t) =
1

2
t2.

Although easy to apply, this penalty function globally smoothes the image because

large pixel differences including the edges are penalized in the same manner as small

pixel differences. Therefore, the quadratic penalty oversmoothes the edges resulting

in unsharp edges.

Nonquadratic Penalty Function

For cases in which sharper edges are desired, nonquadratic penalty functions

become more attractive because of theirs edge-preserving properties. In this tech-

nique, large differences between neighboring pixels are penalized less than in the

quadratic penalty function, while small differences remain penalized the same as in

the quadratic penalty. Therefore, sharp edges are still preserved in the resulting

images. However, the nonquadratic penalty function provides a more complicated

optimization than the quadratic penalty function, and it can cause an unusual noise

effect [45]. One example of an edge-preserving nonquadratic potential function in-

troduced by Lange [81] is

ψ(t) = δ2
[∣∣∣∣ tδ
∣∣∣∣− log

(
1 +

∣∣∣∣ tδ
∣∣∣∣
)]

(3.32)
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where δ is a user-specified parameter that controls the degree of edge preservation.

The smaller δ, the stronger the degree of edge preservation and the more unusual

noise effects. If δ is very large, then this penalty will approach the quadratic penalty.

This nonquadratic penalty behaves like the absolute penalty when |t| � δ, but like

the quadratic penalty when |t| � δ. We choose δ such that the neighbor differences

at the edges are less penalized than the differences in the smooth regions. In this

dissertation, we use this potential function for the nonquadratic penalty function.

The second example of a nonquadratic penalty function is the Huber function [68],

which has the following form:

ψ(t) =




t2/2, |t| ≤ δ

δ|t| − δ2/2, |t| > δ.

(3.33)

This potential function is quadratic for |t| ≤ δ, and behaves like the absolute penalty

for |t| > δ. Although the Huber function has a continuous first derivative, it is not

everywhere twice differentiable. Therefore, it is not applicable for an algorithm that

requires the second derivative such as the Newton-Raphson method.

Another interesting choice of a nonquadratic potential function is the generalized

Gaussian Markov random field (GGMRF) function which is developed by Bouman

and Sauer [13]. The GGMRF function is defined as

ψ(t) = |t|p, 1 ≤ p ≤ 2. (3.34)

This function becomes the absolute penalty when p = 1 and the quadratic penalty

when p = 2. Unlike the Huber and Lange penalties above where a very wide range of

the edge-preserving parameter δ needs to be determined, the GGMRF function offers

a smaller range of p to provide edge-preservation. However, this potential function

has the undefined second derivative at t = 0 when p < 2.
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Figure 3.4 shows the plots of different potential functions: quadratic, Lange,

Huber, and GGMRF. Other choices of nonquadratic penalty functions include the

log-cosh function developed by Green [58], and many potential functions developed

by Lange [81].
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Figure 3.4: Illustration of different potential functions. For the Huber and Lange
nonquadratic functions, δ = 5.

After specifying the objective function, one needs to find the maximizer or mini-

mizer of the objective function in (3.27) or (3.29), respectively. As in the ML problem,

directly optimizing the objective function in the PL problem is difficult; therefore,

an iterative algorithm is necessary to obtain the optimizer. The next section will

discuss the use of iterative algorithms to solve these optimization problems.

3.5 Iterative Algorithms for Optimization Problems

Iterative algorithms are needed in PL estimation because a closed-form solution

for the maximizer/minimizer of the objective function is not available. If we use
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convergent iterative algorithms, then the same objective function will lead to the

same estimate x̂ regardless of which particular iteration is used, so the image qual-

ity depends on the objective function but not on the algorithm. Thus, one desires

iterative algorithms to have the following properties: the guarantee of convergence,

rapid convergence rate, efficient computation, parallelizability, stability, robustness,

simplicity and flexibility. Because existing algorithms do not have all of these prop-

erties, many new algorithms have been proposed to satisfy as many properties as

possible. All iterative algorithms considered in this thesis are gradient-based. The

gradient-based algorithms use the first derivative of the objective function at each

iteration as a “search direction” to find the maximum/minimum point. Throughout

this section, we assume that the objective function is concave.

3.5.1 Conditions for Convergence

A necessary condition for a gradient-based algorithm in an unconstrained case to

converge to the maximum point (local or global) is:

∇Φ(x) = 0

when x = x∗, where x∗ is the optimal point. For the case of nonnegativity-constrained

maximization, the condition for convergence becomes:

∂

∂xj
Φ(x)

∣∣∣
x=x∗



= 0, x∗j > 0

≤ 0, x∗j = 0.

This is called Karush-Kuhn-Tucker conditions. These conditions only guarantee that

the algorithm converges to a local maximum when the objective function has multiple

maxima. Therefore, a global maximum is not guaranteed.

Another condition that can help ensure convergence of {xn} but is not a necessary
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condition is monotonicity. An algorithm is said to be monotonic if

Φ(xn+1) ≥ Φ(xn), ∀xn.

For a strictly concave objective function, algorithms that monotonically increase

the objective function at each iteration can usually be shown to be guaranteed to

converge to the optimal point. Therefore, monotonicity is one of desirable properties

of an iterative algorithm.

3.5.2 Examples of Gradient-Based Algorithms

In this section, we review some basic gradient-based algorithms, such as the

gradient-ascent, steepest-ascent, Newton-Raphson, and coordinate-ascent algorithms.

Gradient-Ascent Algorithm

For the gradient-ascent algorithm, the estimate of x at the next iteration, xn+1,

is

xn+1
4
= xn + α∇Φ(xn)

where α is the step-size. The the gradient of the objective function is defined as

∇Φ = [ ∂
∂x1
Φ, · · · , ∂

∂xP
Φ]T , where the superscript T stands for the transpose. In

this algorithm, one does not need to evaluate the step-size at every iteration, thus

reducing the computation time. However, the use of the constant step-size for the

entire algorithm can either slow down the convergence if the step-size is too small,

or skip the optimal solution if the step-size is too large.

Steepest-Ascent Algorithm

The steepest-ascent algorithm is similar to the gradient-ascent algorithm except

that it requires the step size to be updated at every iteration: αn
4
= argmaxαΦ (x

n + α∇Φ(xn)).
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This slows down the execution. Moreover, the steepest-ascent algorithm does not

easily accommodate the nonnegativity constraint.

Newton-Raphson Algorithm

The Newton-Raphson method is based on the quadratic approximation of the

objective function at the current estimate, xn, as follows:

Φ(x) ≈ φ(x; xn)
4
= Φ(xn) +∇Φ(x)(x− xn) +

1

2
(x− xn)T∇2Φ(xn)(x− xn)

where ∇2Φ(x) is called the Hessian matrix. The ijth entry of the Hessian matrix is

∂2

∂xi∂xj
Φ(x). The update xn+1 is the maximizer of the quadratic approximation where

the derivative of φ is equal to zero. This yields:

xn+1
4
= argmax

x
φ(x; xn)

= xn − [∇2Φ(xn)]−1∇Φ(xn).

This algorithm usually converges faster than the gradient ascent algorithm and has

a super-linear convergence rate if convergent. However, the Newton-Raphson algo-

rithm requires a twice differentiable objective function. Moreover, this algorithm

is not guaranteed to converge and does not enforce the nonnegativity constraint.

Due to matrix inversion of the Hessian matrix, this algorithm is not practical for a

large-scale optimization problem of image recovery.

Coordinate-Ascent Algorithm

The coordinate-ascent algorithm [aka Gauss-Siedal, successive over-relaxation

(SOR), iterated conditional modes (ICM) algorithm] updates one pixel at a time

and holds others fixed to their most recent values as follows:

xnewj = argmax
xj
Φ(xnew1 , . . . , xnewj−1 , xj, x

old
j+1, . . . , x

old
P ), j = 1, . . . , P
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This algorithm converges quickly if starting from a good initial image. It is in-

trinsically monotonic and has a global convergence; however, the maximizing step

can require large computation time for nonquadratic problems. To reduce the com-

putation time, one can replace the maximizing step with a 1-D Newton-Raphson

step. Unfortunately, this approach loses the guarantee of monotonicity for the non-

quadratic objective function and requires large computation time for calculating the

second partial derivatives of the nonquadratic objective function as well.

3.5.3 Classification of Gradient-Based Algorithms

One can classify algorithms according to their properties and behaviors. Based

on an updating method or a parallelizability property, we can divide gradient-based

algorithms into four categories: simultaneous-update, sequential-update, grouped-

update, and ordered-subset algorithms. These categories are discussed below:

Simultaneous-Update Algorithms

Simultaneous update algorithms update all pixels simultaneously using all data.

Algorithms in this class are fully parallelizable because each pixel update is decou-

pled from all other pixel updates. When using an optimization transfer principle

to construct surrogate functions (which will be discussed later), one can further

divide simultaneous-update algorithms into two subgroups according to the separa-

bility of the surrogate functions used in the algorithms. Simultaneous-update al-

gorithms using separable surrogate functions, such as the gradient-ascent, EM [39],

separable-paraboloidal-surrogate (SPS) [40,109], and De Pierro’s MAP-EM [36] algo-

rithms, accommodate the nonnegativity constraint easily, while simultaneous-update

algorithms using nonseparable surrogate functions, such as the conjugate-gradient

(CG) [44, 47, 96] and steepest ascent algorithms, do not.
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Sequential-Update (Column Action) Algorithms

Sequential update algorithms update one pixel at time, while using all data and

the most recent estimates of other pixels. One iteration consists of a cycle through

all pixels. In this way, the optimization problem reduces to a 1-D problem for each

pixel. These algorithms often have fast convergence. Moreover, the nonnegativity

constraint can be enforced easily to each pixel update. Due to sequential updates,

this class of algorithms is poorly suited to parallel processing. Examples of sequential

update algorithms include coordinate ascent (CA) [14], paraboloidal surrogate co-

ordinate ascent (PSCA) [40], and space-alternating generalized EM (SAGE) [48,49]

algorithms.

Grouped-Update (Multiple-Column-Action) Algorithms

Grouped update algorithms update a group of pixels at a time while using all data.

These algorithms are intermediate between the simultaneous and sequential update

algorithms, and they are partially parallelizable. These grouped update algorithms

were proposed by Sauer et al. [99] and Fessler (who called them grouped coordinate

ascent) [42, 43] to solve the parallelizability problem of the CA algorithm, which

converges rapidly.

Row Action or Ordered-Subset Algorithms

Ordered-subset (OS) algorithms update all pixels simultaneously using only a

subset of the data. Conventional OS algorithms are not guaranteed to converge

to the optimal solution in the inconsistent problems, but they converge very fast

at the early iterations, and their image quality is often acceptable. Examples of

the algorithms in this category include ordered-subset EM (OSEM) [69], rescaled

block-iterative EM (RBI-EM) [18,19], and row-action maximum likelihood algorithm
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(RAMLA) [17]. More recently, the relaxed OS-SPS algorithm [4] was proposed to

fix the convergence problem of conventional OS algorithms.

New Algorithms to Be Developed

In the next chapters, we will introduce new fast converging algorithms for pixel-

based image recovery called the partitioned-separable paraboloidal surrogate coor-

dinate ascent (PPCA) and relaxed ordered-subset separable paraboloidal surrogate

(OS-SPS) algorithms. In Chapter IV, we introduce the PPCA algorithm to over-

come the tradeoff between the convergence rate and parallelizability. This algorithm

belongs to the class of grouped-update algorithms but converges faster than those

existing algorithms. In Chapter V, we adapt the relaxed OS-SPS algorithm, which is

used widely in image reconstruction for tomography, to the problems of pixel-based

image recovery because of its initial fast convergence. Both PPCA and relaxed OS-

SPS are guaranteed to converge to the optimal solution.



CHAPTER IV

Partitioned-Separable Paraboloidal Surrogate

Coordinate Ascent Algorithm

4.1 Introduction

Statistical methods such as ML, PL, and MAP estimation have been widely

applied to recover an approximation of the original image. Because closed-form

solutions are usually unavailable, iterative maximization algorithms are needed. This

chapter1 presents a new fast monotonic algorithm for image recovery that is well

suited to parallel computing.

Many algorithms for statistical image recovery have been constructed; however,

no existing algorithm has all the properties of an “ideal” algorithm, such as a fast

convergence rate, quick computation time, stability, simplicity, and parallelizability.

EM algorithms [36,39] are widely used to compute ML estimates. Although EM al-

gorithms are simple to implement and guaranteed to converge, they converge slowly

since they simultaneously update all parameters. Fast converging algorithms are

particularly desirable for large 3D images and real-time analysis in medical imaging

and biological applications. Several algorithms have been proposed to improve the

convergence rate of the EM algorithms. For example, the space-alternating general-

1This chapter is based on [109].

64
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ized EM (SAGE) algorithm developed by Fessler and Hero [48,49] converges quickly

but is typically nonparallelizable and difficult to implement. Similarly, the classical

coordinate ascent algorithm, which updates parameters sequentially each iteration, is

nonparallelizable, and furthermore does not have an explicit form for the update. To

obtain a closed form for the update, one can use a coordinate ascent algorithm with

Newton-Raphson updates (CA-NR) developed by Bouman and Sauer [14]. However,

the CA-NR algorithm is not guaranteed to converge if the objective function is non-

quadratic. Erdoğan and Fessler [40] proposed the paraboloidal surrogate coordinate

ascent (PSCA) algorithm to solve the convergence problem of the CA-NR algorithm

by maximizing paraboloidal surrogate functions instead of directly maximizing the

original objective function. However, the PSCA algorithm is still not parallelizable.

In summary, existing algorithms are either fast converging, as in the CA-NR or PSCA

algorithms, or fully parallelizable, as in the EM algorithms, but not both.

The grouped coordinate ascent (GCA) algorithm introduced by Sauer et al. [99]

and Fessler [42, 43] represents an alternative approach to parallelization. The GCA

algorithm simultaneously updates pixels within a group of spatially separated pixels

and sequentially updates each group of pixels. This approach does not fully capture

the fast convergence properties of CA, and thus the GCA algorithm converges slower

than the proposed PPCA algorithm2.

In addition to the family of the CA algorithms above, the parallel successive

overrelaxation (PSOR) method [130] using domain decomposition techniques was

proposed for solving the five-point and nine-point stencil approximation of Poisson’s

equations, but it is inapplicable to the more general optimization problem of interest

in imaging. Therefore, it will not be considered in this particular study.

2Matlab m-files for comparison are available at http://www.eecs.umich.edu/~fessler.
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To respond to the convergence rate and parallelizable tradeoff that existing al-

gorithms have, we developed a new, fast converging, parallelizable algorithm called

partitioned-separable paraboloidal surrogate coordinate ascent (PPCA). This new

approach overcomes the convergence rate and parallelizability tradeoff of existing al-

gorithms [108]. To provide parallelizability, we partition the set of pixels into subsets

that are updated in parallel, usually by a different processor for each subset to reduce

execution time. To provide fast convergence, each processor sequentially updates the

pixels within each subset. This approach captures most of the rapid convergence of

the CA algorithm, but remains parallelizable. A simplistic implementation of this

idea would not ensure convergence; therefore, we derive the algorithm by applying

optimization transfer principles. This approach guarantees that the proposed algo-

rithm will monotonically increase the objective function. It also intrinsically accom-

modates the nonnegativity constraints. The PSCA algorithm of [40] is the special

case of the PPCA algorithm when only one subset (and hence only one processor) is

used.

Since our long-term interest is space-varying systems, we implemented the pro-

posed algorithm using direct convolution rather than FFT algorithms, so that it eas-

ily extends to problems where the space-invariant property is inapplicable or invalid,

such as in positron emission tomography (PET) and single photon emission com-

puted tomography (SPECT) systems. In microscopy, many papers such as [28, 91]

have assumed space-invariance of the microscope, and thus EM algorithms using

FFT techniques have been applied to reduce the computation time. However, to ac-

commodate the space-varying systems in the future as well, we derived the proposed

algorithm in image space rather than frequency space.

This chapter is organized as follows. Section 4.2 describes the image recovery
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Acronym Algorithm Name Parallelizability Speed Guaranteed
to Converge

EM Expectation-maximization algorithm [36, 39] Yes Slow Yes
SAGE Space-alternating generalized No Medium Yes

expectation-maximization [48, 49]
SPS Separable paraboloidal surrogates [36] Yes Slow Yes
PSCA Paraboloidal surrogate coordinate ascent [40] No Fast Yes
CA-PS Coordinate ascent with parabola surrogates No Slow Yes
GCA Grouped coordinate ascent [42, 43, 99] Partially Medium Yes
PPCA Partitioned-separable paraboloidal surrogate Almost fully Fast Yes

surrogate coordinate ascent [108]

CA-NR Coordinate ascent with Newton-Raphson No Fast No
updates [14]

CA,P Coordinate ascent with precomputed curvature No Fast No
PSCA,P PSCA with precomputed curvature [40] No Fast No
PPCA,P PPCA with precomputed curvature Almost fully Fastest No

Table 4.1: Acronyms and description of different algorithms. “Speed” refers qualita-
tively to the combination of number of iterations and execution time per
iteration.

problem. Section 4.4 reviews some existing algorithms. Section 4.5 presents the

proposed algorithm in a general form suitable for many applications. Section 4.6

discusses convergence of this algorithm. Section 4.7 compares the convergence rate of

the proposed algorithm with other algorithms. In Section 4.8, the proposed algorithm

is specifically applied to image restoration for confocal microscopy. Since a 3-D image

from a confocal microscope has poor resolution, especially in the axial direction, due

to out-of-focus contributions from other planes, image restoration techniques have

been applied to remove the out-of-focus contributions and reduce elongation in the

axial direction. Simulation results are presented in Section 4.9 and conclusions are

given in Section 4.10. Since several algorithms are mentioned in this chapter, for

convenience, we summarize their acronyms and description in Table 4.1.

4.2 The Problem

In image recovery problems, the measurements are usually degraded by blur and

noise. To recover the original image, one can use the statistical characteristics of

the measurement system to specify an objective function that is maximized. In this
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chapter, we consider a very broad class of objective functions having the following

form:

Φ(x) =
M∑
i=1

ψi([Bx]i) (4.1)

where x ∈ <P represents the true image ordered lexicographically in the vector form

and B is an M ×P matrix that typically includes both an N ×P system matrix and

an r×P coefficient matrix of a roughness penalty function whereM = N+r, N is the

number of measurements, and r is roughly the number of neighbors of pixels. For i =

1, . . . , N , each ψi function characterizes the agreement between a noisy measurement

and a linear function of the unknown image, namely [Bx]i =
∑P

j=1 bijxj . For i =

N+1, . . . ,M , each ψi function corresponds to the roughness penalty function due to

the ill-posed nature of the problem. Section 4.8 shows a concrete example where some

of the ψi functions correspond to a Poisson log-likelihood function, which describes

fluorescent photons detected at a photodetector in a confocal microscope system, and

the remaining ψi functions represent a nonquadratic penalty function. We assume

that the objective function has a unique global maximum. Thus our goal is to

estimate x by finding the maximizer of the objective function as follows:

x̂
4
= argmax

x≥0
Φ(x). (4.2)

The ML, PL, and MAP estimators are all special cases of this maximization problem.

We focus on the nonnegativity constrained problem, but of course all the algorithms

are also applicable to the unconstrained case.

4.3 Optimization Transfer Functions

Directly maximizing the objective function in (4.2) is difficult when ψi’s are non-

quadratic, such as for the log-likelihood function of Poisson noise. To simplify the
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optimization problem and to assure monotonic increases in the objective function at

each iteration, one can apply an optimization transfer approach by finding a “surro-

gate” function φ (Figure 4.1) that lies below the objective function.

Φ

φ

(x)

x
x x x ^

(x;x  )n

n n+1

O
bj

ec
ti

ve
 f

un
ct

io
n

Figure 4.1: Illustration of a surrogate function

As illustrated in Figure 4.1, we obtain the next estimate by maximizing the

surrogate function3:

xn+1
4
= argmax

x≥0
φ(x; xn) (4.3)

where xn denotes the estimate at the nth iteration. Choosing a surrogate function φ

that satisfies the following monotonicity condition ensures that the iterates xn will

monotonically increase the objective function Φ [40,42, 43]:

Φ(x)− Φ(xn) ≥ φ(x; xn)− φ(xn; xn), ∀x ≥ 0. (4.4)

Rather than using (4.4), we choose surrogate functions φ(x; xn) that satisfy the

following sufficient conditions:

1. φ(xn; xn) = Φ(xn)

3In practice, it usually suffices for the next iteration to simply increase the surrogate function
rather than requiring a strict maximization of φ.
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2. φ(x; xn) ≤ Φ(x) for x ≥ 0

3. ∂
∂xj
φ(x; xn)

∣∣
x=xn

= ∂
∂xj
Φ(x)

∣∣
x=xn

, ∀j.

The third condition follows from the other conditions for differentiable surrogate and

objective functions.

4.4 Existing Algorithms

Many existing algorithms have been applied to obtain a maximizer of Φ(x) in

(4.2). Generally there is a tradeoff between convergence rate and parallelizability.

Although EM algorithms are guaranteed to converge to at least a local maximum,

they converge very slowly. However, EM algorithms are usually fully parallelizable.

At the other extreme, the CA algorithm, which updates the unknown parameters

sequentially, converges much faster than the EM algorithms. However, the CA al-

gorithm is not parallelizable. The following subsections summarize some existing

algorithms illustrating the convergence rate and parallelizability tradeoff.

4.4.1 Separable Paraboloidal Surrogates (SPS) Algorithm

To obtain a fully parallelizable algorithm, the surrogate function φ should be

separable so that we can simultaneously update the unknown parameters. Like the

EM algorithms, the SPS algorithm is fully parallelizable. It is derived by using the

concavity technique developed by De Pierro [36].

To derive the SPS algorithm, we begin by considering the following quadratic

surrogate function:

Φ(x) ≥ Q(x; xn)
4
=

M∑
i=1

qi([Bx]i; [Bx
n]i). (4.5)
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The separable paraboloidal surrogate function Q lies below the objective function

and is constructed from the parabola qi having the following form:

qi(t; t
n
i )
4
= ψi(t

n
i ) + ψ̇i(t

n
i )(t− t

n
i )−

1

2
ci(t

n
i )(t− t

n
i )
2 (4.6)

where tni
4
= [Bxn]i =

∑P
j=1 bijx

n
j , ψ̇i denotes the first derivative of ψi, and ci(t

n
i )

represents the curvature of the parabola qi(t; t
n
i ). We choose the parabola in (4.6) to

satisfy the following conditions:

1. qi(t
n
i ; t

n
i ) = ψi(t

n
i )

2. ψi(t) ≥ qi(t; t
n
i ), ∀t ∈ {[Bx]i : x ≥ 0}

3. q̇i(t
n
i ; t

n
i ) = ψ̇i(t

n
i ).

The choice of ci(t
n
i ) in (4.6) controls the parabola curvature which affects the

algorithm convergence rate [40]. To obtain the fastest convergence rate while still

guaranteeing monotonicity, we choose the optimal curvature [40] as follows:

copti (t
n
i ) = min{c ≥ 0 : ψi(t) ≥ ψi(t

n
i ) + ψ̇i(t

n
i )(t− t

n
i )−

c

2
(t− tni )

2}. (4.7)

For ψi corresponding to the Poisson log-likelihood, there is a closed form solution for

the optimal curvature as described in (4.45).

To construct a separable surrogate function, we apply the additive concavity

technique developed by De Pierro [36] to the quadratic surrogate functions. First,

we rewrite the argument [Bx]i in (4.1) as follows:

[Bx]i =
P∑
j=1

πij

(
bij

πij
(xj − x

n
j ) + [Bx

n]i

)
(4.8)

where the πij’s are any nonnegative
4 constants for which

∑P
j=1 πij = 1, ∀i. A simple

4πij = 0 only if bij = 0.
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choice is

πij =
|bij |∑P
j=1 |bij |

. (4.9)

Since each qi is concave,

qi([Bx]i; t
n
i ) ≥

P∑
j=1

πijqi

(
bij

πij
(xj − x

n
j ) + t

n
i ; t

n
i

)
. (4.10)

Thus from (4.5), the separable paraboloidal surrogate function φ is obtained as fol-

lows:

Q(x; xn) ≥ φ(x; xn)
4
=

P∑
j=1

Qj(xj ; x
n)

where

Qj(xj ; x
n) =

M∑
i=1

πijqi

(
bij

πij
(xj − x

n
j ) + t

n
i ; t

n
i

)
.

Since Qj is quadratic, we implement the maximization (4.3) by using Newton’s

method:

xn+1j

4
= argmax

xj≥0
Qj(xj ; x

n)

=


xnj +

d
dxj
Qj(xj ; x

n)
∣∣
xj=xnj

− d2

dx2j
Qj(xj ; xn)



+

(4.11)

where

d

dxj
Qj(xj ; x

n)

∣∣∣∣
xj=xnj

=
M∑
i=1

bij q̇i(t
n
i ; t

n
i ) =

∂

∂xj
Φ(x)

∣∣∣∣
x=xn

(4.12)

−
d2

dx2j
Qj(xj ; x

n) =

M∑
i=1

b2ij
cni
πij

(4.13)

where cni
4
= copti (t

n
i ). The symbol [x]+ represents x if x ≥ 0 and 0 if x ≤ 0. The

explicit form for the SPS algorithm for the choice (4.9) is thus as follows:

xn+1j =

[
xnj +

∑M
i=1 bijψ̇i(t

n
i )∑M

i=1 bij(
∑

l |bil|)c
n
i

]
+

, j = 1, . . . , P. (4.14)
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As shown in Section 4.6, for suitable ψi’s, this SPS algorithm is guaranteed to

converge. However, since it simultaneously updates all the parameters, the conver-

gence rate of this algorithm is usually very slow, much like the closely related EM

algorithms.

