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CHAPTER I

Introduction

1.1 Motivation

Modern medical imaging was born when Wilhelm Conrad Roentgen showed that

bones could be visualized by X-raying his wife’s hand in 1895. Today, radiography

remains one of the major medical imaging modalities. The use of X-rays for medi-

cal imaging, however, has expanded well beyond radiography. With modern X-ray

modalities we are capable of seeing 3-dimensional images rich with information about

the internal structure of the human body. X-ray computed tomography (CT), first

introduced by Cormack [12] and Hounsfield [40], is an X-ray modality that enables

the imaging of cross-sectional slices of an object, often the human body. Today,

X-ray CT continues to be one of the leading clinical imaging modalities. CT is also

used to image animals, industrial parts, mummies, etc. [45].

Fundamentally, CT provides a cross-sectional image of the X-ray attenuation

properties of tissues within the body. CT scanners record projection measurements

of the transmission of X-ray photons through an object at different angles. There are

a variety of methods to reconstruct clinically useful images from CT measurements.

One approach, for example, casts the CT problem as system of equations that can

be solved with numerical iterations. The most dominant CT reconstruction tech-

1
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nique, however, is filtered backprojection (FBP). Theoretically, FBP has its roots

in the Radon transform and the Fourier slice theorem, which link a function and

its projections to its Fourier transform. FBP is therefore analytic, and its practical

implementations take advantage of the fast Fourier transform (FFT). FBP is fast

and deterministic, and its properties are very well understood.

According to the Radon transform, projections of an object represent an analytic

transform for that object. Inversion of the transform gives a direct solution to the

reconstruction problem. The Radon transform however, assumes ideal conditions:

infinite number of measurements with infinitely thin X-ray beams, noiseless data, mo-

noenergetic X-rays, etc. In reality, there is a host of non-ideal effects and parameters,

and real CT measurements never conform to ideal conditions. CT measurements suf-

fer from noise, beam hardening, scatter, detector and X-ray tube effects, etc. These

different effects, if not corrected for, generally lead to discrepancies between the true

and reconstructed values of the object. These discrepancies are often called image

artifacts (see [45] for a good discussion on artifact causes and corrections).

In spite of the success of FBP in CT image reconstruction, there has been signifi-

cant interest recently in a different approach to image reconstruction from transmis-

sion measurements, namely statistical iterative1 reconstruction [3,14,25,26,34,53,54,

62,71,73,76]. Statistical techniques have several attractive features [25,34,53]. They

statistically model the data noise, offering the potential for better bias-variance per-

formance. They can also model such phenomena as scatter and energy dependence

leading to more accurate and artifact-free reconstruction. Statistical methods also

easily incorporate the system geometry, detector response, object constraints and

prior information. They are well suited for arbitrary geometries and situations with

1Strictly speaking, it is possible to have iterative but non-statistical methods, such as [79]. In
this work we use the terms ‘statistical’ and ‘iterative’ interchangeably.
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truncated data. Their main drawback (when compared to FBP) is longer computa-

tion times. For clinical CT images with typical sizes of 512 × 512 pixels or larger,

statistical methods require prohibitively long computation times which hinder their

use.

The interest in applying statistical methods for CT reconstruction may have been

motivated by their success in emission tomography (PET and SPECT). Contributing

to this success is the fact that the maximum-likelihood expectation-maximization

(ML-EM) algorithm has a closed-form expression for the emission case [55]. Also,

typically, PET and SPECT have low counts. For the image sizes and resolution

requirements of emission modalities, the longer computational time of statistical

methods is fairly easily surmounted.

Another motivation for exploring statistical reconstruction for CT is the indus-

try’s drive towards non-Radon scanning geometries where data for several slices are

acquired and reconstructed simultaneously. For example, in the cone-beam geometry

a larger volume of the body is irradiated with X-rays. Moreover, the introduction of

helical CT in the late eighties and early nineties [45] made the acquisition of volume

CT data a clinical reality. In helical CT, the patient table is translated through the

scanner gantry while the X-ray beam rotates in a circular path, tracing a helix where

it intersects the patient and allowing for larger volume coverage. Measurements ac-

quired with such geometries do not conform to the Radon transform assumptions,

and require rebinning and interpolation prior to FBP reconstruction. Rebinning and

interpolation degrade image resolution and introduce image artifacts. Iterative meth-

ods require no prior assumptions about the geometry of the system. Conceivably,

the system matrix used in iterative image reconstruction can incorporate an arbi-

trary geometry such as a cone-beam system, or even a cone-beam system following
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a helical path.

Because statistical methods outperform FBP in low count situations in PET and

SPECT, where the SNR is low, they carry the promise of lower dose for CT patients.

With FBP CT reconstruction, images produced from low dose scans suffer from

noise-induced streaking [41]. Since statistical methods are based on a probability

distribution for measurement noise, they tend to suppress more the contributions of

low signal rays in the data, leading to better image quality. Major CT manufacturers

are currently exploring iterative reconstruction, and are partly motivated by the

desire to deliver lower dose scans.

FBP images require data preprocessing and image post processing to produce

artifact-free images. Data corrections include tube and detector effects, first-order

beam hardening effects, and other nonlinear corrections. Image post processing in-

cludes correcting for scatter, partial volume and second-order beam hardening effects.

Although it is possible to apply such corrections to iterative reconstruction, such an

approach does not capture the full utility and elegance of statistical techniques. As

will be shown later in this work, superior results are obtained if these non-ideal effects

are included in an acquisition model for CT, or what we often call the CT forward

model. A forward model, formulated for the purpose of superior quality image re-

construction, can incorporate the effects of X-ray and attenuation physics, system

design and noise statistics. The purpose of this thesis is to develop iterative algo-

rithms for CT, and in the process study some of these non-ideal effects and ‘correct’

their artifacts using a realistic, albeit incomplete, CT forward model.

Statistical reconstruction methods have found utility in estimating attenuation

maps for attenuation correction in emission tomography from low-count transmis-

sion scans [25, 26, 30, 34, 57]. These transmission measurements are obtained from
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monoenergetic radioisotope sources, and the data acquisition models are rather sim-

ple. In some instances, authors report applying the emission EM algorithm to log

transmission data [18,73]. Unlike the emission EM algorithm [9,54,55], the transmis-

sion EM algorithm does not have a closed-form solution and requires mathematical

approximations [9, 54, 55]. Employing the emission EM algorithm is a suboptimal

choice, since the data is inherently mismatched to the assumed model [26].

Some recent work has recognized the importance of modeling at least some aspects

of the CT forward problem in iterative reconstruction. Particular attention has been

paid to including the beam hardening effects of the polyenergetic X-ray spectrum

emitted by the source [14,22,24,75,76]. Accounting for the effects of the polyenergetic

nature of the X-ray beam is important, especially in applications where accurate

quantitative results are important. An example of polyenergetic modeling for a non-

statistical iterative algorithm can be found in [78,79]. In addition to beam hardening,

some recent work has focused on an accurate statistical model for CT measurements

[23, 74, 75]. Effective statistical modeling is critical for low-dose situations where

distortions in the image due to noise become dominant.

1.2 Organization of Dissertation

This chapter discuss the background and motivation behind the work presented

in this thesis. Chapter II provides a general background on X-ray CT, with a brief

discussion of X-ray physics and image reconstruction. Chapter III presents our work

in deriving an approximate likelihood for the compound Poisson statistical distribu-

tion. Chapter IV presents a polyenergetic statistical reconstruction algorithm that

is effective at reducing beam hardening artifacts. The algorithm is generalized in

Chapter V with object models based on the attenuation properties of tissues. This
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generalization enables the algorithm to reconstruct mixed pixels and tissues consist-

ing mostly of mineral solutions. In Chapter VI we present a system model for the

GE LightSpeed CT scanner and present the results of a preliminary evaluation of

statistical reconstruction on real LightSpeed data. We conclude in Chapter VII with

a summary and an outline for possible extensions of this work.

1.3 Contributions

In this thesis we report on the application of iterative reconstruction algorithms

for CT image reconstruction. The common thread throughout this work is the for-

mulation of an effective forward model for CT. Towards that end, we present the

following contributions:

• A flat-detector and arc-detector fan-beam projector added to the ASPIRE

image reconstruction software package [29]. The projector is geometrically

accurate. It computes the areas of overlap between X-ray beams and object

pixels.

• Derivation of probability distributions and approximate likelihoods based on

the compound Poisson model for CT measurements. In its most general form,

the log likelihood we derive accounts for the X-ray energy-dependent statis-

tics in scintillating detectors, random diffusion of detector light photons, and

additive electronic noise [23].

• A novel polyenergetic CT iterative reconstruction algorithm [21,22]. The algo-

rithm is based on a Poisson likelihood function that incorporates polyenergetic

attenuation physics, and is implemented using surrogate functions and ordered

subsets. A version of the algorithm is monotonic.
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• Polyenergetic object models that generalize the applicability of the algorithm

mentioned above. These models enable the algorithm to reconstruct pixels

containing tissue mixtures. The displacement model works well for objects

consisting mostly of distinct anatomical structures with mixed boundary pixels.

The solution model is better suited for estimating mineral solution density and

may be potentially useful for bone mineral density quantitative studies [24].

• Empirical verification of the above models and algorithms with simulated and

real data. Real data was acquired on an experimental cone-beam system [71]

and a microCT scanner (EVS Corp., now part of GE Medical Systems) courtesy

of Pfizer BioImaging Center (Pfizer Inc., Ann Arbor, MI).

• Developing an algorithm based on a forward model for the GE LightSpeed

CT scanner (GE Medical Systems, Milwaukee, WI). The algorithm inherently

corrects for first-order beam hardening, detector afterglow, and X-ray tube

off-focal radiation effects.



CHAPTER II

X-ray Computed Tomography

2.1 Computed Tomography Basics

X-ray computed tomography is an imaging modality that produces cross-sectional

images of the linear attenuation coefficient of the scanned object. Fig. 2.1 illustrates

the concept of a simple CT scanner, not very different in principle from the first

scanner of Hounsfield. An X-ray tube emits thin X-ray beams that traverse the slice

of interest. The intensity of the X-rays diminishes according to the attenuation

properties of the object, and the intensity of the attenuated emerging beams is

measured by a detector on the other side of the object. This process is repeated

over many angles, and the CT problem becomes one of obtaining a clinically useful

image from the measurements.

There are several variations on this basic system, usually having to do with the

geometry of the X-ray beam. The earliest CT scanners were parallel beam scanners.

For example, in the original EMI head scanner, an X-ray source was collimated to

produce a pencil beam, and the source and detector were linearly translated across

the scan field, and then rotated by 1 degree to the next angular position to acquire

the next set of measurements [45, 56]. The scan time was 4 1/2 minutes.

The long scan time presented many image quality challenges, especially in terms

8
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of patient motion. The second generation of CT scanners reduced the scan time

by using partial fan beams as shown in Fig. 2.2. The scan time decreased with the

larger translation steps and rotation angles to a fraction of a minute [56].

In third-generation CT scanners, probably the most popular configuration for

clinical CT, scan time is reduced further by eliminating linear acquisition completely.

An arc-shaped array of detectors and the X-ray source form a fan-beam geometry

with a scanning field of view large enough to cover the slice of interest completely, in

most cases. The whole arrangement rotates around the object at very high speeds,

often completing a full 360o rotation in less than a second.

X−ray detector

X−ray source

Linear translation
Rotation

Figure 2.1: First generation CT scanner.

A schematic of a fourth-generation scanner is shown in Fig. 2.4. In this design,

a rotating fan-beam impinges on a 360o stationary arc detector. This system offers
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X−ray detector

X−ray tube

Figure 2.2: Second generation CT scanner.

better stability by allowing dynamic calibration during the scan. It also provides

higher sampling density, since the sampling rate is not limited by the detector cell

size, but by the rate at which measurements are taken [45]. The system is also more

immune to ring artifacts [56]. The major drawbacks of this arrangement are the very

high cost of the detector array and the difficulty of scatter rejection [45].

In the following sections, we will discuss some of the major components and

related functions of a typical clinical CT gantry. This includes the X-ray tube and

X-ray generation, X-ray detection, and CT gantry. Before that however, we will

provide a brief review of X-ray physics.
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X−ray detector

X−ray tube

Figure 2.3: Third generation CT scanners

2.2 X-ray Physics

2.2.1 X-ray Production

X-rays belong to the family of electromagnetic radiation. The wavelength of X-

rays ranges from a few picometers to a few nanometers. Diagnostic X-rays have a

wavelength range of 0.1 nm to 0.01 nm. The energy of each X-ray photon is inversely

proportional to its wavelength, and may be described by the following equation:

E =
hc

λ
, (2.1)

where h is Planck’s constant (6.63× 10−34 J s), c is the speed of light (3× 108 m/s),

and λ is the X-ray wavelength. X-ray energy is often expressed in units of electron

volts (1 eV = 1.602× 10−19 J).

