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ABSTRACT 

 
 
 

ADAPTIVE REGISTRATION AND ATLAS BASED SEGMENTATION 
 

by 
 
 

Hyunjin Park 
 
 

Co-Chairs : Charles R. Meyer and Jeffrey A. Fessler 
 
 

With the rapid developments in image registration techniques, registrations are 

applied not only as linear transforms but also as warping transforms with increasing 

frequency. The latter is especially suitable for soft tissue organs in the human body. 

When using Thin Plate Spline (TPS) as the warping transform of choice, a high degree of 

freedom (DOF) warping can be either manually specified by the placement of control 

points or implemented by using a dense grid of control points. The former leads to 

problems of operator bias, whereas the latter is very computationally expensive. Instead, 

we propose to automate the determination of DOF by locally increasing the density of 

control points in regions where they are needed rather than globally increasing the 

density of control points. Local estimates of Mutual Information (MI) and entropy are 

used to identify local regions requiring higher DOF. 

 

There have been significant efforts to build a probabilistic atlas of the brain and to 

use it for many common applications like segmentation and registration. Though the 

work related to brain atlases can be applied to non-brain organs, less attention has been 

 



paid to actually building an atlas for organs other than the brain. We present a method to 

construct a probabilistic atlas of an abdomen consisting of 4 organs (i.e., liver, kidneys 

and spinal cord). Using 32 non-contrast abdominal CT scans, 31 are mapped onto one 

individual scan using TPS as the warping transform and MI as the similarity measure. 

Except for an initial coarse placement of 4 control points by the operators, the MI based 

registration is automatic. Additionally, the four organs in each of the 32 CT data sets are 

manually segmented. The manual segmentations are warped onto the “standard” patient 

space using the same transform computed from their gray scale CT data set and a 

probabilistic atlas is calculated. Then the atlas is used to aid the segmentation of low 

contrast organs in additional 20 CT data sets not included in the atlas. By incorporating 

the atlas information into the Bayesian framework, segmentation results clearly showed 

improvements over a standard unsupervised segmentation method. 
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CHAPTER 1 

INTRODUCTION 

Advances in medical imaging technologies, such as magnetic resonance imaging 

(MRI) and computed tomography (CT), have brought high quality data sets into reality. 

This in turn poses new challenges to image analysis techniques (i.e., registration and 

segmentation). This dissertation introduces novel approaches to improving registration 

and segmentation in medical image data sets. 

1.1. Dissertation Overview 

This dissertation primarily consists of three parts: adaptive registration, atlas 

construction of abdominal organs, and segmentation based on atlas priors.  For adaptive 

registration, I will start with a general review of registration, including registrations with 

both linear (i.e., affine) and non-linear (i.e., warping) transforms paired with various 

similarity measures (i.e., correlation and mutual information).  Next, I will explore the 

shortcomings of traditional non-linear high degrees of freedom (DOF) warping 

registrations, and suggest a way to overcome those shortcomings by an adaptive 

registration method. Using a new adaptive registration method, we will demonstrate its 

feasibility in 2D MRI scans.  I also compare our adaptive registration method with other 

adaptive registration methods and conclude that our method is better. For the second part 

of the dissertation, atlas construction of abdominal organs, I first focus on a general 

overview of atlas construction and next focus on probabilistic atlas construction on four 
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abdominal organs (i.e., liver, both kidney and spinal cord) from CT scans of 32 

anonymous patients. Finally, for the third part, the atlas information is used as priors to a 

Bayesian segmentation problem on non-contrast CT scans.  

1.2. Adaptive Registration 

Thanks to recent advances in medical imaging systems, there are many data sets 

of the same patient/object from various modalities of imaging [1-14, 28]. Registration is a 

process that combines data sets of different or the same modalities into one 

pose/orientation so that the user can view them in one spatial frame. As a result, better 

knowledge of the patient/object is gained. Much of the past work in registration assumed 

rigidity between two data sets and the rigid transform that best aligns two data sets is 

being sought. The rigid transform is further generalized to an affine transform, which 

includes scaling and shearing. The rigidity assumption is true for data sets with 

incompressible organs like brains, bones etc.; thus, most of the past work typically 

concentrated on registering brain scans of several modalities [12, 28]. For organs like the 

liver, stomach etc., we cannot achieve a satisfactory registration with rigid transforms 

between data sets. As a result many non-linear transforms have been proposed. Among 

the notables are Thin Plate Spline (TPS), B-splines and other radial basis functions [18, 

22-25]. TPS is a non-linear transform that is endorsed by a rich literature in shape 

statistics and morphometrics [18, 29, 22, 23]. Other non-linear transforms like B-splines 

and Wu’s radial basis function are commonly used in the registration literature for their 

local characteristics and computation efficiencies [26, 27]. When computing the best 

transform that aligns two data sets of interest, we need an objective function to measure 

the “goodness of alignment,” namely an objective function for similarity between two 

data sets under a particular transformation. There have been many similarity measures for 
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different registration problems but mutual information (MI) has gained considerable 

support over the past years for inter-modality registrations [28].  

 

Degrees of Freedom (DOF) related to a non-linear transform can vary greatly. 

The more DOF we have, the more flexible the transform is. For full affine transforms, the 

needed DOF are 6 and 12 for 2D and 3D respectively. In the case of non-linear 

transforms, the needed DOF may increase tremendously depending on the geometric 

complexity between the data sets. For example, abdominal data sets with many soft 

organs, like liver and kidneys, will require 100 or more DOF. In case of the TPS, the 

DOF are specified by the location and number of control points. Thus the operator is 

required to manually identify many control points in the data sets. In the case of 

abdominal data sets in 3D, users are required to identify 30 or more control points (>90 

DOF). This manual specification is laborious, biased and frequently inconsistent. Another 

way to specify high DOF is to lay a dense grid of control points, which is common in B-

spline based, non-linear registrations [26]. This avoids the manual specification of control 

points, but the DOF associated are very high, typically in the thousands or more, thus 

rendering this approach very computationally expensive.  

 

Our work tries to automatically place control points without increasing the density 

of control points globally. In our mutual information-based automatic multimodality 

image fusion software (i.e., MIAMI Fuse) [9, 11, 15], the manual selection of initial 

control points is the only user intervention, and in many cases, the registration process 

can be automated. Compared to laying a dense grid of control points, this approach has 

far fewer control points; thus it is computationally more efficient. 
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1.3. Abdominal Atlas 

Recently, significant effort has been directed towards the development of 

deformable templates typically for segmentation of the human brain [31-41].  Only one 

recent publication addresses segmentation of the liver and kidneys using a deformable 

surface model [42].  Rich literature has been compiled on probabilistic atlases of the 

brain [43-53]; while most of the literature is extendable to abdominal organs, these 

extensions exist only in theory and have not been actually demonstrated on abdominal 

organs. Thus, we have pursued the simultaneous construction of a probabilistic atlas that 

includes a set of abdominal organs similar to that described by Evans [57]. The term 

“probabilistic atlas” does not simply mean the average boundary of an organ, but rather 

the complete spatial distribution of probabilities that a voxel belongs to one or more 

organs, i.e., each voxel is an n-vector, where n depends on the number of organs in the 

modeling system. We continue to focus on probabilistic atlases in spite of the remarkable, 

even spectacular results of deformable templates, because of the belief that atlases, if well 

formed, bring more prior information to the process of defining complex organs in low 

signal-to-noise settings. After mapping a new patient onto the atlas using the same 

methods used to construct the atlas, the computed inverse transform maps the probability 

distributions of the atlas back onto the patient.  Then the atlas can be used to find the 

most probable loci of edges of the patient’s organ. Furthermore, the derivative of the atlas 

defines a Bayesian weighting (i.e., probability density function), which provides very rich 

information for identifying the organ’s boundaries. 

 

In chapter 6, we present the results of a full probabilistic atlas construction for 32 

patients, where 31 of the patients have been mapped onto one individual using thin plate 

splines (TPS) as the non-linear transform and mutual information (MI) as the similarity 

4 



measure. Registering 31 patients onto one arbitrarily chosen reference patient can 

introduce bias towards that specific reference patient, especially if the reference patient is 

far from the average population for which the atlas is intended. Thus, the reference 

patient selected best represents the population to our knowledge aided by an expert 

inspection. By iterating this construction process; i.e., using the resulting atlas as the 

reference target of another atlas construction phase, other groups have shown that the 

variance of the atlas and the dependence of the reference patient can be reduced further 

[44, 51]. While in the past, many groups focused only on the mean surface, the Bayesian 

value of the probabilistic atlas in the segmentation task lies not only in the mean but also 

in the variance of the atlas. 

1.4. Bayesian Segmentation based on Atlas 

Segmentation can be thought as the process of assigning labels to individual 

voxels in the data set. Extensive review of the segmentation methods and deformable 

surface models can be found in these papers [67, 84]. Most segmentation methods can be 

divided into two groups. The first one is supervised segmentation where a certain Volume 

of Interest (VOI) has to be manually specified for training different tissue types. The 

other is unsupervised segmentation where the discovery of different tissue types is 

automated. Both segmentation algorithms include regularization in their labeled fields. A 

common way to regularize is to incorporate a Markov Random Field (MRF) priors. 

Basically, the Markov Random Field model encourages adjacent voxels having similar 

labels. Our contribution is to extend the unsupervised segmentation with the additional 

information provided by the probabilistic atlas. Improvements in segmentation quality 

compared to cases with no atlas information are readily noticeable, especially where there 

is little contrast between organs of interest. Specifically, we can eliminate most of the soft 
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tissue false positives around liver/kidneys/spinal cord and distinguish liver, spinal cord, 

left kidney and right kidney. To apply the atlas information, a CT data set should be 

mapped onto the atlas space by the same method that is originally used to construct the 

atlas. 
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CHAPTER 2 

REGISTRATION OVERVIEW 

2.1. Formal Statement of Registration 

The goal of registration is to find the best transform T such that both data sets are 

best aligned by a particular similarity measure. In this paper the following notations are 

assumed. A(x) is the reference data set and B(x) is the homologous or floating data set. 

T(x) is the transform between two data sets, where x is the coordinates in 2D or 3D. 
^

^

arg max ( ( ), ( ( )) 

T;estimate of the transform
F; family of feasible transforms
SIM; simliarity measure

T F
T SIM A B T

∈
= i i

 

(2.1) 

Note that the homologous data set is mapped onto the reference data set before 

calculating the similarity measure. Once T is found, all the coordinates are assumed to in 

the reference coordinate frame since the homologous coordinate frame can always be 

found by applying the transform T. 

2.2. Similarity Measures 

When computing the best transform that aligns two data sets of interest, we need a 

cost function to measure the “goodness of alignment”, namely a cost function for 

similarity between two data sets under a particular geometric transformation. There have 
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been many similarity measures for different registration problems ranging from a simple 

correlation to mutual information (MI). The MI similarity measure has gained 

considerable support over the past years [28].  

2.2.1. Correlation 

One of the simplest similarity measures is the sum of squared differences (SSD) 

between data sets.  

∑ −= 2|))(()(|1 xTBxA
N

SSD , (2.2) 

where N is total number of voxels in the reference data set. It can be shown that this is the 

optimal similarity measure when two data sets are different only by additive isotropic 

Gaussian noise [12]. It is quite obvious this cannot be applied to inter-modality 

registrations since the gray scale difference can no longer be modeled as isotropic 

Gaussian. Even for intra-modality registrations, this strict requirement is seldom true 

since noise in medical images is not always additive isotropic Gaussian. The SSD 

measure is very sensitive to outlier voxels that exhibit large value differences between 

data sets. This is quite possible when one data set is a non-contrast scan and the other is a 

contrast scan. Effects of theses outlier voxels can be reduced by using the sum of absolute 

differences (SAD) instead of the SSD [28].  