The SPS algorithm is closely related to the “half-quadratic” optimization methods

[21, 38, 53, 54]. However, the quadratic surrogate (4.6) applies to a broader family

of ψi’s than the half-quadratic approach, and the derivation of the paraboloidal

surrogate Q is somewhat simpler than the corresponding derivation of half-quadratic

algorithms.

4.4.2 Coordinate Ascent Algorithm with 1D Newton-Raphson Step (CA-
NR)

The CA algorithm updates one pixel at a time using the most recent values of all

other pixels as follows:

xn+1j

4
= argmax

xj≥0
Φ(xn+11 , . . . , xn+1j−1 , xj , x

n
j+1, . . . , x

n
P ).

In practice, it is usually impractical to perform an exact maximization. Using the

one-dimensional Newton-Raphson algorithm, we obtain a closed-form approximate

solution as follows:

xn+1j =


xnj +

∂
∂xj
Φ(x)|x=x̃

− ∂2

∂x2j
Φ(x)|x=x̃



+

(4.15)

where x̃ denotes the current estimate, i.e., x̃ is a shorthand for [xn+11 , . . . , xn+1j−1 , x
n
j , x

n
j+1, . . . , x

n
P ],

and

∂

∂xj
Φ(x)

∣∣∣∣
x=x̃

=

M∑
i=1

bijψ̇i([Bx̃]i) (4.16)

∂2

∂x2j
Φ(x)

∣∣∣∣
x=x̃

=
M∑
i=1

b2ijψ̈i([Bx̃]i). (4.17)
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Being sequential, the CA-NR algorithm [14] converges rapidly if it converges. How-

ever, the curvature of the objective function in (4.17) does not ensure monotonic

increases in the objective function, thus divergence is possible. The CA-NR algo-

rithm is also poorly suited to parallel processing.

4.4.3 Coordinate Ascent Algorithm with Parabola Surrogates (CA-PS)

We can overcome the lack of monotonicity of the CA-NR algorithm by applying

the optimization transfer principle using parabola surrogates. We call the resulting

algorithm CA-PS. The CA-NR algorithm in (4.15) uses the curvature of the objective

function Φ(x). This is equivalent to making a parabolic approximation to Φ(x),

which will not satisfy the monotonicity condition in (4.4) in general. To guarantee

monotonicity, we replace ∂2

∂x2j
Φ(x) with the curvature of a parabola surrogate that

satisfies the conditions discussed above. This approach leads to the following CA-PS

iterative algorithm:

xn+1j =


xnj +

∂
∂xj
Φ(x)

∣∣
x=x̃

− ∂2

∂x2j
Q(x; x̃)



+

(4.18)

where Q(x; x̃) is a parabola that lies below the objective function Φ(x) as in (4.5),

defined here by

Q(x; x̃) =
M∑
i=1

qi([Bx]i; [Bx̃]i)

where qi is similar to (4.6) but with the curvature ci([Bx̃]i). Thus the curvature of

the surrogate function becomes:

−
∂2

∂x2j
Q(x; x̃) =

M∑
i=1

b2ijci([Bx̃]i). (4.19)

The CA-PS algorithm is guaranteed to monotonically increase Φ. Furthermore, CA-

PS is applicable to ψi’s like the Huber function [68], which is only once differentiable,
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whereas CA-NR requires twice differentiable ψi’s. However, CA-PS is still not par-

allelizable, and it is computationally expensive since the curvature ci([Bx̃]i) must be

recomputed after every pixel update.

4.4.4 Paraboloidal Surrogates Coordinate Ascent (PSCA) Algorithm

In contrast to the CA-PS algorithm, the PSCA algorithm [40] is derived by first

finding a paraboloidal surrogate function at each iteration and then using the CA

algorithm to maximize that surrogate iteratively. Thus the next estimate is obtained

as follows:

xn+1j =


xnj +

∂
∂xj
Q(x; xn)|x=x̃

− ∂2

∂x2j
Q(x; xn)



+

(4.20)

where Q(x; xn) is the same as in (4.5) and (4.6). The derivatives of Q(x; xn) are as

follows:

∂

∂xj
Q(x; xn)

∣∣∣∣
x=x̃

=
M∑
i=1

bij q̇i([Bx̃]i; t
n
i ) (4.21)

−
∂2

∂x2j
Q(x; xn) =

M∑
i=1

b2ijc
n
i (4.22)

where cni was defined below (4.13). Like the CA-PS algorithm, this algorithm will

monotonically increase the objective function and is guaranteed to converge if Φ is

strictly concave (Section 4.6). Furthermore, the PSCA algorithm requires much less

computation per iteration than the CA-PS algorithm, since we can precompute the

curvature in (4.22) prior to cycling through the pixels, unlike the curvature in (4.19)

which changes with every pixel update. However, the PSCA algorithm remains ill-

suited to parallel processing since it sequentially updates each pixel.
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4.4.5 “Naive” Parallel Coordinate Ascent Algorithm

The naive approach to parallelizing the CA algorithm would be to directly sep-

arate pixels into subsets and then assign one parallel processor to each subset to

perform the CA algorithm (Figure 4.2). However, this technique is not guaranteed

to increase the objective function at each iteration, and thus can diverge. To ensure

convergence, we must somehow account for the “coupling” between pixels at the

boundaries between subsets. The next section shows that the optimization trans-

fer approach provides a suitable framework for deriving a monotonic parallelizable

algorithm.

21Subset Subset

Subset 3 Subset 4

Figure 4.2: A “naive” parallel coordinate ascent algorithm. Each parallel processor
performs the CA algorithm on each subset of pixels separately.

4.5 PPCA Algorithm

This section describes a new algorithm that not only converges quickly, but is

also well-suited to coarse-grain parallel processing. The PPCA algorithm is based

on a concavity technique developed by De Pierro [36] and uses tangent parabolas.

The idea is to sequentially update pixels within each subset while simultaneously

updating all subsets.
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4.5.1 Overview

To derive the PPCA algorithm, we first find a paraboloidal surrogate function for

the original objective function, and then partition pixels into K subsets. Since the

parabola is concave, we can derive a partitioned-separable surrogate function using

a concavity technique. Finally, the CA algorithm is applied in parallel to each set of

pixels. Here is an overview of the surrogates derived in this section:

Φ(x) ≥ Q(x; xn) ≥ φ(x; xn)
4
=

K∑
k=1

Qk(xJk ; x
n) (4.23)

where Q denotes the paraboloidal surrogate function, φ denotes the subset-separated

paraboloidal surrogate function, and Qk denotes the surrogate function for the kth

subset. We let Jk denote the kth subset of pixels, and xJk denote the vector of

length |Jk| consisting of the elements of x indexed by Jk. The condition (4.23)

ensures monotonicity in the objective function: Φ(xn+1) ≥ Φ(xn). To implement

the update (4.3), we must obtain the next estimate x in each set by maximizing

Qk(xJk ; x
n) as follows:

xn+1Jk

4
= arg max

xJk≥0
Qk(xJk ; x

n), k = 1, . . . , K. (4.24)

For the example illustrated in Figure 4.3, after obtaining the partitioned-separable

paraboloidal surrogates, we divide the image into 4 subsets and then assign 4 parallel

processors to perform the PPCA algorithm.

4.5.2 Derivation

First, we construct a paraboloidal surrogate function Q for the original objective

function as in (4.5)-(4.7). After obtaining the paraboloidal surrogate function, we

apply a form of the concavity technique to separate pixels into partitioned sets.
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Paraboloidal Surrogates

Partitioned-Separable

3Subset Subset 4

Subset 1 2Subset

Figure 4.3: Schematic of the PPCA algorithm

Similarly to (4.8), we can rewrite [Bx]i as follows:

[Bx]i =

K∑
k=1

ρik

(
snik(xJk)

ρik
+ tni

)

where

snik(xJk)
4
= [BJk(xJk − x

n
Jk
)]i =

∑
j∈Jk

bij(xj − x
n
j )

and the matrix BJk is formed by selecting the columns of B that are indexed by

elements of Jk. To satisfy the constraint that
∑K

k=1 ρik = 1 and ρik ≥ 0, which

guarantees monotonicity of the algorithm, we choose

ρik
4
=

∑
j∈Jk
|bij |∑P

j=1 |bij |
.

Similar to (4.10), since qi is concave, the following inequality is satisfied:

qi([Bx]i; t
n
i ) ≥

K∑
k=1

ρikqi

(
snik(xJk)

ρik
+ tni ; t

n
i

)
(4.25)

where from (4.6),

qi(t+ t
n
i ; t

n
i ) = ψi(t

n
i ) + ψ̇i(t

n
i )t−

1

2
cni t
2. (4.26)

For simplicity, we define the following notation:

qnik(s)
4
= ρikqi

(
s

ρik
+ tni ; t

n
i

)
. (4.27)
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Thus from (4.25), we obtain the following partitioned-separable paraboloidal surro-

gate function:

φ(x; xn) =

M∑
i=1

K∑
k=1

qnik(s
n
ik(xJk)) (4.28)

where from (4.23), the kth subset surrogate function is

Qk(xJk ; x
n)
4
=

M∑
i=1

qnik(s
n
ik(xJk)). (4.29)

Now we update all the subsets simultaneously, while the pixels in each set are

sequentially updated for fast convergence. One approach to implement the maxi-

mization in (4.24) is to apply the CA algorithm over each pixel of xj by using the

most recent values of other pixels of xj in that set. Letting x̃ denote the current

estimates, we define the 1D quadratic function for each pixel as follows:

Qkj(xj)
4
= Qk([. . . , x̃j−1, xj , x̃j+1, . . . , j ∈ JK ]; x

n) (4.30)

= Qkj(x̃j) + Q̇kj(x̃j)(xj − x̃j)−
1

2
dnkj(xj − x̃j)

2 (4.31)

where the first derivative of Qkj(xj) evaluated at xj = x̃j is

Q̇kj(x̃j)
4
=

d

dxj
Qkj(xj)

∣∣∣
xj=x̃j

=
M∑
i=1

bij q̇
n
ik (s

n
ik(x̃Jk)) (4.32)

and the curvature of the parabola Qkj(xj) is given by:

dnkj
4
= −

d2

dx2j
Qkj(xj) =

M∑
i=1

wnikb
2
ij , (4.33)

where wnik
4
= cni /ρik. Thus we obtain the update xj in each partitioned set by applying

one or more CA cycles to maximize the surrogate function Qk in (4.29). Sequentially,

for each j ∈ Jk, we perform the following update:

xnewj = argmax
xj≥0

Qkj(xj)

=

[
x̃j +

Q̇kj(x̃j)

dnkj

]
+

. (4.34)
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To minimize computation, we first differentiate qnik in (4.27) with respect to s and

evaluate at s = t̃ik − tnik as follows:

q̇nik(t̃ik − t
n
ik) = ψ̇i(t

n
i )− w

n
ik(t̃ik − t

n
ik) (4.35)

where t̃ik
4
= [BJk x̃Jk ]i =

∑
j∈Jk

bij x̃j . Then rearranging (4.35) yields

t̃ik = t
n
ik +

ψ̇i − q̇nik
wnik

, ∀i s.t. bij 6= 0, ∀j ∈ Jk,

This is a faster way to update t̃ik. Table 4.2 shows the PPCA algorithm outline.

This algorithm generalizes the SPS and PSCA algorithms described in Section 4.4.

When K = P and Jk = {k}, the PPCA algorithm is equivalent to the SPS algorithm.

When K = 1 and Jk = {1, . . . , P}, the PPCA algorithm is equivalent to the PSCA

algorithm. The most useful cases are when 2 ≤ K � P , corresponding to a small

number of processors such as might be found in a workstation cluster.

An alternate approach to deriving a parallelizable algorithm is to first sepa-

rate pixels into subsets using De Pierro’s concavity technique and then to fit the

paraboloidal surrogates inside the resulting surrogates. However, this approach only

applies to concave objective functions, unlike the approach in (4.23). The surrogate

functions of this approach are given as follows:

Φ(x) ≥ φ̃(x; xn) =

K∑
k=1

φ̃k(xJk ; x
n) ≥

K∑
k=1

Q̃k(xJk ; x
n)

where φ̃k(xJk ; x
n) denotes the partitioned-separable surrogate function and Q̃k(xJk ; x

n)

denotes the paraboloidal partitioned-separable surrogate function. In case of a con-

cave objective function, these two approaches yield the same results. Without sub-

iterations, this second approach yields the same results as the previous approach for

concave objective functions. However, with sub-iterations, this approach becomes

more complicated and requires more computation since computing the curvature of
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the parabola, which is an expensive part, is needed for every sub-iteration, unlike

the first approach.

x̃ = initial image
t̃ik =

∑
j∈Jk

bij x̃j , k = 1, . . . , K

ρik =
∑
j∈Jk

|bij |
∑P
j=1 |bij |

, k = 1, . . . , K

for n = 1, . . . ,Niters
t̃i =

∑
k t̃ik (inter-processor communication)

compute cni from t̃i using (4.7)
compute ψ̇i at t̃i
for each processor k

wnik = c
n
i /ρik, ∀i s.t. bij 6= 0, ∀j ∈ Jk

q̇ik = ψ̇i, ∀i s.t. bij 6= 0, ∀j ∈ Jk
dnkj =

∑M
i=1 b

2
ijw

n
ik, j ∈ Jk

for j ∈ Jk
xoldj = x̃j
Q̇kj =

∑M
i=1 bij q̇ik

x̃j =
[
x̃j +

Q̇kj
dnkj

]
+

q̇ik = q̇ik − wnikbij(x̃j − x
old
j ), ∀i s.t. bij 6= 0

end
t̃ik = t̃ik +

ψ̇i−q̇ik
wnik

, ∀i s.t. bij 6= 0, ∀j ∈ Jk
end
combine x̃ from all processors

end

Table 4.2: The PPCA Algorithm Outline.

4.6 Convergence Analysis

Based on the general sufficient conditions for convergence stated in [49], we prove

convergence of the algorithm (4.24) by first stating some sufficient conditions for con-

vergence and then verifying that the algorithm satisfies all the required conditions

for convergence. We assume that the objective function, Φ(x), is strictly concave,

continuous, and differentiable for x ≥ 0. Moreover, the set {x ≥ 0 : Φ(x) ≥ Φ(x′)}

is assumed to be bounded for any x′. We assume that each iteration is associ-
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ated with disjoint index sets {J1, . . . , JK} s.t.
⋃K
k=1 Jk = {1, . . . , p}, and functionals

Qk(xJk , x
n), k = 1, . . . , K. The following conditions pertain to the functionals Qk in

(4.29).

Condition 1: For k = 1, . . . , K, the functionals Qk satisfy

Φ(xJk , x
n
J̃k
)− Φ(xn) ≥ Qk(xJk ; x

n)−Qk(x
n
Jk
; xn)

∀xJk ≥ 0, ∀x
n
Jk
≥ 0, ∀xn ≥ 0, and ∀xn

J̃k
≥ 0, where xn

J̃k
is the elements of xn that

are not in set Jk.

Condition 2: Each functional Qk(xJk ; x
n) is strictly concave and twice differen-

tiable on xJk ≥ 0, x
n ≥ 0, and each Qk(xJk ; x

n) is jointly continuous on xJk ≥ 0,

xn ≥ 0.

Condition 3: The following derivatives match ∀n:

∂

∂xj
Φ(xn) =

∂

∂xj
Qk(x

n
Jk
; xn)

for any xn ≥ 0, xnJk ≥ 0, and j ∈ Jk.

Condition 4: For xn+1Jk
≥ 0 and xn ≥ 0, the iterates satisfy the Karush-Kuhn-

Tucker conditions, ∀j ∈ Jk:

∂

∂xj
Qk(x

n+1
Jk
; xn)



= 0, xn+1j > 0

≤ 0, xn+1j = 0.

Condition55∗: For any bounded set S, there exists a constant CS > 0 such that

∀v 6= 0, xJk ≥ 0, and ∀x
n ∈ S;

v′G(xJk ; x
n)v ≥ CS‖v‖

2

where G(xJk ; x
n) is the |Jk| × |Jk| matrix with the (i, j)th element representing

− ∂2

∂xi∂xj
Qk(xJk ; x

n), ∀(i, j) ∈ Jk.

5A sufficient condition for Condition 5 in [49].
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Theorem: If the curvatures ci(·) of the surrogates are continuous and have a

positive lower bound, then any sequence {xn} generated by the algorithm (4.24)

for penalized-maximum likelihood image recovery converges globally to the unique

maximizer of a strictly concave objective function Φ(x) satisfying the assumptions

given in the first paragraph above.

Proof:

• Condition 1 follows the second property of the surrogate function given in

Section 4.4.1 or (4.23).

• Condition 2 is satisfied since Qk(xJk ; x
n) is a concave quadratic function and

thus differentiable and jointly continuous.

• Condition 3 follows the third property of the surrogate function in Section

4.4.1.

• Condition 4 is inherent to the update (4.24).

• Condition 5∗ is satisfied due to the following proof.

Let wnik ≥ ε, ∀i, k, n, where ε is the positive lower bound of the curvature, then

v′G(xJk ; x
n)v = v′B′JkD(w

n
ik)BJkv

≥ v′B′Jk(εI)BJkv

≥ ελmin{B
′
Jk
BJk}‖v‖

2

where D(wnik) is the diagonal matrix with diagonal elements belonging to w
n
ik,

and λmin{B′JkBJk} is the minimum eigenvalue of the matrix B
′
Jk
BJk . Thus

v′G(xJk ; x
n)v ≥ CS‖v‖2 is satisfied, where CS = ελmin{B′JkBJk}.

Thus, all the conditions needed for the convergence proof in [49] are satisfied. 2
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Theorem 1 shows that (4.24) converges to the global maximizer of a strictly

concave objective function. In practice, we use one or more cycles of the CA update

(4.34) rather than the exact maximization (4.24). However, we believe the proof

in [49] can be generalized even to include the case (4.34).

4.7 Convergence Rate

The curvature of the surrogate function strongly influences the convergence rate.

Smaller curvatures generally yield faster convergence. The surrogate function curva-

tures for each of the algorithms described above are given as follows:

dSPSj =
M∑
i=1

bijc
n
i · (

p∑
l=1

bil)

dGCAj =

M∑
i=1

bijc
n
i · (

∑
k∈Sn

bik), j ∈ Sn

dPPCAj =

M∑
i=1

bijc
n
i · (bij

∑p
l=1 bil∑
l′∈Jk

bil′
), j ∈ Jk

dPSCAj =

M∑
i=1

bijc
n
i · (bij)

dCA−NRj =
M∑
i=1

bijψ̈i([Bx̃]i) · (bij).

The grouped coordinate ascent (GCA) algorithms [42, 43, 99], which are related to

the PPCA algorithm, are discussed in Appendix C. By comparing the arguments

within parentheses of the above equations for the curvatures, we obtain the following

inequalities:

dSPSj ≥ dPPCAj ≥ dPSCAj ≥ dCA−NRj ≥ 0

assuming that ψ̈i([Bx̃]i) < cni . The GCA algorithms are not included because they

are not directly comparable with the PPCA algorithms. Different number of groups
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in the GCA algorithms yields different results. When the number of group in GCA

algorithms is the same as the number of sets in the PPCA algorithm, the PPCA

algorithm yields a faster convergence rate than the GCA algorithms. As expected,

the SPS algorithm has the largest curvature, hence generally smallest step sizes and

slowest convergence. On the other hand, the CA-NR algorithm has the smallest

curvature, thus it has the biggest step sizes which yield the fastest convergence rate

(when it converges).

4.8 Application to Image Restoration for Confocal Microscopy

Confocal fluorescence microscopy is widely used in cell biology to image thick bi-

ological tissues in three dimensions. Unfortunately, most obtainable images contain

out-of-focus signals from other planes and have poor resolution due to a resolution/signal-

to-noise ratio tradeoff as the detector pinhole size is increased. Therefore, image

restoration techniques have been applied to improve the resolution and SNR of the

images. In confocal microscopy, the noisy measurement Y can be modeled as follows:

Yi ∼ α1Poisson{fi[Ax]i + bi}, i = 1, . . . , N

where the N × P system matrix A is assumed to be known6, x denotes the mean

number of fluorescent photons per second, α1 denotes a known measurement scaling

factor, fi denotes the product of the scan time and the detector efficiency, and bi

denotes the background noise and the dark current [104]. The corresponding log-

likelihood function is given by:

L(x) =

N∑
i=1

yi

α1
log(fi[Ax]i + bi)− (fi[Ax]i + bi) (4.36)

6In practice, the point spread function (PSF) of a confocal microscope is not exactly known;
however, one can measure the PSF by using very small microsphere beads.
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(ignoring irrelevant constants independent of x), which is concave. Due to the ill-

posed nature of image restoration problems, we modify the likelihood function by

including a penalty function R(x) to form the following penalized-likelihood objective

function:

Φ(x) = L(x)− βR(x) (4.37)

where β controls the degree of smoothness in the restored image. Our goal is to

estimate x by maximizing the objective function Φ(x):

x̂
4
= argmax

x≥0
Φ(x) = argmax

x≥0
L(x)− βR(x). (4.38)

For the penalty function R(x) of interest here, the objective function Φ in (4.37) is

a special case of the general form (4.1); therefore, the algorithms of sections 4.4 and

4.5 are applicable. For clarification, we separately derive the surrogate functions for

the likelihood part and the penalty part.

4.8.1 The Likelihood Part

Similarly to (4.23), the surrogates for the likelihood part can be obtained as

follows:

L(x) ≥ QL(x; xn) ≥ φL(x; xn)
4
=

K∑
k=1

QL
k (xJk ; x

n) (4.39)

The likelihood function in (4.36) can be expressed in the following form:

L(x) =
N∑
i=1

ψLi ([Bx]i) (4.40)

with bij = fiaij, which is the (ij)th element of the matrix B, and

ψLi (l) =
yi

α1
log(l + bi)− (l + bi). (4.41)
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The first and second derivatives of ψLi are given by

ψ̇Li (l) =
yi

l + bi
− 1 (4.42)

ψ̈Li (l) = −
yi

(l + bi)2
. (4.43)

Due to concavity of the objective function, ψLi is strictly concave, its first derivative

is strictly convex and monotonically decreasing, and its second derivative is mono-

tonically increasing.

As in (4.5), the paraboloidal surrogate function for the likelihood function is given

by:

QL(x; xn)
4
=

N∑
i=1

qLi (fi[Ax]i; l
n
i )

where lni
4
= fi[Ax

n]i = fi
∑P

j=1 aijx
n
j . The surrogate function q

L
i (l; l

n
i ) has the follow-

ing quadratic form which satisfies the conditions of the paraboloidal surrogate given

in Section 4.4.1.

qLi (l; l
n
i )
4
= ψLi (l

n
i ) + ψ̇

L
i (l

n
i )(l − l

n
i )−

1

2
cni (l − l

n
i )
2 (4.44)

where ψ̇Li denotes the first derivative of ψ
L
i and c

n
i denotes the curvature of the

parabola qLi (l; l
n
i ). Since the convergence rate depends on the curvature of the sur-

rogates and bi > 0, we can choose c
n
i to be the optimal curvature as derived in

(4.7) [40, 46]:

copti (l) =



[
2yi
α1l2

{
log
(
l+bi
bi

)
− l

l+bi

}]
+
, l > 0

yi
α1b2i

, l = 0.

(4.45)

With an additive concavity technique, we obtain the partitioned separable paraboloidal

surrogate function as follows:

QL
k (xJk ; x

n) =
N∑
i=1

πikq
L
i

(
fi

πik
[AJk(xJk − x

n
Jk
)]i + l

n
i ; l

n
i

)
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where πik
4
=
∑
j∈Jk

|aij |
∑P
j=1 |aij |

. Then we apply a coordinate ascent algorithm to maximize

QL
k (xJk ; x

n). The first derivative of QL
kj(x̃j) as defined in (4.30) and (4.31) is given

by

Q̇L
kj(x̃j) =

N∑
i=1

fiaij q̇
L
i

(
fi
πik
[AJk(x̃Jk − x

n
Jk
)]i + l

n
i ; l

n
i

)

Again, as in 4.35, we obtain

q̇Li = ψ̇
L
i (l

n
i )− w

L,n
ik (l̃ik − l

n
ik) (4.46)

where wL,nik = c
n
i /πik, l̃ik

4
= fiAJk x̃Jk = fi

∑
j∈Jk

aij x̃j , and l
n
ik = fiAJkx

n
Jk
. Rearrang-

ing (4.46), we obtain

l̃ik = lnik +
ψ̇Li − q̇

L
i

wL,nik

(4.47)

which is useful in algorithm implementation. The curvature of the parabola QL
kj(x̃j)

for the likelihood part is:

dLkj =

N∑
i=1

wL,nik f 2i a
2
ij . (4.48)

4.8.2 The Penalty Part

As in the likelihood function, we can use similar techniques to obtain the parti-

tioned separable surrogates for the penalty function. Since the penalty function is

convex, the following surrogate functions are derived:

R(x) ≤ QR(x; xn) ≤ φR(x; xn)
4
=

K∑
k=1

QR
k (xJk ; x

n) (4.49)

The general form of the penalty function which is described in Chapter III is

given by:

R(x) =
r∑
i=1

ψRi ([Cx]i) (4.50)
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where ψRi is the potential function, C is the weighting matrix, and r is the number

of pairs of neighboring pixels.