X-ray photons are produced when high-speed electrons bombard a target ma-



12

Tube 
path 

X−ray tube

Stationary detector

Figure 2.4: Fourth generation CT scanner.

terial. This interaction between electrons and the target takes the form of several

kinds of collisions. The majority of these collisions involve energy transfer that leads

to heat dissipation in the target. In fact, over 99% of the input energy dissipates as

heat.

Two types of interactions lead to the production of X-rays. First, high-speed

electrons traveling in the vicinity of positive nuclei experience sudden deceler-

ation because of the attraction between the opposite charges. This produces

bremsstrahlung radiation, covering a wide range of energies. It is also possible to

produce bremsstrahlung radiation from the collision of an electron with a nucleus.

The entire energy of the electron appears as bremsstrahlung. Energies produced by

this interaction are on the upper limit of possible energies, and the overall probability
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of such collisions is low.

A second type of radiation is emitted when a high-speed electron collides with

and liberates an inner-shell electron of the target atom, leaving a hole in the shell.

Characteristic radiation results when an electron from an outer shell fills the hole.

The energy of the emitted radiation is the difference between the binding energies of

the two shells.

For further reading on X-ray production, see [5, 45, 56].

2.2.2 X-ray Interaction with Matter

The linear attenuation coefficient of a material depends on the photon energy

and the elemental composition of the material. In the diagnostic range of X-ray en-

ergies (below 150 keV), three mechanisms of X-ray interaction with matter dominate

attenuation [5, 45, 56].

The first is coherent (or Rayleigh) scattering. The incident radiation excites

electrons that in turn produce radiation at the same wavelength. Coherent scattering

is material dependent and its cross section varies with Z4 and E−3 (Z is the atomic

number and E is the energy). Since high-Z materials are not found in abundance

in the body, this effect is not very strong in the CT diagnostic range, and leads to

slight broadening of the X-ray beam.

The second mechanism of X-ray absorption is the photoelectric effect, which

dominates at lower energies. The X-ray photon is absorbed by interacting with and

releasing a tightly bound electron. An outer-shell electron quickly fills the hole left

by the ejected electron, and emits characteristic radiation in the process. At low

energies, this radiation does not travel very far in tissue, and we can assume that

the X-ray photon is completely absorbed.
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Another important mechanism for tissue attenuation is Compton scattering where

an X-ray photon collides with a free or loosely-bound electron in an outer shell. The

X-ray photon is deflected at some angle (between 0 and 180 degrees) and suffers a

partial loss of its energy. The scattered X-ray photon is still within the diagnostic

energy range, and may exit the patient and be recorded by the detector. Scattered

photons do not follow the assumed X-ray propagation geometry, and therefore are

detrimental to image quality. Nearly all medical CT scanners try to minimize this

effect by collimation or correction algorithms. The reader is encouraged to explore

the literature for more in-depth description of these interaction mechanisms [5,45,56].

2.3 Major Components of CT Scanners

2.3.1 X-ray Tube

The basic components of the X-ray tube are the cathode and anode. Thermionic

emission boils electrons off the cathode. The electrons are accelerated across the

tube by a high potential difference between the cathode and anode, and collide

at high speeds with the target area of the anode. This collision produces X-rays,

as discussed earlier. The energy of the generated X-rays depends on the electric

potential difference between the cathode and anode.

A glass or metal frame houses the cathode and anode in a vacuum. The pro-

duction of X-rays is very inefficient, with over 99% of energy lost as heat. The

temperature of the target can reach 2600oC. To prevent target melting, the anode

rotates at very high speeds, bringing cooler areas of the target under the electron

beam. Currently, tube technology offers anode rotation speeds between 8,000 and

10,000 rpm and constant X-ray production (as opposed to pulsed X-rays as in the

early days of CT) for the duration of the CT scan.
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Of consequence in image quality is the focal spot size and shape. In order to

increase the target impact area, the focal track is at a shallow angle, typically 7o.

This effect, known as the line focus principle [5,45] increases the exposure area, but

poses the problem of the focal spot size and shape becoming location dependent,

especially when the viewing location is not perpendicular to the focal line.

Another tube effect that impacts image quality is off-focal radiation, caused

mainly by secondary electrons [45]. Secondary electrons are emitted from the impact

area of the target, and they in turn can return to the target at points outside the

focal spot and produce X-rays upon impact. This results in a beam profile consisting

of a high-intensity center spot surrounded by a low-intensity halo. This effect can

cause degradation in low-contrast detectibility as well as shading artifacts. Although

this effect can be reduced with filtration, data correction is often necessary to avoid

subtle but significant image artifacts. We will discuss off-focal radiation correction

in a later chapter.

2.3.2 X-ray Detector

There are several X-ray detector technologies. Third generation CT scanners

use either inert gas or solid-state detectors. There are direct and indirect detection

systems. A direct detector records the electrical charge which results from ionization

of atoms in the detector. Gas detectors such as Xenon detectors are examples of

direct detection [5]. Although low in cost, inert gas detectors suffer from low detection

quantum efficiency (DQE) and are difficult to build in two dimensions for multislice

CT. In this section we will focus our discussion on solid-state detectors. Description

of inert gas detectors can be found in [45].

Indirect solid-state detectors are usually made of small blocks of scintillating
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materials. An incident X-ray photon undergoes photoelectric interaction with a

phosphor scintillator. Photoelectrons released travel a short distance and excite

other electrons. When the excited electrons return to their ground state, they emit

characteristic radiation, often in the visible or UV range. Reflective material coating

the scintillator directs emitted light towards photodiodes which produce an electric

signal [5, 45]. The DQE of a solid-state detector can be as high as 99% [45].

Collimators plates are often placed in front of detectors in third generation CT

scanners to reject scattered photons. Since the collimator plates cover a portion of

the detector area, they tend to reduce the overall efficiency of the detector.

Several detector parameters can affect image quality. These include the size and

spacing of detector elements, hysteresis or radiation damage, thermal fluctuations

and exponential decay of signal. Detector design often takes into consideration ra-

diation damage and thermal fluctuations. Data pre-correction eliminates the effects

of exponential decay (primary speed and afterglow) [43] and will be discussed later.

2.3.3 Scanner Gantry

Another important component of the CT scanner is the gantry. All major scanner

components, weighing hundreds of pounds, are mounted on the gantry, which has to

rotate at very high speed with extreme stability. The gantry must maintain angular

and position accuracy, and must be free of significant vibrations that can cause image

artifacts. Current slip ring technology enables collection of 1000 views in about 0.5

seconds. The gantry can also tilt to acquire slices at oblique angles.

2.4 Image Reconstruction

In this section we discuss the fundamentals of CT image reconstruction. We

present the classical approach of filtered backprojection (FBP), since it is what is
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used in clinical practice, and defer statistical reconstruction for in depth analysis

in later chapters. We discuss the mathematical tools used to derive FBP and the

underlying assumptions. For the sake of simplicity, we restrict our description to

the parallel-beam geometry. Fan beam and more general geometries require some

modifications that are readily available in the literature [4, 17, 27, 38, 61].

2.4.1 Simplifying Assumptions

The relationship between a two-dimensional function µ(x, y) and its complete

collection of line integrals {p(R, θ) : θ ∈ [0, 2π], R ∈ [0,∞)} is called the Radon

transform. The two dimensional image reconstruction problem is to find µ(x, y)

from p(R, θ). Expressed mathematically, the line integral p(R, θ) can be written as

p(R, θ) =

∫
L(R,θ)

µ(x, y)dl

=

∫ ∞
−∞

∫ ∞
−∞

µ(x, y)δ(x cos(θ) + y sin(θ)−R)dxdy

=

∫ ∞
−∞

µ(x, y)δ(R cos(θ)− l sin(θ), R sin(θ) + l cos(θ))dl

=

∫ 2π
0

∫ ∞
0

µ(r, φ)δ(r cos(θ − φ)−R)rdrdφ, (2.2)

where we switched to polar coordinates in the last equation. Fig. 2.5 illustrates the

relationship between a two-dimensional function and its line integral. The set of

line integrals is often referred to as the sinogram. If the line integrals of a point are

stacked in an array with R varying along one axis and θ varying along the other, then

the projection function will appear like a sinusoid, hence the the name sinogram.

CT measurements do not correspond directly to p(R, θ). Taking into account

the polyenergetic spectrum and scatter, we can express CT measurements in the

following manner:

Y (R, θ) =

∫
Io(E)e

−
∫
L(R,θ)

µ(x,y;E)dldE + r(R, θ) (2.3)
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where Y (R, θ) is the recorded measurement at coordinates (R, θ) in the projection

domain, Io(E) represents the source spectrum and detector response, L(R, θ) is the

path of the ray of interest, µ(x, y) is the attenuation coefficient, E is energy and r

represents the contribution of scatter.

Suppose it is possible to design an ideal scanner, where the X-rays are monoener-

getic (Io(E) = Ioδ(E−Eo)) and scatter is zero (r(R, θ) = 0). Equation (2.3) simplifies

to:

Y (R, θ) = Ioe
−
∫
L(R,θ) µ(x,y;Eo)dl = Ioe

−p(R,θ). (2.4)

This relationship between the measurement Y (R, θ) and the line integrals of the

attenuation coefficient is the so-called Beer’s law. The line integrals can be recovered

under these ideal conditions by a simple log operation.

Analytical reconstruction techniques (such as FBP) have been developed for line

integrals of two-dimensional functions. For this reason, the assumptions leading up

to Beer’s law are convenient. They allow us to ‘retrieve’ the line integrals by a

simple log operation. As explained earlier, CT measurements never follow Beer’s

law. In addition to the constraints of the actual CT scanner design (finite detector

size and X-ray beam width, target focal spot size, etc.), physical effects such as beam

hardening and scatter contribute to the deviation of CT measurements from Beer’s

law.

Assuming Beer’s law holds, a powerful mathematical tool, the Fourier slice theo-

rem, makes it possible to reconstruct the two-dimensional image from its line integrals

using the Fourier transform. This theorem is the subject of the next section.
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2.4.2 Fourier Slice Theorem

The Fourier slice theorem, also known as the central slice theorem is the basis

of (analytic reconstruction in) tomography. Simply put, the theorem states that

the one-dimensional Fourier transform of a parallel projection of an im-

age µ(x, y) taken at angle θ equals a slice of the two-dimensional Fourier

transform of the image, M(u, v), at an angle θ with the u-axis [45, 52]. In

other words, the Fourier transform of p(R, θ) gives the values ofM(u, v) along a line

in the (u, v) plane defined by a positive angle θ from the u-axis:

F{p(R, θ)} = P(u) =M(ρ cos(θ), ρ sin(θ)),

where F is the Fourier transform operator and ρ is the radial coordinate in the

Fourier plane. The proof of the theorem is straightforward. Consider the case of

the θ = 0 projection of µ(x, y). The projection p(R = x, 0) is related to the original

function by the equation:

p(R = x, 0) =

∫ ∞
−∞

µ(x, y)dy.

Taking the Fourier transform with respect to x on both sides gives:

P(u) =

∫ ∞
−∞

p(x, 0)e−j2πuxdx =

∫ ∞
−∞

∫ ∞
−∞

µ(x, y)e−j2πuxdxdy.

The two-dimensional Fourier transform of µ(x, y) is given by:

M(u, v) =

∫ ∞
−∞

∫ ∞
−∞

µ(x, y)e−j2π(ux+vy)dxdy.

M(u, 0) =

∫ ∞
−∞

∫ ∞
−∞

µ(x, y)e−j2πuxdxdy = P(u).

We therefore conclude that P(u) = M(u, 0). Because the coordinate system is

selected arbitrarily, the conclusion holds for all angles. Fig. 2.5 illustrates the theorem
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schematically. It is possible to derive the Fourier slice theorem more formally using

coordinate system rotations. The reader is referred to the literature for details [45,

52, 56].

FOURIER PLANESPATIAL PLANE 

θ

 µ(x,y)

(u,v)Μ

u

vy

x
θ

R

2−D Fourier Transform

1−D Fourier Transform

p(R,   )

Figure 2.5: The Fourier slice theorem.

2.4.3 Filtered Backprojection

The Fourier slice theorem provides a straightforward method for tomographic

reconstruction. The first step in a reconstruction algorithm based on the Fourier

slice theorem is to take the one-dimensional Fourier transform of the projection at

each angle. The set of one-dimensional Fourier transforms is then used to fill up the

two-dimensional Fourier transform. A inverse two-dimensional Fourier transform

gives the original image.