 

∑ −= |))(()(|1 xTBxA
N

SAD  (2.3) 

 

Under the strict Gaussian assumption implicit in SSD, there are very few actual 

applications for registration. A slightly relaxed assumption would be linear relationship 
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between voxel values between data sets and additive Gaussian isotropic noise. This 

assumption leads to the correlation coefficient (CC) similarity measure. 

 

2 2

( ( ) )( ( ( ) )
{ ( ( ) ) ( ( ( ) ) }

A x A B T x BCC
A x A B T x B

− −∑=
− −∑ ∑ 1/ 2 , (2.4) 

where BA,  are mean voxel values for A(x) and B(x). This similarity measure is popular 

for intra-modality registrations [85]. 

2.2.2. Mutual Information (MI) 

With inter-modality registrations, there is usually no simple linear relationship 

between voxel values of data sets. There are some similarity measures where this linear 

relationship is not required [28]. Among those, MI has gained considerable popularity 

[12-15, 28]. The MI used here is the classical Shannon mutual information. Basically, 

two co-registered data sets yield a joint probability density function (PDF) with tight 

clusters, whereas un-registered data sets yield a joint PDF with dispersed clusters. Tighter 

clusters (i.e., more correlation) translate into higher MI values than dispersed ones (i.e., 

less correlation). 

 
( )

B andA  ofdensity joint  :),(
B andA  of densities marginal  :)(),(

)()(/),(log),(),( 2

bap
bpap

bpapbapbapBAMI ∑∑=
 

(2.5) 

While other papers used Parzen windowing for the estimation of PDFs [13, 14] in our 

implementation all PDFs (i.e., both marginal and joint) are estimated by non-interpolated 

histograms with fixed bin width. Bin width of the histogram is calculated from Freedman 

and Diaconis [20], where the optimal bin width, hn, is chosen to minimize integrated 
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mean squared error over all squared-integrable PDFs. Optimal bin width assumes 

independent and identically distributed (I.I.D) voxel intensity pairs in both data sets. 

 

samples ofnumber ;
  range quartileinter  ;

)(2 3/1

n
IQR

nIQRnh −=

 

(2.6) 

2.2.3. Normalized MI 

Note that calculation of MI or entropy requires estimating a joint PDF, which in 

turn is calculated from the overlap of A(x) and B(T(x)) under the hypothetical transform. 

There are cases where the amount of overlap between the two data sets during the 

optimization of MI affect the final registration result [29]. Specifically, excessive overlap 

of background between data sets can wrongfully contribute to MI disproportionably, thus 

leads to errors in registration. To overcome this overlap dependency problem, 

Normalized MI (NMI) has been proposed to be insensitive to amount of overlap [29]. 

The formula for NMI is the following.  

 

),(
)()(

BAH
BHAHNMI +

= , (2.7) 

where H(A), H(B) are marginal entropies for A(x) and B(T(x)) and H(A,B) is the joint 

entropy. Note that entropies are defined in traditional Shannon fashion as follows 

 

A(x)for  PDF );(
))((log)()( 2

ap
apapAH ∑−=

. (2.8) 
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2.3. Geometric Transforms 

As stated in section 2.1, there are numerous evaluations of MI or the equivalent 

similarity measure under the hypothetical geometric transform. Geometric transforms can 

be divided into two categories, linear and non-linear transforms. I will first review linear 

transforms and introduce commonly used non-linear transforms.  

2.3.1. Linear – rigid and affine 

The simplest geometric transform between two data sets is the rigid transform, 

where objects to be registered are rigid (e.g. bones), thus non-scalable. And thus, they are 

only allowed to translate and rotate. Clearly rigid transforms are not applicable to 

registration between different objects. Such a transform is strictly confined to the same 

object where the transformation is known to be rigid.  The formulation for rigid transform 

is the following. 

 

bxAxT rot +=)( , (2.9) 

where Arot is the rotation matrix and b is the translation vector in 2D or 3D. For 2D, DOF 

are 1 rotation parameter and 2 translation parameters, thus 3 all combined. For 3D, DOF 

are 3 rotations and 3 translations. 

 

A rigid transform can be generalized to an affine transform where the object can 

be scaled and sheared in addition to being translated and rotated. 

 

bxAxT affine +=)(  (2.10) 

Here Aaffine is a full rank matrix, thus 4 DOF for 2D and 9 DOF for 3D. An affine 

transform can be applied to register objects that differ by rigid motion (i.e., translation 
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and rotation), scale and shear. There is indeed more flexibility to register with the affine 

transform than the rigid transform.  It still does not provide enough flexibility to register 

common soft organs (e.g. liver) where organs can deform quite freely within a patient or 

across patients.   

2.3.2. Nonlinear – Thin Plate Spline (TPS) 

Non-linear transforms can supply more flexibility to register soft organs in intra-

patient or  inter-patient registrations. There are many ways to specify a non-linear 

transform. It is not feasible to cover all the non-linear transforms. Hence, I will only 

introduce the most commonly and widely used ones here.  

 

The first is thin plate spline (TPS). In TPS, control points are needed to formulate 

a non-linear transform, which are placed in pairs on the corresponding loci of both data 

sets. The loci can be anatomically or mathematically identified [22, 23]. Fig. 2.1 shows a 

sample application of control points with anatomically identifiable control points. 

 

 

 

Fig 2.1 : Example of control points. 
Fig. 2.1.a shows the reference image, the letter M in this case, and an associated set of 3 
control points.  Fig. 2.1.b shows the "floating" image to be registered with the reference 
and the initial loci of its 3 control points.  Fig. 2.1.b is referred to as "floating" because as 
the geometric mapping is changed, the pose of the letter M changes relative to the fixed 
reference in Fig. 2.1.a.   Fig. 2.1.c demonstrates the geometric mapping of Fig. 2.1.b onto 
a using the registration prescribed by the control points, i.e., the control points in Fig. 
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2.1.b map directly onto the corresponding control points in Fig. 2.1.a and map the rest of 
the pixels of Fig. 2.1.b into Fig. 2.1.a.  Note that because the initial location of the upper 
left control point in Fig. 2.1.b is not homologous with its pair in Fig. 2.1.a, the resulting 
registration shown in Fig. 2.1.c is inaccurate. After the optimization of MI the position of 
the control points are automatically adjusted to obtain the registration shown in Fig. 2.1.e. 

Assuming that x is the set of reference coordinates, x’ is the set of homologous 

coordinates and that there are N control point pairs (x1,…,xN) and (x’1,…,x’N) that are 

manually specified as in Fig. 2.1, the formulation of TPS follows.  

 





=

++= ∑
=

3Din 
2Din  log

tscoefficien warp; wparameter  affine;a parameter n translatio;a
22

i10

1
10

|r|   
)     (rr

U(r)

)U(rwxaaT(x)
N

i
ii

, 

(2.11) 

where x’=T(x) is the transformation, U(r) is the basis function, ri is the Euclidean 

distance between xi and x, (i.e., |x – xi|). A detailed description of TPS and control points 

can be found in [22, 23].  One important property of TPS is that TPS minimizes a value 

called bending energy as in equation 2.12, which represents smoothness of the transform. 

So with TPS, one can produce a smooth non-linear transform with few control points 

(i.e., DOF) compared to other non-linear transforms. TPS is a non-linear transform that is 

endorsed by a rich literature in shape statistics and Morphometrics [18, 19, 22, 23]. 

Recently it has been found that TPS is the Maximum Likelihood Estimator (MLE) for 

unspecified landmarks not identified as control points [19]. DOF in TPS are 2N or 3N in 

2D and 3D respectively, where N is the number of control points. If the number of 

control point pairs is less than 4 in 2D and 5 in 3D, the TPS automatically reduces to an 

affine solution, thus it is possible to specify affine transforms through the use of control 

points instead of explicit parameters, like translation and rotation. We use control points 

for both affine and non-linear transforms to maintain coherency of the user interface. 
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2

2 2 2
2 2 2

2 2(( ) 2( ) ( ) )

BE; bending energy in 2D
R

z z zBE d
x x y y

δ δ δ
δ δ δ

= + +
∂∫∫ xdy

 
(2.12) 

 

 

Fig. 2.2. Control point realization. 
Five control point pairs are placed in “+” shape across the [0 1]x[0 1] square. Control 
point in the middle in the homologous side is moved towards northeast direction. This 
figure show that a smooth transform is formed by specifying only 5 control points (i.e., 5 
knots of 10 DOF). 

2.3.3. Nonlinear – B-splines 

The most widely used non-linear transform for image registration is the B-spline 

representation [24, 26]. In B-spline representation, a non-linear transform is represented 

by a sum of third order B-spline polynomials at a uniformly spaced grid. Assuming the x 

= (x1, x2, x3), a coordinate in 3D, following is the formulation of B-spline geometric 

transform.  
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(2.13) 

where Φ is the uniformly spaced grid of B-splines, and B0 to B3 are the third order B-

spline polynomials [26]. DOF in B-splines are 2N or 3N in 2D and 3D respectively, 

where N is the number of B-splines used. For B-splines, the support of the transform is 

local; i.e., if a point in a given grid moves locally, then the transformation changes in that 

local area only. Thus for a local change of a grid, the transform needs to be updated only 

locally, and it is thus computationally efficient. Fig 2.3 is the actual instance of B-spline 

transformation. 

 

Fig. 2.3. B-spline realization.  
6x6=36 B-splines are used. One spline around the middle is translated to right on the 
homologous side.  Notice the local support property of the transform. 
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2.3.4. Nonlinear – Wu’s radial basis function 

Another notable non-linear transform is formed by using Wu’s radial basis 

function [61, 62].  One problem with TPS is that the support of the transform is not 

strictly local as with in B-splines. Thus, it takes more computation power to update a TPS 

transform than a B-spline transform given that the change in geometric transform is local. 

This is indeed a big problem because in the course of optimization of the similarity 

measure, geometric transforms are constantly evaluated. Wu’s radial basis function has 

finite support built in, thus it has the efficient strict local property. The formulation is 

exactly the same as TPS except that the basis function is now replaced by Wu’s radial 

basis function. With this approach, the achieved non-linear transform is less smooth than 

TPS, thus it does not minimize the bending energy. 
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where ri is the Euclidean distance between xi and x and s is the radius support of the basis 

function. Fig 2.4 is the sample realization of Wu’s radial basis function based non-linear 

transform. 
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Fig. 2.4. Sample Wu’s radial basis function based non-linear transform. Five control 
point pairs are placed in “+” shape across the [0 1]x[0 1] square. Control point in the 
middle in the homologous side is moved towards northeast direction.  

2.3.5. Viscous Fluid Model 

Chrisitensen et al. [30, 58-60] have modeled the non-linear transforms as non-

linear displacements at every voxel in the data set. The deformation field is set to satisfy 

certain partial differential equations borrowed from continuum mechanics for deformable 

bodies. The mechanical model is the Navier-Poisson fluid. In this approach, all voxels act 

as control points, thus the overall transform can be very flexible.  
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where u(x,t) is the displacement, v(x,t) is the velocity, λ is the rate of change in the 

partial differential equation (PDE) and b(u) is the body force that drives the PDE. Note 

that the PDE is dependent on the body force b(u), which in turn is dependent on 

differences in gray scale values and gradient of the homologous image. Thus, this 

approach is well suited for intra-modality registration. There have been some attempts to 

change b(u) such that it will work for inter-modality registrations [86]. Assuming that 

u(x,t=0)=0, set of PDEs are solved iteratively until b(u) falls below some threshold. 