In this section, we derive only the nonquadratic penalty function. The quadratic

penalty function is straightforward since the separable technique can be directly

applied to the penalty function. The paraboloidal surrogate function which lies

above the convex penalty function is given by:

QR(x; xn) =

r∑
i=1

qRi ([Cx]i; v
n
i )

where vni
4
= [Cxn]i. The parabola q

R
i (vi; v

n
i ) is tangent to the potential function at

the current points vni and −v
n
i and has the curvature ωi(v

n
i ) [68].

qRi (vi; v
n
i ) = ψ

R
i (v

n
i ) + ψ̇

R
i (v

n
i )(vi − v

n
i ) +

1

2
ci(v

n
i )(vi − v

n
i )
2

According to [68], the optimal curvature for such a symmetric nonquadratic

penalty function is given by:

copti (v
n
i )

4
=

ψ̇Ri (v
n
i )

vni
= ωRi (v

n
i ) (4.51)

where ψ̇Ri is the first derivative of the potential penalty function at the ith element.

After applying the convexity technique, we can obtain the partitioned separable

paraboloidal surrogate function QR
k (xJk ; x

n) as follows:

QR
k (xJk ; x

n) =
r∑
i=1

γrkq
R
i

(
1

γrk

[
CJk(xJk − x

n
Jk
)
]
i
+ vni ; v

n
i

)

where
∑K

k=1 γrk = 1 and similarly, we choose γrk
4
=
∑
j∈Jk

|crj|
∑P
j=1 |crj|

.

Similar to the likelihood part, we need to find the quadratic function for each pixel

within a set in order to apply the CA algorithm in each set. The first derivative and

the curvature of QR
kj(xj) evaluated at xj = x̃j are

Q̇R
kj(x̃j) =

r∑
i=1

[
crjψ̇

R
i (v

n
i ) +

crj

γrk
ci(v

n
i )[CJk(x̃Jk − x

n
Jk
)]i

]
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dRkj = −
r∑
i=1

c2rj
γrk

ci(v
n
i ). (4.52)

Combining all the likelihood and penalty surrogate functions, we obtain the fol-

lowing update for each j ∈ Jk by maximizing these surrogate functions as in (4.34):

xn+1j = argmax
xj≥0

QL
kj(xj)− βQ

R
kj(xj)

=

[
xnj +

Q̇L
kj(x̃j)− βQ̇

R
kj(x̃j)

dLkj + βd
R
kj

]
+

(4.53)

An algorithm outline for the PPCA algorithm is shown in Table 4.3. The param-

eter πik is precomputed for each set before the iteration loop. To compute c
n
i , l̃i is

computed at the beginning of every iteration by combining l̃ik from each partitioned

set together. Instead of using the convolution to compute l̃ik, l̃ik can be updated by

using (4.47) to reduce the computation time. Q̇R
kj is separated into two terms so that

the term Q̇R
kj1
that depends on the nth update of x can be computed only once per

iteration. Likewise, the curvature of the surrogate penalty function, dRkj, is calculated

only once per iteration. To have (4.47) work properly, wL,nik > 0 is required, and thus

we constrain wL,nik to some value > 0.

4.9 Results

4.9.1 2-D Simulation Results

A 512 × 512 pepper image was degraded by a 15 × 15 Gaussian point spread

function (PSF) with FWHM of 11.7 pixels (standard deviation = 5.0) and Poisson

noise with PSNRdata
7 of 25 dB as shown in Figure 4.4(b). Since our long-term

7The peak signal-to-noise ratio for the data is defined as follows:

PSNRdata = 10 log10

(
maxi(yi − α1bi)2

1
N

∑N
i=1(yi − E[yi])

2

)
,

where N is the total number of pixel size.
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x̃ = initial image
bij = fiaij
yi =

yi
α1
, ∀i = 1, . . . , N

l̃ik =
∑

j∈Jk
bij x̃j , k = 1, . . . , K

ρik =
∑
j∈Jk

|bij |
∑P
j=1 |bij |

, k = 1, . . . , K

for n = 1, . . . ,Niters
xn = x̃
l̃i =

∑
k l̃ik

ci =

{
2yi
(l̃i)2

[
log
(
1 + (l̃i)

bi
− l̃i

l̃i+bi

]
ψ̇Li (l̃i)

]
, l̃i > 0

−ψ̈Li (0), l̃i = 0
, ∀i = 1, . . . , N

Q̇R
kj1
=
∑r

i=1 cijψ̇
R
i ([Cx

n]i)

dRkj =
∑r

i=1

c2ij
γik
ωi([Cx

n]i)
for each processor k

wLi = ci/ρik, ∀i = 1, . . . , N s.t. bij 6= 0, ∀j ∈ Jk
q̇Li = ψ̇

L
i , ∀i = 1, . . . , N s.t. bij 6= 0, ∀j ∈ Jk

dLkj =
∑N

i=1 b
2
ijw

L
i

for j ∈ Jk
xoldj = x̃j
Q̇L
kj =

∑N
i=1 bij q̇

L
i

Q̇R
kj2
=
∑r

i=1
cij
γik
ωi([Cx

n]i)[CJk(x̃Jk − x
n
Jk
)]i

Q̇R
kj = Q̇

R
kj1
+ Q̇R

kj2

x̃j =

[
x̃j +

Q̇Lkj−βQ̇
R
kj

dLkj+βd
R
kj

]
+

q̇Li = q̇
L
i − w

L
i bij(x̃j − x

old
j ), ∀i = 1, . . . , N s.t. bij 6= 0

end
l̃ik = l̃ik +

ψ̇Li −q̇i
wLi

, ∀i = 1, . . . , N s.t. bij 6= 0, ∀j ∈ Jk
end

end

Table 4.3: Algorithm Outline of the PPCA Algorithm for Confocal Microscopy.

interest is space-varying PSFs, we used convolution rather than FFT techniques for

these algorithms. We used the following nonquadratic penalty function [81]:

ψRi (t) = δ
2

[∣∣∣∣ tδ
∣∣∣∣− log

(
1 +

∣∣∣∣ tδ
∣∣∣∣
)]

(4.54)
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where δ controls the degree of edge preservation. Figure 4.4(d) shows the restoration

( PSNR8 of 26.68 dB) using the 4-PPCA algorithm (with four parallel processors).

For comparison, the PSNR of the noise-free image in Figure 4.4(c), which is a blurred

version of Figure 4.4(b) without Poisson noise, is 22.71 dB.

(a) Original Image (b) Degraded Image

(c) Noise-free Image (d) Restored Image

Figure 4.4: 2-D simulation and restoration using a 4-PPCA algorithm with β = 0.01
and δ = 1.5.

8The peak signal-to-noise ratio is defined as follows:

PSNR = 10 log10

(
maxj x

2
j

1
N

∑P
j=1(xj − x̂j)

2

)

where x̂j is the restored image.
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Tables 4.4-4.5 compares wall times of monotonic algorithms (PSCA and PPCA),

and nonmonotonic algorithms (CA-NR, CA,P, PSCA,P, PPCA,P), respectively. The

letter “P” in nonmonotonic algorithms represents the precomputed curvature [40],

where we replace copti (·) with
9cprei (·) = −ψ̈

L
i (l
max
i ), and lmaxi = yi

α1
−bi. The algorithms

above were performed on the IBM SP2 parallel processors. Convergence in these

tables is defined as the smallest n such that Φ(xn)− Φ(x0) > 0.999(Φ(x∗)− Φ(x0)),

where Φ(x0) is the objective value of the initial image, and Φ(x∗) is the largest

objective value among all methods obtained in 50 iterations. Figure 4.5 shows the

subset partitions. Figure 4.6 shows the performance in elapsed time of the PPCA

algorithm with different number of processors applying to the 2-D data. Since the

PSF is fairly small, interprocessor communication time becomes significant as the

number of processors increases; therefore, the speedup factor is less than the ideal

relationship, as predicted by Amdahl’s law [6]. Nevertheless, these results confirm

that the PPCA algorithm is well suited for parallel processing.

Monotonic Algorithms
Convergence PSCA 2-PPCA 4-PPCA 8-PPCA

#iters 38 39 39 41
Wall time (s) 318.20 213.85 156.20 132.34
Wall time/iter (s) 8.37 5.48 4.01 3.23
Speedup factor 1 1.52 2.09 2.59

Table 4.4: Comparison of wall times and number of iterations to converge using
monotonic for a 512×512 pepper image.

Figure 4.7 shows that the PPCA algorithms increase the objective function es-

sentially as much per iteration as the PSCA algorithm. This effect implies that

subset-separation technique barely slows the convergence rate of the PPCA algorithm

compared with the PSCA algorithm, which is a one subset version of the PPCA al-

9This ad hoc modification loses the guarantee of monotonicity, but reduces computation and
usually seems to converge.
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Nonmonotonic algorithms
Convergence CA-NR CA,P PSCA,P 2-PPCA,P 4-PPCA,P 8-PPCA,P

#iters 28 29 27 28 28 28

Wall time (s) 612.5 517.91 195.89 123.48 89.33 80.55

Wall time/iter (s) 21.87 17.86 7.26 4.41 3.19 2.88

Speedup factor 0.33 0.41 1 1.64 2.28 2.52

Table 4.5: Comparison of wall times and number of iterations to converge using
nonmonotonic algorithms for a 512×512 pepper image.

2 subsets 4 subsets 8 subsets

Figure 4.5: Partitioned set patterns of a 2-D image.
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Figure 4.6: Performance on parallel processors in elapsed time for the PPCA algo-
rithms using a 512×512 image and a 15×15 PSF.

gorithm. Figure 4.8 shows that the PPCA algorithms converge in less elapsed time

than the PSCA algorithm. Using the precomputed curvatures, Figure 4.9 illustrates

that the CA-NR, CA,P, PSCA,P, and PPCA,P algorithms increase the objective

function nearly at the same rate; however, Figure 4.10 confirms that the PPCA,P

algorithm converges in less time than other nonmonotonic algorithms.
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Figure 4.7: Comparison of objective function increase versus number of iterations
using monotonic algorithms on a 2-D image.
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Figure 4.8: Comparison of objective function increase versus elapsed time using
monotonic algorithms on a 2-D image.

4.9.2 3-D Simulation Results for Confocal Microscopy

Following [91], a spherical shell test specimen was generated on a 256× 256× 64

pixel grid and was degraded by a 15× 15× 15 PSF created from the XCOSM pack-

age [1] having pixel sizes 4x = 4y = 4z = 0.15µm, 40× /1.0 NA oil-immersion ob-
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Figure 4.9: Comparison of objective function increase versus number of iterations
using nonmonotonic algorithms on a 2-D image.
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Figure 4.10: Comparison of objective function increase versus elapsed time using
nonmonotonic algorithms on a 2-D image.

jective, and a fluorescent wavelength of 0.63 µm, and the Poisson noise with PSNRdata

of 40 dB. This PSF is circularly symmetric in the xy plane but it has elongation in

the z direction which causes a very poor resolution in the axial direction. Figure 4.11

shows the lateral and axial medial sections through the original, degraded, noise-free,
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and restored images performed for 20 iterations. The restored image has the PSNR

of 28.57 dB. For comparison, the noise-free image in Figure 4.11(c) has the PSNR

of 20.66 dB. The images on the xz plane have been scaled up to the same scale as

those in the xy plane for display purpose. As seen from the center slice of the xz

plane of the restored image (Figure 4.11(d)), the elongation in the z direction of the

restored image have been dramatically reduced.

Figure 4.12 shows that the total wall times for 3D results are nearly inversely

proportional to the number of processors. This is because a larger amount of work in

3D data has been assigned to each processor which means less communication time

relative to the total computation time.

Table 4.6 shows the performance of the wall times of the PSCA, and PPCA

algorithms for 20 iterations. Since we used convolution rather than the FFT algo-

rithms, the total time requirement is quite large. Similarly to 2-D simulation results,

Figures 4.13-4.14 verify that the PPCA algorithm increases the objective function

almost at the same rate as the PSCA algorithm but it requires much less total wall

time for computation.

20 iterations PSCA 2-PPCA 4-PPCA 8-PPCA

Wall time (hrs) 11.54 5.93 3.06 1.64
Wall time/iter (mins) 34.62 17.79 9.18 4.92
Speedup factor 1 1.95 3.77 7.04

Table 4.6: Comparison of wall times of PSCA, and PPCA algorithms for a 3D image.

4.10 Conclusions for the PPCA Algorithm

We have developed a new fast converging parallelizable algorithm called the

partitioned-separable paraboloidal surrogate coordinate ascent algorithm. This ap-

proach overcomes the drawback of the ordinary coordinate ascent algorithm which
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(a) Original Image

z

(b) Degraded Image

(c) Noise-free Image

(d) Restored Image

Figure 4.11: Results for a 3D simulated spherical shell using a 4-PPCA algorithm for
20 iterations with β = 0.1 and δ = 10. Lateral and axial medial sections
through the image are in the left and right, respectively. For display
purpose, the axial sections were scaled in z to obtain a 1:1 aspect ratio.

is a nonparallelizable algorithm. Compared to completely simultaneous updates like

EM and SPS algorithms, this algorithm has a faster convergence rate due to larger
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Figure 4.12: Performance on parallel processors in elapsed time for the PPCA algo-
rithms using a 256×256×64 image and a 15×15×15 PSF.
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Figure 4.13: Comparison of objective function increase versus number of iterations
using PSCA and PPCA algorithms on a 3D image.

updating step sizes. Unlike the PSCA [40] algorithm, the surrogate functions in the

PPCA algorithm are separable between subsets to allow simultaneous update across

pixel subsets. Thus parallel processors can be assigned to the subsets to reduce to-

tal time requirement. Since the PPCA algorithm increases the objective function



100

20 40 60 80 100 120 140 160 180 200
8.2

8.25

8.3

8.35

8.4

8.45

x 10
6

Elapsed Time (mins)

O
bj

ec
tiv

e 
in

cr
ea

se
PSCA
2−PPCA
4−PPCA
8−PPCA

Figure 4.14: Comparison of objective function increase versus elapsed time of PSCA
and PPCA algorithms on a 3D image.

nearly at the same rate as the PSCA algorithm, parallelizability in the PPCA al-

gorithm only slightly reduces the convergence rate. The PPCA algorithm using the

precomputed curvature, which is a nonmonotonic algorithm, converges much faster

than the CA-NR and CA,P algorithms. Thus the PPCA algorithm yields the fastest

convergence among the monotonic and nonmonotonic algorithms tested.



CHAPTER V

Relaxed Ordered-Subset Algorithm For Image

Restoration

5.1 Introduction

The PPCA algorithm introduced in Chapter IV is more suitable for the space-

variant systems where FFTs are not applicable. Because many image restoration

techniques for confocal microscopy are usually assumed the space-invariant system

of the microscope for simplicity [3, 28, 67, 91], we desire to have a fast converging

algorithm that can be performed with FFTs for further acceleration. Therefore, in

this chapter1, we consider a fast converging algorithm belonging to the group of

ordered-subset algorithms for image restoration since it can be combined with FFTs

and has initial fast convergence.

EM algorithms [36, 39] and their ordered-subset (OS) versions [18, 19, 69] are

among the most commonly used algorithms; however, they have limitations of ei-

ther speed or convergence. Although EM algorithms are guaranteed to converge,

they converge very slowly. The OS-EM algorithm [69] has become very attractive

for image reconstruction in tomography due to its fast convergence rate compared

with the EM algorithms. It “converges” approximately M times faster than the

1This chapter is based on [111].

101
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EM algorithms, where M is the number of subsets. However, the OS-EM algorithm

is not guaranteed to converge. After many iterations, the OS-EM algorithm ap-

pears to oscillate between solutions rather than converge to an ML solution. Several

approaches have been proposed to solve the convergence problem of the OS-EM algo-

rithm, such as the rescaled block-iterative EMML (RBI-EMML) algorithm [18, 19],

the row-action maximum likelihood algorithm (RAMLA) [17], and its regularized

version, the block sequential regularized EM (BSREM) algorithm [37]. However, the

RBI-EMML algorithm only converges to a solution in the consistent case. The RBI-

EMML with a “feedback” approach [18] seems to be impractical for real applications

and it does not include the smoothness penalty function. The convergence proofs

for the RAMLA and BSREM algorithms invoked a strong “a posteriori” assumption

that the objective sequence is convergent.

An alternative to the EM algorithms for image restoration and reconstruction is

the separable paraboloidal surrogate (SPS) algorithm [40,46]. An OS version of the

SPS algorithm [41] was first introduced for transmission tomography. Although the

OS-SPS algorithm improves the objective function more rapidly than the SPS algo-

rithm in the early iterations, convergence is not necessarily achieved. To overcome the

convergence problem of the OS-SPS algorithm, the relaxed OS-SPS algorithm [4, 5]

was proposed recently by introducing the relaxation parameter into the algorithm.

This algorithm not only retains the fast convergence rate of the OS-SPS algorithm,

but also is guaranteed to converge globally. In contrast, the relaxed version of the

OS-EM algorithm is not guaranteed to converge to the optimal point [4,5,17]. There-

fore, in this chapter, we focus entirely on the relaxed OS-SPS algorithm for image

restoration [110].

Due to the ill-posed nature of image restoration, our algorithm is based on PL
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estimation. Most existing OS methods have been applied to image reconstruction

in tomography only rather than to image restoration. Effective use of OS methods

in image restoration requires one to choose subsets appropriately to provide fast

convergence rates. The global convergence property of relaxed OS-SPS holds for all

choices of subsets. However, the convergence rates of most OS algorithms depend

on the choice of subsets and scaling functions (the scaling functions are the diagonal

entries of the scaling matrix D in (5.12) below). Since the scaling functions in the

ordinary OS-SPS algorithm provide reasonably fast convergence, we focus here on

finding subsets that can deliver fast initial convergence rates.

In tomography, the data are organized by projection angles, so the subsets used in

tomography are unsuitable for pixel-based image restoration. Bertero and Boccacci

applied the OS-EM method to the restoration of the large binocular telescope (LBT)

images [10]. However, the structure of the LBT imaging is similar to that of com-

puted tomography: multiple views of the same object are observed at different angles.

Thus, this technique cannot be applied to typical image restoration problems. In this

chapter, we focus on the more traditional image restoration problem of recovering

a scene from a single blurred, noisy measured image under the simplifying assump-

tion that the point spread function (PSF) is known. Instead of choosing subsets by

downsampling projection angles as in tomography, for restoration, we choose subsets

by downsampling pixels, rather than dividing pixels into subblocks. We show quan-

titatively that the downsampling approach satisfies the “subset-gradient-balance”

conditions [11], which are less restrictive than the subset-balance conditions defined

in Ref. [69]. These gradient balance conditions are important for fast convergence.

This chapter is organized as follows. Section 5.2 describes the measurement

model and the objective function based on PL estimation. The derivation of the
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relaxed OS-SPS algorithm for image restoration starting from the basic idea of OS

methods and the OS-SPS algorithm is presented in Section 5.3. Subset design for

restoration problems is discussed in Section 5.4. In Section 5.5, we develop some

efficient implementation strategies, and quantify the computational complexity for

the relaxed OS-SPS algorithm. The performance of subset designs and restoration

results using 2-D simulation data and 3-D real data are presented in Section 5.6.

Conclusions are given in Section 5.7.

5.2 Measurement Model

Because the measurements in image restoration problems are usually degraded

by blur and noise, one can use the statistical characteristics of the measurement

system to recover an approximation of the original image by specifying an objective

function that is to be maximized. Due to an ill-posed problem of image restoration,

we consider PL estimation using an objective function of the following form:

Φ(x) = L(x)− βR(x) (5.1)

where x denotes the image parameter vector to be estimated, L denotes the log-

likelihood function of the measurement, R denotes a roughness penalty function,

and β denotes a parameter that controls the tradeoff between resolution and noise

in the restored image.

For photon-limited imaging (such as confocal microscopy), the noisy measurement

Y = [Y1, . . . , YN ] can be modeled (approximately [104,105]) as follows:

Yi ∼ Poisson{[Ax]i + bi}, i = 1, . . . , N (5.2)

where x is ordered lexicographically in the vector form, A is the system matrix which

is assumed to be known, bi represents the mean number of the background noise and
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dark current, and N is the number of measurement pixels. The corresponding log-

likelihood function is given by:

L(x) =

N∑
i=1

ψi(li(x)) (5.3)

where ψi(l) = yi log(l + bi) − (l + bi), ignoring irrelevant constants independent of

x, li(x) = [Ax]i =
∑P

j=1 aijxj , P is the number of pixels to be estimated, and the

measured values yi’s are samples of independent Poisson random variables Yi’s.

To reduce noise, we penalize the differences between neighboring pixels using a

roughness penalty function of the form

R(x) =

r∑
i=1

ψR([Cx]i) (5.4)

where ψR is the potential function, C is the penalty matrix, and r is the number of

pairs of neighboring pixels. We assume that each potential penalty function ψR(t)

satisfies all the conditions given in Chapter III.

With proper regularization, the objective function in this problem has a unique

global maximum. Thus, our goal is to estimate x by finding the maximizer of the

objective function:

x̂
4
= argmax

x≥0
Φ(x).

Because closed-form solutions are unavailable for the maximizer, iterative algorithms

are needed. Due to fast initial convergence of OS algorithms, we focus on this class

of algorithms in this chapter.

5.3 The Algorithms

This section summarizes the general principles of ordered subsets (also called

block iterative) methods and reviews the OS-SPS algorithm.
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5.3.1 Ordered-Subset Technique

One can decompose the objective function in (5.1) into sub-objective functions

fm’s as follows:

Φ(x) =
M∑
m=1

fm(x) (5.5)

where M is the total number of subsets, chosen by the algorithm designer. Let

{Sm}Mm=1 be a disjoint partition of {1, . . . , N} such that
⋃M
m=1 Sm = {1, . . . , N}.

Then fm’s are obtained by replacing a sum over all pixel indices in the likelihood

function of (5.3) with a sum over a subset of data Sm and scaling the penalty term

by M as follows:

fm(x)
4
=
∑
i∈Sm

ψi(li(x))−
β

M
R(x). (5.6)

Instead of the restrictive subset-balance conditions originally defined in [69], we define

the following less restrictive conditions called the “subset-gradient-balance” condi-

tions which use an “approximate gradient” computed from only a part of data:

∇f1(x) ∼= ∇f2(x) ∼= · · · ∼= ∇fM (x) (5.7)

where ∇fm(x) is the gradient of the sub-objective function at the mth subset. When

these conditions hold, the gradient of the objective function Φ(x) can be approxi-

mated as follows:

∇Φ(x) ∼= M∇fm(x), m = 1, . . . ,M. (5.8)

Using approximate (5.8), one can replace ∇Φ(x) with M∇fm(x) in any gradient-

based algorithm to construct an OS version of that algorithm. If proper subsets

satisfying the above conditions are combined with suitable scaling functions [e.g.,

see (5.12) below], then the OS algorithms often exhibit acceleration by a factor of M



107

in the early iterations. These conditions influence the rate of convergence of OS-SPS,

but are not required for global convergence of relaxed OS-SPS.

Figure 5.1 illustrates how ordinary OS algorithms work. For this figure, we

assumed that ∇Φ(x) = ∇f1(x) +∇f2(x). For x far from the solution, the condition

∇f1(x) ∼= ∇f2(x) holds and accelerated convergence speed is achieved. However,

in the later iterations when x is close to the optimal solution, the “subset-gradient-

balance” conditions are no longer valid and a limit cycle behavior around the optimal

solution appears. Because ordinary OS algorithms use the same step-size at each

iteration, the limit cycle does not vanish. One way to suppress this limit cycle is to

use a diminishing step-size at each iteration (relaxation).

f  (  )2 xargmax

x*

f  (  )1argmax x

xn

xn
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Illustration of OS Algorithms

Figure 5.1: Illustration of how the OS algorithms work. Assume that ∇Φ(x) =
∇f1(x)+∇f2(x). When x is far from the solution, the “subset-gradient-
balance” conditions hold and an order-of-magnitude acceleration can be
achieved in the early iterations. However, for later iterations or when x
is near the optimal solution, those conditions are no longer valid and a
limit-cycle behavior is observed.
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As previously discussed, OS-EM is not guaranteed to converge even in the relaxed

version [4, 5, 17]. Therefore, we focus on the convergent relaxed OS-SPS algorithm

hereafter.