Practically speaking, direct Fourier reconstruction faces significant implementa-
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tion challenges. The sampling pattern produced in Fourier space is non-Cartesian.

Gridding is necessary to produce a Cartesian grid in order to take the inverse Fourier

transform. Gridding or interpolation in the Fourier domain is non trivial. It is com-

putationally demanding. Gridding errors in Fourier space are not localized in the

spatial domain, and can cause artifacts across the whole image. The two-dimensional

Fourier transform is also computationally non-trivial.

Filtered Backprojection (FBP) continues to be the standard method for tomo-

graphic reconstruction. FBP takes advantage of the Fourier slice theorem, but avoids

gridding and two-dimensional Fourier transforms. It can be implemented efficiently

with the FFT algorithm. In this section we derive FBP for the parallel beam geom-

etry.

FBP derivation starts by looking at the expression for the inverse Fourier trans-

form of the image [45, 52]:

µ(x, y) =

∫ ∫
M(u, v)ej2π(ux+vy)dudv. (2.5)

The first step towards manipulating (2.5) so that we can take advantage of the Fourier

slice theorem is to transform the coordinate system into polar coordinates (R, θ):

u = ρ cos θ,

v = ρ sin θ.

The Jacobian of this transformation is ρdρdθ. Substituting this transformation in

(2.5) gives

µ(x, y) =

∫ 2π
0

∫ ∞
0

M(ρ cos θ, ρ sin θ)ej2πρ(x cos θ+y sin θ)ρdρdθ.

The Fourier slice theorem enables us to replaceM(ρ cos θ, ρ sin θ) with P(ρ, θ). We

can also take advantage of the symmetry properties of parallel-geometry projections
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(namely, P(ρ, θ+π) = P(−ρ, θ)). After straight forward manipulations we can write

the equation above as:

µ(x, y) =

∫ π
0

∫ ∞
0

P(ρ, θ)|ρ|ej2πρ(x cos θ+y sin θ)dρdθ. (2.6)

The inner integral (over ρ) in (2.6) is the inverse Fourier transform of P(ρ, θ)|ρ|.

The outer integral is a backprojection. In other words, under ideal conditions, to

reconstruct an image from parallel projections we can use the following steps:

1. Retrieve the line integrals by taking the log of the transmission data.

2. Take 1-dimensional Fourier transform of each line integral.

3. Multiply the Fourier transform by the ramp function |ρ|.

4. Take the inverse Fourier transform of the filtered line integrals.

5. Backproject the filtered line integrals.

There are several issues to consider in terms of practical computer implementa-

tions of FBP. An ideal ramp filter does not really exist. In reality the ramp filter

must be set to zero beyond a certain cutoff frequency. This bandlimiting operation

can lead to a small but significant DC bias that has to be corrected. In addition,

the Fourier transform is typically implemented using the FFT operation. FFT is

an efficient implementation of the discrete Fourier transform, which corresponds to

periodic convolution in the spatial domain. To avoid aliasing artifacts, the sinogram

is typically zero-padded prior to the Fourier transform and filtering operation. An

important property of the ramp filter is that it tends to amplify high frequency

noise. The ramp filter is often apodized to reduce noise. Designing effective filters

that retain small features of the image while keeping noise to an acceptable level is
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a challenging and involved process. The GE LightSpeed CT scanner (GE Medical

Systems, Milwaukee, WI) offers six different types of reconstruction kernels that are

useful for scanning different parts of the human body [45].

2.5 Image Display

The visualization unit used for CT image displays is called the Hounsfield unit,

HU. It is also sometimes referred to as the ‘CT number’. The HU is defined as:

HU =
µ− µwater
µwater

× 1000. (2.7)

The linear attenuation coefficient is magnified by a factor of 1000. Air, with µ ≈ 0,

has an HU value of −1000. Water is at 0 HU. Body tissues can have values ranging

from a few HU to thousands.

Because the dynamic range is so large, it is often necessary to modify the gray

level scale to display only a small range of HU values that correspond to the tissue

of interest. The CT display window is described by its window level and window

width. The window width represents that range of HU that the gray scale displays,

and the window level is the mid point of that range. A typical soft tissue display

window may have a window level of 20 HU and a window width of 100 HU. This

means that the gray scale is displaying from −30 to 70 HU.

2.6 Conclusions

This chapter presented a brief overview of computed tomography physics, sys-

tem components and conventional image reconstruction basics. Understanding X-ray

physics and the operation of different scanner components will be important in fol-

lowing chapters as we develop a CT system model for statistical reconstruction. An
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understanding of conventional image reconstruction is important for comparing the

performance of statistical reconstruction with FBP reconstruction.

The discussion in this chapter was not extensive. Two important effects that will

be discussed later are beam hardening and scatter. Beam hardening artifacts result

from ignoring the polyenergetic nature of X-rays in the reconstruction algorithm.

Scatter artifacts result from X-ray photons that are deflected in the object but still

make it to the detector and are recorded. In the following chapters, we will derive

algorithms for the polyenergetic reconstruction problem that can accommodate a

scatter estimate if one is available. Accurate scatter estimation is an important

extension of the work presented in this thesis.



CHAPTER III

X-ray CT Measurement Statistics and Likelihood

3.1 Introduction

Accurate statistical modeling forms the foundation of statistical iterative recon-

struction. The statistical model leads to a cost function that is optimized by an

iterative algorithm under certain constraints. In emission tomography, where de-

tectors count individual quanta, the Poisson distribution accurately models data

statistics, and the Poisson log-likelihood is used routinely for image reconstruction.

The Poisson model and likelihood are also frequently used for X-ray CT. In practice,

however, most CT detectors are not quanta counters and measurement statistics are

dependent on the energy profile of the X-ray beam, which is usually polyenergetic.

In modern CT scanners, the X-ray source generates a polyenergetic flux of X-

ray photons. The X-ray photons that are detected are converted to light photons

that in turn produce photoelectrons. The current associated with these electrons is

integrated and recorded digitally by an A/D channel. The number of light photons

generated, and hence the recorded signal, depends on energies of the detected X-ray

quanta. The energy dependence of the measurements implies that for a polyenergetic

source, measurements resulting from photons at different energies will have different

statistics [74]. X-ray quanta, as they individually interact with the detector, will

25
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lead to Poisson statistics, but the overall recorded signal will not be Poisson. In

fact, measurements resulting from a polyenergetic source follow compound Poisson

statistics [74].

In this chapter1, we formulate a statistical model for X-ray CT measurements

based on the compound Poisson distribution. The log-likelihood for compound Pois-

son statistics involves infinite series and appears impractical for maximum likeli-

hood reconstruction. We will develop approximations to the compound Poisson

log-likelihood, and compare them to the ordinary Poisson likelihood and numerically-

computed exact likelihood. The model we derive includes the effect of polyenergetic

spectrum, Poisson light statistics and additive Gaussian noise. We derive approx-

imations to the compound Poisson likelihood using mathematical approximations

similar to the saddle-point integration method.

Section 3.2 outlines the compound Poisson process for X-ray CT detection and

derives a general form for its moment generating function. Section 3.3 outlines the

saddle-point approximation to integrals, which is the mathematical tool we use to

approximate the compound Poisson likelihood. Sections 3.4 and 3.5 build on the

saddle-point approximation in deriving log-likelihoods for the case of monoenergetic

and polyenergetic X-rays, respectively. In Section 3.5.1 we incorporate the effect of

additive electronic Gaussian noise and in Section 3.6 we discuss an interpretation of

the saddle point in terms of the measurements moments. In Section 3.7 we present

some preliminary results and in Section 3.8 conclude with a summary and discussion

of future work.

1The results presented in this chapter are based on [23].
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3.2 Compound Poisson Statistics

Consider the problem of photon detection in X-ray CT from its most basic prin-

ciples. We focus on a single detector element and assume that the measurements

for different detectors are statistically independent. Discrete photons collide with a

scintillating detector, and are absorbed according to the energy-dependent detector

quantum efficiency. The absorbed X-ray photons each generate an energy-dependent

number of light photons. The number of incident X-ray photons is denoted by the

Poisson random variable N . The number of light photons generated by each X-ray

photon that is detected is also a random variable with probability mass function

(p.m.f.) PX(x). We list the random variables for the sake of clarity:

• N is the Poisson random variable with unknown mean N̄ that describes the

number of X-ray photons that interact with the detector.

• Xn is a discrete random variable with p.m.f. PX(x) that denotes the number

of light photons2 generated and recorded when the nth X-ray photon interacts

with the scintillator. We assume that light generation caused by an X-ray

photon does not disturb subsequent scintillations, hence {Xn} are independent

and identically distributed (i.i.d).

• Y is a discrete random variable that is proportional to the total number of

recorded light photons generated by the N X-ray photons that interact with

the detector.

2In the case of direct detection systems, X-ray photons generate photoelectrons that form the
basis of the recorded signal. The analysis in this paper applies equally to both situations, with
“light photons” replaced with “photoelectrons”.
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Expressed mathematically,

Y = A

N∑
n=1

Xn (3.1)

ȳ
4
= E[Y ] = AN̄E[X], (3.2)

where E[·] is the expectation operator and A denotes the overall gain factor of the

recording system. For simplicity, we assume A = 1 hereafter, so Y denotes the total

number of light photons recorded. In [74], Whiting derived a continuous probability

distribution function (p.d.f.) for compound Poisson CT measurements using char-

acteristic functions and Fourier transforms. In this work we develop most of our

techniques in the discrete domain using the Z-transform. Our goal is to derive the

log-likelihood from the p.m.f. of Y , by deriving its moment generating function,

gY (z).

Using iterated expectations and the properties of moment generating functions,

gY (z) = E[zY ] = EN [EY [z
Y |N ]]

= EN [Π
N
n=1E[z

Xn ]] = EN [E[z
X ]N ]

= EN [(gX(z))
N ]

=
∞∑
n=0

(gX(z))
nP (N = n)

=

∞∑
n=0

(gX(z))
n e
−N̄N̄n

n!

= exp(−N̄(1− gX(z))), (3.3)

where gX(z) = E[zX ] is the moment generating function of X. This result is the

same as that derived by Feller [28] for the moment generating function of a compound

Poisson process. Note that

E[Y ] = g′y(1) = N̄g
′
x(1) = N̄E[X].
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Ideally, we would determine the p.m.f. PY (y) using the inverse Z-transform of

gY (z), given by the classical contour integral [63]:

PY (y) =
1

2πj

∮
c

z−y−1gY (z)dz, (3.4)

where c is a counterclockwise closed contour that encloses the origin and that lies

completely in the region of convergence (ROC) of gY (z). This inverse is often math-

ematically intractable. For deriving the p.m.f. of CT measurements, we show in

Appendix B that contour integration leads to likelihood expressions with infinite se-

ries. We therefore explore a mathematical approximation that gives a more practical

likelihood expression. In the next section we briefly discuss saddle-point approxima-

tion and integration, which will form the basis for approximating the p.m.f in later

sections.

3.3 Saddle-Point Approximation and Integration

In this section we present a generalized version of the saddle-point integration

method. The saddle-point method [6,39,67,80] is useful for approximating integrals

that can be expressed in the exponential form

1

2πj

∮
c

eΦ(z)dz, (3.5)

where z is complex and the integral is along an appropriate closed contour c in the

complex plane. In the saddle-point approximation, the exponent in the integrand is

expanded in a Taylor series around a real stationary (saddle) point (assuming one

exists), defined to be a root of the derivative of Φ. The first derivative term in

the Taylor expansion vanishes, and the second derivative term is the highest that is

retained.
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More generally, we will expand the exponent around a real point that is not

necessarily exactly equal to the saddle point (but is close to it in practice). We

retain both the first and second derivative terms of the Taylor series. Let zo be real

in the region of convergence of the integral in (3.5), then we can write

exp[Φ(z)] = exp

[
Φ(zo) + Φ

′(zo)(z − zo) +
1

2
Φ′′(zo)(z − zo)

2 +

∞∑
l=3

1

l!
Φ(l)(zo)(z − zo)

l

]

= exp

[
Φ(zo) + Φ

′(zo)(z − zo) +
1

2
Φ′′(zo)(z − zo)

2

]
f(z, zo), (3.6)

where, based on the series expansion of the exponential function,

f(z, zo) = exp

[
∞∑
l=3

1

l!
Φ(l)(zo)(z − zo)

l

]

= 1 +
Φ(3)(zo)

6
(z − zo)

3 +
1

2

(
Φ(3)(zo)

6
(z − zo)

3

)2
+O

(
(z − zo)

6
)

= 1 + F (z, zo).