2.4. Local Effects of Control points in TPS 

With B-splines and Wu’s radial basis function cases, the non-linear transforms are 

constructed to have the local support property. But with TPS, the local support property is 

not strictly true because the basis function is globally defined everywhere. Still TPS is 

fairly local if the DOF are high enough. This is a commonly misunderstood point 

regarding TPS.  While the basis functions are proportional to a positive integer power of 

|r|, theses basis functions cause the effect, i.e., the weighting of control points to be 

inversely related to the distances from them. Fig. 2.5 clearly shows that effects of control 

points are local.  
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Fig. 2.5. Nine control point pairs are placed uniformly across the [0 1]x[0 1] square. 
Control point of the northeast side in the homologous side is moved towards southwest 
direction. Effects of control points of moving the control point in the northeast region are 
clearly localized to the northeast region. 

2.5. MIAMI Fuse 

Our research group has compiled a set of registration software packages based on 

Advanced Visual System 5 (AVS5) toolkit. Our implementation is MI-based TPS non-

linear registration and we call it Mutual Information-based Automatic Multimodality 

Image fusion (MIAMI Fuse) [9, 11, 15]. 
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CHAPTER 3 

ADAPTIVE REGISTRATION 

In this chapter, we will explore the shortcomings of traditional non-linear high 

DOF warping registrations, and suggest an alternative which overcomes those 

shortcomings by using an adaptive registration method where DOF are selectively 

increased. This chapter is based on Park and Meyer [87]. 

3.1. Shortcoming of high DOF non-linear registrations 

The degrees of Freedom (DOF) related to a non-linear transform can vary greatly. 

The more DOF we have, the more flexible the transform is. For full affine transforms, the 

needed DOF are 6 and 12 for 2D and 3D respectively. In the case of non-linear 

transforms, the needed DOF may increase tremendously depending on the geometric 

complexity between the data sets. For example, abdominal data sets with many soft 

organs, like liver and kidneys, will require 100 or more DOF. In case of the TPS, the 

DOF are specified by the location and number of control points. Thus the operator is 

required to manually identify many control points in the data sets. In the case of 

abdominal data sets in 3D, users are required to identify 30 or more control points (>90 

DOF). This manual specification is laborious, biased and frequently inconsistent. Another 

way to specify high DOF is to lay a dense grid of control points, which is common in B-

spline based, non-linear registrations [26]. This avoids the manual specification of control 

points, but the DOF associated are very high, typically in the thousands or more, thus 
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rendering this approach very computationally expensive. In Reuckert’s case [26], final 

registration involves a dense grid of regularly spaced B-splines, whose DOF are 

determined by the number of B-splines used and is on the order of hundreds to thousands. 

While many algorithms have demonstrated their ability to register using large DOF quite 

successfully [15, 26], this additional flexibility requires increased computational power, 

and leads to potential convergence problems.  

3.2. General Approach for Adaptive Registration 

Our work tries to automatically place control points without increasing the density 

of control points globally everywhere. In our mutual information-based automatic 

multimodality image fusion software (i.e., MIAMI Fuse) [9, 11, 15], the manual selection 

of initial control points is the only user intervention, and in many cases, the registration 

process can be automated. The central issue here is to find where to increase the density 

of control points. That issue will be addressed using local information measures. 

Compared to laying a dense grid of control points, our method will result in irregularly 

spaced control points with far fewer number of control points; thus it is computationally 

more efficient. 

3.3. Local Mismatch Measure M 

Our goal is to increase DOF selectively in regions where they are needed rather 

than increase DOF globally in the data set. In context of TPS, we are trying to increase 

the density of control points where additional control points are needed. Noting that 

effects of control points are local, a good candidate region for increased control point 

density is the region with the largest local mismatch under the current geometric 

transform. Regional mismatches can be detected by assessing regional/local MI.  
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Mismatched local regions are poorly “correlated” by definition, and thus have low 

regional MI. Additionally the regional MI between two regions can also be low if the 

entropy of either of the corresponding regions is low because MI is bounded by the 

entropies of the individual data sets (i.e., MI(a,b) ≤ min{H(a),H(b)}). Because regions of 

low entropy are basically featureless, they are not good candidate loci for additional 

placement of control points. Therefore, local regions of interest (ROI) for the placement 

of additional control point pairs are confined to those with high local entropy and low 

local MI. We propose a normalized measure of mismatch M, M = 1 - MI(a,b)/ 

min{H(a),H(b)}, formed from local measures. The mismatch measure is largest (i.e., 

close to 1) when MI is zero or MI is relatively smaller than min{H(a),H(b)}, which 

implies locally mis-registered area with some texture; also note that the mismatch 

measure goes to zero as MI increases, which implies a locally registered area.  Use of 

min{H(a), H(b)} in the denominator is to provide a tighter bound than H(a) or H(b) at the 

cost of mathematical tractability, i.e., continuity. Thus, regions with large local mismatch 

measure M are good candidates for an additional placement of control points. The 

mismatch measure always lies between 0 and 1. We are not claiming that above approach 

is the optimal way to quantify a local mismatch. In summary, we have just proposed the 

following method to quantify a local mismatch: 

 

))(),(min(
),(1

bHaH
baMIM −= . (3.1) 

 

The way regional/local MI or entropy is calculated is a direct extension from the 

calculation of global MI/entropy by histogram. To calculate a local MI at some given 

location, a subblock of voxels centered at the given location is defined both on the 
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reference data set and homologous data set under the existing transform between two data 

sets, then marginal and joint PDFs are calculated from the joint histogram formed from 

both subblocks.  For chapters 3 and 4, the subblock size is fixed to 41x41 (i.e., 1681 

voxels) and the number of bins for the histogram is set by assessing optimal bin width 

from Izenman [20] from equation 2.6, which depends on the data distribution in each 

subblock. Note that the subblock size cannot be too small because with only a few 

samples available, PDF estimation by histogram becomes unreliable. Since we need to 

assess local MIs for all subblocks across the image, we adaptively change bin widths for 

each subblock. 

3.4. Triad of Control Points 

After identifying a candidate mismatched region to increase DOF, we must 

determine how many additional control points are needed. In fact, we may need more 

than just a single control point depending on the deformation present in the mismatched 

region. Since control points have local effects, to compensate for a local translation we 

primarily need one control point pair, but for local 2D rotate/scale/shear/translate (i.e., 

affine) compensation we need 3 local control point pairs. Thus, in the 2D registration 

problem, we put a triad of control point pairs in the mismatched region. Assuming that 

distances between 3 control points in the triad are significantly less than the average 

distance between previously existing control points, adding a triad hardly affects much of 

the existing long range geometric transform since distances from the 3 control points of 

the triad to the existing control points are almost identical and movements of the 3 

control points with respect to the center of the triad tend to be differential with no net 

centroid shift. Maintaining the existing long range transform is vital since we are 

interested in correcting local deformations without affecting the long range transform. 
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The locus of greatest mismatch serves as the center of the triad and the 3 control points 

are distributed in an equilateral triangle fashion. The larger the spacing between control 

points in the triad, the larger the region the triad will affect. This is the fundamental issue 

of scale that will be addressed further in the separate scale issue section, but for the 

remainder of this chapter we will address a single level of scale, which translates into 

some small fixed size of the triad. Note also that an affine transform can be represented 

by triads of control point pairs of any orientation. Thus the orientation of the additional 

triad that goes into the mismatched region does not matter since from a piecewise linear 

viewpoint, we are trying to correct a local affine deformation in that region. 

3.5. Iterative algorithm 

Given a current geometric mapping between two data sets, we add one triad of 

control point pairs at a time to the existing control point pairs to increase DOF locally. 

For each iteration, a triad of control point pairs is added. To determine where to put a 

new triad of control point pairs given the current transformation, the region with highest 

mismatch measure as described previously is located in the reference coordinate frame. 

Note that when adding a triad, we are confining it to be apart from the existing control 

points since it is meaningless to put a triad to places where control points already exist. 

This is done by imposing a constraint to the minimum distance between the center of the 

triad and existing control points. In our implementation, the minimum distance is set to 

be twice the triad size. A formal statement of the center location of the triad is the 

following. 
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Once the reference triad center locus is found, a local search for the placement of 

the corresponding center locus in the homologous data is performed. If we do not search 

on the homologous side, adding control point pairs under the current mapping will always 

lead to a local mismatch since we intentionally selected the region with the most 

mismatch. A window of size 30x30 at the center of the added triad on the reference side 

is defined in the search for the corresponding center and a 30x30 pixel window is moved 

in the homologous image within a 40x40 pixel search window centered around the 

current mapping of the new reference triad center onto the homologous image. The local 

MI is then calculated between the reference and homologous windows for each position 

of the homologous window using the same adaptive bin width joint histogram method 

previously described; the center of the homologous window that yields the highest local 

MI is chosen as the center location of the corresponding new triad in the homologous 

image. The window size needs to be similar to the subblock size from the mismatch 

measure considering that local MIs of the same position may change when number of 

voxels from which local MIs are calculated change. In addition, it is beneficial to confine 

the search size according to the triad size since smaller triads create more local 

deformations which leads to smaller search size. 

 

The size of triad (i.e., distance between vertex and its center position of the 

equilateral triangle) is fixed to 3 mm to operate at a single chosen level of scale in the 

240x240 mm2 image. After this new triad of control points is added, registration is 
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repeated by using the MIAMI Fuse and the final global MI is recorded. If the resulting 

global MI has not increased more than some user defined threshold value, the iterative 

process of adding control points stops by discarding the last added triad pairs and falls 

back to the control point configuration of the previous iteration. Below is the flow chart 

for the overall algorithm at a single level of scale. 

 

 

 

Fig. 3.1. Flow chart of the iterative algorithm (Fixed scale) 

For the first iteration, an affine registration is computed to give the algorithm a 

starting transform. Although the user’s initially defined control point pairs are used to 

compute the affine transformation, because the affine transform is computed globally, the 

same transformation would be computed given any reasonable set of initial control 

points. When transitioning from the affine transform as defined by 3 control points in the 

2D case to the non-linear TPS transform (i.e., number of control points > 3 for 2D), not 

only should the 4th control point pair be defined as previously described, but also should 

26 



 

the user defined initial 1-3rd control point pairs be replaced. Since there is no existing 

TPS transform at this stage, adding a triad will not work.  Note that effects of control 

points are most global when control points are far apart due to the fact that the distal 

control points control the warping in each of their respective locales. Since global 

deformations need to be addressed before smaller and local deformations, the second 

iteration’s control points are centered in each of 4 quadrants. For third and later iterations, 

triads of control points are added by the iterative algorithm. 
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CHAPTER 4 

2D FEASIBILITY DEMONSTRATION OF ADAPTIVE REGISTRATION 

In this chapter we will demonstrate effectiveness of the proposed adaptive 

registration algorithm of chapter 3 in the case of MR data sets with known deformations. 

We will try to recover the known deformation with our adaptive registration approach. 

This chapter is based on Park and Meyer [87]. 