5.3.2 Ordered-Subset, Separable Paraboloidal Surrogate Algorithm

The SPS algorithm is based on paraboloidal surrogate functions [40,46,109] and

the concavity technique developed by De Pierro [36]. The pixel update for the SPS

algorithm can be summarized as follows:

xn+1j =

[
xnj +

∇jΦ(x
n)∑N

i=1 aijγic
n
i + βp

n
j

]
+

(5.9)

where the symbol [x]+ represents x if x > 0 and 0 if x ≤ 0. The gradient of the

objective function at the jth pixel in the SPS algorithm is as follows:

∇jΦ(x) =
∂

∂xj
Φ(x) =

N∑
i=1

aijψ̇i(li(x))− β
r∑
i=1

cijψ̇
R([Cx]i) (5.10)

where cij is the ijth element of the matrix C. In (5.9), γi =
∑P

j=1 aij , and c
n
i is the

following optimal curvature that guarantees convergence of SPS [40,109]:

cni =



[
2
(lni )

2

(
ψi(l

n
i )− ψi(0)− l

n
i ψ̇i(l

n
i )
)]
+
, lni > 0[

−ψ̈i(0)
]
+
, lni = 0

where lni =
∑P

i=1 aijx
n
j . For the penalty function terms, the curvature p

n
j in (5.9) is

given by:

pnj =
r∑
i=1

cijνiω([Cx
n]i)

where νi =
∑p

j=1 cij, and ω(t) =
ψ̇R(t)
t
.

Erdoğan and Fessler [41] introduced the OS version of the SPS algorithm for

transmission tomography. With the use of approximation (5.8), the gradient of the
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objective function in (5.9) is replaced by the sub-objective function multiplied by the

number of subsets. We define xnj
4
= x

(n,0)
j and x

(n+1)
j

4
= x

(n,M)
j . The first superscript

refers to iterations and the second superscript refers to subsets. Then the pixel

update xj for the OS-SPS algorithm becomes

x
(n,m)
j =

[
x
(n,m−1)
j +M

∇jfm(x
(n,m−1))

dj + βpj

]
+

, m = 1, . . . ,M (5.11)

where

∇jfm(x) =
∑
i∈Sm

aijψ̇i(li(x))−
β

M

r∑
i=1

cijψ̇
R([Cx]i).

Since the global convergence is not affected by the curvatures as long as they are

positive, we precompute the curvatures dj and pj to save computation [5]. The

curvature of the likelihood dj in (5.11) is precomputed as follows:

dj =

N∑
i=1

aijγici

where ci = −ψ̈i(yi − bi). Likewise, the curvature of the penalty function pj is pre-

computed as follows:

pj =
r∑
i=1

cijνiω(0).

Although the OS-SPS algorithm yields an order-of-magnitude acceleration over the

SPS algorithm in the early iterations, it is not guaranteed to converge to the optimal

solution.

5.3.3 Relaxed Ordered-Subset Separable Paraboloidal Surrogate Algo-
rithm

To guarantee the convergence of the OS-SPS algorithm, Ahn and Fessler [4,

5] modified the OS-SPS algorithm to include relaxation. Without relaxation, the
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OS-SPS algorithm has a constant step-size, thus exhibiting a limit cycle behavior.

Modifying (5.11), the pixel update of the relaxed OS-SPS algorithm becomes

x
(n,m)
j =

[
x
(n,m−1)
j + αnM

∇jfm(x
(n,m−1))

dj + βpj

]
+

, m = 1, . . . ,M.

Equivalently, in the matrix-vector form,

x(n,m) =
[
x(n,m−1) + αnD∇fm(x

(n,m−1))
]
+

(5.12)

where D = diag{ M
dj+βpj

} is the diagonal scaling matrix. We use the same scaling

functions as in the ordinary OS-SPS algorithm because they were shown to provide

fairly fast initial convergence in the ordinary OS-SPS algorithm [41]. Finding op-

timal scaling functions for convergence speed is still an open question. A positive

relaxation parameter αn is chosen such that
∑

n αn = ∞ and
∑

n α
2
n < ∞. We use

αn =
ξ

(ξ−1)+n , where ξ is a positive constant, a “tuning parameter” that affects the

rate of convergence and is chosen empirically. The optimal choice of the relaxation

parameter still remains an open question. With the diminishing step-size, the relaxed

OS-SPS algorithm is globally convergent [4, 5]. The outline for the relaxed OS-SPS

algorithm is shown in Table 5.1.

5.3.4 Blind Restoration

Many blind restoration techniques have been applied to simultaneously restore

the image and estimate the PSF [66, 79, 91, 119]. The relaxed OS-SPS algorithm is

applicable to blind restoration as well. For a blind restoration technique, the image

can be updated with the relaxed OS-SPS algorithm, whereas the PSF can be updated

with the ordinary SPS or EM algorithms because of the small number of parameters

in the PSF.
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Precompute:
dj = −

∑N
i=1 aijγiψ̈i(yi − bi)

pj =
∑r

i=1 cijνiω(0)
for n = 1, . . . ,Niters

αn =
ξ

(ξ−1)+n
for m = 1, . . . ,M

l̂i =

P∑
j=1

aijx
(n,m−1)
j , ∀i ∈ Sm (5.13)

ψ̇i =
yi

l̂i+bi
− 1, ∀i ∈ Sm

for j = 1, . . . , P

L̇j =
∑
i∈Sm

aijψ̇i (5.14)

Ṙj =
∑r

i=1 cijψ̇
R([Cx(n,m−1)]i)

x
(n,m)
j =

[
x
(n,m−1)
j + αnM

L̇j−
β
M
Ṙj

dj+βpj

]
+

end
end

end

Table 5.1: The Relaxed OS-SPS Algorithm Outline.

5.4 Subset Design

Since most OS algorithms have been used for image reconstruction to date, a

different strategy for choosing subsets in image restoration needs to be considered

because of differences in data acquisition. A good choice of subsets should satisfy

the “subset-gradient-balance” conditions stated in (5.7) and (5.8) to provide rapid

convergence. In tomography, the subsets are chosen from downsampling projec-

tion angles. Since data in image restoration are based on pixel locations, instead

of projection angles as in tomography, one possible approach for choosing the sub-

sets in the restoration problem is to downsample pixels in the image. Figure 5.2

shows possible choices of four subsets for a 2D image. We define “4×1” OS-SPS



112

for a downsampling approach with 4 subsets in each column and 1 subset in each

row as shown in Figure 5.2(a). The downsampling approaches seem to satisfy the

“subset-gradient-balance” conditions. To verify this, we compared the gradients of

the original objective function and the sub-objective functions using four subsets

with a “2×2” configuration (Figure 5.3). Specifically, we computed the gradients of

the sub-objective functions belonging to subsets 1 and 4, and then compared them

to the gradient of the original objective function as shown in the second and third

columns of Figure 5.3. These differences are very small: the normalized root mean

squared (RMS) error between the actual gradient ∇φ and the subgradient 4∇fm is

less than 0.5%.
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(a) "4x1" OS−SPS (b) "1x4" OS−SPS (c) "2x2" OS−SPS

Possible Choices for Four Subsets by a Downsampling Approach

Figure 5.2: These subsets tend to satisfy the “subset-gradient-balance” conditions.
The first number in quotation marks is the number of subsets in each
column, and the second number is the number of subsets in each row.
The total number of subsets is the product of these two numbers. The
pixel label m belongs to the respective set Sm.

Another choice for choosing subsets is to divide the image into large contiguous

blocks, called the subblock approach (Figure 5.4). We define “4×1B” OS-SPS for the

subblock approach with 4 subblocks in each column and 1 subblock in each row as

shown in Figure 5.4(a). This approach tends to be a poor choice of subsets because

it fails to satisfy the “subset-gradient-balance” conditions as illustrated in the last
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Figure 5.3: Investigation of the “subset-gradient-balance” conditions in the OS-SPS
algorithm. Four subsets with a “2×2 configuration” were used. The
second and third columns show the gradients of the sub-objective func-
tions from the downsampling approach with use of subset 1 and subset
4, respectively, and their differences compared with the gradient of the
objective function. Similarly, the last two columns are from the subblock
approach. The gradients of the sub-objective functions in the downsam-
pling approach were multiplied by 4 to compensate for the downsampled
data. However, this scaling factor is not needed in the subblock approach,
because a block of contiguous pixels is used.

two columns of Figure 5.3. The differences between the gradients of the various sub-

objective functions using different subsets are large: the normalized RMS is more

than 65%. Section 5.6 reports empirical comparisons of how these possible choices

of subsets affect the convergence speed.

5.5 Implementation Techniques and Complexity

Most of the computation time in the OS-SPS algorithm takes place in (5.13) and

(5.14). In this section, we discuss how to efficiently implement these two expressions

for both space-variant and space-invariant systems.
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Possible Choices for Four Subsets by a Subblock Approach

Figure 5.4: These subsets tend to violate the “subset-gradient-balance” conditions.
The first number in quotation marks is the number of subblocks in each
column, and the second number is the number of subblocks in each row.

5.5.1 Space-Variant Systems

A literal implementation of (5.13) and (5.14) in the algorithm outline would be

appropriate for a shift-variant imaging system whose collection of PSFs is tabulated

as a sparse set of aij values. With this technique, the computational complexity of

the OS-SPS algorithm is essentially the same as in the nonordered-subsets (non-OS)

algorithm, except that the penalty-function gradient must be evaluated m times per

iteration. However, usually the likelihood-gradient computation dominates.

5.5.2 Space-Invariant Systems with Convolution

For shift-invariant systems, however, one would typically implement (5.13) and

(5.14) using convolution or fast Fourier transform(FFT)-based convolution in the

conventional single-subset type of the gradient-based iteration. Since these opera-

tions dominate the algorithm, it is essential to formulate efficient implementations

of these two expressions. Computing all values of l̂ by using ordinary convolution

would be inefficient when only some values of l̂ will be used in a given subiteration.

Therefore, in this section, we introduced the following technique for computing (5.13)
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and (5.14) efficiently with convolution.

For a space-invariant system, we rewrite (5.13) in the convolution form as follows:

l̂i =

P∑
j=1

hi−jxj , ∀i ∈ Sm (5.15)

where h is the PSF. For illustration, we describe 1-D convolution. Extension to 2-D

and 3-D is straightforward. To compute some values of l̂ efficiently, we rewrite (5.15)

using two summations:

l̂i =
M∑
m=1

∑
j∈Sm

hi−jxj, ∀i ∈ Sm. (5.16)

Using this expression, we can compute l̂i for i ∈ Sm by convolving the downsam-

pled image and the PSF belonging to subset Sm, and then summing all the subsets

(Figure 5.5).
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Figure 5.5: Illustration for computing l̂i, ∀i ∈ Sm (M = 2), using all the information
of x and h. The asterisk represents convolution. The white blocks denote
elements of x belonging to subset m = 1, and the striped blocks denote
elements of x belonging to subset m = 2.

Similarly, to compute (5.14) efficiently by convolution, we can rewrite that ex-

pression as follows:

L̇j =
∑
i∈Sm

hi−jψ̇i. (5.17)
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For each j, L̇j can be computed by using ψ̇i and a downsampled PSF. Different j’s

require a different downsampling of the PSF, but use the same ψ̇i’s (Figure 5.6). In

this figure, the PSF is assumed to be symmetric. Otherwise, the indices of the PSF

must be inverted before convolving.

Si

∋

1 Si

∋

2

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

�����
�����
�����

�����
�����
�����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

�����
�����
�����

�����
�����
�����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��������
��������
��������

��������
��������
��������

���
���
���

���
���
���

���
���
���

���
���
���

��������
��������
��������

��������
��������
��������

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

������
������
������

������
������
������

�����������
�����������
�����������

�����������
�����������
�����������

�����
�����
�����

�����
�����
�����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

L
.
j

L
.
j

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

h
Given

ψ ψ

h
Given

*

*

*

*

Implementation of ∀,  j M (    = 2)

L
.

j

. .

Figure 5.6: Illustration of computing L̇j , ∀j (M = 2), using some information of ψ̇i
but all the information of h.

If implemented carefully, computational complexity for this convolution technique

does not increase as the number of subsets increases.

5.5.3 Space-Invariant Systems with Use of Fast Fourier Transforms

For simultaneous update methods, such as the EM algorithms for image restora-

tion, one can use FFTs to reduce computation, especially for large 3D problems.

Similarly, a strategy for using FFTs in the OS-SPS algorithm would be desirable to

compute L̇j and l̂i efficiently. One possible solution is to implement the partial FFT

algorithm [34], where only a small number of frequencies are evaluated. Since there

is a specific pattern for computing l̂i and L̇j in each subset, rather than adapting

and implementing this partial FFT technique into our algorithm, we develop the
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following technique based on the ordinary FFT algorithm, which should yield the

same complexity but avoids implementing new FFT code.

To describe our technique, we consider 1-D data and 2 subsets (M = 2). Let

spatial indices be replaced by η to avoid confusion, H(k) be an N -point FFT of h,

and X(k) be an N -point FFT of x. We assume that P = N in this case. To compute

l̂ for 2 subsets using FFTs, we reformulate (5.15) into the following expression:

l̂(η) =
1

N

N−1∑
k=0

H(k)X(k) exp

(
ı
2πηk

N

)
, ∀η ∈ Sm.

Let η = 0, . . . , N/2 − 1. Then the even indices of l̂ belonging to subset 1 and the

odd indices belonging to subset 2 are computed as follows:

m = 1; l̂(2η) =
1

N

N/2−1∑
k=0

[H(k)X(k) +H(k +N/2)X(k +N/2)] exp

(
ı
2πηk

N/2

)

m = 2; l̂(2η + 1) =
1

N

N/2−1∑
k=0

[H(k)X(k)−H(k +N/2)X(k +N/2)] exp

(
ı
2πk

N

)

exp

(
ı
2πηk

N/2

)
.

In this technique, a full N -point FFT is performed for h and x, but an N/M-point

inverse FFT (IFFT) is performed on l̂ for each subset. Given that the FFT of H is

precomputed, the total number of complex multiplications required for computing

l̂i in one iteration of the OS-SPS algorithm with M subsets with the use of FFT is

given as follows:

MN

2
log2N +MN +

N(M − 1)

M
+
N

2
log2

(
N

M

)
. (5.18)

The first term is for computing the FFT of x. The second term is for multiplying

X and H . The third term is for multiplication by exp
(
ı2πk
N

)
. The fourth term

is for the IFFT that yields l̂i, i ∈ Sm. For comparison, the number of complex

multiplications for computing l̂i in the non-OS algorithm is N log2(2N). Table 5.2



118

compares the complexity of computing l̂i in one iteration for the OS algorithm relative

to the non-OS algorithm when FFTs are used. Although the number of complex

multiplications increases as the number of subsets increases, it increases less rapidly

than the number of subsets. Since the convergence rate increases roughly by a factor

of number of subsets [4, 5, 69, 110], there is still an advantage in using FFTs in the

OS-SPS algorithm, especially when N is large.

Number of data points Number of subsets Complexity ratio of
OS and non-OS algorithms

2 1.57
64 4 2.68

8 4.91

2 1.55
512 4 2.62

8 4.79

Table 5.2: Multiplication complexity ratio for computing l̂i (with the use of FFTs)
of OS-SPS and non-OS algorithms with different numbers of subsets

Similar to the case of l̂, to compute L̇j efficiently using FFT, we rewrite (5.17)

in the following FFT form (assuming h is symmetric):

L̇(η) =
1

N

N−1∑
k=0

H(k)Ψ(k) exp

(
ı
2πηk

N

)
, ∀η.

L̇ is obtained by performing an N -point IFFT of the product of H(k) and Ψ(k);

however, H(k) and Ψ(k) are computed from the reduced data given in each subset,

i.e., even and odd sets of data for a 2-subset case. Thus, for k = 0, . . . , N/2− 1, we
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compute N -point H(k) and N -point Ψ(k) for both subsets as follows:

m = 1; H(k) =

N/2−1∑
η=0

h(2η) exp

(
−ı
2πηk

N/2

)
= H(k +N/2)

Ψ(k) =

N/2−1∑
η=0

ψ̇(2η) exp

(
−ı
2πηk

N/2

)
= Ψ(k +N/2)

m = 2; H(k) = exp

(
−ı
2πk

N

)N/2−1∑
η=0

h(2η + 1) exp

(
−ı
2πηk

N/2

)
= −H(k +N/2)

Ψ(k) = exp

(
−ı
2πk

N

)N/2−1∑
η=0

ψ̇(2η + 1) exp

(
−ı
2πηk

N/2

)
= −Ψ(k +N/2).

Thus N/2-point FFTs are performed to obtain the first halves of H(k) and Ψ(k). In

this case, the multiplication complexity for computing L̇ is the same as the complexity

for computing l̂.

In the FFT technique described above, we illustrate the techniques only for radix-

2 FFT. If the data sizes are not powers of 2, then zero padding should be applied

to avoid large prime factors [95]. Our technique can yield either circular or linear

convolution depending on the amount of zero padding. However, we usually perform

zero padding to obtain a linear convolution.

5.6 Simulation and Real Results

In this section, we illustrate the proposed algorithm with 2-D simulated data and

3-D real data in comparison with existing algorithms. We also report the character-

istics of various subset choices as discussed in Section 5.4.

5.6.1 2-D Simulation Results

A 256×256 cell image in Figure 5.8(a) was degraded by a 15×15 PSF (Figure 5.7),

created from the XCOSM package [1], and Poisson noise with peak signal-to-noise

ratio (PSNR) of 40 dB, as shown in Figure 5.8(b). The PSNR for the data is defined
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as follows:

PSNR = 10 log10

(
maxi(yi − bi)2

1
N

∑N
i=1(yi − E[yi])

2

)
.

The following parameters were used to create the confocal PSF from the XCOSM

package [1]: pixel sizes of 0.15 µm (in all directions), 40× /1.0 NA oil-immersion

objective, and a fluorescent wavelength of 0.63 µm. However, we used only the

central xz plane for the 2-D simulation to clearly illustrate how elongation in the z

direction has been reduced after restoration.
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Figure 5.7: 2-D theoretical confocal PSF in the xz plane.

Figure 5.8(c) and (d) show the restored images using the constrained least squares

(CLS) method and the relaxed OS-SPS algorithm, respectively. The CLS method

does not produce the image as good as the relaxed OS-SPS algorithm. For the relaxed

OS-SPS algorithm, we used the relaxation parameter αn = 11/(10+n) and, for edge

preservation, we used the nonquadratic roughness penalty function [81] ψR(t) =

δ2
[∣∣ t
δ

∣∣− log (1 + ∣∣ t
δ

∣∣)] , where δ controls the degree of edge preservation. The relaxed
OS-SPS algorithm was run for 50 iterations using 8 subsets. To clearly see the

improvement, the zoom-in versions of images in the boxes in Figure 5.8 are shown in

Figure 5.9. The elongation in the z direction, very apparent in the degraded image,
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x

z

Restored image (relaxed OS−SPS)

Degraded imageOriginal image

Restored image (CLS)

Figure 5.8: Simulated images and restoration using the relaxed OS-SPS algorithm
with β = 10−6 and δ = 100. The PSF in the noisy blurry image was
simulated from the 2D PSF of the confocal microscope only in the xz
direction, where x is along the horizontal axis and z is along the vertical
axis, to show elongation in the z direction. This elongation is reduced
in the restored image with CLS but mostly disappears in the restored
image with relaxed OS-SPS.

is greatly reduced in the restored image with relaxed OS-SPS, thus improving the

(axial) resolution. To quantify restoration improvement, we find standard deviations
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Original image

Restored image (CLS)

Degraded image

Restored image (relaxed OS−SPS)

z

x

Figure 5.9: Zoom-in versions

of the Gaussian function that minimize the following term:

min
σx,σz
‖xtrue ∗ gσx,σz − x̂‖

where x̂ is the estimated image and gσx,σz is the Gaussian function with standard

deviations σx and σz in the x and z directions. The standard deviation corresponds

to the half width of the peak at about 60% of the full height; therefore, it is related

to the full width at half maximum (FWHM) as follows:

FWHM = 2σ
√
2 ln 2 = 2.35σ.

We summarized the improvement in terms of FWHMs of restored images in Table 5.3.

Table 5.4 compares the elapsed time per iteration of different algorithms: De
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Image FWHM (µm) % Improvement
in x in z in x in z

Degraded image with no noise 0.12 0.52 - -
Restored image with CLS 0.10 0.24 15 % 54 %
Restored image with relaxed OS-SPS for 50 iters 0.05 0.13 60 % 75 %
Restored image with relaxed OS-SPS for 5 iters 0.05 0.17 60 % 67 %

Table 5.3: Restoration improvement using FWHM

Algorithm Time/iter (s) Time Number of FLOPs FLOPs
Comparison Comparison

DPEM 1.03 0.92 84,937,142 0.92
SPS 1.12 1 92,406,026 1

OS-SPS-2 1.23 1.10 92,522,010 1.00
OS-SPS-4 1.86 1.66 95,944,812 1.04
OS-SPS-8 3.65 3.26 102,919,258 1.11
OS-SPS-16 6.83 6.10 116,976,572 1.27

Table 5.4: Comparison of elapsed times per iteration and number of FLOPs for
DPEM, SPS, and OS-SPS algorithms

Pierro’s modified EM (DPEM) [36], SPS (with optimal curvature), and relaxed OS-

SPS (with precomputed curvature) algorithms. Theoretically, different subsets of the

relaxed OS-SPS algorithm (with use of the convolution technique described in Sub-

section 5.5.2) should yield approximately the same computation time per iteration

as the non-OS version. We were unable to achieve that invariance due to MATLAB

overhead, but nevertheless the computation time per iteration increases less rapidly

than the number of subsets. Another way to compare the complexity of the OS-

SPS algorithm with the nonOS version is by calculating the number of floating-point

operations (FLOPs). Table 5.4 shows that the number of FLOPs required in the

OS-SPS algorithms differs only slightly from the number of FLOPs required in the

SPS algorithm. This agrees with our discussion given in Subsection 5.5.2.

Figure 5.10 shows the objective increase, Φ(xn) − Φ(x0), at each iteration of

DPEM, SPS, ordinary OS-SPS (8 subsets), and relaxed OS-SPS (8 subsets) algo-
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rithms. In this figure, both ordinary OS-SPS and relaxed OS-SPS algorithms in-

crease the objective function faster than the DPEM algorithm by roughly the num-

ber of subsets. However, the relaxed OS-SPS algorithm is guaranteed to eventually

converge to the optimal point, unlike the ordinary OS-SPS algorithm. Figure 5.11

compares the convergence rates for different numbers of subsets. The relaxed OS-

SPS-16 yields the fastest convergence rate as expected. From Figure 5.10, the OS

algorithms converge very rapidly compared with DPEM and SPS; therefore, we could

stop the algorithms at the early iteration. Figure 5.12 shows the restored image at

5 iterations of relaxed OS-SPS.
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5 Objective Function Increases of Different Algorithms
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OS−SPS−8
Relaxed OS−SPS−8

Figure 5.10: Comparison of objective function increases of DPEM, SPS, OS-SPS, and
relaxed OS-SPS algorithms. OS-SPS-8 stands for the OS-SPS algorithm
with 8 subsets. Both nonrelaxed and relaxed OS-SPS algorithms have
order-of-magnitude acceleration over the DPEM and SPS algorithms.

5.6.2 Subset Design Analysis

Because one’s choice of subsets can affect the convergence rate of the algorithm,

we investigated the choices of subsets discussed in Section 5.4. Figure 5.13 shows
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Figure 5.11: Comparison of objective function increase versus elapsed time of relaxed
OS-SPS with different numbers of subsets. The 16-subset relaxed OS-
SPS algorithm yielded the fastest convergence rate.

Figure 5.12: Restored image using 5 iterations of relaxed OS-SPS-8.

the objective increase versus iteration for different choices of subsets (Figures 5.2

and 5.4) with use of relaxed OS-SPS. The subsets with the subblock approach show

a poor unpredictable behavior in the early iterations; however, due to relaxation,

the relaxed OS-SPS algorithm with use of these subsets will eventually converge

to the optimal point. However, the subblock approach does not yield an order-of-
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magnitude acceleration in the early iterations. This unpredictable behavior is due

to the violation of the “subset-gradient-balance” conditions.
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Figure 5.13: Comparison of different choices of subsets with use of the relaxed OS-
SPS algorithm. The subset unbalance of relaxed OS-SPS with the sub-
block approach causes an unpredictable behavior of the objective func-
tion increase at the beginning of iterations but the algorithm eventually
converges as a result of relaxation. The relaxed OS-SPS algorithms with
the downsampling approach converge at almost the same rate for dif-
ferent choices of subsets.

Unlike the subblock approach, the downsampling approach provides an order-

of-magnitude acceleration in the early iterations. Therefore, the downsampling ap-

proach is preferable. With the downsampling approach, different designs of subsets

provided almost the same convergence rate and a similar number of FLOPs. Thus,

the subset configuration does not affect the convergence rate much as long as the

downsampling approach is used.

5.6.3 Limitation on the Number of Subsets

There exists a limit on the number of subsets that can yield the speedup factor

by the number of subsets at early iterations. Figure 5.14 compares the order-of-
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magnitude acceleration for different number of subsets when starting from different

initial images. Figure 5.14(a) clearly shows the order-of-magnitude acceleration by

a factor of the number of subsets at early iterations even with the 16-subset con-

figuration. This is because the “subset-gradient-balance” conditions are still valid

when the estimate is far from the solution. On the other hand, when the estimate

is approaching the solution, using many subsets may no longer improve the accel-

eration at early iterations. Figure 5.14(b) illustrates that the order-of-magnitude

acceleration starts to decrease at the 4-subset configuration.