The integral (3.5) becomes

1

2πj

∮
c

eΦ(z)dz =
eΦ(zo)

2πj

∮
c

eΦ
′(zo)(z−zo)+

1
2
Φ′′(zo)(z−zo)2 (1 + F (z, zo)) dz. (3.7)

Depending on the singularities of the integrand and the ROC, it may be permissible

to deform the contour c into a vertical line through the real point zo and a semicircle

around the half plane that does not include zo. This is possible, for example, if zo were

positive, and the only singularities of the integrand were at z = 0 and to the right

of zo. In this case the contour would be a line through zo parallel to the imaginary

axis and a semicircle in the left half plane, as shown in Fig. 3.1. If the integrand

also vanishes for Real{z} → −∞, the contribution of the semicircle section of the

contour vanishes, and we can carry out the integration along the line z = zo + jω

where ω is the imaginary variable. The integral can be rewritten as:



31

zo

Imag (z)

Real(z)

Figure 3.1: Deformation of the contour c in the complex plane into a vertical line
through the saddle point and a semicircle in the left half plane at infinity.
The singularities of the integrand are at z = 0 and Real{z} =∞.

1

2πj

∮
c

eΦ(z)dz = eΦ(zo)
∫ ∞
−∞

e−
1
2
Φ′′(zo)ω2ejωΦ

′(zo) [1 + F (zo + jω, zo)]
dω

2π

≈
e
Φ(zo)−

(Φ′(zo))
2

2Φ′′(zo)√
2πΦ′′(zo)

. (3.8)

where we have used the inverse Fourier transform in the last step and assumed the

integral of the remainder F (zo + jω, zo) is negligible. If zo is an actual saddle point,

then Φ′(zo) = 0 and the result (3.8) reduces to the usual saddle-point approximation

[39, 80]:

1

2πj

∮
c

eΦ(z)dz ≈
eΦ(zo)√
2πΦ′′(zo)

. (3.9)

Applying (3.8) to the integral (3.4) yields the following approximation for the log-

likelihood:

logPY (y) = Φ(zo)−
(Φ′(zo))

2

2Φ′′(zo)
−
1

2
log(2πΦ′′(zo)), (3.10)

where

Φ(z) = Φy(z) = −(y + 1) log z + log gY (z). (3.11)
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If Φ(z) is convex, the second derivative Φ′′(z) will be positive and the approximation

is guaranteed to be positive. This is a desirable result because our goal is to derive

approximations for the probability mass function. To the best of our knowledge,

the approximation in (3.10) and (3.8) is a new approach that generalizes the usual

saddle-point method. When zo is the root of Φ
′(z), the generalized saddle-point

approximation reduces to the usual one (3.9).

In the next section, we use the saddle point approximation (3.8) to examine the

likelihood for the idealized case of monoenergetic X-rays. We first briefly outline

the simple case of monoenergetic X-rays with no variability in light generation in

the scintillator and no electronic noise. This simplified scenario will introduce our

notation and illustrate some of the more salient features of our technique.

3.4 Monoenergetic X-rays

We first examine the case of an X-ray source that generates a beam at a single

energy. For simplicity we assume an ideal detector with no electronic noise. We

examine two simple cases, with and without light photon variability.

3.4.1 Monoenergetic X-ray Detection with Deterministic Light Genera-
tion

Suppose there is no variability in the number of light photons recorded for each

absorbed X-ray photon. The p.m.f. of the number of light photons is given by:

PX(x) =



1, x = xo

0, otherwise,

(3.12)

where xo > 0 is the number of light photons. Its value depends on the energy of the

X-rays and detector design. The moment generating function for X is:

gX(z) = E[z
X ] =

∞∑
n=0

znPX(n) = z
xo . (3.13)
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The moment generating function of the random variable Y is:

gY (z) = exp(−N̄(1− z
xo)). (3.14)

The ROC of gY (z) is the whole plane excluding |z| → ∞. As a check, when xo = 1

(i.e., we have an X-ray photon counting detector), gY (z) reduces to the ordinary

Poisson generating function exp(−N̄(1− z)). Alternatively, the generating function

of the Poisson random variable Y ′ = Y
xo
is gY (z

1
xo ) which is also the simple Poisson

generating function.

To find the p.m.f. of Y , we need to take the inverse Z-transform of gY (z). In

this case gY (z) could be inverted by inspection (see Appendix B), but for illustration

purposes we use the saddle point approximation method (3.10) and (3.11). Plugging

gY (z) in (3.11) gives:

Φy(z) = −(y + 1) log z − N̄ + N̄z
xo . (3.15)

For y ≥ 0, z ∈ R and z > 0, the function Φy(z) and the integrand in (3.5) are

convex. The integrand has a minimum (saddle point) at z = zo, where zo is real and

zo ≥ 0. The saddle point zo of Φy(z) is the real root of

Φ′y(z) = −
(y + 1)

z
+ N̄xoz

xo−1 = 0. (3.16)

The saddle point is easily seen to be:

zo(y) =

(
y + 1

N̄xo

) 1
xo

=

(
y + 1

ȳ

) 1
xo

, (3.17)

since ȳ = N̄xo. Evaluating Φy and Φ
′′
y at the saddle point yields

Φy(zo) =
1

xo

[
(y + 1) log

ȳ

(y + 1)
− ȳ + (y + 1)

]

Φ′′y(zo) = (ȳ)
2
xo xo(y + 1)

1− 2
xo .
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To ensure that the saddle-point approximation is applicable, we must look into the

deformation of the contour of integration c in (3.4) and the behavior of the integrand

as |z| → ∞. Towards that end we must first verify the ROC of the integrand in

(3.4). With the change of variable z′ = zxo , and substituting (3.14) in (3.4) we get:

PY (y) =
e−N̄

xo

1

2πj

∮
c

z−(y
′+1)eN̄zdz, (3.18)

where for simplicity we dropped the ′ from z′ and y′ = y/xo. It is obvious that the

integrand has a pole at z = 0. In order to determine the ROC, we examine the real

and imaginary parts of eN̄z by writing z = rejθ.

eN̄z = eN̄re
jθ

= eN̄r(cos(θ)+j sin(θ))

= eN̄r cos(θ)ejN̄r sin(θ)

= eN̄r cos(θ)
(
cos(N̄r sin(θ)) + j sin(N̄r sin(θ))

)
.

Real{eN̄z} = eN̄r cos(θ) cos(N̄r sin(θ)),

and

Imag{eN̄z} = eN̄r cos(θ) sin(N̄r sin(θ)).

It is readily seen that the behavior of the integrand as r = |z| → ∞ depends on the

value of the phase angle θ. If |θ| ≥ π/2, then the real part of the exponential term

will approach zero. On the other hand if |θ| < π/2, the real part of the exponential

term will diverge to ±∞. A similar result holds for the imaginary part. For large

r = |z|, the integrand converges in the left half plane (indeed, it vanishes), and it

diverges in the right half plane. It is therefore permissible to use a contour that

is a line through the positive saddle point in the right half plane, parallel to the

imaginary axis, and a semicircle at infinity in the left half plane.
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Taking the log of the saddle point approximation (3.9) to the p.m.f. gives the

log-likelihood:

logPY (y) ≡
1

xo
[y log ȳ − ȳ] , (3.19)

where ≡ indicates that constant terms independent of ȳ are dropped. This saddle-

point approximation of the log-likelihood is equivalent to the conventional Poisson

log-likelihood [55], which gives some reassurance of the utility of this method.

In image reconstruction, we want to maximize the log-likelihood over the set of

solutions in object space. The dependence on the object comes from the fact that

the mean number of X-ray photons, N̄ , depends on the object attenuation. In the

monoenergetic problem,

N̄ = No exp

(
−

∫
L

µ(x, wo)dl

)

where the integral in the exponent is a line integral over the ray L. If we let t =∫
L
µ(x, wo)dl denote the line integral, then the likelihood (3.19) has the usual form

for transmission tomography:

Ly(t) ≡
y

xo
log e−t −Noe

−t. (3.20)

The result of this simple case will be useful throughout this paper. We next discuss

an important generalization, where light generation is variable, as it is in practice.

3.4.2 Monoenergetic X-ray Detection with Poisson Light Statistics

In the above derivation, we have ignored the statistics of the light photons gen-

erated by the scintillation process. Light generation in scintillating phosphor is a

complex process. X-ray photons that are absorbed by or scatter within the scintilla-

tor generate charge carriers that can generate light, or scatter and generate secondary
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carriers that in turn can also produce light. Scintillation photons undergo a com-

plex diffusion process, characterized by hundreds of scattering incidents per light

photon [5]. K-edge effects can also have a strong impact on the amount of light gen-

erated [36]. Another complicating factor is the detector photodiodes dependence on

wavelength. When X-ray photons scintillate, they produce light with a distribution

of optical wavelengths, leading to wavelength-dependent statistics in the recorded

signal.

As a first approximation, we assume that a detected X-ray photon will generate a

Poisson number of light photons with mean number proportional to the X-ray energy.

Using this assumption, we derive an approximate likelihood based on monoenergetic

X-rays. For this assumption, the Poisson p.m.f. PX is:

PX(n) =
xnoe

−xo

n!
, (3.21)

where n represents the number of light photons generated by one of the N detected

X-ray photons, and xo = Gwo is the mean number of light photons. The scaling

constant G is a characteristic of the scintillating phosphor and detector design. The

moment generating function of this Poisson distribution is

gX(z) = exp [xo(z − 1)] . (3.22)

Substituting into (3.3) yields the moment generating function of the measured signal

Y

gY (z) = exp
[
−N̄(1− e−xo(1−z))

]
. (3.23)
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The associated p.m.f. has the form (3.8) where

Φy(z) = −(y + 1) log z − N̄ + N̄e−xo(1−z) (3.24)

Φ′y(z) = −
(y + 1)

z
− N̄xoe

−xo(1−z) (3.25)

Φ′′y(z) =
(y + 1)

z2
+ N̄x2oe

−xo(1−z). (3.26)

Before we can apply the saddle-point approximation, we must examine the ROC of

the integrand in (3.4) and determine if the necessary contour deformation can be

carried out. Plugging (3.23) in (3.4) gives:

PY (y) =
e−N̄

2πj

∮
c

z−(y+1)eN̄e
−xoexozdz.

As in the previous section, the term z−(y+1) introduces a pole at z = 0. To deter-

mine the behavior of the integrand in the remainder of the complex plane, we again

examine the real and imaginary parts of the exponential term in the integrand.

eN̄e
−xoexoz = eN̄

′exore
jθ

= exp
{
N̄ ′exor(cos(θ)+j sin(θ))

}
= exp

{
N̄ ′exor cos(θ)ejxor sin(θ)

}
= exp

{
N̄ ′exor cos(θ) (cos (xor sin(θ)) + j sin (xor sin(θ)))

}
= exp

{
N̄ ′exor cos(θ) cos(xor sin(θ))

}
exp

{
jN̄ ′exor cos(θ) sin(xor sin(θ))

}
= exp

{
N̄ ′exor cos(θ) cos(xor sin(θ))

} (
cos
(
N̄ ′exor cos(θ) sin(xor sin(θ))

)
+j sin

(
N̄ ′exor cos(θ) sin(xor sin(θ))

))
,

where N̄ ′ = N̄e−xo . When |z| → ∞, the behavior of the integrand will depend on the

phase angle θ, with the real and imaginary parts converging to ±1 for |θ| ≥ π/2 and

diverging to ±∞ otherwise. So the ROC consists of the complex plane except the

origin and the right half plane at infinity. A contour consisting of a line through the
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saddle point and a semicircle in the left half plane is therefore permissible. Moreover,

the integrand vanishes at infinity in the left half plane.

The saddle point in this case is not available analytically from Φ′y(z) = 0. It

is possible to compute the saddle point numerically, but that approach would be

computationally prohibitive in the context of iterative image reconstruction, where

the saddle point needs to be updated at every iteration.

Rather than use the exact saddle point, we use the saddle point (3.17) derived

for the monoenergetic source (with deterministic light photon generation), based on

the intuition that the saddle point (3.17) should be a close approximation of the root

of (3.25). Since (3.17) is inexact in this case, we apply the generalized saddle point

integration approximation discussed in Section 3.3. Evaluating Φy and its first two

derivatives at zo in (3.17) gives:

Φy(zo) = −
y + 1

xo
log
(y + 1)

N̄xo
− N̄ + N̄e−xo(1−zo(y)) (3.27)

Φ′y(zo) = −(y + 1)

(
N̄xo

y + 1

) 1
xo

+ N̄xoe
−xo(1−zo(y)) (3.28)

Φ′′y(zo) = (y + 1)

(
y + 1

N̄xo

)− 2
xo

+ N̄x2oe
−xo(1−zo(y)). (3.29)

It is now possible to write the approximate likelihood by plugging (3.27)-(3.29) in

(3.8). The expression is long so it is not given here, but it could be used for maximum

likelihood reconstruction.