4.1. Accuracy of Triad Position 

We first illustrate the actual measure of mismatch between two MR images. First, 

two data sets previously well registered are obtained (i.e., T1 and T2 weighted MR 

images of visible male from National Library of Medicine). Then one of the pair is 

deformed in a known way, and the algorithm previously described in Chapter 3 is used to 

recover the known deformation. To reduce noise, a median filter of 5x5 is applied before 

assessing local MIs and entropies. 
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Fig. 4.1.a: Reference image 
 

Fig. 4.1.b: Initial homologous image 

Fig. 4.1.c:  Distorted homologous 
image; radial dilation is applied to 
the center of image 

Fig. 4.1.d: Mismatch measure computed between 
Fig. 4.1.a and 4.1.c. 

 
Fig. 4.1. Illustration of mismatch measure. 
Blue represents low values and red represents high values. Note that mismatch is 
pronounced around the center. 

To demonstrate that the choice for the center of the added triad by the algorithm 

of Fig. 3.1 is accurate, a known dilation is introduced in various areas of the homologous 

image and the resulting center locations of the triad placements from the algorithm are 

recorded. The radial dilation used here is defined by the following formula. 
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(4.1) 

The deformation is applied to a 51x51 subblock. Differences between the loci of the 

center of the subblock that is deformed and the center of the added triad in the reference 

frame are tabulated. Two errors, (errhorizontal,errvertical) = xtriad - xtrue , where xtrue is the true 

center of dilation and xtriad is the center of the triad, are recorded. The following are the 3 

examples taken from the 30 dilations deformations used here. 
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dilation: lower right corner dilation: center dilation: upper left corner 

Difference between original image and unwarped image using 9 control points uniformly 
spread out. Note that there are no control points at locus of local dilation. 

Difference between original image and unwarped image using triad at locus of maximum 
mismatch. Note that there are existing control points other than the added triad. Also note 
that dilations are significantly less than the previous row of images. 
 
Fig. 4.2. Various dilation deformations in homologous image. 
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For horizontal errors, the mean and standard deviation are 0.2667 and 5.2780 mm 

respectively. For vertical errors, the mean and standard deviation are 0.2333 and 4.6586 

mm respectively.  Note that the errors are not significantly different from zero. Thus the 

algorithm is able to detect the center of dilation reliably with small errors and no 

demonstrated bias. Images in Fig. 4.2 demonstrate that by placing a triad where 

maximum mismatch occurs, the dilation can be significantly reduced. Though radial 

dilation is just one form of countless possible deformations, the ability to correct dilation 

strongly suggests the capability to correct other types of deformations. 

4.2. Issue of Scale 

Recall that when calculating the mismatch measure, both local MI and entropies 

are calculated on a subblock of size 41x41 using a joint histogram with adaptive bin 

width.  We have tested the sensitivity of the triad center error with respect to the subblock 

size on which the mismatch measure is calculated. In short, we have measured errors 

between triad center and dilation center by varying the subblock size of the mismatch 

measure. The first nine dilation deformations out of 30 are used to plot the average of 

error magnitude below. 
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Fig. 4.3. Error vs. subblock size of mismatch metric 

From Fig 4.3, it is evident that there is some optimal subblock size that leads to 

minimum error. Note that from the dilation equations, the maximum radial displacement 

occurs at the diameter of 10 pixels. At the diameter of 27 pixels the radial displacement is 

50% of maximum and at the diameter of 40 pixels the radial dilation is still 20% of 

maximum. By 40 pixels 80% of dilation has occurred, thus obtaining the smallest error 

from subblock size 41 is very reasonable. If the subblock size is larger than the size of 

deformation, then the mismatch measure will find the correct center of deformation less 

reliably since the mismatch measure is calculated over larger subblock than the 

deformation, and thus the peak location where the maximum mismatch occurs is blurred 

(i.e., obscured). For similar reasons, the mismatch measure based on smaller subblock 

size than the deformation may lead to multiple local maxima loci within the same 

deformation. In result, there are scale issues that can be evaluated with “matched filter 

like” approaches. Thus, the mismatch measure can reliably detect deformations whose 

sizes are similar to sizes of the subblock used to compute the mismatch measure. As 
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noted earlier, triad size is directly related to the size of the deformation the algorithm is 

intended to correct. In summary, two things are determined by the scale of the 

deformation; triad size and subblock size of the mismatch measure. 

4.3. Results using 2D MR Scans with Known Deformations 

Simulations are performed to see how the algorithm actually works where the 

deformations are not dilations. First, two data sets previously well registered are obtained 

(i.e., again T1 and T2 weighted MR images of visible male from National Library of 

Medicine).  Then one of the pair is deformed in a known way, and then the algorithm 

previously described is used to recover the known deformation.  The known deformation 

used here is a 9-point TPS. The T2-weighted MR image is chosen as the reference data 

set and the T1-weighted MR image as homologous data set. 
 

 
Fig. 4.4.a: Reference image – T2 MR 

 
Fig. 4.4.b: Homologous image – T1 MR 
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Fig 4.4.c: Three initially distorted homologous starting images 
 
Fig. 4.4. Images for simulation 

The upper bound on achievable global MI for the algorithm can be determined 

from the global MI of the undistorted co-registered pair of reference and homologous 

images.  Note that our registration software uses TPS, but with a finite number of control 

points, it is impossible to invert or recover the TPS induced deformation exactly. More on 

the topic of invertibility of prior TPS deformations can be found in the appendix. The 

algorithm tries to find a set of control points that approximately recovers the deformation. 

Three experiments have been performed. For each experiment triad size is fixed to 3[mm] 

and fractional MI threshold is set to 1%. A median filter of size 5x5 is applied to reduce 

noise when calculating regional entropies, MIs and the global MI. To compare different 

global MIs from different experiments, the adaptive bin width technique is not applied, 

instead the global MIs are measured with fixed bin width across all three experiments. 

For the reference image 88 bins are used and for homologous images 40 bins are used. 

The former value comes from using adaptive bin width approach and the latter value 

comes from an average of adaptive bin width approach across different homologous data 

sets to eliminate this possible confounding effect. For the first iteration, an affine 

registration is performed.  For the second iteration a 4-point-warp is done. For the third 

and later iterations a triad of control points is added according to the algorithm previously 

35 



 

described.  For each experiment global MI values are recorded as a function of iteration 

for the goodness measure of registration. Since we have the “ground truth” 

displacement/deformation field for the experiments, average root mean square 

displacement error is also calculated over the uniformly sampled grid spaced at 

0.9375[mm] (i.e.,1 voxel) excluding regions with little information (i.e., excluding 

regions outside of the head). This type of displacement error is relevant considering that 

we are only interested in recovering deformation from regions where there is support to 

observe the deformation. The experiments comparing between globally increasing DOF 

and our algorithm and the comparison between adding a triad and adding a single point as 

shown in Fig. 4.5 are done in the same manner. 
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In Experiment 1, deformations are introduced in the left and upper part of the 

image. With 4 iterations, algorithm stops with 10 control points and recovers 94.4% of 

the MI’s upper bound.  Effective displacement error after 4 iterations is 0.39mm. 

 

 
 
Fig. 4.5. Experiment 1 result 
From the Lower left plot, advantages of our algorithm are evident that we achieved 
almost the same global MI without adding so many control points. From Lower right 
corner plots, with adding a triad we are able to converge faster than adding a single point. 
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Iteration 
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Iteration 
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Iteration 
3 
 

 
Iteration 
4 

 
 Reference image 

with control 
points 

Initial 
homologous 
image with 
control points 
placed 
incrementally as 
described in text

Recovered (un-
warped) 
homologous 
image after 
optimizing 
global MI 

Difference image 
between recovered 
homologous and 
original 
homologous image 

 
Fig. 4.6. Intermediate stage results in Experiment 1 
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For Experiment 2, deformations are introduced to homologous image in the upper 

region and right region.  After 4 iterations with 10 control points, algorithm recovers 

93.0% of the MI’s upper bound. Effective displacement error after 4 iterations is 

0.56mm. 

 

 
 
Fig. 4.7. Experiment 2 results 
In this case adding a single point did not achieve as high a global MI as adding a triad. 
This shows that in some instances, we need more than a single point to correct a local 
deformation. 
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Fig. 4.8. Intermediate stage results for Experiment 2. 
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For Experiment 3, deformations are introduced to the homologous image in the 

lower and upper region. After 5 iterations with 13 control points, algorithm recovers 

93.3% of MI’s upper bound. Effective displacement error after 5 iterations is 0.51mm. 

 

 
 
Fig. 4.9. Experiment 3 results 
In this case adding a single point did not achieve as high a global MI as adding a triad for 
the same reason stated for experiment 2.  
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Iteration 
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MI 

Difference 
image between 
recovered 
homologous and 
original 
homologous 
image 

 
Fig. 4.10. Intermediate stage results in Experiment 3 
For iteration 5, triads seem to be overlapping but the markers for the controls points are 
big so that it is in fact not overlapping. 
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4.4. Summary and Discussion 

We have demonstrated in 2D an iterative algorithm that increases DOF, i.e., adds 

control points, to recover manually induced deformations. There is no claim nor proof 

that our algorithm produces the optimal (i.e., minimal) set of control points that recovers 

the deformation, but we have shown that it does recover the deformation quite 

successfully with far fewer control points than the method where DOF are increased 

globally. The algorithm first identifies the region of greatest mismatch where there is 

sufficient information to support the decision; the center of that region is the locus for an 

additional triad of control points in the reference image.  Then the appropriate locus for 

the additional homologous triad is identified based on a local search for largest local MI 

under the existing mapping.  Instead of placing an additional single control point pair at 

the identified locus, an equilateral triad of control points is added.  The use of the triad, 

instead of a single control point is based on two factors: 1) at this level of scale in 2D a 

triad supplies most of the DOF necessary to support any local deformation required, and 

2) by moving the control points of the triad differentially with respect to the center of the 

triad, the algorithm can avoid long range warping effects.  This latter property is 

especially important since it is vital not to destroy the long range solution while trying to 

ameliorate local mismatches.  

 

While the focus of this chapter is the automatic increase in DOF (i.e., the addition 

of control point pairs) to compensate for residual local mis-registration, an important 

component not addressed is the ability to examine the resulting solution at each step 

increase in DOF to determine if the DOF may be reduced without significant loss in 

accuracy.  Future efforts in addressing the possible reduction in DOF while maintaining 
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nearly the same warping accuracy, i.e., the ability to fall back from the additional triad of 

points to only one or two additional points, will be addressed in future work using the 

notions of principal warps and kriging theory [19]. 

 

Another component that needs to be addressed is the deformation scale. As noted 

earlier two things are determined by the scale of the deformation; size of the triad and 

size of the subblock used to compute the mismatch measure. Obviously, if a triad is large, 

then it can be used to correct large deformations. Additionally, we have shown that the 

mismatch measure could only reliably detect deformations of size scale related to the 

region of support used to compute the mismatch measure. Thus, the triad size has to be 

“matched” to the subblock size used to compute the mismatch measure. In this chapter 

we fix the triad and subblock sizes thus confining ourselves to a fixed scale of 

deformation. Future work must involve repeating the process described here at several 

different levels of scale, varying from large to small. The smallest scale may be 

determined by the fundamental inability to estimate entropy/MI from a very small 

number of voxels. Entropy estimation based on minimal spanning trees [21] shows 

promise for estimating entropy/MI with sparse histograms; further efforts are needed to 

incorporate that estimation method. 