5.6.4 Real Confocal Data

To restore an approximation of the original image from real data, we need to

determine the PSF of the system and the mean of the dark current and background

noise. Thus, we first discuss how to obtain these parameters and then apply image

restoration. Since the experimental PSF tends to provide a more accurate estimation

of the true system PSF than the theoretical PSF, we measure the experimental PSF

by imaging small fluorescent microsphere beads with the same setting as the cell

image. The Argon gas laser was used to produce the 488 nm wavelength (blue light)

to excite the fluorescent agent (FITC) that emits the green light (around 520 nm in

wavelength). We used the microsphere beads with the size of 0.175 µm in diameter,

the objective lens with the magnification of 63x and the NA of 1.2, and the detector

pinhole size of 112 µm. The in-plane spacing and the z step size were set to 0.14µm.

A slice of the bead image is shown in Figure 5.15. Since the bead image contains

noise, the PSFs at different locations may not be exactly the same. Due to small

differences in FWHM of these PSFs, we assumed that the space-invariance of the

system and averaged the beads that are similar in the intensity to yield a single
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system PSF for use in restoration. The 3-D measured PSF is shown in Figures 5.16-

5.17. The FWHMs of the central lobe are approximately 0.31 µm, 0.33 µm, and 0.90

µm in the x, y, and z directions, respectively. As expected, elongation appears along

the z direction and the size of the first lobe at each slice increases as it moves away

from the central slice.

Figure 5.15: Bead image

The dark current can be measured through the image of the blank scan when

no light is present. We approximated the mean of the dark current and background

noise, bi, from the mean of the blank scan. Having calculated all parameters needed,

we applied image restoration techniques on the 256×256×64 confocal image of a

breast cancer cell showing actin filaments in Figure 5.18(a). Figure 5.18(b) shows

the restored images of one xy plane and one yz plane using the CLS method with the

regularization parameter α = 1. Figure 5.18(c) shows the iterative algorithms from

the restoration software called Volocity for 5 iterations. For this image, running

this software for more than 5 iterations produced a noisier image. This iterative

algorithm is based on the maximum entropy technique. Note that the very bright
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spots appear because only 8-bit exporting option is available. Figure 5.18(d) shows

2-D restoration with the 2-D PSF obtained from the central slice of the 3-D PSF. In

this case, the relaxed OS-SPS algorithm was performed at each slice of the cell image

for 15 iterations. This approach barely improves the axial resolution. Figure 5.18(e)

shows 3-D restoration using the relaxed OS-SPS algorithm for 15 iterations. The

3-D relaxed OS-SPS algorithm provides the highest quality image compared with

other techniques: actin filaments become more distinct and show more detail than

other restored images. Moreover, the resolution is improved in the z direction. This

can be shown in Figures 5.19 and 5.20 by plotting the z profiles from xz images in

Figure 5.18. Since the true object is unknown, a similar technique used for measuring

FWHM improvement as in the simulation data is unavailable.

5.7 Conclusions for the Relaxed OS-SPS Algorithm

In this chapter, we demonstrated that the relaxed OS-SPS algorithm, convention-

ally used for tomography, can be adapted for use in image restoration by choosing

appropriate subsets of (measured) pixels. As long as the subsets are chosen by

downsampling the pixels, different choices of subsets hardly affect the convergence

rate of the algorithm. Similar to tomography, our method is able to achieve an

order-of-magnitude acceleration over the non-OS algorithm by combining subsets

that approximately satisfy our “subset-gradient-balance” conditions with appropri-

ate scaling functions in the iterative update as shown in (5.12). The computational

complexity of the OS-SPS algorithm with the convolution approach described in Sub-

section 5.5.2 is theoretically the same for any number of subsets. Although the FFT

approach described in Subsection 5.5.3 increases the computational complexity of the

algorithm when the number of subsets increases, the overall convergence rate is still
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faster than that of the non-OS algorithm. In addition to the fast initial convergence

and computational advantages of relaxed OS-SPS, the restoration results show the

improvement in the resolution and the reduction of elongation in the z direction of

confocal images.
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Figure 5.16: The 21×21×21 measured PSF at different slices. The central slice is at
slice 11.
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Figure 5.18: Noisy and restored images at z = 2.38µm for xy images and at x = 7µm
for yz images. (a) Noisy cell images. Restored images using (b) CLS, (c)
the iterative algorithm from Volocity software, (d) 2-D relaxed OS-SPS,
and (e) 3-D relaxed OS-SPS.
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Figure 5.19: Profiles of noisy and restored images in the z direction at x = 7µm and
y = 7µm. (a) Noisy cell images. Restored images using (b) CLS, (c)
the iterative algorithm from Volocity software, (d) 2-D relaxed OS-SPS,
and (e) 3-D relaxed OS-SPS.
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Figure 5.20: Profiles of noisy and restored images in the z direction at x = 7µm and
y = 28.14µm. (a) Noisy cell images. Restored images using (b) CLS, (c)
the iterative algorithm from Volocity software, (d) 2-D relaxed OS-SPS,
and (e) 3-D relaxed OS-SPS.



CHAPTER VI

Computational Comparison of Iterative

Algorithms

In this dissertation, we have proposed two new, fast, iterative algorithms for im-

age recovery. One might ask how these two algorithms compare with each other

and with other existing iterative algorithms. In this chapter, we quantitatively com-

pare the computational performance of different iterative converging algorithms, in-

cluding EM, SPS, PSCA, PPCA, and relaxed OS-SPS for both space-variant and

space-invariant systems. For fairness, we measure the computational complexity

by calculating the total number of numerical operations required per iteration for

each algorithm. Thus, the overall computational complexity is the product of the

computational requirement per iteration and the number of iterations to converge.

6.1 Comparison of Algorithm Complexity

In this section, we compare the complexity requirement of iterative algorithms

including EM, SPS, PSCA, PPCA, and relaxed OS-SPS algorithms in three different

situations: space-variant, convolution-based space-invariant, and FFT-based space-

invariant systems. All the complexity formulas calculated in this section are based

on all the number of complex additions, subtractions, multiplications, and divisions

137
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necessary for computing one iteration in an iterative algorithm.

To begin such a complexity calculation, we must first specify several parameters,

including those representing the size of the image and those associated with specific

algorithms. Let N be the total number of pixels in the object and data, Nf be the

total number of FFT elements including the amount of zero padding, Nh be the

total number of pixels for the PSF, K be the number of parallel processors, and

M be the number of subsets. For space-variant systems, matrix multiplication is

used for computing an expression like li =
∑N

j=1 aijxj, ∀i = 1, . . . , N , which requires

2N2 − N complex additions and multiplications. For space-invariant systems, the

above expression can be computed with convolution or FFTs, and the total number of

complex additions and multiplications required becomes 2NhN −N for convolution

and Nf log2(2N
3
f ) for FFTs (precomputing the FFT of the PSF). As discussed in

previous chapters, although the PPCA and PSCA algorithms are not quite suitable

for FFTs because of their sequential configurations, a partial FFT can be performed

on the PPCA algorithm when computing the curvature of the likelihood function

at each iteration. However, because FFTs cannot be used in other places in the

algorithm, the PPCA algorithm with the partial FFT may not be as efficient as

other algorithms, such as EM, SPS, and relaxed OS-SPS.

Tables 6.1-6.3 summarize the number of complex operations required for com-

puting one iteration of the iterative algorithms discussed above, using matrix mul-

tiplication, convolution, and FFTs, respectively. Tables 6.4 and 6.5 show examples

of complexity requirement for 2-D and 3-D cases. In both cases, we used 8 subsets

(M = 8) in the relaxed OS-SPS algorithm, 4 processors (K = 4) in the PPCA algo-

rithm, and no zero padding (Nf = N) in the FFT case. For the 2-D case, the image

size was assigned to be 256×256 (N = 2562), and the PSF size was assigned to be
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15×15 (Nh = 15
2). For the 3-D case, the image size was assigned to be 256×256×256

(N = 2563), and the PSF size was assigned to be 15×15×15 (Nh = 15
3). As shown

in Tables 6.4 and 6.5, the PPCA algorithm requires the fewest number of complex

operations for the space-variant and convolution-based space-invariant cases, while

EM and SPS using precomputed curvatures require the fewest number of operations

for the FFT-based space-invariant case. However, to determine the overall compu-

tation time, we need to consider the number of iterations needed to converge, or the

convergence rate. Although the relaxed OS-SPS algorithm requires a higher degree of

complexity than others, it provides fast initial convergence by a factor approximately

equal to the number of subsets, and is suitable for parallel computing. Thus, relaxed

OS-SPS might be comparable to PPCA for the space-variant and convolution-based

space-invariant systems, and to EM and SPS with precomputed curvatures for the

FFT-based space-invariant system.

Algorithm Number of Operations

EM 4N2 + 2N
SPS 6N2 + 10N
SPS,P 4N2 + 3N
PSCA 7N2 + 14N
PSCA,P 5N2 + 8N

PPCA 7N
2

K
+ 4N

K
+ 11N

PPCA,P 5N
2

K
+ 4N

K
+ 4N

Relaxed OS-SPS 4N2 +MN + 2N

Table 6.1: Per-iteration complexity comparison of EM, SPS, PSCA, PPCA and re-
laxed OS-SPS algorithms for the space-variant case. The letter “P” after
the name of the algorithm means that the precomputed curvature was
used in the algorithm.
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Algorithm Number of Operations

EM 4NhN + 2N
SPS 6NhN + 10N
SPS,P 4NhN + 3N
PSCA 7NhN + 14N
PSCA,P 5NhN + 8N
PPCA 7Nh

N
K
+ 4N

K
+ 11N

PPCA,P 5Nh
N
K
+ 4N

K
+ 4N

Relaxed OS-SPS 4NhN +MN + 2N

Table 6.2: Per-iteration complexity comparison of EM, SPS, PSCA, PPCA and re-
laxed OS-SPS algorithms for the convolution-based space-invariant sys-
tem. The letter “P” after the name of the algorithm means that the
precomputed curvature was used in the algorithm.

Algorithm Number of Operations

EM 6Nf log2Nf + 2Nf + 4N

SPS 9Nf log2Nf + 3Nf + 13N

SPS,P 6Nf log2Nf + 2Nf + 5N

PPCA 3NK log2
(
N
K

)
+ 5Nh

N
K + 6

N
K + 11N

PPCA,P 5Nh
N
K + 4

N
K + 4N

Relaxed OS-SPS MNf log2(2N
3
f ) +Nf log2

(
Nf3

2M3

)
+ 2MNf +

2Nf (M−1)
M + 3N + 2MN

Table 6.3: Per-iteration complexity comparison of EM, SPS, PSCA, PPCA and re-
laxed OS-SPS algorithms for the FFT-based space-invariant system. The
letter “P” after the name of the algorithm means that the precomputed
curvature was used in the algorithm.

Number of Operations
Algorithm Matrix Multiplication Convolution FFT

(×1010) (×108) (×107)

EM 1.72 0.59 0.67
SPS 2.58 0.89 1.05
SPS,P 1.72 0.59 0.68
PSCA 3.01 1.04 -
PSCA,P 2.15 0.74 -
PPCA 0.75 0.27 2.00
PPCA,P 0.54 0.19 1.88

Relaxed OS-SPS 1.72 0.60 3.06

Table 6.4: Quantitative comparison of the complexity per iteration of different al-
gorithms in a 2-D case where N = Nf = 256

2, Nh = 15
2, K = 4, and

M = 8.
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Number of Operations
Algorithm Matrix Multiplication Convolution FFT

(×1010) (×108) (×107)

EM 1.13 2.27 0.25
SPS 1.69 3.40 0.39
SPS,P 1.13 2.27 0.25
PSCA 3.01 1.04 -
PSCA,P 1.41 2.83 -
PPCA 0.49 0.99 7.13
PPCA,P 0.35 0.71 7.08

Relaxed OS-SPS 1.13 2.27 1.15

Table 6.5: Quantitative comparison of the complexity per iteration of different al-
gorithms in a 3-D case where N = Nf = 256

3, Nh = 15
3, K = 4, and

M = 8.

6.2 Comparison of Convergence Rates and Overall Compu-

tational Complexity

In this section, we compute the convergence rate of iterative algorithms, includ-

ing EM, SPS, PSCA, PPCA, and relaxed OS-SPS, and then compare their overall

computation time using convergence rates and complexity derived in Section 6.1.

To compare convergence rates and the overall computational complexity of differ-

ent algorithms, we consider two different stages of convergence in this study. Because

the relaxed OS-SPS algorithm has the fastest initial convergence of the algorithms

shown in Figure 6.1, we could stop the algorithm after a few iterations or let it

run until convergence to the optimal solution. Therefore, it would be interesting to

study the behavior of other algorithms in meeting the same object value achieved by

relaxed OS-SPS after only a few iterations, as well as after many iterations. In this

study, we consider a 2-D simulation in which a 256×256 image was degraded by a

15×15 PSF and Poisson noise. The offset, bi, was set to 5. The degraded image was

used as an initial image. The regularization parameter, β, was set to 0.0001 and the

edge-preserving parameter, δ, was set to 1. Figure 6.1 shows the plot of objective
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function increase of EM, SPS, PSCA, PPCA, and relaxed OS-SPS for 50 iterations.

Since the SPS algorithm using the optimal curvature converges very slowly due to a

small offset value, we used the precomputed curvature for the SPS algorithm instead.

However, for the PSCA and PPCA algorithms, we used the optimal curvature be-

cause it provides reasonable convergence rates. The relaxed OS-SPS algorithm with

8 subsets and the PPCA algorithm with 4 parallel processors were considered here.
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Figure 6.1: Comparison of objective function increase versus number of iterations
using EM, SPS, PSCA, PPCA, and relaxed OS-SPS for 50 iterations.
Note that the relaxed OS-SPS algorithm with 8 subsets achieves the
fastest initial convergence.

In the first case, we compare the computational efficiency of relaxed OS-SPS

after a few iterations with other iterative algorithms. Thus, we stop the OS-SPS

algorithm after 5 iterations, and run the other algorithms until they reach the value

of the objective increase at the 5th iteration of relaxed OS-SPS. Table 6.6 shows the

convergence rate and overall computational complexity that is computed from the

multiplication of the number of iterations and the total number of required operations



143

per iteration derived in Section 6.1. For this case, the relaxed OS-SPS algorithm

requires the least overall computations for both convolution-based and FFT-based

space-invariant systems, thus providing the fastest convergence. Although the PPCA

algorithm in the convolution case requires more computations than the relaxed OS-

SPS algorithm, we can increase the number of parallel processors to reduce the

computational requirement, while maintaining a similar convergence rate. Figures 6.2

and 6.3 show the objective increase versus the normalized complexity based on the

largest amount of overall computational requirements for the convolution-based and

FFT-based space-invariant systems, respectively. These figures show that the relaxed

OS-SPS algorithm converges faster than other algorithms in both cases, and the

PPCA algorithm is not suitable for FFTs.

Number of Iterations Overall Computational Complexity
Algorithm to Converge Convolution (×109) FFTs (×108)

EM 33 1.95 2.21
SPS 32 1.89 2.18
PSCA 17 1.77 -
PPCA 17 0.46 3.40

Relaxed OS-SPS 5 0.30 1.53

Table 6.6: Comparison of convergence rates and overall computational complexity of
EM, SPS, PSCA, PPCA, and relaxed OS-SPS algorithms to achieve the
same objective function increase obtained from relaxed OS-SPS-8 after
only 5 iterations. The overall computational complexity was measured by
the total number of numerical operations to converge.

In the second case, we compare the later stage of convergence in which conver-

gence is defined as the smallest number of iteration, n, such that Φ(xn) − Φ(x0) >

0.999(Φ(x∗) − Φ(x0)), where Φ(x0) is the objective value of the initial image, and

Φ(x∗) is the largest objective value among all iterative algorithms obtained in 50

iterations. For this case, the PPCA and PSCA algorithms have a slightly higher

objective value at the 50th iteration than that of the relaxed OS-SPS algorithm.
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Figure 6.2: Comparison of objective function increase versus normalized complexity
using EM, SPS, PSCA, PPCA and relaxed OS-SPS with convolution
to achieve the same objective function increase obtained from relaxed
OS-SPS-8 after only 5 iterations.
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Figure 6.3: Comparison of objective function increase versus normalized complexity
using EM, SPS, PSCA, PPCA and relaxed OS-SPS with FFT to achieve
the same objective function increase obtained from relaxed OS-SPS-8
after only 5 iterations.
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Table 6.7 shows the convergence rate and the overall computational complexity for

convolution-based and FFT-based space-invariant systems. Although the relaxed

OS-SPS algorithm still remains the fastest algorithm to converge, its overall com-

putational complexity is no longer the smallest. The PPCA algorithm requires the

fewest computations for the convolution-based space-invariant system, while the SPS

and EM algorithms requires fewer computations than do the PPCA and relaxed OS-

SPS algorithms. Figures 6.4 and 6.5 compare the overall computation of different

algorithms in terms of normalized complexity. The relaxed OS-SPS algorithm be-

comes less efficient when running many iterations because the relaxation parameter

reduces the algorithm step-size as it is getting close to the solution so that conver-

gence is guaranteed. Owing to this reason, the PPCA algorithm eventually becomes

the fastest as it approaches the optimal solution.

Number of Iterations Overall Computational Complexity
Algorithm to Converge Convolution (×109) FFTs (×108)

EM 112 6.61 7.50
SPS 110 6.49 7.48
PSCA 40 4.16 -
PPCA 40 1.08 8.00

Relaxed OS-SPS 29 1.74 8.87

Table 6.7: Comparison of convergence rates and overall computational complexity of
EM, SPS, PSCA, PPCA and relaxed OS-SPS algorithms to achieve the
same objective function increase that approaches the optimal solution.
The overall computational complexity was measured by the total number
of numerical operations to converge.

To determine whether stopping the algorithm at the early stage of convergence is

a good choice, we have to investigate the quality of the restored image. Figures 6.6(c)

and 6.6(d) compare image quality at the 5th and 29th iterations of relaxed OS-SPS

with 8 subsets. Both images dramatically improve the resolution and reduce most

of the elongation that occurs in the vertical direction compared with the degraded
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Figure 6.4: Comparison of objective function increase versus normalized complexity
using EM, SPS, PSCA, PPCA, and relaxed OS-SPS with convolution to
achieve the same objective function increase that approaches the optimal
solution.
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Figure 6.5: Comparison of objective function increase versus normalized complex-
ity using EM, SPS, PSCA, PPCA, and relaxed OS-SPS with FFTs to
achieve the same objective function increase that approaches the optimal
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image (Figure 6.6(b)). Although the quality of the image at the 5th iteration of

relaxed OS-SPS is not as good as that at the 29th iteration, using 5 iterations of

relaxed OS-SPS provides a reasonably good image with much less computation than

is needed for using 29 iterations of relaxed OS-SPS.

(a) (b)

(d)(c)

Figure 6.6: Restoration comparison at early and later iterations. (a) Original image.
(b) Degraded image. (c) Restored image using relaxed OS-SPS-8 for 5
iterations. (d) Restored image using relaxed OS-SPS-8 for 29 iterations.
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The overall computational complexity computed in this section considers only

specific parameters of each iterative algorithm to illustrate its performance. The

number of subsets in the relaxed OS-SPS algorithm and the number of parallel pro-

cessors in the PPCA algorithm can be varied to increase the convergence rate or to

reduce the number of computations. In addition to the PPCA algorithm, other par-

allelizable algorithms, including EM, SPS, and relaxed OS-SPS, can be implemented

on parallel processors to reduce the required number of computations. Furthermore,

the complexity requirement we computed focuses on the likelihood component part

of the objective function and ignores the penalty part. Use of a penalty function

in the relaxed OS-SPS algorithm can slow computation if the number of subsets

is large, because it requires computing penalty terms many times in one iteration,

which increases the computational complexity.

6.3 Conclusions for Computational Comparison

In this chapter, we have demonstrated the performance of the PPCA and re-

laxed OS-SPS algorithms compared with other iterative, converging algorithms. For

space-variant and convolution-based space-invariant systems, the PPCA and relaxed

OS-SPS algorithms are among the fastest algorithms available, depending on the con-

vergence criteria. When the algorithms are compared for initial convergence only,

the relaxed OS-SPS algorithm provides the fastest convergence rate and requires the

least amount of computation time. Furthermore, this initial convergence of relaxed

OS-SPS was shown to produce much improved restored images compared to the orig-

inal degraded images. However, when the algorithms are iterated until convergence

near the optimal solution, the PPCA algorithm may converge faster than the relaxed

OS-SPS algorithm, due to the effect of relaxation on the relaxed OS-SPS algorithm,
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and requires less computation time.

For the FFT-based space-invariant system, the relaxed OS-SPS, EM, and SPS

algorithms are very comparable. The PPCA algorithm, however, has been shown to

be unsuitable for FFT computing. Because of its fast initial convergence, the relaxed

OS-SPS algorithm has a computational advantage over the EM and SPS algorithms

in the first few iterations. Again, we demonstrated the improvement of the restored

image after a few iterations of relaxed OS-SPS. However, running many iterations

of relaxed OS-SPS using FFTs may result in an increase in computational expense

relative to EM and SPS. To overcome this disadvantage of relaxed OS-SPS when

performing many iterations, one should begin with the relaxed OS-SPS algorithm

for a few iterations and then migrate to another algorithm, such as EM and SPS, for

the remaining iterations.



CHAPTER VII

Statistical Image Reconstruction for Digital

Holography

7.1 Introduction

In addition to the development of two new, fast, converging algorithms for PL

image recovery problems in the previous chapters, in the last part1 of this disserta-

tion, we develop a novel statistical image reconstruction technique based on Poisson

models for use in digital holography, including image plane holography. Instead of

applying image restoration techniques on corrupted reconstructed holographic im-

ages as in confocal microscopy, we directly reconstruct holographic images with less

degradation by using raw hologram data.

Holography is a technique for recording and reconstructing both the amplitude

and phase of a wavefield. Conventional holography consists of two optical processes:

recording and reconstructing. The recording process records the interference be-

tween the object and reference beams, which is regarded as a hologram, using a

photographic material. The optical reconstruction process reconstructs the complex

wavefield of the object by illuminating the recording medium with a wave that is

similar to the original reference beam. This process generates the zero-order im-

1This chapter is based on [112].

150
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age and the twin images called the primary (virtual) and conjugate (real) images.

In in-line holography invented by Gabor [50], the reconstructed holographic image

suffers from an overlap of these three images, thus reducing the resolution and con-

trast of the image. To separate the primary image from other terms, Leith and

Upatnieks [85] invented off-axis holography by introducing the reference beam at an

angle with respect to the object beam. With this technique, the zero-order, primary

and conjugate images appear at different locations, so each image can be observed

separately.

Because the processes of optical recording on photographic film and optical recon-

struction preparation in conventional holography are time consuming, digital record-

ing of a hologram on a CCD camera and a numerical reconstruction of a complex

object field on a computer become attractive alternatives and have been very useful

in many applications [22,32,82,117,118,126]. In digital off-axis holography, the most

common approach for extracting only the primary image in numerical reconstruction

is to perform a digital “spatial filter” that selects only desirable spatial frequencies

in the Fourier domain of a hologram [33]. The main drawbacks of this approach

are the loss of high frequency components in the reconstructed holographic image

and interference from other terms in the hologram, which can degrade the image

quality. Phase-shifting or phase modulation [35,117,131] methods were proposed to

suppress the zero-order and conjugate images, but they require at least three holo-

grams to reconstruct one holographic image. The approach proposed in [87] retrieves

the complex object beam by solving the system equation; however, no noise model

was considered.

To overcome the drawbacks of existing approaches, in this chapter we propose

a new numerical holographic reconstruction approach using a statistical technique.
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This approach is attractive because the statistical model is based on the physical

model of the optical system and statistical techniques have been shown to provide

a good reconstruction in many applications [14, 25, 40, 65]. Statistical image recon-

struction for digital holography can be formulated as an inverse problem in which

we try to obtain a complex reconstructed holographic image from hologram inten-

sity data that are real. Çetin et al. [20] proposed a statistical technique for Fourier

holography and other coherent imaging applications. Their method was based on a

Gaussian noise model and used a least-squares approach.

According to the digitally recording process of a hologram, our statistical model

follows a Poisson distribution having the mean associated with a squared magnitude

of the interference between the object and reference beams. Due to the ill-posed

nature of image reconstruction, our statistical technique uses penalized-likelihood

(PL) estimation. This optimization problem is very challenging because its negative

log-likelihood function contains multiple global minimizers. Therefore, regularization

is necessary to improve the problem conditioning and to reduce non-uniqueness.

Moreover, we show that using two measured holograms can improve the results when

reconstructing a complex holographic image with the same number of pixels as the

recording device. (The use of two data sets to help estimate complex quantities has

been applied in other optical problems [74, 92].)

In PL estimation, the unknown parameter vector, which represents the complex

object field, is estimated by minimizing a cost function. Since closed-form solutions

are unavailable, we need an iterative algorithm to solve the problem. However, for

a gradient-based iterative algorithm, directly minimizing the cost function in the

Poisson model is difficult. Therefore, to simplify the optimization problem, our pro-

posed statistical image reconstruction approach is based on the use of optimization
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transfer and convexity techniques by finding a surrogate function that lies inside

the original cost function. Instead of minimizing the cost function, we minimize the

surrogate function using an iterative algorithm, such as the separable-paraboloidal-

surrogate [40, 109] or conjugate gradient algorithm. These methods monotonically

decrease the cost function, thus ensuring convergence to a local minimizer.

In this study, we demonstrate our statistical holographic reconstruction for digital

holography through image plane holography. However, the proposed technique can

also be applied to phase retrieval problems and Fourier holography when the system

matrix represents the Fourier transform, and to Fresnel holography when the system

matrix represents the Fresnel transform.