To explore further, note that xo is the mean number of light photons, which is

usually in the range of hundreds to thousands [5, 36]. Assuming that xo is large

enables us to make the following approximations:

e−xo(1−zo) = exp

[
−xo

(
1−

(
y + 1

N̄xo

) 1
xo

)]
≈

(
y + 1

N̄xo

)
(
y + 1

N̄xo

) 1
xo

≈ 1,
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which simplify Φy and its derivatives to

Φy(zo) ≈
y

xo
log

N̄xo
y
− N̄ ≡

1

xo
(y log ȳ − ȳ)

Φ′y(zo) ≈ 0

Φ′′y(zo) ≈ (y + 1)(1 + xo). (3.30)

Under these approximations, the first derivative is zero and the second derivative is a

constant. The log-likelihood is equal to Φy(zo). The large optical gain approximation

essentially leads to the same result as the earlier section where the likelihood was

derived without optical spread. Also note that this result is equivalent to the Poisson

likelihood of the variable Y/xo. This again serves as a check, since large optical

generation does in reality lead to Poisson-like statistics. Fig. 3.2 illustrates how

the compound Poisson likelihood approaches the ordinary Poisson likelihood as the

gain xo increases. Another reassurance comes from (3.23). If xo is large, g Y
xo

(z) =

gY (z
1
xo ) ≈ exp[−N̄ (1− z)] which is the Poisson moment generating function. These

results also justify using the Poisson likelihood for monoenergetic CT. Polyenergetic

CT, however, is more complex, and is the subject of the next section.

3.5 Polyenergetic X-rays

Clinical X-ray tubes are polyenergetic, producing a continuum of photon ener-

gies. It is possible to generalize the likelihood and the saddle point approximation

to the continuous X-ray spectrum case. However, when it comes to practical imple-

mentation, the continuous spectrum is approximated by a discrete sum. We will use

such a discrete approximation to the continuous spectrum as our starting point for

deriving an approximate likelihood.

Assume the X-ray source produces photons at L distinct energies {wl}Ll=1. The
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Figure 3.2: The exact compound Poisson likelihood approaches the ordinary Poisson
likelihood as the number of light photons generated by X-ray quanta
increases. These plots are generated using 10 X-ray photons incident on
water with µ = 0.2 cm−1.

p.m.f. of the X-ray beam incident on the object is:

P [W = wl] = pl

where
L∑
l=1

pl = 1.

The X-ray beam traverses the object and experiences energy-dependent attenuation.

The amount of attenuation is exponentially related to the path that the X-ray beam

takes through the object, as expressed mathematically by the line integral. For

simplicity here, we adopt the following attenuation model3:

µ(x;w) = m(w)ρ(x), (3.31)

3This model assumes only one material and is convenient because we can separate spectral and
spatial dependence. In a more general (and realistic) model the mass attenuation coefficient would
be spatially varying. See Chapter IV and Chapter V for more complex object models.
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where m(w) is the mass attenuation coefficient and ρ(x) is the material density.

We use this model because it separates the energy and spatial components of the

attenuation coefficient. This model gives the following expression for the line integral:

∫
L

µ(x;w)dl = m(w)s (3.32)

s
4
=

∫
L

ρ(x)dl. (3.33)

The energy p.m.f. of the attenuated X-ray beam is:

P [W = wl; s] = p̃l(s) (3.34)

where

p̃l(s)
4
=

ple
−m(wl) s∑L

k=1 pke
−m(wk) s

. (3.35)

The denominator is a normalizing factor that ensures that the p.m.f. sums to unity.

The number of photons interacting with the detector is the Poisson random variable

N with mean

N̄(s) = No

L∑
l=1

ple
−m(wl)s (3.36)

where No is the total number of photons emitted by the X-ray source.

The next step in modeling CT measurements is to add to the polyenergetic physics

and compound Poisson statistics the non-trivial statistical distribution for light pho-

tons generated in the scintillator. We again assume that individual X-ray quanta

generate Poisson light with mean proportional to the generating X-ray energy. In

other words, the conditional light p.m.f. is

P [X = n|W = w] =
(Gw)ne−Gw

n!
. (3.37)

By total probability, the unconditional p.m.f. PX(x; s) is given by

P [X = n; s] =
L∑
l=1

P [X = n|W = w]P [W = wl; s] =
L∑
l=1

p̃l(s)
(xl)

ne−xl

n!
, (3.38)
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where xl = E[X|w = wl] = Gwl is the mean number of light photons generated by an

absorbed X-ray photon with energy wl. This p.m.f. represents a Poisson distribution

at each energy/optical gain value xl weighted by p̃l such that the overall sum adds

to unity. The moment generating function exhibits the same weighting:

gX(z; s) =

∞∑
n=0

L∑
l=1

znp̃l(s)
(xl)

ne−xl

n!
=

L∑
l=1

p̃l(s)e
xl(z−1). (3.39)

Substituting (3.39) into (3.3), the compound Poisson moment generating function of

the total number of recorded light photons Y is

gY (z; s) = exp

[
−N̄(s)

(
1−

L∑
l=1

p̃l(s)e
xl(z−1)

)]
, (3.40)

with ROC including the whole Z-plane except for z = ∞. As before, the p.m.f.

PY (y; s) of Y is given by an inverse Z-transform of the form (3.8), where

Φy(z) = −(y + 1) log z − N̄(s) + N̄(s)
L∑
l=1

p̃l(s)e
−xl(1−z) (3.41)

Φ′y(z) = −
(y + 1)

z
+ N̄(s)

L∑
l=1

p̃l(s)xle
−xl(1−z) (3.42)

Φ′′y(z) =
(y + 1)

z2
+ N̄(s)

L∑
l=1

p̃l(s)x
2
l e
−xl(1−z). (3.43)

These expressions are natural extensions of the monoenergetic case (3.24)-(3.26).

The approximation in (3.8) is applicable because the integrand is convex for real

nonnegative z, and arguments regarding the ROC and contour deformation similar

to the monoenergetic case can be made. Also, the second derivative Φ′′y(z) is positive

which ensures the positivity of the saddle-point approximation.

Since an analytic saddle point is not available, we pursue the analogy with the

monoenergetic case and evaluate Φy and its derivatives at a saddle point estimate

similar to (3.17),

ẑo(y; s) =

(
y + 1

N̄(s)x̄(s)

) 1
x̄(s)

=

(
y + 1

ȳ(s)

) 1
x̄(s)

, (3.44)
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where x̄(s)
4
=
∑L
l=1 p̃l(s)xl is the effective mean number of light photons, and ȳ(s) =

No
∑L
l=1 plxle

−m(wl) s. Since x̄ is likely to be in the range of tens to hundreds, we

can use the large optical gain approximation, which, for large x̄, gives,

e−xl(1−ẑo) = exp

[
−xl

(
1−

(
y + 1

ȳ(s)

) 1
x̄

)]
≈

(
y + 1

ȳ(s)

)xl
x̄

.

This approximation simplifies Φy and its derivatives, resulting in the following ap-

proximate polyenergetic CT (compound Poisson) log-likelihood:

L(y; s) ≈
1

x̄

[
y log ȳ(s)− ȳ(s) + ȳ(s)

L∑
l=1

p̃l(s)

(
y + 1

ȳ(s)

) xl
x̄

]

−
1

2

(
N̄(s)

∑L
l=1 p̃l(s)xl

(
y+1
ȳ(s)

) xl
x̄

− (y + 1)
(
y+1
ȳ(s)

)− 1
x̄

)2
(
(y + 1)

(
y+1
ȳ(s)

)− 2
x̄

+ N̄(s)
∑L
l=1 p̃l(s)x

2
l

(
y+1
ȳ(s)

) xl
x̄

)

+
1

2
log

[(
(y + 1)

(
y + 1

ȳ(s)

)− 2
x̄

+ N̄(s)

L∑
l=1

p̃l(s)x
2
l

(
y + 1

ȳ(s)

)xl
x̄

)]
.(3.45)

To summarize, we have derived a likelihood approximation based on the com-

pound Poisson statistics of X-ray CT detectors, assuming that light photons gener-

ated in the scintillator follow the Poisson distribution with means proportional to

the energies of the X-ray quanta. In the next section we will generalize our model

to incorporate the effect of additive Gaussian readout noise.

3.5.1 Gaussian Readout Noise

The compound Poisson model would be sufficient to describe CT measurements if

the detectors were ideal. In reality, measurements suffer from an additive component

caused by noise from the system electronics. This noise is assumed to be independent

of the quanta measurements and to follow a Gaussian distribution with zero mean
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and variance σ2. The model in (3.2) generalizes to

U = Y +R =
N∑
n=1

Xn +R (3.46)

where, as before, Xn denotes the number of light photons generated by the nth X-ray

photon, N is Poisson with mean N̄ , and R ∼ N (0, σ2). The random variables Y and

R are assumed to be independent.

Since U is the sum of a discrete and continuous random variables, it is itself

continuous. The moment generating function for U is therefore the Laplace transform

of its probability density function fU(u). By total probability, the p.d.f. of U is

fU(u) =

∞∑
k=0

PY (k)fR(u− k). (3.47)

The moment generating function of U is

gU(ζ) = E[e−uζ ] =

∫
e−uζ

∞∑
k=0

PY (k)fR(u− k)du

=

∞∑
k=0

PY (k)

∫
e−uζfR(u− k)du

=
∞∑
k=0

PY (k)e
−kζ

∫
e−uζfR(u)du

= gY (z) |z=e−ζgR(ζ), (3.48)

where gR(ζ) = e
ζ2σ2

2 is the well-known moment generating function of the Gaussian

density. Using the polyenergetic moment generating function (3.23), the moment

generating function of the overall recorded signal U is

gU(ζ) = exp

[
−N̄(s)

(
1−

L∑
l=1

p̃l(s)e
−xl(1−e

−ζ)

)
+
ζ2σ2

2

]
. (3.49)

The probability density function is given by the inverse Laplace transform of gU(ζ)

and, as in earlier cases, can be approximated using the saddle point technique.

fU(u) =
1

2πj

∫
eζygU(ζ)dζ

=
1

2πj

∫
eΦu(ζ)dζ, (3.50)
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where

Φu(ζ) = ζu− N̄(s) + N̄(s)
L∑
l=1

p̃l(s)e
−xl(1−e

−ζ) +
σ2ζ2

2
(3.51)

Φ′u(ζ) = u− N̄(s)
L∑
l=1

p̃l(s)xle
−xl−ζ+xle

−ζ
+ σ2ζ (3.52)

Φ′′u(ζ) = N̄(s)
L∑
l=1

p̃l(s)xl(1 + xle
−ζ)e−ζe−xl(1−e

−ζ) + σ2. (3.53)

The second derivative Φ′′u(ζ) is positive in this case as well, leading to a positive

saddle-point approximation. Since there is no analytical solution to Φ′u(ζ) = 0,

we again use an approximation to the saddle point similar in form to the simple

monoenergetic saddle point (3.17). In terms of ζ , the approximate saddle point is

ζ̂o(y; s) = −
1

x̄(s)
log

u

ū(s)
, (3.54)

where ū(s) = N̄(s)x̄(s). Evaluating Φu and its derivatives at ζ̂o and using the large

optical gain approximation gives:

Φu(ζ̂o) ≈ −
u

x̄(s)
log

u

ū(s)
− N̄(s) + N̄(s)

L∑
l=1

p̃l(s)

(
u

ū(s)

) xl
x̄(s)

+
1

2
σ2

(
log

(
u

ū(s)

) 1
x̄(s)

)2

Φ′u(ζ̂o) ≈ u− N̄(s)
L∑
l=1

p̃l(s)xl

(
u

ū(s)

) xl
x̄(s)

− σ2 log

(
u

ū(s)

) 1
x̄(s)

Φ′′u(ζ̂o) ≈ N̄(s)
L∑
l=1

p̃l(s)xl(1 + xl)

(
u

ū(s)

) xl
x̄(s)

+ σ2.

The log-likelihood follows directly from (3.10) and (3.11).