 

Note that the recovered global MI is always 6 or 7 % less than the ideal global 

MI. There may be several reasons that the recovered global MI does not reach 100% of 

the global MI of the initial undistorted image pair. First, by introducing the initial known 

deformation some of the information is lost due to the low pass filtering effect of bilinear 

interpolation in creating the initial deformed homologous image. Second, it is important 

to observe that deformation recovery is limited to the amount of information present in 
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the image. There is little possibility of recovering deformation in low entropy regions; 

without texture it is impossible to observe the deformation and correct it. However the 

deformation in a richly textured region (i.e., high regional entropy) is likely to be 

recovered. Lastly, though our algorithm has been tested in 2D, the extension to 3D is 

obvious by calculating the mismatch measure in 3D and adding tetrahedrons instead of 

triads. 
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CHAPTER 5 

COMPARISON WITH OTHER ADAPTIVE REGISTRATION ALGORITHMS 

5.1. Overview of Adaptive Registration Algorithms 

This chapter is based on Park and Meyer [88]. While adaptive registration 

methods may have different geometric interpolants and similarity measures, they all share 

a common approach, i.e., they first detect areas where registration can be improved, and 

then they refine the grid in those areas.  While there may be many ways to detect where 

to refine the grid, most current techniques observe differences in a global similarity 

metric; we suggest that a logical alternative is the use of a local similarity metric.   Rhode 

et al use the gradient of global MI to refine grids [61, 62]. Others use methods based on 

entropies [63, 64]. In this chapter, we compare two methods to refine the grid, one global 

and one local, and show that for the two common methods chosen, the local measure 

method is better suited for improving the registration.  We also compare our local 

mismatch measure from chapter 3 with Rhode’s method. Note that for global measures, 

cost functions are calculated across the whole data set, whereas for local measures, cost 

functions are calculated only over a finite local region. For this chapter, MI and B-splines 

are used as the similarity measure and the geometric transform respectively. 
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5.2. Common Framework in Adaptive registration 

Before attempting any high order registration, a simple, low order affine 

registration removes any large, linear global effects. This ensures that the subsequent 

high order transform deals with only relatively small local transforms. After the affine 

registration, a high DOF registration is performed in an iterative multi-scale fashion to 

save computation time. For lower resolution data, i.e., sub-sampled data, a sparse grid of 

B-splines is used. As resolution increases, the grid becomes denser. Also within a specific 

resolution, different sized grids from large to small scale are used to speed convergence 

of the optimization. Any time grid density is increased, the new denser grid is initialized 

using the previously optimized sparse grid. This multi-scale grid optimization continues 

for a fixed number of resolutions and a fixed number of scales within a resolution, as 

long as the global MI from the previous optimization has increased more than a user 

defined threshold. Typically, at every grid refinement in 3D, the existing grid is halved in 

all dimensions resulting in an 8-fold DOF increase.  

 

Reuckert’s B-spline non-rigid registration works well at lower DOF, but suffers 

major computational complexity at high DOF [26]. For a typical CT data set of 

512x512x60 with voxel dimension 1x1x5 mm3, B-splines placed every 5 mm results in 

1,880,000 DOF, which leads to significant computational and convergence problems. 

Additionally, with B-splines placed regularly everywhere, there are many B-splines 

placed in background areas where there is little information to judge the registration and 

little interest in the local result. To remedy these computational and convergence issues, 

adaptive non-rigid registration algorithms have been developed [61-64]. They place or 

use B-splines, or control points only in areas where they are needed to improve the 

overall registration. Thus, the registration is computed using an irregularly spaced grid 
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having fewer DOF. Moreover, for a given DOF adaptive algorithms can allocate a dense 

grid of B-splines or control points to areas of interest without wasting them in 

backgrounds, and thus can achieve better registration accuracies. The following is the 

summary of the general adaptive non-rigid registration framework. 

 

Do rigid/affine registration 

Initialize grid at the lowest resolution and scale 

For I = 1..number of resolutions 

   For J = 1..number of scales within a resolution 

      Identify an area to refine the previous grid 

      Create a non-regular grid of current resolution  

       and scale using the previous sparser grid 

      Optimize the grid to maximize MI 

   End 

   Increase resolution 

End 
Fig. 5.1. General adaptive non-rigid registration algorithm 

5.3. Other Adaptive Registration Algorithms 

5.3.1. Rhode paper 

Rhode et al use the gradient of global MI to adaptively refine a grid [61, 62]. 

They use Wu’s radial basis function for the geometric transform, which has a finite local 

support property as with B-splines, and MI as the similarity measure. The authors use the 

following algorithm to accomplish grid refinement. At a given scale of a grid, they put 
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basis functions at regular intervals and then move one basis function at a time and 

observe the change in global MI. They argue that if the gradient of global MI is large, 

then the global MI is not maximum with respect to that specific location of basis 

function. Thus, that location is where two data sets are locally mis-registered and 

registration can be improved further. Once the new location of basis function is 

determined, 8 smaller (i.e., octree) scale basis functions occupy the area where there 

previously was one larger basis function. 

5.3.2. Other Papers 

Rohlfing et al use B-splines and a modified similarity function where one term is 

the global normalized MI and the other term is the smoothness of the deformation [63]. 

They use local entropies to determine locally mis-registered areas and simultaneously use 

active B-splines and inactive (i.e., not allowed to move) B-splines to reduce DOF and 

effectively implement an irregular B-spline grid. Schanbel et al also use the same B-

spline and two-term similarity measure, but refine their grid using local entropy, local 

standard deviation or gradient of the global cost function [64]. 

5.4. Experiments 

Data sets used here are T1 and T2 weighted MR images from BRAINWEB [66] 

where the noise level is 3% in both images. The T1 slice is chosen as the reference data 

set and the T2 slice is the homologous data set. The homologous set is deformed locally 

in a known way using the following formula, 

 

)15()( / += − ratererrd , (5.1) 
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where r is the radius measured from the center of subblock to be deformed, d(r) is the 

newly assigned radius from the center of the subblock and rate is the scale at which 

deformation occurs. With this radial dilation deformation, the scale of deformation can be 

manipulated to be large or small. If the rate is large, then d(r) decays slowly and thus, 

generates a large scale deformation. 

 

 
 
Fig. 5.2. Data sets used. Left: reference data set. Right: homologous data set with dilation 
centered at (125, 215). 

5.4.1. Sensitivity of Local vs. Global Measurements 

We now compare the sensitivity of two registration cost functions, local MI and 

global MI, with respect to various scales of deformation. Both measures can be thought 

of as observations of a matched filter in performing a detection task. Borrowing from 

standard methods to compare outputs of matched filters [65], the ratio C is defined as the 

following as a metric to compare different objective functions,  
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where s (θ ) is the noiseless output, N0 is the noise variance, and the peak of the 

objective function occurs at 0θ θ= . This ratio C favors objective functions with less 

noise and high curvature at the expected extremum point because such objective 

functions have a smaller error distribution of the loci of the extremum. We computed C 

by fitting the observations of global and local MI with 2nd degree polynomials and 

evaluating their second partials at the ideal maximum. The polynomial is assumed to be 

the noiseless objective function and noise is calculated from the mean of variances of MI 

values at different deformation scales. Here N0 includes all noise sources, and specifically 

the effects of local minima and maxima. The plots have been scaled and shifted to have 

the same noise and peak so that the signal to noise ratio differences between the two 

curves can be easily observed. 

In this first experiment, we assume that the center of dilation in the homologous 

data set is known and the scale of dilation varies from small to large. Both global MI and 

local MI are recorded as we increase the scale of deformation. Note that local MI is 

confined to a subblock centered on the dilation center. Optimal bin width is applied to 

both measures and independent zero mean Gaussian noise is added to both reference and 

homologous data sets. From Fig. 5.3, it is evident that using local MI is more sensitive to 

local deformations than global MI. The ratio C for this case is 0.0020 (global MI) and 

0.0038 (local MI).  We observed similar trend (i.e., local MI observations have more 

sensitivity than global MI observations) over a range of image noise variances as in Table 

5.1. This result suggests that local measures (i.e., local MI) have better sensitivity than 

global measures (i.e., global MI), and are better suited for detecting local mis-

registrations. 
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Fig. 5.3. Global/Local MI vs. degree of deformation. Solid line is the global MI fit and 
dotted line is the local MI fit. Circles are the MI values of different realization. Added 
noise variance of the image is 49. Note that there are 50 realizations for each scale of 
deformation. 
 

 Global MI Local MI 
Noise 

variance 
Ratio 

C 
Curvature Noise Ratio 

C 
Curvature Noise

9 0.0035 0.0014 0.3995 0.0043 0.0017 0.3995
25 0.0026 0.0008 0.3169 0.0045 0.0014 0.3169
49 0.0021 0.0009 0.3240 0.0037 0.0012 0.3240
81 0.0016 0.0005 0.3310 0.0031 0.0010 0.3310

 
Table 5.1. Comparison of global MI and local MI 

5.4.2. Local Mismatch Measure M vs. Gradient of Global MI 

In the second experiment, we use the more realistic scenario where the dilation 

center is unknown and compare the performance of our local mismatch measure and 
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gradient of global MI. B-splines are used instead of Wu’s radial basis function for 

evaluating the gradient of MI as described in Section 5.3.1. We apply a known dilation of 

a given scale and try to detect the center of dilation by both our local mismatch measure, 

M, and gradient of global MI by Rhode et al. Both mismatch measures are evaluated 

every 5 pixels. Subblock size and B-spline spacing are dependent on deformation scale 

for local mismatch measure, M, and gradient of global MI respectively. Both scale 

dependent parameters are chosen so that both methods have maximum ability to detect 

the given deformation. We have tried different scales of deformation (rate = 2, 3, 5 and 

8) have found that for large scale deformations (e.g. rate = 5, 8) both mismatch measures 

perform well, while for small scale deformations (e.g. rate = 2, 3) our local mismatch 

measure, M, performs better. The results in Section 5.4.1 suggest that global measures 

may have less sensitivity than local measures. Although for large scale deformations the 

gradient of global MI has enough sensitivity to detect the dilation, as the deformation 

scale decreases, global measures may not have the sensitivity needed to detect small 

dilations. 
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Fig. 5.4. Local mismatch measure M vs. gradient of global MI for large and small 
deformations (rate = 5, 2). Black box is the true dilation center and black circle is the 
dilation center found by mismatch measures over 5 trials. First row is the large 
deformation case and the second row is the small deformation case. For the large 
deformation, both measures perform well while for the small deformation only local 
mismatch measure M is successful. 