This chapter is organized as follows. Section 7.2 describes the measurement

model of a digitally recorded hologram. Section 7.3 reviews conventional numerical

reconstruction using a spatial filtering technique applied in the frequency domain.

Section 7.4 proposes a statistical model for digital holography and introduces a new

statistical holographic reconstruction technique based on PL estimation. Section 7.5

derives the surrogate functions and the iterative algorithms for holographic image

reconstruction. Section 7.6 compares different holographic reconstructed images us-

ing our statistical approach with the conventional reconstruction approach. Finally,

conclusions are given in Section 7.7.

7.2 Measurement Model of Digital Holography

A detailed measurement model of digital holography is discussed previously in

Chapter III; therefore, we review only the general idea here. For conventional holog-

raphy, the interference between the object and reference beams at the recording plane
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has the following continuous-space intensity:

I(~r) = |uo(~r) + uref(~r)|
2

= |uo(~r)|
2 + |uref(~r)|

2 + uo(~r)u
∗
ref(~r) + u

∗
o(~r)uref(~r) (7.1)

where uo denotes the (unknown) object beam, uref denotes the (known) reference

beam, ~r denotes 2-D spatial coordinates, and ∗ stands for the complex conjugate.

For off-axis holography, the reference beam is oriented at some angle resulting in

a known spatial carrier frequency denoted by ~α. An example of such a reference

beam is a plane wave that is tilted by an angle θ with respect to the optical axis,

i.e., uref(~r) = Uref exp{−ı2π~r · ~α} and ~α =
sin θ
λ
where Uref is the amplitude of the

reference wave and λ is the wavelength.

With digital holography, a discretized version of the recording intensity needs

to be considered. Let Y = [Y1, . . . , YN ] denote the hologram measurement data

recorded on a CCD camera, where N is the number of measurement elements. Be-

cause the measurement data are usually noisy, we consider the measurement reported

by the ith element of the CCD camera to be a random variable whose mean is mod-

eled as follows:

E[Yi] = |uo(~r) + uref(~r)|
2 + bi

∣∣∣∣
~r=~ri

= |[Ax]i + ui|
2 + bi, i = 1, . . . , N (7.2)

where xj is the jth unknown complex parameter to be estimated, A is the system

matrix which is the response of the object beam uo(~ri) to the input xj , ui is the

discretized reference beam, bi is an offset due to effects such as dark current, and

~ri is the center location of the ith CCD element. For simplicity, we treat the CCD

camera response as a Dirac impulse at the center of each element. The goal is to
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estimate x from the measured Yi’s, since x parameterizes the unknown object of

interest.

7.3 Numerical Holographic Reconstruction Methods

This section reviews the conventional numerical reconstruction using a filtering

method and introduces iterative reconstruction techniques.

7.3.1 Conventional Filtering Approach

The conventional numerical reconstruction approach for digital holography de-

scribed here mainly focuses on image plane holography where the reconstructed image

is produced directly from the data without further deconvolution. For digital Fresnel

or Fourier holography, one more step of the Fresnel or Fourier transform is needed to

yield the reconstructed image. The conventional numerical reconstruction approach

involves the Fourier filtering method to extract either the primary or conjugate image

corresponding to the last two terms of (7.1). This conventional approach to digital

holography assumes that the reference beam is planar: uref(~r) = Uref exp{−ı2π~r ·~α}.

Substituting the plane wave of the reference beam into (7.1) and taking the Fourier

transform, the spatial-frequency spectrum of the recorded interference pattern is

converted into an angular spectrum of diffracted waves

I(f) = Io(f) +U
2
refδ(f) +UrefUo(f − ~α) +UrefU

∗
o (−f − ~α) (7.3)

where f denotes 2-D spatial frequencies, Io denotes the Fourier transform of the

intensity of the object beam, and Uo denotes the Fourier transform of the field of the

object beam. The zero-order spectrum consists of the first two terms of (7.3) in which

one desires to eliminate to improve the image quality. The two first-order spectra

in the last two terms of (7.3) lead to the primary and conjugate images. Figure 7.1
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shows an example of the magnitude of the Fourier transform of a hologram. In this

figure, the spatial carrier frequency is in the x direction.

fy

fx

−α α

Figure 7.1: The magnitude of the Fourier transform of a hologram.

From Figure 7.1, a simple way to extract either the primary or conjugate image

from other terms is by using a mask to select only one of the first-order spectra in the

frequency domain of the hologram, and then taking the inverse Fourier transform.

Because (7.3) consists of four terms and only one term is extracted, one might raise

a question about the size of the image to be reconstructed or the amount of zero

padding to be added. A common choice is to reconstruct the holographic image

having the same size as the CCD array. Regardless of the size of the reconstructed

image, the conventional numerical reconstruction approach can reduce the resolution

of the reconstructed image due to the loss of high frequency components and the

interference from the residual frequency components of other undesirable terms.

7.3.2 Iterative Reconstruction

Based on (7.2), iterative techniques can be used to estimate the complex object

field from the measurement data. Unlike the filtering method, iterative techniques
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use all the information in the model in (7.1), rather than discarding all but one of

those terms. Furthermore, they do not require the plane wave assumption of the

reference beam; therefore, they could work for both in-line and off-axis holography.

As in the filtering method, reconstructing a complex holographic image whose size

is more than half of the size of the CCD array may result in an under-determined

problem. To avoid this problem, one should use the data whose size is twice the

number of unknown parameters, i.e., N = 2P . Because measurement data usually

contain noise, solving this inverse problem based on noisy data results in an ill-

posed condition. One often employs regularization to remedy the condition of the

problem. Due to noise in the system, a statistical noise model can be constructed

to yield a more accurate model of the system, and an iterative algorithm used for

estimating the object field depends on the corresponding noise model. Therefore, we

will construct the statistical noise model for digital holography in the next section,

and then develop an iterative algorithm for this holographic problem in the later

section.

7.4 Statistical Model

In statistical techniques for inverse problems, one uses the statistical character-

istics of the measurement system to design the noise model. The two major noise

sources are light quanta statistics characterized by a Poisson distribution, and elec-

tronic readout noise characterized by a Gaussian distribution. Since Poisson dis-

tributed photon noise is the dominant source of noise in a CCD camera, for simplic-

ity, we ignore the Gaussian noise and assume a Poisson distribution of background

noise [104]. (Readout noise variance can be included in the bi term if needed [104].)

Thus we model the noisy measurement of the hologram recorded on a CCD camera
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as a Poisson distribution with the mean described in (7.2):

Yi ∼ Poisson{|[Ax]i + ui|
2 + bi}, i = 1, . . . , N. (7.4)

We assume that the system matrix (or the PSF), the reference beam and the back-

ground are known. Because the unknown image vector x is complex, the size of the

data vector Y should be at least twice the number of elements of x, i.e., N ≥ 2P ,

otherwise the problem will be under-determined. The system matrix A can repre-

sent an imaging system matrix as well as Fresnel and Fourier transforms. Thus for

Fresnel and Fourier holography, the reconstructed image can be obtained in a single

step and is free of the zero-order image and one of the twin images.

To reconstruct a holographic image, we specify a cost function to be minimized.

Since image reconstruction is an ill-posed problem, we focus on PL estimation having

the cost function in the following form:

Φ(x) = L(x) + V (x) (7.5)

where L denotes the negative log-likelihood function of the measurement, and V

denotes the roughness penalty function.

The negative log-likelihood function corresponding to the model (7.4) is given by:

L(x) =

N∑
i=1

hi([Ax]i) (7.6)

where the argument l = lR + ılI for hi(l) is complex, and

hi(l) = hi(l
R, lI) = −yi log(|l + ui|

2 + bi) + (|l + ui|
2 + bi) (7.7)

ignoring irrelevant constants independent of x. The superscripts R and I indicate the

real and imaginary parts, respectively. The measured values yi’s that are real-valued

are samples of independent Poisson random variables Yi’s.
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We consider penalty functions that penalize the differences between neighboring

object pixels using the following form [109]:

V (x) = β
r∑
i=1

ψ([Cx]i)

where ψ is a potential function, C is a penalty matrix, β is a regularization parameter

that controls the degree of smoothness in the reconstructed image, and r is the

number of pairs of neighboring object pixels. For the first-order neighborhood, the

matrix C consists of horizontal and vertical neighbors.

Our goal is to estimate x by finding the minimizer of the cost function:

x̂
4
= argmin

x
Φ(x).

Since closed-form solutions for the minimizer are unavailable, one needs to apply an

iterative algorithm.

7.5 The Algorithm

In this section, we approach the minimization problem by using optimization

transfer and convexity techniques. These lead to an iterative algorithm that mono-

tonically decreases the cost function and ensures convergence to a local minimum.

7.5.1 Optimization Transfer

Directly minimizing the cost function in (7.5) is difficult when hi’s are non-

quadratic. To simplify the optimization problem and to assure monotonic decreases

in the cost function at each iteration, one can apply an optimization transfer approach

by finding a “surrogate” function φ that lies above the cost function [40,42,43,109].

Therefore, we obtain the next estimate by minimizing the surrogate function instead:

xn+1
4
= argmin

x
φ(x; xn) (7.8)
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where xn denotes the estimate at the nth iteration.

Choosing a surrogate function φ that satisfies the following monotonicity con-

dition ensures that the iterates xn will monotonically decrease the cost function

Φ [40,42, 43]:

Φ(xn)− Φ(x) ≥ φ(xn; xn)− φ(x; xn), ∀x ≥ 0. (7.9)

Instead of using the condition above, we choose a surrogate function φ(x; xn) that

satisfies the following sufficient conditions:

1. φ(xn; xn) = Φ(xn)

2. φ(x; xn) ≥ Φ(x), ∀x ∈ C
P

3.
∂

∂xj
φ(x; xn)

∣∣∣∣
x=xn

=
∂

∂xj
Φ(x)

∣∣∣∣
x=xn

, ∀j. (7.10)

The next section presents the surrogate functions for the cost function given in

(7.5).

7.5.2 Paraboloidal-Surrogate Functions

We first focus on the likelihood part. Since quadratic choices for the surrogate φ

are particularly easy to minimize, our goal now is to find a parabola that lies above

the negative log-likelihood function. Figure 7.2 illustrates the one-dimensional plot

of the marginal cost function hi(l
R, 0). In this plot the marginal cost function has

two optimal minima. However, a 2-D plot of hi(l
R, lI) has multiple minimizers like

a circle. Therefore, it is a challenging problem to find the correct optimal solution.

Since l and ui are complex, we can rewrite hi(l) in (7.7) as follows:

hi(l
R, lI) = −yi log

(
αR,ni

[
(lR + uRi )

2 + bi/2

αR,ni

]
+ αI,ni

[
(lI + uIi )

2 + bi/2

αI,ni

])

+[(lR + uRi )
2 + bi/2] + [(l

I + uIi )
2 + bi/2]. (7.11)
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Figure 7.2: Illustration of the marginal cost, hi(l
R, 0), and surrogate functions as a

function of lR. The solid line is the original marginal cost function. The
other two lines lying above the cost function are the surrogate functions.
The function with the dashed line is called the paraboloidal surrogate
function which has the same first derivative and the same point as the
original cost function at l = ln.

Because the negative log function is convex, we can apply De Pierro’s multiplicative

trick [36] to separate the real and imaginary parts by choosing αR,ni =
(lR,n+uRi )

2+bi/2

kni

and αI,ni =
(lI,n+uIi )

2+bi/2

kni
, where kni = |l

n + ui|2 + bi and ln = [Axn]i. Combining the

fact that αR,ni +α
I,n
i = 1 with the convexity of hi in (7.11) leads to our first surrogate

function:

hi(l) ≤ hRi (l
R; ln) + hIi (l

I ; ln)

where

hRi (l
R; ln)

4
= −yiα

R,n
i log

(
(lR + uRi )

2 + bi/2

αR,ni

)
+ (lR + uRi )

2 + bi/2 (7.12)

and

hIi (l
I ; ln)

4
= −yiα

I,n
i log

(
(lI + uIi )

2 + bi/2

αI,ni

)
+ (lI + uIi )

2 + bi/2. (7.13)
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The surrogates hRi and h
I
i each have two minima (see Figure 7.2) and are symmetric

about the line l = −ui. To facilitate the minimization in (7.8), we want to find

parabolic surrogates that lie above these curves. A parabolic surrogate function for

the real part has the following form:

qRi (l
R; ln) = hRi (l

R,n; ln) + ḣRi (l
R,n; ln)(lR − lR,n) +

1

2
cRi (l

R − lR,n)2 (7.14)

where ḣRi is the first derivative of h
R
i and c

R
i is the curvature of the parabola q

R
i . This

parabola has the same value as hRi at the current estimate l
R = lR,n and the same

first derivatives at that point. A parabolic surrogate function for the imaginary part

is denoted by qIi (l
I , ln) and has an analogous form.

According to the sufficient conditions in (7.10), we must choose the parabolas qRi

and qIi to satisfy the following conditions:

1. qRi (l
R,n; ln) + qIi (l

I,n; ln) = hRi (l
R,n; ln) + hIi (l

I,n; ln) = hi(l
n)

2. qRi (l
R; ln) + qIi (l

I ; ln) ≥ hRi (l
R; ln) + hIi (l

I ; ln), ∀lR, lI

3. q̇Ri (l
R,n; ln) + q̇Ii (l

I,n; ln) = ḣRi (l
R,n; ln) + ḣIi (l

I,n; ln).

The first and third conditions are satisfied by the construction of qRi and q
I
i . The only

remaining problem is to find curvatures cRi and c
I
i that satisfy the second conditions.

For the fastest convergence rate [40], ideally we would choose the smallest curvature

for which the second condition is satisfied. However, a closed-form solution for this

optimal choice has proven elusive. Instead, we have chosen the curvatures using the

following general expression:

coi = max
l∈R

{
ḣoi (l; l

n)− ḣoi (l
o,n; ln)

l − lo,n

}
, (7.15)

where o represents the real and imaginary parts, R and I. Although this curvature

is not optimal, it is proven in Appendix D that this choice leads to a parabolic
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surrogate that is guaranteed to lie above the cost function. For the specific model

given in (7.4), the curvatures in (7.15) have the following closed-form solution:

coi =
2yi
√
b2i + 4(l

o,n + uoi )
2(lo,n + uoi )

2

kni

{
(lo,n + uoi )

2(bi + 2) + bi

[
bi +

√
b2i + 4(l

o,n + uoi )
2
]} + 2. (7.16)

A detailed derivation of the above expression is given in Appendix E.

Computing the curvature in (7.16) at every iteration may slow down the compu-

tation time. To avoid this issue, one can use a precomputed curvature. One simple

option of the precomputed curvature is

co,prei = max
lo,n∈R

max
l∈R

{
ḣoi (l; l

n)− ḣoi (l
o,n; ln)

l − lo,n

}
. (7.17)

This basically becomes a 1-D problem because we have derived the closed-form so-

lution for the inner maximum expression in (7.16). According to the proof in Ap-

pendix D, this precomputed curvature still provides a parabolic surrogate that always

lies above the cost function. To compare this precomputed curvature with the it-

eratively calculated curvature in (7.16), we plot cRi in (7.16) as a function of l
R in

Figure 7.3.
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Figure 7.3: A plot of curvature cRi as a function of l
R at two different values of yi.

The precomputed curvature evaluated at the maximum value of the curvature
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in Figure 7.3 depends on the value of yi. When yi is small, then the precomputed

curvature is not too different from other curvatures at different values of lR. However,

when yi is large, then the precomputed curvature becomes too big for most values of

lR. Although, this may require many iterations to converge, the computation time

per iteration is largely reduced. However, other choices of precomputed curvature

can be considered to reduce the computation time and the number of iterations to

converge.

The following inequalities summarizes the construction of the surrogate functions:

L(x) =

N∑
i=1

hi([Ax]i)

≤
N∑
i=1

hRi ([Ax]
R
i ; [Ax

n]i) + h
I
i ([Ax]

I
i ; [Ax

n]i)

≤
N∑
i=1

qRi ([Ax]
R
i ; [Ax

n]i) + q
I
i ([Ax]

I
i ; [Ax

n]i)

4
= Q(x; xn). (7.18)

Since the likelihood surrogate function Q is quadratic, many algorithms could be

applied to obtain the minimizer. This is simpler than directly minimizing the original

cost function. In this chapter, we implement the separable-paraboloidal-surrogate

(SPS) [40, 109] and conjugate gradient (CG) algorithms for this problem. The CG

method can be applied easily because nonnegativity constraint is not enforced in this

problem.

7.5.3 The Separable-Paraboloidal-Surrogate Algorithm

In this section, we derive the SPS algorithm for this specific model. To apply

the SPS approach, we separate pixels by using the additive convexity technique

developed by De Pierro [36] so that simultaneous updating can be performed. Thus,
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we perform the additive convexity trick on qRi as follows:

qRi ([Ax]
R
i ; [Ax

n]i) = qRi

(
P∑
j=1

πij

[
[aij(xj − xnj )]

R

πij
+ [Axn]Ri ; [Ax

n]i

])

≤
P∑
j=1

πijq
R
i

(
aRij(xj − x

n
j )
R − aIij(xj − x

n
j )
I

πij
+ [Axn]Ri ; [Ax

n]i

)

where πij ≥ 0 and
∑P

j=1 πij = 1. As in previous work [109], we chose πij =
|aij |

∑P
j=1 |aij |

.

An analogous technique is applied to the parabola qIi for the imaginary part. Combin-

ing the real and imaginary parts, we finally obtain the following surrogate function:

Q(x, xn) ≤
P∑
j=1

Qj(xj , x
n) =

P∑
j=1

QR
j (x

R
j , x

I
j ; x

n) +QI
j (x

R
j , x

I
j ; x

n)

where the separable-paraboloidal-surrogate function for the real part is

QR
j (x

R
j , x

I
j ; x

n) =

N∑
i=1

πijq
R
i

(
aRij(xj − x

n
j )
R − aIij(xj − x

n
j )
I

πij
+ [Axn]Ri ; [Ax

n]i)

)

and the separable-paraboloidal-surrogate function belonging to the imaginary part

is

QI
j (x

R
j , x

I
j ; x

n) =
N∑
i=1

πijq
I
i

(
aRij(xj − x

n
j )
I + aIij(xj − x

n
j )
R

πij
+ [Axn]Ii ; [Ax

n]i)

)
.

To obtain the update at each iteration, these two functions are minimized instead of

the original negative log-likelihood function. When no penalty is involved, we obtain

the maximum-likelihood estimate which is derived in the next section.

7.5.4 Maximum-Likelihood Estimation

Since Qj is a quadratic function of two variables: x
R
j and x

I
j , minimizing Qj

using Newton’s method includes a 2×2 matrix-vector multiplication for each pixel

as follows:

xn+1j

4
= argmin

xj
Qj(x

R
j , x

I
j ; x

n)

= xnj −H
−1
j ∇Qj(x

n
j ; x

n), j = 1, . . . , P (7.19)
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where the gradient of Qj is

∇Qj(x
n
j ; x

n) =




∂QRj
∂xRj
+

∂QIj
∂xRj

∂QRj
∂xIj
+

∂QIj
∂xIj



xj=xnj

=




∑N
i=1 a

R
ijḣ

R
i ([Ax

n]Ri ; [Ax
n]i) + a

I
ijḣ

I
i ([Ax

n]Ii ; [Ax
n]i)∑N

i=1−a
I
ijḣ

R
i ([Ax

n]Ri ; [Ax
n]i) + a

R
ijḣ

I
i ([Ax

n]Ii ; [Ax
n]i)




=




∂L(x)

∂xRj

∂L(x)

∂xIj



x=xn

4
=


 L̇Rj

L̇Ij




and the jth 2×2 Hessian matrix, Hj, is

Hj
4
=


 dRRj dRIj

dIRj dIIj


 =




∂2QRj
∂(xRj )

2 +
∂2QIj
∂(xRj )

2

∂2QRj
∂xRj ∂x

I
j
+

∂2QIj
∂xRj ∂x

I
j

∂2QRj
∂xIj∂x

R
j
+

∂2QIj
∂xIj∂x

R
j

∂2QRj
∂(xIj )

2 +
∂2QRj
∂(xIj )

2



xj=xnj

=



∑N

i=1
1
πij
[(aRij)

2cRi + (a
I
ij)
2cIi ]

∑N
i=1

aRija
I
ij

πij
[−cRi + c

I
i ]∑N

i=1

aRija
I
ij

πij
[−cRi + c

I
i ]

∑N
i=1

1
πij
[(aIij)

2cRi + (a
R
ij)
2cIi ]


 .

After matrix multiplication, the explicit form for the update of the SPS algorithm

simply becomes:
 xR,n+1j

xI,n+1j


 =


 xR,nj − 1

det(Hj)

(
dIIj L̇

R
j − d

RI
j L̇Ij

)
xI,nj −

1
det(Hj)

(
−dRIj L̇Rj + d

RR
j L̇Ij

)

 (7.20)

where the determinant of the Hessian matrix, Hj, is

det(Hj) = dRRj dIIj − (d
RI
j )
2.

The surrogate functions derived in this section do not include the penalty func-

tion. Without regularization, a noisy image might be obtained after several itera-

tions. Therefore, in the next section we derive the surrogate function for the penalty

term in PL estimation. The derivation is an extension of our previous work [40,109]

to the case of complex images.
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7.5.5 Penalty Surrogate Function and Penalized-Likelihood Estimation

Lacking any prior information that would relate the real and imaginary parts of

the unknown image x, we employ separate penalty functions for the two parts. Since

we separately penalize the real and imaginary parts, using different regularization

parameters for the real and imaginary parts would provide more flexibility than

having only one regularization parameter for both. Thus, the penalty function can

be expressed in the following form:

V (x) = βR
r∑
i=1

ψ([CRxR]i) + β
I

r∑
i=1

ψ([CIxI ]i), (7.21)

where CR and CI are the penalty matrices for the real and imaginary parts of the

estimates, and βR and βI are the regularization parameters for the real and imaginary

parts . To preserve edges, we use a nonquadratic potential function ψ of the following

form [81]:

ψ(t) = δ2
[∣∣∣∣ tδ
∣∣∣∣− log

(
1 +

∣∣∣∣ tδ
∣∣∣∣
)]

(7.22)

where δ is a user-specified parameter that controls the degree of edge preservation.

The smaller δ, the stronger the degree of edge preservation.

Similar to the nonquadratic likelihood function, we derive the following surrogate

functions:

V (x) ≤ V ′(x; xn) ≤
P∑
j=1

Sj(xj ; x
n) (7.23)

where V ′ is called the paraboloidal-surrogate function for the penalty function and

Sj is called the separable-paraboloidal surrogate function for the penalty function.

The first inequality is derived by forming a parabola that lies above the original

penalty function and the second inequality is derived by using the convexity of ψ. If
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a quadratic potential function is used instead, then the parabola step can be skipped.

The paraboloidal-surrogate function V ′(x; xn) has the following form:

V ′(x; xn) = βR
r∑
i=1

ϕ([CRxR]i; [C
RxR,n]i) + β

I

r∑
i=1

ϕ([CIxI ]i; [C
IxI,n]i) (7.24)

where the parabola ϕ is

ϕ(t; tn) = ψ(tn) + ψ̇(tn)(t− tn) +
1

2
ω(tn)(t− tn)2 (7.25)

and the curvature ω of the parabola [68] is

ω(t) =
ψ̇(t)

t
.

Since the paraboloidal-surrogate function V ′ is convex, we can apply the additive

convexity technique developed by De Pierro [36] to obtain the separable-paraboloidal-

surrogate function that lies above V ′ as follows:

Sj(xj ; x
n) = SRj (x

R
j ; x

n) + SIj (x
I
j ; x

n)

= βR
r∑
i=1

γRijϕ

(
cRij(xj − x

n
j )
R

γRij
+ [CRxR,n]i; [C

RxR,n]i

)

+βI
r∑
i=1

γIijϕ

(
cIij(xj − x

n
j )
I

γIij
+ [CIxI,n]i; [C

IxI,n]i

)
(7.26)

and γoij =
|coij |

∑P
j=1 |c

o
ij |
where o represents R or I. From (7.25), the first derivative of ϕ

evaluated at t = tn is ψ̇(tn), thus the gradient of Sj is

∇Sj(x
n
j ; x

n) =




∂SRj
∂xRj

∂SIj
∂xIj



xj=xnj

=


 βR

∑r
i=1 c

R
ijψ̇([C

RxR,n]i)

βI
∑r

i=1 c
I
ijψ̇([C

IxI,n]i)




=




∂V (x)

∂xRj

∂V (x)

∂xIj



x=xn

4
=


 V̇ R

j

V̇ I
j


 .
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Because there is no coupling between xRj and x
I
j in the penalty surrogate function,

the Hessian matrix for Sj is diagonal:

∇2Sj(x
n
j ; x

n) =


 pR,nj 0

0 pI,nj




where

po,nj =
∂2Soj
∂(xoj)

2

∣∣∣∣∣
xj=xnj

= βo
r∑
i=1

(coij)
2ψ̇([Coxo,n]i)

γoij[C
oxo,n]i

.

To obtain the update of the SPS algorithm in PL estimation, we combine the sur-

rogates for the likelihood and penalty. Thus, the surrogate function to be minimized

becomes

φj(xj ; x
n) = QR

j (xj ; x
n) +QI

j (xj ; x
n) + SRj (x

R
j ; x

n) + SIj (x
I
j ; x

n).