Accounting for the effect of Gaussian readout noise is important for imaging

systems where this component contributes significantly to the measurements. This

may not the case in clinical CT scanners, where readout noise is kept very low,

but may be useful for systems with CCD camera detectors, such as some of the

commercially available microCT scanners.
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3.5.2 First and Second Moments

It is also useful at this point to present formulas for the first and second moments

of U , which correspond to the first and second derivative of its moment generating

function evaluated at zero, respectively. Taking the derivatives of gU in (3.49) is

straight forward, and we simply state the results:

Es[U ] = N̄(s)
L∑
l=1

xlp̃l (3.55)

Es[U
2] =

(
N̄(s)

L∑
l=1

xlp̃l

)2
+ N̄(s)

L∑
l=1

x2l p̃l + σ
2 (3.56)

Vars[U ] = N̄(s)

L∑
l=1

x2l p̃l + σ
2. (3.57)

The subscript s of the moments operators makes explicit the dependence of the

moments on the line integral s. The first and second moments are useful in computing

a likelihood function based on a Gaussian distribution:

L(u; s) = −
1

2Vars[U ]
(u− Es[U ])

2 −
1

2
log Vars[U ]. (3.58)

3.6 Moments Interpretation of the Saddle Point

In this section we interpret the saddle point in terms of the moments of the

random variable. We show that the saddle point is, in some sense, a measure of

the difference between the random variable and its ensemble mean. To illustrate

this point, we write the function Φu and its first derivatives in terms of the moment
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generating function:

Φu(ζ) = ζu+ log gU(ζ)

Φ′u(ζ) = u+
g′U(ζ)

gU(ζ)

Φ′′u(ζ) =
g′′U(ζ)gU(ζ)− (g

′
U(ζ))

2

g2U(ζ)
.

(3.59)

Recall that gU(0) = 1, g
′
U(0) = −E[U ] and g

′′
U(0) = E[U2]. Expanding the first

derivative Φ′u in a first order Taylor expansion around ζ = 0 and evaluating the

series at its root ζo gives

Φ′u(ζo) ≈ Φ
′
u(0) + Φ

′′
u(0)ζo ≈ 0. (3.60)

Solving for ζo in (3.60) gives

ζo(u) ≈ −
Φ′u(0)

Φ′′u(0)
= −

u+
g′U (0)

gU (0)

g′′U (0)gU (0)−(g
′
U (0))

2

g2U (0)

=
E[U ]− u

Var{U}
. (3.61)

The case of the Gaussian random variable illustrates this result nicely. Let U be

Gaussian with mean m and variance σ2. The moment generating function of U is

gU(ζ) = e
−mζ+ ζ

2σ2

2 ,

and

Φu(u) = −mζ + uζ +
ζ2σ2

2

Φ′u(u) = −m+ u+ ζσ2 = 0.

The saddle point follows immediately:

ζGaussiano =
m− u

σ2
=
E[U ]− u

Var{U}
. (3.62)
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If the saddle point of (3.54) is expressed with a 1st order Taylor series about u = E[u],

the resulting approximation will essentially be (3.62). In addition, the saddle point

of (3.54) involves the log of the ratio of the recorded signal u and its mean, which is

a measure of their dissimilarity. We have empirically observed that the saddle point

approximation proposed in this section is close to (3.54) (when σ2 = 0) for a both

low and high SNR.

The value of the saddle point approximation (3.61) is mostly interpretive, since

(3.54) is simple to compute. The fact that the moments interpretation and form of

the saddle point agrees with our earlier saddle point approximations increases our

confidence in the use of those approximations.

3.7 Preliminary Results

We compare the approximate compound Poisson likelihood to a numerically com-

puted exact likelihood and to the ordinary Poisson likelihood. We use 50 kVp X-rays

incident on 2.5 cm of water and plot the likelihoods over a range of water thicknesses.

The effective energy of the spectrum is 31.5 keV and we set the detector gain G = 1.

Fig. 3.3 illustrates likelihood plots for high and low signal situations, both with an

additive noise component. The bottom of Fig. 3.3 represents a situation with severe

X-ray photon deprivation. We can see that the saddle-point approximate likelihood

is closer to the exact likelihood than the ordinary Poisson likelihood function. The

top of Fig. 3.3 is not a case of very high signal level, yet the ordinary Poisson like-

lihood is very close to the exact one. X-ray flux in CT can reach up to millions of

quanta. This may shed some light on why the Poisson likelihood works well with

conventional CT applications. There are however, even clinically, situations when

the measurements are extremely photon-deprived, and the proposed approximate
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Figure 3.3: Polyenergetic exact and approximate compound Poisson likelihoods and
the ordinary Poisson likelihood. 50 kVp X-rays incident on 2.5 cm of
water. Effective incident energy is 31.5 keV. Detector gain set to unity.
Average number of light photons ≈ 33 photons/keV. Top: 50 incident
photons generate a detector signal of 671 optical photons. Noise level ap-
proximately 5%. Bottom: 5 incident photons generate a detector signal
of 72 and an additive noise level of about 20%.

likelihood may be useful for image reconstruction.

To further assess the different approaches in a situation more similar to those en-

countered in image reconstruction, we computed the polyenergetic likelihoods that
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are actually the sums of several other likelihoods. Because the measurements are

statistically independent, the log-likelihoods add. We used a 50 kVp spectrum in-

cident on six different thicknesses of water (3.5 cm - 5.2 cm). The incident flux

was 25 photons and additive noise of 4% - 7% of the recorded signal was included.

Detector gain was set to unity. Fig. 3.4 shows plots of the individual likelihoods and

their cumulative sum (exact), and the approximate compound Poisson and ordinary

Poisson likelihoods.

3.8 Conclusion

In this chapter we developed a statistical model for X-ray CT measurements that

is more sophisticated and more realistic than the Poisson model. The statistical

model accounts for energy-dependent statistics in the measurements, and can be de-

scribed as a compound Poisson distribution. We also compared the exact compound

Poisson likelihood with a saddle-point approximation and the ordinary Poisson like-

lihood.

Preliminary results show that the compound Poisson saddle-point approximate

likelihood is more accurate than the ordinary Poisson likelihood, especially in situa-

tions of low counts. The ordinary Poisson model works well with moderate to high

signal levels. More analysis is needed to understand the usefulness of the compound

Poisson likelihood in statistical image reconstruction. The compound Poisson model

may be useful for certain source/detector configurations where photon deprivation is

very acute, as in some microCT scanners with CCD detectors. For the applications

and X-ray flux levels considered in the remainder of this thesis, ordinary Poisson

statistics will suffice.

There are additional possible refinements of the statistical model. The model can
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Figure 3.4: Polyenergetic exact and approximate compound Poisson likelihoods and
the ordinary Poisson likelihood for 50 kVp X-rays incident on different
thickness of water. Effective incident energy is 31.5 keV. Detector gain
set to unity. Average number of light photons ≈ 33 photons/keV. Top:
plots of individual likelihoods (solid line) and their cumulative sum (dot-
ted line). Bottom: Plots of the exact, compound Poisson and ordinary
Poisson cumulative log-likelihoods.

include, for example, wavelength dependence of the detector photodiodes, leakage

current dependence on the accumulated charge and nonlinearities in the electronics.

Statistical iterative reconstruction with the compound Poisson likelihood may lead

to the practical advantage of lowering X-ray dose with little sacrifice in image quality.



CHAPTER IV

Statistical Image Reconstruction Algorithm for

Polyenergetic CT

4.1 Introduction

Unlike the conventional filtered back projection (FBP) method, iterative methods

are based on models for the measurement statistics and physics, and for this reason

have the potential for improved bias-variance and image artifact performance. It

is important that the assumed statistical and physics models are true to the data

acquisition process, since mismatches can cause significant image degradation.

This chapter focuses on beam hardening effects [8, 20, 49, 52, 81]. Beam hard-

ening is a process whereby the average energy of the X-ray beam increases as the

beam propagates through a material because lower-energy X-rays are preferentially

attenuated. X-rays traversing different paths through an object will emerge with

different spectra, leading to inconsistencies in the data (in the Radon sense) and

reconstruction artifacts if one ignores the energy dependence of the measurements.

If uncorrected, beam hardening generally leads to a reduction in the reconstructed

attenuation coefficient [8]. Thick bones also generate dark streaks [52]. In soft tissue,

non-uniform depression of image values, or ‘cupping’, results [19]. In addition, bone

areas can ‘spill over’ into soft tissue, leading to a perceived increase in the attenuation

52
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coefficient [49].

Beam hardening artifacts and correction schemes have been investigated since

the early days of clinical X-ray CT. They arise in clinical practice because the X-ray

attenuation properties of human tissue are energy-dependent, and X-ray sources in

typical clinical scanners emit broad spectra. Using monoenergetic photon sources

would eliminate beam hardening artifacts but is impractical for diagnostic CT be-

cause of SNR considerations. Beam hardening correction methods are therefore

necessary for reconstructing artifact-free attenuation coefficient images from polyen-

ergetic measurements. There are a variety of schemes for eliminating beam hard-

ening artifacts in FBP images, including dual-energy imaging and post-processing

techniques [2, 8, 44, 49, 59, 60]

The dual-energy approach [2,33,71] doubles the number of measurements in the

CT reconstruction problem, and enables reconstruction of separate bone and soft

tissue images. It is useful for tissue characterization and quantitative CT, but its

major drawback is the requirement for two separate energy measurements.

Preprocessing approaches are based on the assumption that the energy depen-

dence of soft tissue is similar to that of water. Knowledge of the energy dependence

of the attenuation coefficient of water provides a one-to-one mapping between mo-

noenergetic and polyenergetic measurements [49,58,60]. In preprocessing, one simply

maps (or pre-corrects) the sinogram data to monoenergetic values and then one re-

constructs the image from the corrected sinogram. Preprocessing works well with

soft-tissue objects, but is poor when high Z materials, such as bone, are present.

Preprocessing is often the first step in bone correction algorithms [49, 60].

The method described by Joseph and Spital (henceforth referred to as JS) [48,

49, 65] is a post-processing technique that corrects for soft tissue and dense bone
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distortions. The method involves an initial FBP reconstruction and segmentation

of the image into soft tissue and bone images. The segmented images are forward

projected. The bone projection provides an estimate of the amount of nonlinear beam

hardening distortion, which is then corrected for. Applying FBP to the corrected data

provides an image with reduced artifacts. It is also possible to iterate the procedure

several times to improve the resulting image. Yan et al. developed an iterative,

but non-statistical, beam hardening correction method [79]. It also assumes two

categories of materials and iteratively computes their volume fraction at each pixel.

Statistical reconstruction algorithms for monoenergetic transmission measure-

ments have been very effective in providing attenuation maps for attenuation correc-

tion in emission tomography [25,26,30]. Such algorithms are based on a transmission

model similar to Beer’s law. Researchers have also applied monoenergetic algorithms

to CT [13,53,57] with monoenergetic X-rays either explicitly or implicitly assumed.

Since clinical CT measurements are polyenergetic, we show later in this chapter that

images reconstructed from polyenergetic CT measurements using a monoenergetic

reconstruction algorithm [22,26] suffer from beam hardening artifacts. This further

points out the need for a polyenergetic statistical algorithm.

Recently, De Man et al. proposed a polyenergetic statistical approach [14] that

models the object attenuation as a linear combination of the attenuation properties

of two base substances. The algorithm uses the polyenergetic source spectrum and

does not need a pre-segmented image. The algorithm can reconstruct mixed pixels

but is not guaranteed to monotonically increase the likelihood each iteration.

In this chapter1, we present and demonstrate the effectiveness of a polyener-

getic statistical reconstruction algorithm for X-ray CT. The algorithm is based on a

1The results presented in this chapter are based on [22].
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physical model that accounts for the polyenergetic X-ray source spectrum and the

measurement nonlinearities caused by energy-dependent attenuation. The algorithm

iteratively minimizes surrogate functions to the Poisson likelihood. Although one

version of the algorithm is monotonic, we use ordered subsets [47] to accelerate the

algorithm, which compromises monotonicity. The algorithm can also easily accom-

modate scatter estimates. Similar to the conventional approach (JS), the proposed

algorithm requires a segmentation map of the different tissues in the object. We

relax this requirement in the next chapter.

This chapter is organized as follows. The next section discusses polyenergetic

X-ray CT and derives the iterative algorithm. In Section 4.3 we present simulation

results that compare JS-corrected FBP with the proposed statistical reconstruction

algorithm. Section 4.4 summarizes the results and outlines potential extensions of

this work.

4.2 Polyenergetic X-ray CT

4.2.1 Statistical Model

We model the measurements as independently distributed Poisson random vari-

ables [25] that are contaminated by extra background counts, caused primarily by

scatter. The approach generalizes to more sophisticated models [33]. Additive de-

tector read-out noise can be accounted for in a several ways [67]. We assume the

following statistical model for the measurements:

Yi ∼ Poisson{

∫
Ii(E)e

−
∫
Li
µ(x,y,E)dl

dE + ri}, i = 1, ..., N, (4.1)

where µ(x, y, E) is the unknown spatially- and energy-dependent attenuation map

of the object. The integral in the exponent is taken over the line Li and Ii(E)

incorporates the energy dependence of both the incident ray source spectrum and
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the detector sensitivity. The assumed known scatter mean is denoted by ri and N is

the number of rays.