5.5. Summary and Discussion 

We show a general framework in adaptive non-rigid registration algorithms and 

note that there are many ways to refine a grid within the adaptive non-rigid registration 

framework. In Section 5.4.1, we show that local MI is a better detector of dilation than 

global MI. We suggest that this is probably due to the increased sensitivity of local 

measurements. Though we only show this for local vs. global MI, we suggest the same 

trend will be observed for most pairs of local vs. global similarity functions. In Section 

5.4.2, we show that our local mismatch measure, M, works well over a large range of 

deformation scale, while the gradient of global MI only works for large scale 

deformations.  While the mismatch measure we present, M, is only one of many possible 

mismatch measures, we suggest that grid refinement, or the detection of the locally mis-

registered areas, should be based on local measures rather than global ones. 
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CHAPTER 6 

ABDOMEN ATLAS 

6.1. Introduction 

This chapter is based on Park et al. [89]. There have been significant efforts to 

build a probabilistic atlas of the brain and to use it for many common applications, like 

segmentation and registration. Though the work related to brain atlases can be applied to 

non-brain organs, less attention has been paid to actually building an atlas for organs 

other than the brain. Motivated by the automatic identification of normal organs for 

applications in radiation therapy treatment planning, we present a method to construct a 

probabilistic atlas of an abdomen consisting of 4 organs (i.e., liver, kidneys and spinal 

cord). Using 32 non-contrast abdominal CT scans, 31 are mapped onto one individual 

scan using TPS (Thin Plate Spline) as the non-linear transform and MI (Mutual 

Information) as the similarity measure. Except for an initial coarse placement of 4 control 

points by the operators, the MI based registration is automatic. Additionally, the four 

organs in each of the 32 CT data sets were manually segmented. The manual 

segmentations are warped onto the “standard” patient space using the same transform 

computed from their gray scale CT data set and a probabilistic atlas was calculated. 
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6.2. Probabilistic Atlas on Abdomen 

Recently, significant effort has been directed towards the development of 

deformable templates typically for segmentation of the human brain [31-41].  Only one 

recent publication addresses segmentation of the liver and kidneys using a deformable 

surface model [42].  Rich literature has been compiled on probabilistic atlases of the 

brain [43-53]; while most of the literature is extendable to abdominal organs, these 

extensions exist only in theory and have not been actually demonstrated on abdominal 

organs. Thus, we have pursued the simultaneous construction of a probabilistic atlas that 

includes a set of abdominal organs similar to that describe by Evans [57]. The term 

“probabilistic atlas” does not simply mean the average boundary of an organ, but rather 

the complete spatial distribution of probabilities that a voxel belongs to one or more 

organs, i.e., each voxel has an n-vector, where n depends on the number of organs in the 

modeling system. We continue to focus on probabilistic atlases in spite of the remarkable, 

even spectacular results of deformable templates, because of the belief that atlases, if well 

formed, bring more prior information to the process of defining complex organs in low 

signal-to-noise settings. After mapping a new patient onto the atlas using the same 

methods used to construct the atlas, the computed inverse transform maps the probability 

distributions of the atlas back onto the patient.  Then the atlas can be used to find the 

most probable loci of edges of the patient’s organ. Furthermore, the derivative of the atlas 

defines a Bayesian weighting (i.e., probability density function), which provides very rich 

information for identifying the organ’s boundaries. 

 

Here we present the results of a full probabilistic atlas construction for 32 

patients, where 31 of the patients have been mapped onto one individual using thin plate 

splines (TPS) as the non-linear transform and mutual information (MI) as the similarity 
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measure. Registering 31 patients onto one arbitrarily chosen reference patient can 

introduce bias towards that specific reference patient, especially if the reference patient is 

far from the average population for which the atlas is intended. Thus, the reference 

patient selected best represents the population to our knowledge aided by an expert 

inspection. By iterating this construction process; i.e., using the resulting atlas as the 

reference target of another atlas construction phase, other groups have shown that the 

variance of the atlas and the dependence of the reference patient can be reduced further 

[44, 51]. While in the past, many groups focused only on the mean surface, the Bayesian 

value of the probabilistic atlas in the segmentation task lies not only in the mean but also 

in the variance of the atlas. 

6.3. Methods 

6.3.1. MIAMI Fuse 

The registration of the individual data sets onto the target reference is 

implemented using mutual information for automatic multimodality image fusion, i.e., 

MIAMI Fuse, which implements TPS as the non-linear transform and MI as the similarity 

measure [9, 11, 15]. Since the abdomen consists of organs that are compressible and have 

different sizes and shapes across individuals, the use of a non-linear transform is required 

instead of a rigid transform. TPS is expressed in terms of control points, which are placed 

in pairs in the corresponding loci of the related data sets. TPS deformation arises from 

surface interpolation literature where control points are constraints of the interpolating 

function. From the interpolating perspective each constraint (control point) primarily 

affects interpolating function in its vicinity. Detailed visualization of local effects of TPS 

in 2D can be found in chapter 2. Thus control points primarily affect deformations near 

57 



 

the control points. Note also that the density of control points is related to the DOF of the 

non-linear transform. Thus, when the region has high density of control points the DOF 

of the non-linear transform in that region is high. TPS is typically reserved for non-linear 

transforms, but TPS reduces to affine or rigid transform if the number of control points is 

less than 5 in 3D. Details of TPS and control points are found in these texts [22, 23]. MI 

is used as the similarity measure of choice. It basically exploits the fact that two co-

registered data sets yield a joint probability density function (PDF) with tight clusters, 

whereas un-registered data sets yield a joint PDF with disperse clusters. Tighter clusters 

(i.e., more correlation) translate into higher MI values than more disperse ones (i.e., less 

correlation). In our implementation, all PDFs (both marginal and joint) are estimated by 

histograms with fixed bin width. 

6.3.2. Control Points Used 

The liver, kidneys and spinal cord of the target reference data set were manually 

segmented by an expert using a window between –123 HU (Hounsfield Unit) and 131 

HU. Boundaries were traced using hand controlled optical mouse and 36 control points 

were placed in the target reference data set. The distribution of control points in the 

reference data set were chosen as follows: 17 control points were chosen in the reference 

data set's liver, 7 control points were chosen in and around the spinal cord, and 6 were 

chosen in each kidney as seen Fig. 6.1.  The only criterion for the placement of these 

points was to achieve an approximately uniform density of control points for their 

distribution in each organ.  The voxel dimensions of the target reference CT data set is 

(1.29 mm)2 x 5 mm. Again, note that control points in each organ control 

deformations/transforms in their locality. 
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 Fig. 6.1. Distribution of control points for organs of interests. From top left, left kidney 
model and associated 6 control points , top right,  right kidney model and associated 6 
control points, bottom left, liver model and associated 17 control points and bottom right, 
spinal cord model and associated 7 control points in the reference volume. 

6.3.3. Construction of Atlas 

We observed that if we registered the whole abdomen between reference and 

patient volume, liver primarily drives the registration since it has the largest voxel count 

of any organ, and therefore the liver affects the joint histogram and the resulting MI more 

than other organs. Thus, smaller organs like kidneys are not accurately aligned if jointly 

registered with other organs. By registering each organ separately, we obtained better 

overall registration accuracy.  Each organ was registered onto its homologous pair in the 

reference volume separately, and then one final optimization using all 36 control points 
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was used to correct for any control point interactions that may have occurred between 

adjacent control points from the separate organ registrations. 

 

Separate registrations for each organ are performed by masking out, i.e., zeroing, 

the remainder of the gray scale reference data so that it only contains the organ of 

interest. Since the usual implementation of our registration algorithm ignores zeros if 

they occur in either data set, the only data used to construct the joint histogram derives 

from the chosen reference organ and the mapping of the patient's data onto that organ 

only. 

 

The registration of a single patient onto the target reference geometry begins by 

the operator’s selection of just 4 homologous control points in the patient’s data set 

corresponding the loci of the first 4 control points in the target reference, i.e., two in the 

liver, and one at the center of each kidney.  This process essentially identifies to the 

algorithm the pose of the patient in the scanner, i.e., head/feet first and lying 

prone/supine. The loci of these 4 points need not be exact since the optimizing process 

that follows will find the correct corresponding loci under the MI similarity measure. 

Then the algorithm repeats the process of registering each organ separately. The 

optimizer moves the first 4 control points in the patient’s data space to obtain the best 

isotropically scaled, rotate-translate mapping of the patient’s organ onto the target 

reference organ. Then based on the optimized geometry mapping just obtained, the 

remaining points (out of the first 4 plus the N for that organ) are mapped onto the 

patient’s data set to initialize the N+4 control point TPS transform of the patient’s organ 

onto the target reference organ and the N+4 point TPS optimization follows.  After the fit 

of one organ has been optimized, the process of focusing the attention of the registration 
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on each remaining organ separately continues until all of the specified organs have been 

fit. Basically for each organ, first affine geometry is optimized and then based on the 

obtained affine geometry N+4 point TPS is initialized, which removes the burden of 

specifying N+4 control points in the patient’s volume. The resulting loci of all the organ-

specific control points are then simultaneously optimized using a 36 control point TPS to 

correct for the small interplay that may occur between relatively close control points in 

the global solution, which is initially ignored in the individual focused organ refinement 

process. 

 

Except for the placement of the 4 initial control points in each patient, the process 

of mapping the patient onto the target reference geometry is completed by the algorithm 

totally automatically. Indeed we may be able to achieve the first full affine registration 

fully automatically by placing the first 4 control points based only on the extents of the 

dataset and then implementing a limited DOF registration somewhere between full affine 

(12 DOF) and that of the rigid registration (6 DOF), e.g. isotropically scaled (7 DOF) or 

even anisotropically scaled (9 DOF).  We have not as yet tried such fully automatic 

approaches but they clearly are important topics for further research. 

6.4. Results 

6.4.1. Qualitative Analysis 

After registering each patient onto the reference, the probabilistic atlas is 

computed by applying the same registration transform to each patient's manually 

segmented data set.  Then for each voxel in the reference volume, a vector float value is 

computed where the value of each vector component for each voxel represented the 
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fractional percentage of registered patient data sets that have a label at that reference 

voxel location corresponding the particular organ represented by that vector component.  

Volume rendering of the resulting probabilistic atlas is shown in Fig. 6.2.a.  For the sake 

of comparison the full affine atlas construction is shown in Fig. 6.2.b.  Volume rendering 

for both is via the ray tracing algorithm where the final color and brightness of the 

rendered pixel depend on the integrated local attenuation of the ray as it passes through 

the data volume.  There are no gradient lighting effects used here.  In Fig. 6.2.a the 

appearance of darker "shadows" around each of the individual organ models is due to the 

fact that at the edge of each model its probability, represented here by a particular 

intensity and hue corresponding to the organ, drops sharply to zero.  The sharper the 

gradient, i.e., the better the registration process in constructing the probabilistic atlas, the 

more limited and thus visible are the dark fringes.  The difference between two 

construction methods is most evident between the right kidney and the liver.  Note in Fig. 

6.2.a the sharp dark demarcation between the right kidney and liver where the probability 

that voxels in that region are either kidney or liver are low.  In contrast, note in Fig. 6.2.b 

how the kidney and liver blend into one another in the fuzzy, affine atlas construction. 

 

In general, the variance of the atlas will decrease as we increase the DOF of the 

transform, but it may not necessarily increase the effectiveness of the atlas to other 

applications (e.g., segmentation), which is commonly known as the “curse of 

dimensionality”. We believe that we are operating at DOF where moderate increase in 

DOF will increase the effectiveness of the atlas, but it still requires validation. The 

validation part is left as future works. The variability of our atlas is largely affected by 

the presence/absence of features across patients, e.g. some patients do not have a left lobe 
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of the liver, and shape differences that exceed the ability of our non-linear transform to 

compensate. 

 

 
 
Fig. 6.2. Comparison of probabilistic atlases. The left figure (Fig. 6.2.a) is the 
probabilistic atlas constructed by a 36 control point TPS transform while the right figure 
(Fig 6.2.b) is the probabilistic atlas constructed by 4 control point affine transform. Red 
corresponds to liver and green, blue and yellow correspond to right kidney, left kidney 
and spinal cord respectively. 