So the update xj is obtained by:

xn+1j = argmin
xj

φj(xj ; x
n).

Similar to (7.20), the update of the SPS algorithm with regularization becomes
 xR,n+1j

xI,n+1j


 =


 xR,nj

xI,nj


− 1

det H̃j


 (dIIj + p

R
j )(L̇

R
j + V̇

R
j )− d

RI
j (L̇

I
j + V̇

I
j )

−dRIj (L̇
R
j + V̇

R
j ) + (d

RR
j + p

R
j )(L̇

I
j + V̇

I
j )



(7.27)

where the new Hessian matrix H̃j is

H̃j = Hj +


 pRj 0

0 pIj




and its determinant is

det H̃j = (d
RR
j + p

R
j )(d

II
j + p

I
j )− (d

RI
j )
2.

The SPS algorithm outline for holographic image reconstruction is shown in Ta-

ble 7.1.
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x̂ = initial image
ai =

∑P
j=1 |aij|, ∀i = 1, . . . , N

for n = 1, . . . ,Niters
l̂ =

∑P
j=1 aij x̂j , ∀i = 1, . . . , N

kni = |l̂ + ui|
2 + bi, ∀i = 1, . . . , N

ḣi =
−2yi(l̂+ui)

kni
+ 2(l̂ + ui), ∀i = 1, . . . , N

cRi = 2 +
2yi
√
b2i+4(l̂

R+uRi )
2(l̂R+uRi )

2

kni {(l̂
R+uRi )

2(bi+2)+bi[bi+
√
b2i+4(l̂

R+uRi )
2]}
, ∀i = 1, . . . , N

cIi = 2 +
2yi
√
b2i+4(l̂

I+uIi )
2(l̂I+uIi )

2

kni {(l̂
I+uIi )

2(bi+2)+bi[bi+
√
b2i+4(l̂

I+uIi )
2]}
, ∀i = 1, . . . , N

for j = 1, . . . , P
L̇j =

∑N
i=1 a

∗
ijḣi

dRRj =
∑N

i=1
ai
|aij |
[(aRij)

2cRi + (a
I
ij)
2cIi ]

dIIj =
∑N

i=1
ai
|aij |
[(aIij)

2cRi + (a
R
ij)
2cIi ]

dRIj = d
IR
j =

∑N
i=1

aia
R
ija
I
ij

|aij |
[−cRi + c

I
i ]

V̇ R
j = β

R
∑r

i=1 c
R
ijψ̇([C

Rx̂R]i)

V̇ I
j = β

I
∑r

i=1 c
I
ijψ̇([C

I x̂I ]i)

pRj = β
R
∑r

i=1

(cRij)
2

γRij
ψ̇([CRx̂R]i)

pIj = β
I
∑r

i=1

(cIij)
2

γIij
ψ̇([CI x̂I ]i)

det(Hj) = (d
RR
j + p

R
j )(d

II
j + p

I
j)− (d

RI
j )
2

x̂Rj = x̂
R
j −

1
det(Hj)

[(dIIj + p
R
j )(L̇

R
j + V̇

R
j )− d

RI
j (L̇

I
j + V̇

I
j )]

x̂Ij = x̂
I
j −

1
det(Hj)

[−dRIj (L̇
R
j + V̇

R
j ) + (d

II
j + p

R
j )(L̇

I
j + V̇

I
j )]

end
end

Table 7.1: The SPS algorithm outline for holographic reconstruction

7.5.6 The Conjugate Gradient Method

Without the nonnegativity constraint, the CG method can be applied easily to

this problem; therefore, we derive the CG method in this section. For simplicity, we

focus only on the likelihood part. The penalty part can follow the same concept as

the SPS algorithm and is included in the algorithm outline. Starting from (7.18), we

use CG to minimize the quadratic surrogate function Q.



171

The update xn+1 using CG can be obtained as follows:
 xR,n+1

xI,n+1


 =


 xR,n

(xI,n


− µndn (7.28)

where µn is the step size at the nth iteration given by

µn =
−Q̇Tdn

(dn)T Q̈dn
, (7.29)

T stands for complex transpose, dn is the search direction at the nth iteration, and

the gradient and Hessian matrices of Q are given by

Q̇
4
=


 ∂Q

∂xR

∂Q
∂xI



x=xn

=


 (AR)T ḣR + (AI)T ḣI

−(AI)T ḣR + (AR)T ḣI


 =


 ∂L

∂xR

∂L
∂xI



x=xn

= L̇

Q̈
4
=


 ∂2Q

∂(xR)2
∂2Q

∂xR∂xI

∂2Q
∂xI∂xR

∂2Q
∂(xI)2



x=xn

=


 (AR)TDRAR + (AI)TDIAI −(AR)TDRAI + (AI)TDIAR

−(AI)TDRAR + (AR)TDIAI (AI)TDRAI + (AR)TDIAR


 .

Each entry along the diagonal of the diagonal matrix Do consists of the curvature coi

in (7.15). The search direction d is initialized by −Q̇ and iterated as follows:

dn+1 = en+1 + ξn+1dn

ξn+1 = max

{
0,
(en+1)T (en+1 − en)

(en)T en

}
(7.30)

where the residual e is always set to the negation of the gradient: en = −Q̇n. Instead

of computing the large Hessian matrix Q̈ at every iteration in order to compute µn,

we can simplify the evaluation of (dn)T Q̈dn as follows:

(dn)T Q̈dn = [(dn1 )
T (AR)T − (dn2 )

T (AI)T ]DR[AR(dn1 )−A
I(dn2)] +

[(dn1 )
T (AI)T + (dn2)

T (AR)T ]DI [AI(dn1 ) + A
R(dn2)]
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where dn1 and d
n
2 are the first and second halves of d

n. Although these derivation is

only for the likelihood part, the penalty part can be derived in the similar manner as

the SPS algorithm discussed above. The algorithm outline for penalized-likelihood

holographic reconstruction using the CG method are summarized in Table 7.2.

x̂ = initial image
d = −[L̇R + V̇ R; L̇I + V̇ I ]
e = d
for n = 1, . . . ,Niters

l̂ =
∑P

j=1 aij x̂j , ∀i = 1, . . . , N

kni = |l̂ + ui|
2 + bi, ∀i = 1, . . . , N

ḣi =
−2yi(l̂+ui)

kni
+ 2(l̂ + ui), ∀i = 1, . . . , N

cRi = 2 +
2yi
√
b2i+4(l̂

R+uRi )
2(l̂R+uRi )

2

kni {(l̂
R+uRi )

2(bi+2)+bi[bi+
√
b2i+4(l̂

R+uRi )
2]}
, ∀i = 1, . . . , N

cIi = 2 +
2yi
√
b2i+4(l̂

I+uIi )
2(l̂I+uIi )

2

kni {(l̂
I+uIi )

2(bi+2)+bi[bi+
√
b2i+4(l̂

I+uIi )
2]}
, ∀i = 1, . . . , N

L̇j =
∑N

i=1 a
∗
ijḣi, ∀j = 1, . . . , P

V̇ R
j = β

R
∑r

i=1 c
R
ijψ̇([C

Rx̂R]i), ∀j = 1, . . . , P

V̇ I
j = β

I
∑r

i=1 c
I
ijψ̇([C

I x̂I ]i), ∀j = 1, . . . , P

pRj = β
R
∑r

i=1

(cRij)
2

γRij
ψ̇([CRx̂R]i), ∀j = 1, . . . , P

pIj = β
I
∑r

i=1

(cIij)
2

γIij
ψ̇([CI x̂I ]i), ∀j = 1, . . . , P

Q̇ = −[L̇R + V̇ R; L̇I + V̇ I ]

µ = −Q̇T d
[cR;cI ]T [ARd1−AId2;AId1+ARd2]2+[pR;pI ]T d2

[x̂R; x̂I ] = [x̂R; x̂I ] + µd
eold = e
e = −Q̇

ξ = max{0, e
T (e−eold)
(eold)Teold

}
d = e+ ξd

end

Table 7.2: The CG outline for holographic reconstruction

7.5.7 Number of Data Sets Used

In principle, our statistical technique can be applied to data with any number

of measurement elements N and to a model with any number of image pixels P .
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Whereas N is fixed by the choice of the measurement device (e.g., CCD camera

pixels), the value of P can be selected by the algorithm designer. A natural choice for

P would be the number of the CCD elements, which is the size of a single hologram.

Theoretically, to estimate P complex unknown parameters, the given number of data

should be at least 2P (N ≥ 2P ) such that the problem is not under-determined.

Another alternative is to estimate only half the number of the CCD elements (P/2)

using only one set of data (N = P ). However, this alternative option involves

interpolation and downsampling processes, which might introduce some artifacts in

the reconstructed image. To study the effect of the sizes of the reconstructed image

and data, in simulation, we consider the following three different cases for statistical

reconstruction:

Case 1: Use one hologram to reconstruct a holographic image whose size is half the

number of CCD elements (half-size reconstruction), i.e., P = N/2

Case 2: Use one hologram to reconstruct a holographic image whose size is the same

as the number of CCD elements (full-size reconstruction), i.e., P = N

Case 3: Use two holograms to reconstruct a holographic image whose size is the

same as the number of CCD elements (full-size reconstruction), i.e., N = 2P

7.6 Simulation Results

In this section, we compare the conventional numerical reconstruction technique

with our statistical reconstruction based on three different cases discussed previously.

Moreover, we consider a real object constraint in which the imaginary part of the

estimate is forced to zero at every iteration when the object is known priori to be

real.
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7.6.1 Effect of Numbers of Data Sets

A 128×128 original image (Figure 7.4(a)) that is complex was degraded by the

PSF, interference pattern, and Poisson noise (Figure 7.4(b)) as in (7.4). We assumed

a shift-invariant optical system for which the system matrix is Toeplitz, so Ax can be

implemented by convolution with the system PSF. To imitate the real imaging system

in holography, we used a 7×7 jinc function, J1(2πr)
πr

where J1 is a Bessel function of

the first kind and r is a polar-coordinate parameter, with full width at half maximum

(FWHM) of 3.5 pixels as the PSF of the system. We used the following reference

beams:

ur1(n1, n2) = 200 exp

(
−ı
2π

3
n1

)
, n1, n2 = 0, . . . , 127

ur2(n1, n2) = 150 exp

(
−ı
2π

4
n1

)
, n1, n2 = 0, . . . , 127.

For experiments with only one data set, we used the first reference beam. The offset

bi is assigned to be 5 and 10 for the first and second data, respectively. The Poisson

noise has the peak signal-to-noise ratio (PSNR) of 29 dB and 24 dB in the first and

second hologram data (Figure 7.4(b)), respectively. The PSNR in the data is defined

as follows:

PSNR
4
= 10 log10

[
maxi(yi − bi)2

1
N

∑N
i=1(yi − E[yi])

2

]
.

Each simulated real-valued hologram data has the same size (128×128 pixels) as the

original complex-valued image.

Figure 7.4(c) shows the conventional reconstruction using an apodizing Gaussian

mask. The 41×41 Gaussian mask with FWHM of 27.2 pixels is performed on the

selected region in the frequency domain of the hologram. The magnitude and phase

of the reconstructed image appear to be blurry while noise still remains. Owing to
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the effect of the filtering method, noise cannot be removed completely without over-

smoothing edges. Figures 7.4(d)-(f) show our statistical holographic reconstruction

from three different cases. Because of the ill condition of the problem, the recon-

structed image can be quite sensitive to the initial image. We used the image from

the conventional approach as the initial image and included the nonquadratic penalty

function with the regularization parameters βR = βI = 10 and the edge-preserving

parameters δR = δI = 1. The SPS algorithm was run for 200 iterations. Unlike the

conventional technique, the statistical technique with the nonquadratic penalty can

greatly reduce noise while still preserving edges. We expect that the number of data

should be at least twice the number of unknown parameters for a complex image to

avoid an under-determined problem. Figure 7.4(d) shows half-size reconstruction us-

ing one data set (Case 1). The resulting reconstructed image is linearly interpolated

in the vertical direction to have the same size as the original image for the purpose

of display. Figures 7.4(e)-(f) show full-size reconstruction using one and two data

sets, respectively (Cases 2 and 3). From these figures, half-size reconstruction pro-

duces less noise but a little more artifacts than full-size reconstruction using one data

set. This might be because the quality of the image using half-size reconstruction

is reduced as a result of interpolation and downsampling processes. Moreover, the

penalty function can improve the ill conditioning of the problem and reduce some

ambiguity solutions. The profiles of the magnitude and phase of the reconstructed

images are shown in Figures 7.5 and 7.6. As expected, full-size reconstruction with

two data sets yields the best reconstructed image with the smallest normalized root

mean-squared error (NRMSE). The NRMSE in percentage is defined as follows:

NRMSE =
‖x̂− xtrue‖

‖xtrue‖
× 100%
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where x̂ is the reconstructed image, xtrue is the true image, and ‖ · ‖ represents the

Euclidean norm.

Figure 7.7 shows the contours of the marginal objective functions at a particular

pixel using one and two data sets. For illustration, we examined the noiseless and

blurless case without regularization to clearly demonstrate how the statistical tech-

nique using two sets of data can help reducing non-uniqueness of the problem. As

shown in Figure 7.7(a), since there are multiple minimizers, the algorithm converges

to an estimate that depends strongly on the initial guess. When two data sets are

used, the solutions become more distinct, and thus the algorithm often converges

to the desired solution as in Figure 7.7(b). However, we sometimes experience con-

vergence to a different solution even with two data sets. This situation is possible

because the problem does not have a unique global solution.

All cases of our statistical technique have a monotonic decreasing cost function;

therefore, our technique is guaranteed to converge to one of the local minimum so-

lutions. The unique global solution is not guaranteed in this problem because the

original negative log-likelihood function does not have a unique minimizer. Never-

theless, the penalty function can greatly reduce this non-uniqueness.

7.6.2 Real Object Constraint

If the object is known priori to be real, then we constrain the imaginary part of the

estimates to be zero. In this case, we may not need to have N ≥ 2P . Thus we expect

similar results for three cases in the statistical approach but some artifacts caused by

interpolation and downsampling might exist in the case of half-size reconstruction.

A 128×128 real image (Figure 7.8(a)) was degraded using the same parameters as

in the previous section. The conventional numerical reconstruction in Figure 7.8(d)
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is blurry as a result of the Gaussian filter. Figures 7.8(e)-(g) show the statistical

reconstruction performed with the nonquadratic penalty function (βR = βI = 5, δR =

δI = 5) for 200 iterations. Although the NRMSEs for all three cases are slightly

different, they all provide similar reconstructed holographic images with less blur

than the resulting image from the conventional approach. Because of the real object

constraint, using one data set is adequate to provide a good holographic reconstructed

image.

7.7 Conclusions for Holographic Image Reconstruction

We have demonstrated the potential for reconstructing a digital holographic im-

age using the proposed statistical technique. Because the method uses all the in-

formation in the recorded hologram rather than just one term, this approach can

improve the quality of the image relative to the conventional numerical reconstruc-

tion technique that uses a spatial filter applied in the spatial frequency domain.

Moreover, unlike the conventional approach, our statistical technique is not limited

by the plane wave assumption of the reference beam. Because of the ill condition-

ing and non-uniqueness of the problem, our statistical holographic reconstruction

is based on PL estimation. We constructed a statistical model for this system and

developed a monotonic algorithm which guarantees convergence to at least a local

minimum. Although the unique global minimum is not guaranteed due to the non-

uniqueness nature of the negative log-likelihood function in this problem, we mostly

overcome the problem of multiple minima through the help of the penalty function

and the increase in the number of the measurement data. For a real object, the real-

ness constraint can be enforced at each iteration so that the algorithm can converge

faster and only one data set should be sufficient to yield a good reconstructed image.
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Figure 7.4: Holographic reconstruction of a complex object. The top image of each
pair represents the magnitude of the image and the bottom image repre-
sents the phase of the image, except for the hologram data. (a) Original
image. (b) Two different hologram data. (c) Conventional reconstruc-
tion using an apodizing Gaussian filter (NRMSE=40.0%). (d) Half-size
statistical reconstruction using one data set (NRMSE=17.5%). Linear
interpolation in the vertical direction to the same size as the original im-
age is performed for display. (e) Full-size statistical reconstruction using
one data set (NRMSE=17.3%). (f) Full-size statistical reconstruction
using two data sets (NRMSE=14.1%).
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Figure 7.5: Profiles of the magnitude of the numerical reconstructed images across
the second row of circles.
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Figure 7.6: Profiles of the phase of the numerical reconstructed images across the
second row of circles.
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Figure 7.7: Contours of the marginal objective functions at one pixel when (a) using
one data set and (b) using two data sets for full-size reconstruction. The
“x” mark is the optimal solution at 20+ ı110 and the “o” marks indicate
the updates of the estimates starting at 150 + ı150.
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Figure 7.8: Statistical reconstruction of a real object using the real object
constraint. (a) Original image. (b) and (c) Hologram data.
(d) Conventional reconstruction using an apodizing Gaussian filter
(NRMSE=43.8%). (e) Half-size statistical reconstruction using one data
set (NRMSE=22.8%). (f) Full-size statistical reconstruction using one
data set (NRMSE=21.1%). (g) Full-size statistical reconstruction using
two data sets (NRMSE=17.2%).



CHAPTER VIII

Conclusions and Future Work

8.1 Conclusions

In this dissertation, we introduced two new, fast-converging, iterative algorithms

for penalized-likelihood image restoration. These algorithms can be generalized for

use with a very broad class of imaging systems. We demonstrated use of these al-

gorithms through confocal microscopy problems. First, we introduced the PPCA

algorithm, which is based on the optimization transfer principle and convexity tech-

nique. This algorithm not only guarantees the monotonicity of objective function

increases and intrinsically accommodates nonnegativity constraints, but also con-

verges very rapidly and is parallelizable. We implemented the PPCA algorithm to

run on parallel processors by using a message-passing interface and its portable ver-

sion. For a large 3-D data set as in confocal microscopy, the PPCA algorithm yields

a speedup factor approaching the number of parallel processors used. Although it

converges quickly, the PPCA algorithm is more suitable for space-variant systems in

which FFTs cannot be employed for further acceleration. Since a confocal microscopy

system is usually assumed to be space invariant, an algorithm that is compatible with

FFTs is preferred.

To meet this preference, we developed the second algorithm, the relaxed OS-
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SPS algorithm. Ordered-subset algorithms are widespread in image reconstruction

for tomography because of their order-of-magnitude acceleration improvement over

single-subset versions. Therefore, we adapted the relaxed OS-SPS algorithm for im-

age restoration. Because data acquisition is different in image restoration than in

tomography, we employed a different strategy for choosing subsets in image restora-

tion. Thus, we used pixel location, rather than projection angles. The subsets chosen

by downsampling pixels satisfy the subset-gradient-balance conditions; therefore, the

relaxed OS-SPS algorithm can provide an order-of-magnitude acceleration improve-

ment for image restoration similar to what it provides for tomography. Furthermore,

we derived implementation techniques to perform the relaxed OS-SPS efficiently

with convolution and FFTs. Although FFTs can be used in this algorithm, the

resulting computational complexity per iteration is somewhat higher than the non-

ordered-subset version, unlike the convolution approach. Nevertheless, the overall

convergence rate is still faster than that of the non-ordered-subset algorithm, espe-

cially when using large data sets. Thus, the relaxed OS-SPS algorithm provides the

speed and guaranteed convergence necessary for efficient image restoration.

Our results verify that PL estimation using these proposed algorithms not only

yields fast convergence, but also is capable of reducing noise and improving the

resolution, especially in the axial direction, of confocal images. To determine which

algorithm should be used, we need to consider whether the system is assumed to

be space-variant or space-invariant, and what the convergence criteria are. If the

algorithms will be run for only a few iterations, then relaxed OS-SPS is most desirable

due to its fast initial convergence. On the other hand, if the algorithms will be run

for many iterations–until convergence near the optimal solution–then PPCA is most

preferred for the space-variant and convolution-based space-invariant systems, and
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EM (or De Pierro’s modified EM [36] for PL), as well as SPS, are preferred for

the FFT-based space-invariant system. This is because the relaxation parameter in

relaxed OS-SPS slows down convergence when approaching the optimal solution.

For confocal microscopy, we applied image restoration directly to the raw mea-

sured images. Similarly, for digital holography we reconstructed holographic images

directly from the raw data of the hologram, instead of applying image restoration on

corrupted holographic images obtained from conventional numerical reconstruction.

In particular, we developed a new statistical image reconstruction technique for digi-

tal holography based on penalized-likelihood estimation. This approach reconstructs

the complex field of the object from the real-valued hologram intensity data. In this

technique, we developed a Poisson statistical model for holographic problems and de-

rived optimization transfer algorithms that monotonically decrease the cost function

at each iteration and ensure convergence to a local minimum. Moreover, we derived

new curvatures for obtaining parabolic-surrogate functions that always lie above the

original cost function, thus guaranteeing convergence to the local minimum. The re-

sults demonstrated that our statistical reconstruction technique improves the quality

of holographic images relative to the conventional reconstruction technique based on

a filtering method. Because the plane-wave assumption of the reference beam is not

restricted in the statistical approach, this approach could be applied to both digital

in-line and off-axis holography. Although achieving the unique global minimum is

not guaranteed in this problem, because of the non-uniqueness of the cost function,

the problem of multiple minima is often mitigated by increasing the number of data

sets and using a penalty function.
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8.2 Future Work

In this dissertation, we have accomplished much work on iterative algorithms

for penalized-likelihood image restoration, but there are always improvements and

extensions that can be made to this work. Moreover, since statistical image recon-

struction for digital holography is a new field, many improvements and analyses can

be made for holographic problems. Some possible recommendations for future work

are summarized below.

• In this dissertation, we considered only the approximate model based on Pois-

son noise and ignored some effects, such as the response of the photodetector,

CCD thickness, photobleaching in fluorescent objects, and multiple scatters

of the objects. A complete model that includes a Gaussian distribution of the

readout noise from the amplifier and those existing effects may further improve

the image quality. Moreover, a shift-variant model due to the nature of lenses

in optical systems is, in fact, a more accurate model than using a shift-invariant

model, and this also can be considered next.

• For penalized-likelihood estimates, the regularization parameter, as well as the

edge-preserving parameter for the nonquadratic penalty, needs to be assigned.

Instead of obtaining them by trial and error, a better way for determining these

parameters would help users to obtain good images quickly. One possible choice

for choosing the regularization parameter is based on a shift-varying penalty

that yields uniform resolution properties [113].

• The relaxation parameter in relaxed OS-SPS controls convergence of the al-

gorithm. If it is not designed properly, then relaxed OS-SPS may converge

slower than OS-SPS without relaxation for a converging case. Thus, a careful
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design for the relaxation parameter can preserve the rapid convergence rate

while ensuring convergence.

• Statistical holographic image reconstruction developed in this dissertation uses

the SPS algorithm, which converges slowly. We can apply the PPCA and

relaxed OS-SPS algorithms to this problem for faster convergence. Moreover,

since the curvatures used for constructing parabolic surrogate functions at each

iteration are not optimal, and the precomputed curvatures seem to be too

large, an optimal curvature and a better precomputed curvature can improve

the convergence rate and the computation time. Instead of using parabolic

surrogate functions, other surrogate functions that are simple to optimize can

also be considered, such as quartic functions.

• Our statistical model for digital holography ignores aberration, CCD thickness,

and other noise sources such as Gaussian readout noise. As discussed in the

future work for confocal microscopy problems, we could also consider the space-

variant model in digital holography to account for the accurate characteristics

of lenses used, CCD thickness, as well as other sources of noise.

• In this dissertation, the statistical holographic reconstruction technique we

developed was tested only with simulated data for image plane holography.

It would be interesting, however, to apply our reconstruction technique to

real holographic data. Moreover, since our technique can be generalized more

broadly, applying it to other digital holography, including Fresnel, Fourier, non-

planar off-axis, and on-line holography, as well as to phase retrieval problems,

would be interesting for future work.

• When using real data to reconstruct a holographic image, other parameters,
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such as the PSF, the reference beam, and the offset, must be determined. The

PSF can be obtained from either the theoretical PSF or the experimental PSF.

The offset can be estimated from the blank scan when no light is present on

both object and reference beams. The amplitude of the reference beam can be

simply obtained by imaging only the reference beam; however, acquiring the

phase of the reference beam may be challenging. If the reference beam is a

tilted plane wave, then its spatial carrier frequency relating to the phase can

be estimated from the Fourier transform of the hologram. One simple option

to obtain 2 different hologram data sets is to use 0◦ and 90◦ reference beams.

Another common use for a reference beam is a spherical wave. In general,

the parameters relating to its phase can be experimentally obtained. How-

ever, these parameters might be difficult to determine in the setup for image

plane holography. In addition to plane and spherical waves, obtaining phase

information from other non-plane waves seems to be a challenging problem.