4.2.2 Object Model for Polyenergetic X-ray CT

We parameterize object space using square pixels. We assume that the object

is comprised of K known materials (tissues). For any particular tissue, we model

the attenuation coefficient as the product of the mass attenuation coefficient and

the tissue density [2, 49, 71]. For pixel j, the attenuation coefficient is the weighted

sum of the attenuation coefficients of all the tissues present in the pixel. Expressed

mathematically,

µ(x, y; E) =
p∑
j=1

µj(E)bj(x, y), (4.2)

where bj(x, y) is the square-pixel basis function and µj(E) is the unknown energy-

dependent linear attenuation coefficient of the materials in pixel j. Expressing µj(E)

using the mass attenuation coefficient/density model gives

µj(E) = m(E)ρj = ρj

K∑
k=1

mk(E)f
j
k (4.3)

where ρj is the density of pixel j, {mk(E)}Kk=1 are the mass attenuation coefficient

of the K tissues that constitute the object and f jk is the fraction of tissue k in pixel

j. We assume that {mk(E)}Kk=1 are known functions
2. With the introduction of the

tissue fractions, the number of unknowns appears to be K×p. Oftentimes in clinical

practice, K = 2 (bone and soft tissue) so the number of unknowns in the polyen-

ergetic problem is twice that of a monoenergetic problem3 This seems inevitable

in dealing with the polyenergetic problem, since at each pixel the reconstruction

algorithm must estimate both density and energy information.

2Data available for anatomical tissues and other materials from [46]
3Although we develop the algorithm for an arbitrary K, in practice the number of materials is

limited by the spectral properties of human tissues in the diagnostic range. Typically, K = 2 or
K = 3.
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Multi-energy scanning addresses the increase in the number of unknowns by es-

sentially providing a proportional increase in the information available [2,69]. Dual-

energy imaging has already shown promising results with iterative reconstruction

when the object is assumed to consist of bone and soft tissue only [33, 71].

Another possible strategy is to assume that each pixel is either completely bone

or completely soft tissue, and that a segmentation map of the object is available a

priori . This approach is used in the JS method, and we will adopt it here as we

derive the algorithm [22]. This approach works well when a good FBP image of

an object with distinct anatomical features is available. The FBP reconstruction

provides an initial image and a segmentation map for the iterative algorithm. This

approach does not allow mixed pixels, which are likely to arise at tissue boundaries.

It also will not work for objects containing mineral solutions. We will generalize this

restrictive model in the next chapter [24]. For now, we set fkj = 1 if the jth pixel

belongs to the kth material, and fkj = 0 otherwise.

Denoting the system matrix by A = {aij} where aij =
∫
Li
bj(x, y) dl, we can write

the line integral of the attenuation coefficient as∫
Li

µ(x, y; E) dl =
p∑
j=1

K∑
k=1

mk(E)ρjf
j
k(ρj)

∫
Li

bj(x, y) dl

=

p∑
j=1

K∑
k=1

mk(E)ρjf
j
k(ρj)aij . (4.4)

We make the following definitions:

akij
4
= aijf

k
j (4.5)

ski (ρ)
4
=

p∑
j=1

aijf
k
j (ρj)ρj (4.6)

=

p∑
j=1

akijρj (4.7)

si(ρ) = (s1i , s
2
i , ..., s

K
i ), (4.8)
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where ski denotes the “effective thickness” (actually, the area density) of the kth

tissue type along the ith ray. From (4.1), (4.3) and the definitions above, the mean

of the measured data along path Li is

E[Yi|ρ] =

∫
Ii(E) exp

(
−

K∑
k=1

mk(E)s
k
i (ρ)

)
dE + ri

=

∫
Ii(E)e

−m′(E)si(ρ)dE + ri
4
= Ȳi(si(ρ)) + ri (4.9)

where m′(E) = [m1(E), ..., mK(E)]. We have expressed the measurements in terms of

the vector function si which has as its elements the line integrals of the K different

material densities. Given the X-ray spectrum, we tabulate the values of Ȳi(·) and

its gradient ∇Ȳi(·) = [
∂Ȳi
∂s1
, . . . , ∂Ȳi

∂sK
] over the range of arguments [s1, . . . , sK ] that

correspond to representative objects.

The goal of the algorithm is to estimate the density coefficient vector ρ =

[ρ1, . . . , ρp]
′. Rather than estimating K vector quantities of length p, each repre-

senting the density of one material, the assumption of non-overlapping materials

enables us to keep the number of unknowns equal to p, as is the case in the monoen-

ergetic model. This is possible only if prior segmentation of the object is available.

This segmentation is also necessary for the JS technique [49].

4.2.3 Polyenergetic Model Cost Function

We now express the Poisson negative log-likelihood in terms of the vector density

ρ and the vector function si. To derive the algorithm, we use the optimization transfer

principle three times: first using the multiplicative convexity property [15]; second us-

ing parabola surrogates [25] and lastly De Pierro’s additive convexity trick [16]. The

successive applications of the optimization transfer principle yield a separable and

simple surrogate function that is easier to minimize than the negative log-likelihood.
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Recall that the function Ȳi(si(ρ)) in (4.9) represents the ideal expected value of

the measurement Yi at the ith detector. Using E[Yi|ρ] in (4.9) gives the following

negative log-likelihood in the polyenergetic case:

−L(ρ) =
N∑
i=1

−Yi log(E[Yi|ρ]) + E[Yi|ρ] (4.10)

−L(ρ) =
N∑
i=1

hi(Ȳi(si(ρ)) + ri) (4.11)

hi(t)
4
= −Yi log t+ t. (4.12)

When the system matrix A has full column rank and the data is noise-free, min-

imizing the negative likelihood would give a perfect result. In reality, the data is

noisy and maximum likelihood (ML) will give a very noisy reconstruction due to the

ill-posedness of the problem, hence the need for regularization.

We regularize by adding a penalty term to the likelihood function. We consider

pairwise regularization of the following form:

R(µ) =

p∑
j=1

∑
k∈Nj

ψ(µj − µk) (4.13)

where ψ is a potential function and Nj is some neighborhood of pixel j. For our sim-

ulation and experimental results, we used the convex edge-preserving Huber penalty

ψ(x; δ) =




x2

2
, x < δ

δ|x| − δ2

2
, x ≥ δ.

(4.14)

Combining the likelihood with a penalty gives a penalized-likelihood (PL) cost func-

tion:

Φ(ρ) = −L(ρ) + βR(ρ) (4.15)

where β is a scalar that controls the tradeoff between the data-fit and the penalty

terms. The goal of the reconstruction technique becomes to minimize (4.15) subject
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to certain object constraints such as non-negativity:

ρ̂ =
argmin

ρ ≥ 0
Φ(ρ). (4.16)

An iterative algorithm is needed to perform the minimization (4.16). For simplicity,

we focus on the likelihood term in the algorithm derivation. Similar results follow

for the penalty term.

The difficulty arises with the argument of hi(·), which is nonlinear in (4.11). Our

first goal is to move the integral in (4.9) outside the (convex) function hi. Towards

that end, define:

ti(E , s)
4
= e−m

′(E) s + r̄i (4.17)

r̄i
4
=

ri∫
Ii(E)dE

(4.18)

bni (E)
4
=

Ȳi(s
n
i )

ti(E , sni )
, (4.19)

where sni = si(ρ
n). With the above definitions and (4.9):

Ȳi(s) + ri =

∫
Ii(E)ti(E , s) dE

=

∫
Ii(E)

bni (E)
ti(E, s)b

n
i (E) dE . (4.20)

Since,

∫
Ii(E)

bni (E)
dE = 1 (4.21)

Ii(E)

bni (E)
≥ 0, (4.22)

we can use the convexity of the function hi(t) in (4.12) as follows [15, 82]:

hi(Ȳi(s) + ri) = hi

(∫
Ii(E)

bni (E)
ti(E , s)b

n
i (E) dE

)

≤

∫
Ii(E)

bni (E)
hi (ti(E , s)b

n
i (E)) dE .
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Combining with (4.11) gives the following surrogateQ1 for the negative of the polyen-

ergetic log-likelihood:

−L(ρ) =
N∑
i=1

hi
(
Ȳi(si(ρ)) + ri

)
(4.23)

≤
N∑
i=1

∫
Ii(E)

bni (E)
hi (ti(E , si(ρ))b

n
i (E)) dE

4
= Q1(ρ; ρ

n). (4.24)

It is straightforward to verify that Q1 satisfies the conditions of the optimization

transfer principle [31]. The surrogate Q1 is simpler than the actual likelihood because

the energy integral is outside of the log operation. It is not, however, quadratic. We

next apply optimization transfer to Q1 to derive a paraboloidal surrogate. Such a

surrogate is desirable because it is easily minimized. The first step is to express hi

using a quadratic surrogate:

hi(ti(E , s)b
n
i (E)) = hi

(
bni (E)e

−m′(E) s + bni (E)r̄i
)

4
= gni (m

′(E) s, E)

≤ qni (m
′(E) s, E), (4.25)

where

qni (l, E) = g
n
i (l
n
i , E) + ġ

n
i (l
n
i , E)(l− l

n
i ) +

1

2
Cni (E)(l− l

n
i )
2. (4.26)

We must choose the curvature Cni (E) to ensure that q
n
i (l, E) satisfies the conditions

for a surrogate (if we seek a monotone algorithm). Combining (4.25) and (4.24), the

overall paraboloidal surrogate is:

Q2(ρ; ρ
n) =

N∑
i=1

∫
Ii(E)

bni (E)
qni (m

′(E) si(ρ), E) dE . (4.27)

Next we derive a separable surrogate that lends itself easily to parallelization
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using De Pierro’s additive convexity trick [15, 16]. First, define

λij(E)
4
=

K∑
k=1

mk(E)a
k
ij

Λ(E)
4
= {λij(E)}.

We rewrite the density line integrals as follows

m′(E) si(ρ) =
p∑
j=1

K∑
k=1

mk(E)a
k
ijρj =

p∑
j=1

λij(E)ρj

=

p∑
j=1

αij

(
λij(E)

αij
(ρj − ρ

n
j ) + [Λ(E)ρ

n]i

)
,

where the αij’s satisfy
p∑
j=1

αij = 1, ∀ i, αij ≥ 0.

Using the convexity of qni (in its first argument) yields

qni (m
′(E)si(ρ), E) = qni

(
p∑
j=1

αij

(
λij(E)

αij
(ρj − ρ

n
j ) + [Λ(E)ρ

n]i

)
, E

)

≤
p∑
j=1

αijq
n
i

(
λij(E)

αij
(ρj − ρ

n
j ) + [Λ(E)ρ

n]i , E

)
. (4.28)

The final separable paraboloidal surrogate to minimize is:

Q(ρ; ρn) =

p∑
j=1

N∑
i=1

∫
Ii(E)

bni (E)
αijq

n
i

(
λij(E)

αij
(ρj − ρ

n
j ) + [Λ(E)ρ

n]i, E

)
dE . (4.29)

4.2.4 Iterative Algorithm for Polyenergetic CT

To derive the proposed algorithm, take the first derivative of the surrogate and set

it equal to zero. This gives the following update expression (ignoring regularization):

ρn+1j =


ρnj −

∂Q(ρ; ρn)

∂ρj

∣∣∣∣
ρ=ρn

∂2Q(ρ; ρn)

∂ρ2j

∣∣∣∣
ρ=ρn



+

, j = 1, . . . , p. (4.30)
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The derivatives of the surrogate, evaluated at the current iterate ρn are:

∂Q

∂ρj

∣∣∣∣
ρ=ρn

=

N∑
i=1

∫
Ii(E)

bni (E)
λij(E)ġ

n
i (m

′(E)sni , E)dE

=
N∑
i=1

(
Yi

Ȳi(s
n
i )
− 1

)
×

∫
λij(E)Ii(E)e

−m′(E)sni dE

=

N∑
i=1

K∑
k=1

aijf
k
j

(
Yi

Ȳi(sni )
− 1

)
∇kȲi(s

n
i )

= −
∂L

∂ρj

∣∣∣∣
ρ=ρn

∂2Q

∂ρ2j
=

N∑
i=1

∫
Ii(E)

bni (E)

Cni (E)

αij
λ2ij(E) dE . (4.31)

The second derivative in (4.31) has two terms that are iteration dependent, bni (E) and

the curvature Cni (E). The curvature, in particular, influences the rate of convergence

of the algorithm [25]. We next explore some possibilities for it.