6.4.2. Quantitative Analysis 

To quantify results we have computed average standard deviation over different 

slices of the resulting atlas. Occurrence of the organ edges are assumed at 50 % threshold 

of the vector value and Gaussian curve with different variances are convolved with a step 

function occurring at the organ edges to best match in the least mean squared error 

(LMSE) sense the actual probabilistic atlas. The results are summarized in the table 

below: 
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Table 6.1. Variances of the probabilistic map in some slices 

 

In general the variances of TPS based atlas construction are on the order of 4 to 8 

times smaller than the affine atlas construction. The structure that is a notable exception 

to this generalization is the left lobe of the liver. Here the similarity in variance between 

the two methods may reflect more on the anatomical variation, i.e., presence or absence 

of this structure across patients. 
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CHAPTER 7 

ATLAS BASED SEGMENTATION ON ABDOMEN 

7.1. Segmentation Overview 

This chapter is based on Park et al. [89]. Segmentation can be thought as the 

process of assigning labels to individual voxels in the data set. Extensive review of the 

segmentation methods and deformable surface models can be found in these papers [67, 

84]. Most segmentation methods can be divided into two groups. The first one is 

supervised segmentation where certain Volume Of Interest (VOI) has to be manually 

specified for training different tissue types. The other is unsupervised segmentation 

where the discovery of different tissue types is automated. Supervised segmentation 

typically uses k-nearest neighbors (k-NN) algorithm followed by some regularization [68, 

69]. Unsupervised segmentation typically uses Expectation Maximization (EM) 

algorithm to estimate parameters for different tissue types and feeds those parameters to 

Bayes rule followed by some regularization [70-72]. Both segmentation algorithms 

include regularization in their steps. A common way to regularize or smooth is to 

incorporate a Markov Random Field (MRF) priors. Basically, the Markov Random Field 

model encourages adjacent voxels having similar labels. Extensive reviews and 

implementation on MRF regularization are available [73-77]. In the execution of Bayes 

rule of the unsupervised segmentation, some algorithms use Maximum a posteriori 
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(MAP) approach while others use “maximization of the posterior marginals” (MPM) 

approach [78]. Our work takes the route of the unsupervised segmentation with MAP.  

 

Our contribution is to extend the unsupervised segmentation with the additional 

information provided by the probabilistic atlas. Improvements in segmentation quality 

compared to cases with no atlas information are readily noticeable, especially where there 

is little contrast between organs of interest. Specifically, we can eliminate most of the soft 

tissue false positives around liver/kidneys/spinal cord and distinguish liver, spinal cord, 

left kidney and right kidney. Note that to apply the atlas information, a new CT data set 

should be mapped onto the atlas space by the same method that is originally used to 

construct the atlas. 

 

We have applied our segmentation algorithm retrospectively to 20 abdominal CT 

scans of anonymous patients who have established lymphoma and received these scans as 

part of a standard clinical protocol to follow possible lymph node enlargement.  These are 

all 7-10 mm thick slices acquired during a breath-hold on a helical scanner.  Only oral 

contrast material was administered; no intravenous (IV) contrast was used.  Segmentation 

of such non-IV-contrast CT scans is very difficult because CT values for non-lipid soft 

tissues are primarily related to density, and all non-lipid soft tissues have the density of 

water. False positive rates and false negative rates are reported as a measure of 

segmentation performance. Also, comparisons with cases where no atlas information is 

used are made. 
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7.2. Methods 

In this chapter, the true label field (i.e., segmented field) will be denoted X, the 

given observed data set will be denoted Y and the probabilistic atlas is denoted by A. 

Elements of X, Y and A are arranged by spatial position denoted by i , where I is the 

simple index in a rectangular grid. Throughout the chapter, 

I∈

1 2( , ,..., )Nx x x=x , 

and , where N is the total number of voxels, will 

represent sample realizations of X, Y and A respectively. Sample space of X will be 
denoted ,

),...,,( 21 Nyyy=y

xΩ x

),...,,( 21 Naaa=a

{1,2,3,4,5},i{ :   }x i I∀ ∈x

1 2 3, ,i ia a

 1..5 ,  k ik

Ω = . Label 1 is the liver, 2 is the right kidney, 

3 is the left kidney, 4 is the spinal cord and 5 is the “None of above” label. Note that the 

probability atlas is 5-vector, , where each component corresponds 

to probability of a specific organ being there. The atlas information is realized as 

∈

( ,i ia a=

4

5
1

,  1i
k

4 5, )i ia a

( ) ,i iP X k a= = k a i I= ∈a
=

= −∑ . As noted before data set Y is already 

mapped onto the spatial frame of the probabilistic atlas using the same techniques that are 

used to construct the atlas. 

 

7.2.1. Bayesian Framework 

The problem is to estimate the label X that best explains the given observation Y 

according to some cost function. Different cost functions can be applied, such as MAP 

which aims to maximize the global a posteriori probability P(X|Y) and MPM which aims 

to maximize the posterior marginal distribution P(Xi|Y) for each voxel i. We chose MAP 

and the following is the formula for the realization of estimate of X. 

 
^

arg max ( | )
x

x P X x Y y= = =  (7.1) 
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7.2.2. Tissue Type Modeling (Gaussian) 

We will assume that random variable Y1, Y2, …, YN are conditionally 

independent given the true labels X. We will also assume that probability density 

function of Yi given X depends only on Xi. Furthermore, the probabilities of Yi’s are 

modeled as conditional Gaussians given mean and variance of the true label Xi. There are 

other advanced models for different tissue types, especially for brain tissues [81], but still 

many papers use this simple Gaussian model and have been successful [71, 72]. 

Formulation for the conditional probability follows. 

 

1

2

22

( | ) ( | )

1 ( )exp( );  for k 1,2,3,4
2( | ) 2
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=

= =

 − −
= = =  

 = 

∏Y X

 

(7.2) 

 

For the tissue type ‘None of above’, there may be multiple clusters in the gray 

scale distribution since it includes background, all intestine, spleen, stomach, body wall 

and bones. Thus, using a uni-modal Gaussian will not be sufficient. Note that our typical 

abdomen CT scans of slice thickness 5 mm have 512x512x40≈ 108 voxels. If we can use 

only 0.1% of all voxels (i.e., 105 counts) to train the tissue type ‘None of above’ using a 

histogram, we have enough samples to make the 256 bin histogram closely approximate 

the true distribution. Using a very conservative estimate, which assumes ‘None of above’ 

tissue type occupies 5% of the abdomen volume (i.e., 5x106 counts), we are guaranteed to 

have a reasonable estimate of the ‘None of above’ tissue type.  

7.2.3. Automatic Training 
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Mean kµ  and variance 2
kσ  of the Gaussian model in eq. 7.2. have to be estimated 

for the first four tissue types. A simple sample mean and variance over VOIs are used. 

The selection of VOI is automated by the aid of the probabilistic atlas. With the atlas 

information, we have a very strong prior knowledge where the organs are. Thus the VOI 

for the training of a specific organ can be identified where the atlas predicts nearly 100 % 

organ presence. We have used above 96 percent of being the desired organ for specifying 

VOIs. Lowering the threshold for the VOIs may induce better robustness of parameters 

(i.e., mean and variance), but it may also bias the estimates, e.g. lowered threshold VOIs 

may included multiple organs. Actual segmentation results with different threshold for 

VOIs will be discussed later. For the tissue type ‘None of above’, a histogram is 

calculated over the automatically selected VOI. 

 

The standard method used in unsupervised segmentation is the combination of 

EM/MAP. In those cases iteration between EM and MAP to ensure convergence of the 

hyper parameters (i.e., mean and variance) is required [71, 72]. Our method is estimating 

hyper parameters over the areas where the likelihood of a specific organ presence is very 

high, so the estimates of hyper parameters are very stable. In result, our method need not 

iterate to achieve stable hyper parameter estimates and segmentation. We have confirmed 

with our data sets that our segmentation results did not improve with iteration. 

7.2.4. Markov Random Field (MRF) regularization 

We have included the usual penalty for dissimilar adjacent labels in the form of 

Markov Random Field regularization where the underlying label is modeled as the Gibbs 

distribution. The MRF penalty favors adjacent label fields to have similar labels, which is 

the same general spatial correlation that exists in medical data sets. Vast amount of 
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literature exists on MRF models [73, 74]. Here we use a very simple implementation of 

the MRF model. A 6-voxel neighborhood system that is called clique is used. Our Clique 

consists of 4 nearest neighbor voxels in the slice plane direction and 2 nearest neighbor 

voxels in the out of plane direction. In the case of corner voxels and outer edge voxels, 

Cliques are accordingly reduced to a smaller neighborhood. There can be other 

complicated Cliques that span many more voxels than 6, which may be tailored for other 

applications. According to Hammersley-Cliffored theorem, the probability density 

function of the MRF model takes the form of the Gibbs distribution [79]. 
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(7.3) 

Z is the normalizing factor, β  is the positive constant which controls 

regularization, C is the Clique and U(x) is the energy function that increases with 

inhomogeneous adjacent labels. We assume that the value β  is known a priori, which is 

assumed in many MRF based segmentations [82, 83]. It is also found that the optimal 

value of β  is not highly dependent of the image content and the performance of the 

segmentation algorithm remains relatively unchanged with respect to β  [71]. 

7.2.5. Posterior Probability Formula 

Optimizing the posterior probability is not an easy task, especially because there 

are so many possible realizations of the MRF model and the optimization is prone to be 

caught in local maximas. There are many methods for optimizing the posterior 

probability in the MRF setup. Typical methods are Simulated Annealing [75] and genetic 

algorithms [76] that are theoretically proven to converge to the global maximum, but all 
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these methods are extremely computationally expensive. In this chapter, we have used a 

method similar to Iterated Conditional Mode (ICM) by Besag [77], which is a greedy 

approach to those slower methods. Additional information available from the atlas is 

reflected on the Markovian assumption of the label field.  

 
( )
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Z; normalizing factor
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(7.4) 

Thus, we are favoring similar adjacent labels in addition to the most probable label from 

the atlas. In ICM, maximizing the posterior probability is maximizing the product of two 

probabilities; ( | )i ip y x  and ( | )i ip x x∂  [77]. The ( | )i ip x x∂  term is further divided into 

atlas term and the Markov regularization term. Basically, we have included one 

additional term into the posterior probability. The first term, ( | )i ip y x  is the difference in 

the observation from the model mean in Gaussian sense, the second term is the 

contribution from the probabilistic atlas and the third term is the MRF regularization 

term. Typical methods have only two terms, the first and the third term. 

 

( )

arg max ( | ) ( | )

arg max ( | ) ( ) ,i

i i i i
s k

i i i

p y X k p X k x

p y X k P X k e i Iβ
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= = = ∈
 (7.5) 

The ICM method needs an initial segmentation to begin with. The initial segmentation is 

provided by maximizing the posterior probability without the MRF term. In detail, it is 

optimizing the only two terms excluding the MRF term in the posterior probability 

formula provided above. In the implementation of ICM, regular ICM requires that all 

current labels (i.e.  labels upto index i-1 and labels from the previous iteration) are used 

to update the new label. Our implementation only uses labels from the previous iteration. 
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Our modified ICM iteration stops when label field changes between iterations are less 

than a given threshold. 

 

7.3. Segmentation Results 

Our segmentation method has been tested on 20 non-IV-contrast abdominal CT 

scans. Patient CT voxels that map onto probabilistic atlas organ regions of 96% or greater 

are used for training, the threshold for the ICM iteration is set to 5% label change and β , 

the smoothness parameter, is set to 1.5. Performance of the segmentation is measured 

using false positive rate and false negative rates. We assume that the ground truth 

segmentation comes from an expert labeling, the null hypothesis is the absence of a 

specific organ and the alternative hypothesis is the presence of a specific organ. Thus, a 

false positive error occurs when a voxel is not an organ of interest by the manual 

segmentation, but is classified as an organ of interest by the segmentation algorithm. 

Below is one example of segmentation out of 20 cases. 

7.3.1. Qualitative Results 

Note in Fig. 7.1.g that there is very little contrast among different Gaussian 

modelings of organs. The four Gaussian curves for different tissue types have very large 

overlapping regions. Thus, without the atlas information the segmentation algorithm 

cannot distinguish well among organs of interest. Without the atlas information as in Fig. 