• The current experimental setup for image plane holography is designed for a

transparent object. If a fluorescent object is placed in the object beam, then

it might act as incoherent sources, thus destroying the coherence property of

holography. This might decrease the degree of confocal effect and the resolu-

tion of the image. Since most biological specimens are usually labeled with

fluorescent materials, it would be very useful if this holography setup could be

adopted to work with fluorescent objects as well.
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APPENDIX A

Theoretical PSF Derivation for Confocal

Microscopy

A.1 Single Lens System

The 3-D amplitude PSF of a single lens at a defocus plane z can be expressed as

follows [60, 114,127]:

hl(r, z) = K

∫ 1
0

P (ρ) exp(iuρ2/2)J0(vρ)ρdρ (A.1)

where K is a constant, r is the radial coordinate [r = (x2 + y2)1/2], z is the spatial

coordinate along the axial direction, P is the pupil function of the lens, and J0 is the

Bessel function of the zeroth order of the first kind. The transverse and axial optical

coordinates (v and u, respectively) are defined as follows:

v =
2π

λ
rn sinα, u =

2π

λ
zn sin2 α

where λ is the incident wavelength, n is the index of reflection in the lens, and

n sinα is the numerical aperture (NA) of the lens. For a circular symmetric lens, the

amplitude PSF at the in-focus plane becomes

hl(r, 0) =
2J1(v)

v
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where J1 is the Bessel function of the first order and the first kind. This Hankel

transform of the circular pupil function is called the “jinc” function. Its intensity

distribution or the image of a point object is

I(r) = |hl(r, 0)|
2 =

[
2J(v)

v

]2

which is known as the Airy pattern [30, 57, 60, 127]. This is, in fact, the intensity

PSF for the conventional nonconfocal microscope. The amplitude PSF along the

axial direction (v = 0) can be approximated as follows [12, 30, 60, 127]:

hl(0, z) ≈
sin(u/4)

u/4
.

The CTF of the system is defined as the Fourier transform of the amplitude PSF.

Likewise, the OTF of the system is defined as the Fourier transform of the intensity

PSF.

A.2 Reflection and Transmission Confocal Microscopes

For confocal microscopy, we assume the objective lens is used twice. In the

case of a point detector, the intensity PSFs of reflection and transmission confocal

microscopes [15, 30, 127,128] are given by:

I(r, z) = |hl(r, z)|
4.

This power to the fourth in the intensity distribution of a point object provides

the resolution improvement of confocal microscopy over the convention nonconfocal

microscope.

The behaviors of the 3-D CTFs in the reflection and transmission modes are

different. The latter exhibits a missing Fourier components in the missing cone region
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around the origin, while the former does not. Thus, there is no optical sectioning

effect in the transmission confocal microscope [60].

The 3-D CTF for a reflection confocal microscope is the auto-convolution of the

3-D CTF for conventional nonconfocal microscope [60]:

H(s, t, w) = F{hl(r, z)} ∗∗∗ F{hl(r, z)}

where F represents the Fourier transformation and the symbol [∗∗∗] represents the

3-D convolution. The role of auto-convolution implies that the bandwidths of the

CTF in the reflection confocal microscope are twice as wide as those in the single

lens system. The wider bandwidth implies sharper image resolution. The 3-D CTF

of the confocal microscope in the transmission mode turns out to be the same as the

OTF of the conventional microscope [30, 60, 75, 76], which can be expressed in the

following form:

H(s, t, w) = F{|hl(r, z)|
2} =




1
ρ

[
1−

(
|w|
ρ
+ ρ
2

)2]1/2
rect

(
w

2(ρ−ρ2/2)

)
, ρ < 2

0, else

where ρ = (s2 + t2)1/2 and rect(a) = 1, |a| ≤ 1/2 and 0 elsewhere. The term in

the rect function corresponds to the region of support as shown in Figure 2.4. This

is because in the transmission mode the beam traverses the object, and thus the

defocus distance for the collector (second lens) has a sign opposite to that for the

objective (first lens) [60]. The normalized spatial frequencies s, t, and w, are defined

as follows:

s =
λ

n sinα
fx, t =

λ

n sinα
fy, w =

λ

n sin2 α
fz

where fx, fy, and fz are spatial frequencies in the x,y, and z directions.
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A.3 Confocal Fluorescence Microscope

Similarly, the intensity PSF in the fluorescence mode [15, 30, 127,128] is

hI(r, z) = |hl(r, z)|
4. (A.2)

The intensity PSF of the in-focus plane with the circular objective lens is

hI(r) =

[
2J1(v)

v

]4

and the intensity PSF along the axial direction can be approximately as follows

[30, 60, 127,128]:

hI(z) ≈

[
sin(u/2)

u/2

]2
.

The 3-D OTF of the fluorescence confocal microscope is the Fourier transform

of the intensity PSF in (A.2) which is the same as the auto-convolution of the 3-D

OTF of a conventional nonconfocal microscope [26, 75]. This OTF does not exhibit

a missing cone region around the origin; therefore, there exists an optical sectioning

property in the confocal fluorescence microscope. Its 3-D OTF can expressed as

H(s, t, w) = F{|hl(r, z)|
2} ∗∗∗ F{|hl(r, z)|

2}.

The bandwidth of this OTF is twice as wide as that of the nonconfocal microscope.

Moreover, because the confocal fluorescence microscope is an incoherent system while

the reflection and transmission confocal microscopes are coherent systems, under an

ideal situation, the bandwidth of the OTF for the fluorescence mode is twice as large

in the transverse direction as the CTF in the reflection and transmission modes [75].

With a finite-sized circular detector, the intensity PSF of the confocal microscope

(in all modes) [60] becomes

hI(r, z) = |hl(v,u)|
2
[
|hl(v,u)|

2 ∗∗D(v)
]
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where D(v) is the intensity sensitivity of the detector, which can be expressed as

follows:

D(v) =



1, v < vd

0, otherwise

where vd =
2π
λ
rdn sinα is the normalized radius of the detector and rd is the radius

of the pinhole. Its corresponding OTF [60, 76] is the following Fourier transform of

the above intensity PSF:

H(s, t, w) = F{|hl(v,u)|
2} ∗∗∗

[
F{|hl(v,u)|

2}F{D(v)δ(u)}
]
.

This finite-sized detector pinhole results in the appearance of the missing cone region

as the pinhole size increases.
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APPENDIX B

Theoretical PSF Derivation for Image Plane

Holography

To derive the 3-D PSF for image plane holography, first we start with the object

beam. Let the object be a transparency with some suitable thickness.

21s

lens
objective 

in−focus plane
o1u

objectsource

D

hologram

1

uoz

d d d

Figure B.1: Light propagation through the object path

We can assume that points on the source are statistically independent from each

other. Thus we compute the field at the hologram recording plane for each source

element and then integrate the irradiance over the source distribution. By using the

Fresnel approximation, the field induced by a point at coordinates (xs,ys) on the

source propagating to the plane at distance z1 away from the object plane that we

want to generate is given by:

uo1(x1,y1, z1;xs,ys) =
exp{ı2π

λ
(ds + z1)}

ıλ(ds + z1)
exp

{
ı

π

λ(ds + z1)
[(x1 − xs)

2 + (y1 − ys)
2]

}
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where (x1,y1, z1) are coordinates in the object plane and ds is the distance between

the source and the in-focus plane of the object. Following [57], the field distribution

uo at distance d2 behind the objective lens can be expressed as the superposition

integral

uo(x,y, z1;xs,ys) =

∫∫
t(x1,y1, z1) uo1(x1,y1, z1;xs,ys) h

′
o(x,y;x1,y1, z1)dx1dy1

=

∫∫
t(x1,y1, z1) exp

{
ı

π

λ(ds + z1)
[(x1 − xs)

2 + (y1 − ys)
2]

}
exp{ı2π

λ
(ds + z1)}

ıλ(ds + z1)
h′o(x,y;x1,y1, z1)dx1dy1

where t is the amplitude transmittance of the object and h′o is the PSF of the objective

lens which can be expressed as

h′o(x,y;x1;y1, z1) =
1

λ2d1d2
exp

{
ı
π

λd2
(x2 + y2)

}
exp

{
ı

π

λ(ds − z1)
(x21 + y

2
1)

}
∫∫

P (ξx, ξy) exp

{
ı
π

λ

(
1

d1 − z1
+
1

d2
−
1

F

)
(ξ2x + ξ

2
y)

}

exp

{
−ı
2π

λ

[(
x1

d1 − z1
+
x

d2

)
ξx +

(
y1

d1 − z1
+
y

d2

)
ξy

]}
dξxdξy.

Thus we define the PSF in the object beam ho as

ho(x,y;x1;y1, z1) =
exp{ı2π

λ
(ds + z1)}

ıλ(ds + z1)
h′o(x,y;x1,y1, z1)

=
exp{ı2π

λ
(ds + z1)}

ıλ3d1d2(ds + z1)
exp

{
ı
π

λd2
(x2 + y2)

}

exp

{
ı

π

λ(ds − z1)
(x21 + y

2
1)

}
∫∫

P (ξx, ξy) exp

{
ı
π

λ

(
1

d1 − z1
+
1

d2
−
1

F

)
(ξ2x + ξ

2
y)

}

exp

{
−ı
2π

λ

[(
x1

d1 − z1
+
x

d2

)
ξx +

(
y1

d1 − z1
+
y

d2

)
ξy

]}
dξxdξy

where P is the pupil function of the objective lens and F is the focal length of the

lens. The quadratic phase term inside the integral can be approximated using the
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following approximation:

1

d1 − z1
=
d1 + z1
d21 − z

2
1

≈
d1 + z1
d21

=
1

d1
+
z1
d21
.

According to the lens law, this condition is satisfied:

1

d1
+
1

d2
−
1

F
= 0.

Thus the quadratic phase term becomes

exp

{
ı
π

λ

(
1

d1 − z1
+
1

d2
−
1

F

)
(ξ2x + ξ

2
y)

}
≈ exp

{
ı
πz1
λd21
(ξ2x + ξ

2
y)

}
.

The linear phase term inside the integral can also be approximated as follows:

exp

{
−ı
2π

λ

[(
x1

d1 − z1
+
x

d2

)
ξx +

(
y1

d1 − z1
+
y

d2

)
ξy

]}
≈

exp

{
−ı
2π

λd2
[(x−Mx1)ξx + (y −My1)ξy]

}

where the magnificationM is −d2
d1
. Following [57], we can ignore the quadratic phase

terms in front of the integral and the PSF in the object beam becomes

ho(x,y;x1,y1, z1) =
exp{ı2π

λ
(ds + z1)}

ıλ3d1d2(ds + z1)

∫∫
P (ξx, ξy) exp

{
ı
πz1
λd21
(ξ2x + ξ

2
y)

}

exp

{
−ı
2π

λd2
[(x−Mx1)ξx + (y −My1)ξy]

}
dξxdξy.(B.1)

Each plane of a thick object indexed by z1 produces an image in the image plane,

so the total field in the image plane is the superposition of the contributions from

each z1 section. Therefore, we integrate uo over z1:

uo(x,y;xs,ys) =

∫∫∫
t(x1,y1, z1) ho(x−Mx1,y −My1, z1)

exp

{
ı

π

λ(ds + z1)
[(x1 − xs)

2 + (y1 − ys)
2]

}
dx1dy1dz1.

To construct a 3D holographic image, the object is moved at different depth to

generate a holographic image on that plane. Let z be the distance away from the
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center plane of the object. Then the object field at the hologram plane corresponding

to the object displacement z becomes

uo(x,y, z;xs,ys) =

∫∫∫
t(x1,y1, z− z1) ho(x−Mx1,y −My1, z1)

exp

{
ı

π

λ(ds + z1)
[(x1 − xs)

2 + (y1 − ys)
2]

}
dx1dy1dz1.

Since the reference beam propagates through the same system as the object beam

but without the object, the field from the same point source through the reference

beam to the hologram plane is:

uref(x,y;xs,ys) =

∫∫∫
href(x−Mx

′
1,y −My

′
1, z

′
1)

exp

{
ı

π

λ(ds + z
′
1)
[(x′1 − xs)

2 + (y′1 − ys)
2]

}
dx′1dy

′
1dz

′
1

where the PSF of the reference beam href is the same as (B.1). At the hologram

plane, the object and reference beams are interfered and the corresponding field due

to a point source is

u(x,y, z;xs,ys) = uo(x,y, z;xs,ys) + uref(x,y;xs,ys).

The total intensity recorded as a hologram when the object is displaced by z is

obtained by integrating over the source of uniform irradiance as follows:

I(x,y; z) =

∫ D
2

−D
2

∫ D
2

−D
2

|u(x,y, z;xs,ys)|
2dxsdys

=

∫ D
2

−D
2

∫ D
2

−D
2

[
|uo(x,y, z;xs,ys)|

2 + |uref(x,y;xs,ys)|
2

+uo(x,y, z;xs,ys)u
∗
ref(x,y;xs,ys)

+u∗o(x,y, z;xs,ys)uref(x,y;xs,ys) ] dxsdys (B.2)

where u∗ represents the complex conjugate of u. Since the term relating to the field

of the object wave is of interest, we consider only the third term for holographic
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reconstruction. Thus, the reconstructed wave is

uR(x,y, z) =

∫ D
2

−D
2

∫ D
2

−D
2

uo(x,y, z;xs,ys)u
∗
ref(x,y;xs,ys)dxsdys

=

∫ D
2

−D
2

∫ D
2

−D
2

(∫∫∫
t(x1,y1, z− z1) ho(x−Mx1,y−My1, z1)

exp

{
ı

π

λ(ds + z1)
[(x1 − xs)

2 + (y1 − ys)
2]

}
dx1dy1dz1

)
(∫∫∫

h∗ref(x−Mx
′
1,y −My

′
1, z

′
1)

exp

{
−ı

π

λ(ds + z′1)
[(x′1 − xs)

2 + (y′1 − ys)
2]

}
dx′1dy

′
1dz

′
1

)
dxsdys

Since both beams propagate through the same system and the planes in the object

and reference beams with the same distance from the source interfere only with each

other, we can assume that z1 = z
′
1 and thus

uR(x,y, z) =

∫∫∫∫∫
t(x1,y1, z− z1) ho(x−Mx1,y −My1, z1)

h∗ref(x−Mx
′
1,y −My

′
1, z1) exp

{
ı

π

λ(ds + z1)
[(x1 − x

′
1)
2 + (y1 − y

′
1)
2]

}

sinc

(
D

λ(ds + z1)
(x1 − x

′
1)

)
sinc

(
D

λ(ds + z1)
(y1 − y

′
1)

)

dx1dy1dz1dx
′
1dy

′
1 (B.3)

If the source size is very large, then the coherence area will be very small and the

following approximation can be assumed:

sinc

(
D

λ(ds + z1)
(x1 − x

′
1)

)
sinc

(
D

λ(ds + z1)
(y1 − y

′
1)

)
≈ δ(x1 − x

′
1)δ(y1 − y

′
1).

This implies that one point in the object beam is coherent with only one point in

the reference beam. Therefore the reconstructed field is:

uR(x,y, z) =

∫∫∫
[t(x1,y1, z− z1) ho(x−Mx1,y −My1, z1)

h∗ref(x−Mx1,y −My1, z1)] dx1dy1dz1.
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By changing variables, we can express the reconstructed field in terms of convolution

between the object and the PSF of the system as follows:

uR(x,y, z) =

∫∫∫
t′(x′,y′, z− z1) h(x− x

′,y − y′, z1) dx
′dy′dz1

= t′(x,y, z) ∗∗∗ h(x,y, z)

where the scaled version of the object t′(x,y, z) is

t′(x,y, z) =
1

M2
t
( x
M
,
y

M
, z
)

and the system PSF h(x,y, z) when assuming an ideal large source is

h(x,y, z) = ho(x,y, z)h
∗
ref(x,y, z).

If the source size is not sufficiently large to be considered as an infinite source,

then it will affect the system PSF. By substituting t(x1,y1, z − z1) in (B.3) with

δ(x1,y1, z− z1), the PSF of the system is

h(x,y, z) = ho(x,y, z)

∫∫
h∗ref(x−Mx

′
1,y−My

′
1, z) exp

{
ı

π

λ(ds + z)
[x′1
2
+ y′1

2
]

}

sinc

(
Dx′1

λ(ds + z)

)
sinc

(
Dy′1

λ(ds + z)

)
dx′1dy

′
1

= ho(x,y, z)

∫∫
h∗ref(x− ξ,y− η, z)

1

M2
exp

{
ı

π

λ(ds + z)

[(
ξ

M

)2
+
( η
M

)2]}

sinc

(
Dξ

Mλ(ds + z)

)
sinc

(
Dη

Mλ(ds + z)

)
dξdη

= ho(x,y, z) [h
∗
ref(x,y, z) ∗∗D(x,y)]

where D(x,y) can be expressed as

D(x,y) =
1

M2
sinc

(
Dx

λM(ds + z)

)
sinc

(
Dy

λM(ds + z)

)
exp

{
ı

π

λM2(ds + z)
[x2 + y2]

}
.
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APPENDIX C

The Grouped Coordinated Ascent Algorithm

(GCA)

The grouped coordinated ascent (GCA) algorithm was developed in [42, 43, 99]

to enable parallelization. In this algorithm, pixels are divided into a typically small

number of groups. The pixels in the same group are chosen to be spatially separated

so that they are approximately decoupled from each other. All pixels within each

group are updated simultaneously using up to as many processors as there are pixels

within the group. One iteration consists of cycling sequentially through all groups.

1 2 1 2 1 2
3 4 3 4 3 4
1 2 1 2 1 2
3 4 3 4 3 4

Figure C.1: Example of groups in GCA algorithm. Pixels with the same group index
are updated simultaneously.

In Figure C.1, the same number corresponds to the same group which is assigned

to different processors. Thus the total of 4 groups can be performed on up to 6

processors.

The idea of GCA-PS algorithm is to first separate pixels into groups and then

find a separable paraboloidal surrogate function for each group.

Φ(xSn , x
n
S̃n
) ≥ Φ(xSn ; x

n) ≥ φ(xSn; x
n) =

∑
j∈Sn

Qj(xj ; x
n)
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where Sn denotes the group at the nth iteration and

Φ(xSn ; x
n) =

∑
i

∑
j∈Sn

αijψi

(
bij
αij
(xj − x

n
j ) + [Bx

n]i

)
,

Qj(xj ; x
n) =

∑
i

αijqi

(
bij

αij
(xj − x

n
j ) + [Bx

n]i; [Bx
n]

)
.

Since
∑

j∈Sn αij = 1, one choice of αij is
|bij |∑

k∈Sn |bik|
. Thus the update x is obtained

by:

xn+1j = argmax
xj≥0

Qj(xj ; x
n)

=


xnj +

∂
∂xj
Qj(xj ; x

n)|xj=xnj

− ∂2

∂x2j
Qj(xj ; xn)|xj=xnj



+

, ∀j ∈ Sn

where

∂

∂xj
Qj(xj ; x

n)

∣∣∣∣
xj=xnj

=
∑
i

bij q̇i([Bx
n]i) =

∂

∂xj
Φ(x)

∣∣∣∣
x=xn

−
∂2

∂x2j
Qj(xj ; x

n)

∣∣∣∣
xj=xnj

=
∑
i

b2ij
cni
αij

For j /∈ Sn, xn+1j = xnj . Note that to derive the GCA-PS algorithm, we must have a

concave function of the objective function so that the concavity technique is feasible.

The PS-GCA algorithm is derived in a similar way; however, the paraboloidal

surrogate function is obtained first and then the GCA algorithm is applied on the

parabola. This allows application of the approach even to nonconcave objective

functions. Here are the surrogates for the PS-GCA algorithm:

Φ(x) ≥ Q̃(x; xn) ≥ φ̃(x; xn) =
∑
j∈Sn

Q̃j(x; x
n)
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where

Q̃(x; xn) =
∑
i

qi([Bx]i; [Bx
n]i)

φ̃(x; xn) =
∑
i

∑
j∈S

αijqi

(
bij

αij
(xj − x

n
j ) + [Bx

n]i; [Bx
n]

)

Q̃j(xj ; x
n) =

∑
i

αijqi

(
bij

αij
(xj − x

n
j ) + [Bx

n]i; [Bx
n]

)
.

Without sub-iterations for maximizing x in each group, the GCA-PS and PS-GCA

algorithms yield the same results for concave objective functions.
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APPENDIX D

Curvature Proof

For simplicity, we drop the subscript “i” in this appendix and the following proofs

consider only the real or imaginary part.

Lemma 1: If h(l) and q(l) are differentiable and the following three conditions

are satisfied:

(C1) h(m) = q(m) for some m

(C2) q̇(l) ≥ ḣ(l), ∀l ≥ m

(C3) q̇(l) ≤ ḣ(l), ∀l ≤ m

Then it follows that q(l) ≥ h(l), ∀l and thus q(l) is a surrogate for h(l), i.e., q(l) ≥

h(l), ∀l.

Proof: For l ≥ m, then

q(l) = q(m) +

∫ l

m

q̇(t)dt

≥ h(m) +

∫ l

m

ḣ(t)dt = h(l)

For l ≤ m, then

q(l) = h(m) +

∫ m

l

[−q̇(t)]dt

≥ h(m) +

∫ m

l

[−ḣ(t)]dt = h(l)
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Thus, q(l) ≥ h(l), ∀l under the above conditions. 2

Lemma 2: If h(l) is differentiable and the following maximum is finite and non-

negative,

c(m) = max
l 6=m

ḣ(l)− ḣ(m)

l −m
,

then

q(l) = h(m) + ḣ(m)(l −m) +
1

2
c(m)(l −m)2 (D.1)

is a parabolic surrogate for h, i.e., q(l) ≥ h(l), ∀l.

Proof: Condition (C1) of Lemma 1 is clearly satisfied by q when l = m. To prove

Condition (C2), for l ≥ m, we differentiate (D.1) with respect to l and substitute

c(m) with the proposed curvature as follows:

q̇(l) = ḣ(m) + c(m)(l −m)

≥ ḣ(m) +
ḣ(l)− ḣ(m)

l −m
(l −m) = ḣ(l).

Similarly, q̇(l) ≤ ḣ(l), for l ≤ m, so Condition (C3) is satisfied. Because all three

conditions of Lemma 1 are satisfied, q(l) is a parabolic surrogate for h(l). 2
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APPENDIX E

Derivation of a Closed-Form Curvature

The first derivative of h in (7.12) or (7.13) is

ḣo(l; ln) =
−2y(l + uo)[(lo,n + uo)2 + b/2]

kn[(l + uo)2 + b/2]
+ 2(l + uo). (E.1)

Thus we define

f(l)
4
=
ḣo(l; ln)− ḣo(lo,n; ln)

l − lo,n
=
2y

kn

[
(l + uo)(lo,n + uo)− b/2

(l + uo)2 + b/2

]
+ 2. (E.2)

To obtain the maximum of the above continuous function, we equate the first deriva-

tive to zero:

ḟ(l) =
2y

kn

[
−(lo,n + uo)(l + uo)2 + b(l + uo) + b

2
(lo,n + uo)

[(l + uo)2 + b/2]2

]
= 0. (E.3)

Then the optimal l∗ that yields the maximum is

l∗ =
b+

√
b2 + 4(lo,n + uo)2

2(lo,n + uo)
− uo (E.4)

and

f(l∗) =
2y
√
b2 + 4(lo,n + uo)2(lo,n + uo)2

kn
{
(lo,n + uo)2(b+ 2) + b

[
b+

√
b2 + 4(lo,n + uo)2

]} + 2 (E.5)

is the curvature of the parabolic surrogate function.
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ABSTRACT

Statistical Image Recovery Techniques for Optical Imaging Systems

by

Saowapak Sotthivirat

Chair: Jeffrey A. Fessler

Statistical techniques are very attractive for image recovery because they can

incorporate the physical model of imaging systems, thus improving the quality of

recovered images. To overcome the ill-posed nature of image recovery, one often

uses penalized-likelihood estimation. Since closed-form solutions for these statistical

techniques are unavailable, iterative algorithms are needed. However, existing algo-

rithms lack one or more desirable properties, such as the guarantee of convergence,

rapid convergence, and efficient computation.

In the first part of the dissertation, we present a new, fast-converging algorithm

called partitioned-separable paraboloidal surrogate coordinate ascent (PPCA). This

algorithm captures the fast convergence of iterative coordinate ascent algorithms,

while remaining parallelizable to reduce computation time. The PPCA algorithm

is based on paraboloidal surrogate functions and a concavity technique. It is most



beneficial when applied to space-variant systems for which the fast Fourier transform

(FFT) is inapplicable.

Because our primary applications are confocal microscopy and image plane holog-

raphy, for which space-invariance of the systems is usually assumed, in the sec-

ond part of the dissertation, we develop another algorithm that can be used with

the FFT for fast computation time. We adapt the relaxed ordered-subset separa-

ble paraboloidal surrogate (OS-SPS) algorithm, which was originally invented for

projection-based tomographic reconstruction, to pixel-based image restoration. The

relaxed OS-SPS algorithm provides very fast initial convergence and is guaranteed

to converge to the optimal solution. Furthermore, we develop different strategies for

choosing subsets and efficient implementation. Both the PPCA and relaxed OS-SPS

algorithms can be applied to many imaging problems; here we demonstrate their use

for confocal microscopy problems.

In the third and last part of the dissertation, we develop a new statistical image

reconstruction technique for digital holography including image plane holography.

This approach reconstructs the complex object field from real-valued hologram in-

tensity data. We develop a Poisson statistical model for this problem and derive

an optimization transfer algorithm that monotonically decreases the cost function

at each iteration and ensures convergence to a local minimum. Our statistical tech-

nique is shown to improve image quality in simulated digital holography relative to

conventional numerical reconstruction using a filter applied in the frequency domain.