7.1.c, right kidney, left kidney and spinal cord are all assigned the same label and there 

are lots of other soft tissues that are still classified as organs of interest. With the added 

atlas information as in Fig. 7.1.d, we now gain contrast over kidneys and spinal cord, and 

soft tissues that are not of interest (e.g. intestines, spleen etc.) are eliminated. Fig. 7.1.f 
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shows the difference between Fig. 7.1.c and Fig. 7.1.d. In Fig. 7.1.f, the background gray 

is the zero difference and all other values reflect differences between the two 

segmentation methods. From Fig. 7.1.f, mis-classification of spinal cord and left kidney 

is evident and differences in the two segmentation methods are found at body walls near 

the liver, organs of non-interest and centers of kidneys. 

 
 
Fig. 7.1.a, 7.1.b. Left : one slice of the data set. Right : Atlas information. 
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Fig. 7.1.c, 7.1.d. Left : segmentation results without atlas information. Right : 
segmentation results with atlas information. 

 
 
Fig. 7.1.e, 7.1.f. Left : comparison between grayscale data set and segmentation with atlas 
information. Right: difference between segmentation with and without atlas information. 
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Fig. 7.1.g, 7.1.h. Left : Gaussian modeling for different tissue types. Right : subsection of 
the ROC curve. 

 

 

 
Fig. 7.1.i. Actual histogram and modeling of the histogram. 
Fig 7.1. Sample segmentation results. 

7.3.2. Quantitative Results 

The false negative rates for left kidney and spinal cord without the atlas are over 

90%; it comes as no surprise that the segmentation algorithm without the atlas cannot 

distinguish left kidney and spinal cord from other organs. From the first two rows of 

Table 7.1, false negative rate values are generally larger than false positive values, which 

is the result of a conservative segmentation. By overlaying Fig. 7.1.a and Fig. 7.1.d or by 
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inspecting Fig. 7.1.e, you can observe that the segmentation results are not really 

extended towards kidney and liver boundaries. In other words, our results are 

conservatively biased, i.e., we are more likely to call a voxel not an organ when there is 

an organ present especially around the edges of the organs. Overall performance 

measures with the atlas information are very close to the performance measures of the 

liver, which is not surprising since liver is the biggest organ in our 4-organ abdomen 

model and thus has the most voxel counts. The last two rows of Table 7.1 show the effect 

of changing the training threshold from the 96% to 90%. The resultant false positive rates 

and false negative rates for the 90% case compared to 96% are slightly worse, but 

possibly within the realm of no statistical significance. If the threshold is further lowered 

for instance 60%, it is likely that we would observe biased estimates for the Gaussian 

parameters leading to worse segmentation results. For a moderate change in threshold 

(i.e., 96% to 90%) changes in segmentation results are minimal. 

 

There remain fragments of organs around the liver and the kidneys in the 

segmented results (Fig. 7.1.d), these fragments can be further eliminated if we had an 

atlas with lower variance. Atlases with lower variances will fall off very rapidly near the 

organ boundaries, thus the algorithm will be unlikely to classify tissue fragments that are 

not only similar to the organ itself in grayscale values but also spatially close, as organs 

of interest. Still, the atlas constructed from 32 subjects is sufficient to remove most of the 

fragments. A subsection of the Receiver Operating Characteristic (ROC) curve is 

presented in Fig. 7.1.h. In this case we are not able to adjust the false positive rate at our 

will since the change of the only maneuverable parameter β yielded very limited range of 

false positive rates. Thus, in this implementation we are operating at the low false 

positive rate and high true positive rate region. Performance measures for all 20 data sets 
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are given in table 7.2. For table 7.2, ICM threshold is set to 0.5% and other parameters 

are the same as before. 

 
 
Table 7.1. Performance measures for the sample case 
 

 
 
Table 7.2. Performance measures for 20 data sets 

7.4. Summary and Discussions 

Segmentation is one of the obvious applications where atlas information can help. 

In case of the non-contrast CT scans, atlas information aided the segmentation algorithm 

to support differentiation between similar gray valued organs where previously no other 

differentiations have been possible. Atlas information also led us to remove organs of 

lesser interest. All these will be helpful in clinical setups like radiation therapy treatment 

planning. Our algorithm showed underestimation of organs largely due to inability to 

assign correct labels near organ boundaries. This effect can be remedied by having an 

atlas with lower variance or a better modeling of ‘None of above’ label other than a 
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simple histogram. Other methods of finding specific organ edges in the patient’s data set 

using the model information may further improve the results. In summary, we have 

demonstrated successful integration of the atlas information into the standard 

unsupervised segmentation and the results for the non-contrast CT cases are excellent. 

Further research should include assimilation of the atlas information into other well 

established segmentation algorithms including level sets [80]. 
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CHAPTER 8 

SUMMARY AND DISCUSSIONS 

8.1. Summary and Discussion for Adaptive Registration 

Recently we have seen non-linear registration applied to many common soft 

organs in the body and witnessed their successes. Through chapters 3 and 4, we have 

pointed out the shortcomings of traditional high DOF non-linear registration. Those 

shortcomings include computational complexity and convergence issues related to the 

high DOF nature of the particular geometric transform considered. To remedy those 

problems, we have proposed an adaptive registration algorithm, where the DOF are 

increased selectively only in local areas where they are needed rather than increasing the 

DOF globally. The central issue here is where to selectively increase DOF, namely where 

the locally mismatched areas occur. We have proposed to use our local mismatch 

measure M based on local MI and entropy. Others have proposed to use global MI or a 

particular form of global measures to find locally mismatched areas. In Chapter 5, we 

have shown that local measure based methods are better suited for detecting small scale 

deformations (i.e., small scale mismatches). We also have proposed an iterative adaptive 

registration algorithm that uses our local mismatch measure M and triad of control points.  

A triad of control points is used to accommodate local affine transformation in 2D. Our 

adaptive registration algorithm has been demonstrated to work in 2D MRI scans where 

the ground truth deformation is known. 
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In our implementation of the adaptive registration algorithm, the deformation 

scale is fixed. Note that the deformation scale is related to the size of the triad and the 

subblock size of the local mismatch measure M.  For future work, adaptive registration 

should be repeated for several scales from large to small. Note also that if we decrease 

the scale, the subblock size of the local mismatch measure will eventually be so small 

that we cannot estimate the PDF reliably from a small number of samples. For the 

simulations in section 4.3, since the true deformation is known, the performance of the 

adaptive registration can be better visualized by overlaying the true deformation and the 

recovered deformation from the algorithm for figures 4.6, 4.8 and 4.10. 

8.2. Summary and Discussion for Atlas Based Segmentation 

Atlas construction has been thought to bring good prior information to common 

image analysis techniques, like segmentation and registration. In Chapter 6, we have 

shown how to build an atlas of four abdominal organs using MI as the similarity measure 

and TPS as the geometric transform from 32 CT scans.  Registration focuses on a 

separate organ at a time so that the registration process is more sensitive to that particular 

organ than registering the whole abdomen. After the atlas is built, we create a very strong 

spatial prior because of the reduced spatial variance. This is evident when compared with 

the affine constructed atlas.   

 

We also have demonstrated how the atlas information can be incorporated in the 

standard unsupervised segmentation scheme. Atlas information is incorporated as an 

additional prior to the posterior probability. Note that a data set has to be registered onto 

the atlas space by the same algorithm used to construct the atlas to use any atlas 
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information. The training of different tissue types is automated by identifying highly 

probable regions of a particular tissue type from the atlas. The result of the proposed 

segmentation scheme on 20 non-contrast CT scans shows that there is a marked 

improvement on segmentation results. For example, compared to the standard 

unsupervised segmentation, we have eliminated organs of non-interest (e.g., spleen and 

intestines etc.) and been able to distinguish between two kidneys, where grayscale values 

are very similar. 

 

In the construction of the atlas, we have registered all 32 patients on to an 

arbitrarily chosen reference patient, which may introduce bias towards that particular 

patient’s geometry. Though the patient is chosen to approximately represent the intended 

population, for future work, we need to iterate the whole atlas building procedure on the 

previously built atlas until the atlas converges to the unbiased atlas. In addition, atlas 

priors can be incorporated to other well established segmentation algorithms, like level 

set theory. Also, performances of the segmentation algorithm with and without the MRF 

priors can be compared to assess the contribution of the MRF prior to the segmentation 

results. 

8.3. Future work 

For adaptive registration, future work should include multiple deformation scales 

from large to small. Also, future work should include calculating the local mismatch 

measure M over a “tapered kernel” subblock to reduce the bias caused by a rectangular 

shaped subblock. This approach will be especially effective if the local deformation is 

known apriori so that the kernel can be “matched” to that deformation. For atlas based 

segmentation, future work should include segmentation with the aid of the atlas 
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constructed from various DOF to explore the relationship between DOF used to construct 

the atlas and effectiveness of the atlas. Also, assimilation of atlas information to other 

well established segmentation algorithms should be explored. 
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APPENDIX 

Invertibility of TPS Deformation 

Theoretically the TPS can generate warpings that are not invertible because the 

determinant of the local Jacobian is negative; in practice, this rarely happens for two 

reasons: a) the solution to the TPS warping minimizes bending energy which penalizes 

folding, and b) the DOF typically implemented by applications in our experiments are 

relatively low, i.e., < 50 for 2D and < 120 for 3D.  Although, currently there is no closed 

form for the analytic inverse, the inverse may be calculated using iterative numerical 

methods.  Others have shown that the inverse of TPS cannot be represented by another 

TPS with the same number of control points [30]. In addition we will also demonstrate 

that the inverse of TPS needs to be represented by far more control points than the 

original deformation. 
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Fig. A.1. 4-point example for invertibility of TPS 
Two points at (0,1) and (0,-1) are moved to (0, 1/2) and (0, -3/2) respectively. Two other 
points on the x axis are not moved.  

The top-left plot is the reference frame and the top-right plot is the deformed 

homologous frame using the TPS that maps reference control points onto homologous 

control points (i.e., forward TPS). The bottom-left plot is the recovered homologous 

frame using the TPS that maps homologous control points onto reference control points 

(i.e., reverse TPS). Notice the non-square grid structures on the bottom-left plot. It clearly 

shows that the inverse of the TPS deformation cannot be represented by the same number 

of control points that caused it. The bottom-right plot is the inversion using 40 control 

points. Notice the far more regular shape of grids than the bottom-left plot. 
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Fig. A.2. Errors with respect to number of control points used for inversion 

For the plot above, error is measured as squared error from the ideal square grid 

for the same 4-point case from Fig. A.1. The plot shows that errors are decreasing with 

more control points used in the inversion. The way we added control points for inversion 

need not be optimal since we are only interested in observing the trend between the 

number of points used for inversion and the error. It is clear that many more control 

points than 4 are needed to recover a TPS induced deformation in a TPS fashion. It is 

very likely that we need infinite number of control points to exactly invert a TPS induced 

deformation. 
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Fig. A.3. Schematic for invertibility. 
Solid line is the deformation and dotted line is the recovered deformation. 
 

Above schematic also implies that inverse of TPS cannot be represented by finite 

number of control points. Above plots show a deformation of TPS in 1D, we have moved 

a control point (i.e. a knot) at x=0 from base a value 0 to a value 0.5, resulting in the solid 

line. Even if we tack down the cross to the axis (i.e., from 0.5 to 0), the smooth basis 

function (i.e., dotted line) that connects the tack is still not a flat line.
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