4.2.5 Curvature

If one desires a monotonic algorithm, then it is necessary to choose curvatures

such that (4.26) satisfies the condition of the optimization transfer principle. A

simple choice for the curvature is the maximum second derivative in the feasible

region for the projections. The closed form expression for the maximum curvature

is [25]:

Cni (E) =

[
bni (E)−

Yir̄i
(1 + r̄i)2

]
+

≤ [bni (E)]+ . (4.32)

This inequality always holds since ri ≥ 0 and Yi ≥ 0. We can use the simpler right

hand side of (A.5) and still have a monotonic algorithm. This is equivalent to using

the maximum curvature when the background term r̄i is small.

The curvature affects the step size that the algorithm takes towards the mini-

mizer. The maximum curvature results in small steps, and hence a slowly converging
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algorithm. Plugging the right hand side of (A.5) in (4.31) gives the following:

∂2Q

∂ρ2j
=

N∑
i=1

∫
Ii(E)

αij
λ2ij(E) dE . (4.33)

The above equation has no iteration-dependent terms and can be easily precomputed.

Another possible curvature, given in [25], is optimal in the sense that it satisfies

the conditions of optimization transfer while keeping the step size as large as possible.

The optimal curvature must be computed at every iteration. It therefore accelerates

convergence, but requires more computation per iteration.

4.2.6 Precomputed Curvature

By relaxing the monotonicity requirement, we can develop faster algorithms.

Since we use ordered subsets to implement the algorithms, monotonicity is com-

promised anyway.

We can choose a curvature in (4.26) such that qni (l, E) ≈ gni (l, E), rather than

requiring inequality. In this case the paraboloids are quadratic approximations to

the likelihood that are updated at every iteration. A reasonable curvature to use

is the second derivative of gni evaluated at the point that minimizes the function,

lmini = log(bni (E)/(Yi − b
n
i (E)r̄i)). The curvature becomes:

Cni (E) = g̈ni

(
log

bni (E)

Yi − bni (E)r̄i
, E

)

≈ Yi. (4.34)

To simplify matters further, define

Eeff
4
=

∫
EIi(E)dE∫
Ii(E)dE

(4.35)

as the effective energy of the X-ray beam. We now make the approximation of

evaluating λij(E) in (4.31) at Eeff and pull it out of the integral. The remaining
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energy terms integrate to unity. With the assumption of non-overlapping materials

and

αij =

∑
k a
k
ij∑

k

∑
j a
k
ij

=
aij∑
j aij

=
aij
γi
,

the second derivative reduces to:

∂2Q

∂ρ2j
≈

N∑
i=1

λ2ij(Eeff)

αij
Yi

≈
K∑
k=1

m2k(Eeff)
N∑
i=1

aijγiYi (4.36)

4
= dj.

This expression is completely independent of iteration. It can be pre-computed and

stored, further accelerating the algorithm. Here is the overall ordered subsets version

of the algorithm:

• Precompute dj using (4.36).

• Tabulate Ȳi(·) and ∇Ȳi(·) over an appropriate range of break points.

• initialize with ρ̂.

• for each iteration n = 1, . . . , niter

– for each subset S = 1, . . . ,M

∗ compute ŝki =
p∑
j=1

akij ρ̂j for k = 1, . . . , K. Set ŝi = [ŝ
1
i , . . . , ŝ

K
i ].

∗ compute Ȳi(ŝi) and ∇Ȳi(ŝi) by interpolation from the precomputed

tables.

∗ evaluate

N̂j=
∑
i∈S

K∑
k=1

aijf
k
j

(
Yi

Ȳi(ŝi)
− 1

)
∇kȲi(ŝi)
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∗ compute for j = 1, . . . , p

ρ̂j =


ρ̂j −

MN̂j + β
∂S

∂ρj

∣∣∣∣
ρ=ρ̂

dj + β
∂2S

∂ρ2j

∣∣∣∣
ρ=ρ̂



+

, (4.37)

– end

• end

where S in (4.37) denotes an appropriate surrogate for the regularization penalty.

If the optimal curvature [25] or maximum curvature (A.5) are used, this algorithm

will monotonically decrease the cost function each iteration when one subset is used.

Using ordered subsets and the pre-computed curvature destroys monotonicity, but

significantly accelerates progress in the early iterations.

4.3 Simulation Results

We assess the effectiveness of our algorithm with simulated polyenergetic Poisson

X-ray projections. We assume a parallel beam geometry, but the algorithm applies

equally well to other geometries. The image FOV is 40 cm and the rotation range is

180o. The simulated measurements are free of scatter and detector readout noise.

We simulate polyenergetic transmission data with the polyenergetic 140 kVp

spectrum (mean 67.12 keV and standard deviation 17.76 keV) shown in Fig. 4.1 and

a blank scan of 4.87 × 106 counts/detector. The blank scan value is realistic and

mimics a 120 kVp, 170mAs scan protocol [75]. The spectrum was obtained from

Monte Carlo simulations of the setup in [70] and includes the effects of detector

response.

We reconstruct the simulated data with FBP, monoenergetic statistical algorithm

(PWLS-OS) [22, 26] and polyenergetic statistical algorithm. We use the soft-tissue
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and JS methods to remove beam hardening artifacts in the FBP image. We also

pick the FBP reconstruction parameters to give comparable resolution and noise

properties to the statistical algorithms (the statistical algorithms can perform better

in this regard, but our purpose is to illustrate beam hardening correction). All runs

of the statistical algorithms use a Huber penalty with β = 1000, δ = 0.01 cm−1

for monoenergetic reconstruction, and δ = 0.1 g/cc for polyenergetic reconstruction.

The parameter β is determined by trial and error and the parameter δ is chosen to

preserve the contrast between soft tissue and bone.

The first phantom, shown in Fig. 4.2 is a 256× 256 density phantom consisting

of four high-density ‘bone’ disks (ρ = 2 g/cc) immersed in a water disk (ρ = 1 g/cc),

which is surrounded by air (ρ = 0 g/cc). The pixel size is 1.6 mm. The data were

simulated over 500 angular steps and 600 radial bins, 1.3 mm each. The colorbar

adjacent to Fig. 4.2 illustrates the gray scale window used to view all the images in

the figure. The iterative algorithms ran for 20 iterations and 20 subsets.

Fig. 4.2b-c show the reconstructed images (scaled to display density values) when

algorithms that do not correct for beam hardening are used. Both FBP and PWLS-

OS exhibit beam hardening artifacts: reduction in overall pixel values and dark

streaks between high-density regions. Fig. 4.2c shows the importance of developing

iterative algorithms based on polyenergetic physics.

Fig. 4.3a-b illustrate the image corrected by soft-tissue preprocessing and by the

JS technique. The soft-tissue method, available on commercial scanners, leaves sub-

stantial artifacts. The JS technique post-corrects for most of the artifacts, but some

persist. Simple thresholding (with threshold 1.5 g/cc) of the soft-tissue corrected

FBP image provides the segmentation required by the JS technique.

The iterative reconstruction based on the polyenergetic model is shown in
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Figure 4.1: 140 kVp energy spectrum

Fig. 4.3c. The algorithm, was initialized with the JS corrected image. The object was

classified into bone or soft tissue by segmenting the JS corrected FBP reconstruction

using a density threshold of 1.5 g/cc. We choose the segmentation threshold such

that the number of mismatched pixels with the true object classification is minimum.

In a more realistic setting the true object is not available, and we address the seg-

mentation issue in later work. The iterative algorithm significantly reduces artifacts,

relative to JS, since it inherently accounts for the effects of the broad energy spec-

trum. The profile plots of the JS and the polyenergetic statistical algorithm images

in Fig. 4.4 further delineate the difference in performance between the two methods.

Table 4.1 lists the root mean squared (RMS) error of all the methods, relative to

the true object, and shows that the polyenergetic statistical reconstruction has the



69

a. Density Phantom

0.8

1  

1.2

b. Uncorrected FBP 
 

c. Monoenergetic 
    Statistical 
    Reconstruction

Figure 4.2: Bone/water density phantom results
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Figure 4.3: Bone/water density phantom results
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Reconstruction Method RMS Error
FBP 11.9 %

Soft Tissue 16.6 %
Joseph and Spital 4.9 %

Monoenergetic Iterative 9.6 %
Polyenergetic Iterative 2.2 %

Table 4.1: Root mean squared error (RMS) of the different reconstructions of the
phantom in Fig. 4.2.

lowest error among all methods used. To compute the RMS error (and to display

the images) for FBP and monoenergetic statistical reconstruction, the images were

scaled by the appropriate mass attenuation coefficients to give density values.

To gain more confidence in our approach, we performed an additional experiment

with this phantom where we simulated and reconstructed noise-free data (not shown).

The results showed that polyenergetic iterative reconstruction was significantly more

effective in reducing artifacts than JS, even when there was no noise. This is due to

the fact that the iterative algorithm models the beam spectrum completely, whereas

the JS method is approximate, even for noise-free data.

We also applied the different algorithms to the 512×250 object shown in Fig. 4.5a.

We created this “true” object by manually segmenting a previously acquired real CT

image, then assigning density to each anatomical structure. The density of the bones

is in the range 1.6 − 2 g/cc and the soft tissue densities vary from 0.9 to 1.1 g/cc.

The pixel size is 0.8 mm and the sinogram has 700 angular bins and 500 radial bins,

1.0 mm each. The statistical algorithms ran for 10 iterations with 50 subsets. We

use the JS image to initialize the polyenergetic iterative technique and the soft-tissue

corrected image to determine the distribution of bone and soft-tissue regions with

a threshold of 1.6 cm/gm3. This threshold was chosen to minimize pixel mismatch

with the true object.
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Figure 4.4: Profile plots of reconstructed images

The results are shown in Fig. 4.5 and Fig. 4.6. Uncorrected FBP and monoener-

getic iterative algorithm images (scaled to display density values) suffer from beam-

hardening artifacts, with streaks visible in the vicinity of bones. The soft-tissue, JS

and polyenergetic iterative results are also shown, with the latter clearly yielding

less artifacts. Table 4.2 also lists the RMS error for all methods, with polyenergetic

statistical reconstruction having the smallest error.

For comparison, we also performed the polyenergetic reconstruction (not shown)

with bone and water classification obtained from segmenting the true object. This

yielded very similar results, so using the soft-tissue corrected image to determine the

fkj ’s appears to be a practical approach.

Like the JS method, the algorithm we propose requires knowledge of the spectrum

(or tables of log data) and a pre-segmented image, but gives considerably improved

density images. With the knowledge of the mass attenuation coefficient, one can

scale the resulting density images to obtain attenuation coefficient information at
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a. True object
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Figure 4.5: True object, uncorrected FBP and monoenergetic statistical reconstruc-
tions of simulated polyenergetic data.
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Reconstruction Method RMS Error
FBP 8.2 %

Soft Tissue 17.1 %
Joseph and Spital 6.1 %

Monoenergetic Iterative 6.8 %
Polyenergetic Iterative 2.5 %

Table 4.2: Root mean squared error (RMS) of the different reconstructions of the
phantom in Fig. 4.5.

any energy using (4.3).

4.4 Conclusion

We have introduced a statistical iterative reconstruction algorithm for energy

dependent X-ray attenuation that produces images with significantly reduced beam

hardening artifacts. The algorithm is applicable for an arbitrary number of non-

overlapping materials, and we demonstrate its effectiveness for bone and soft tissue

objects. Unlike most other transmission CT iterative algorithms, our algorithm is

based on a realistic polyenergetic model. Fig. 4.2c and Fig. 4.5c illustrate the severe

artifacts that result when an iterative algorithm based on a monoenergetic model

reconstructs an image from polyenergetic data.

By successive applications of the optimization transfer principle, the statistical

algorithm minimizes a separable paraboloidal surrogate, hence it is parallelizable and

fairly simple to implement. We also use ordered subsets and pre-computed surrogate

curvatures to accelerate convergence and reduce computation. When one subset is

used with appropriate curvatures, the algorithm monotonically decreases the cost

function. This is about the most that can be said about convergence since the cost

function is inherently not convex.

When compared with the post-processing technique of Joseph and Spital [49],
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the statistical algorithm yielded fewer artifacts. The JS method estimates the line-

integral dependent nonlinearity for each sinogram bin and then recalculates the line

integrals. The statistical method needs no such post-processing since it inherently

accounts for the nonlinearities. This is likely the reason for its superior performance.

Our results suggest that one can estimate the distribution of materials by thresh-

olding a good FBP image, corrected with the soft-tissue technique. In the results of

the earlier section, we chose the segmentation threshold to minimize the mismatch

between the segmentation map and the true object. This is not possible in practice,

and thresholding will be a subjective error-prone process. One could possibly im-

prove on this approach by regenerating the segmentation after running one or more

iterations of the proposed algorithm. Another limitation of pre-segmentation is that

it does not permit pixels to contain mixtures of different materials, limiting the ac-

curacy of the algorithm. To improve the accuracy of the algorithm, especially at

material boundaries, we need to augment the set of variables with material fractions

to be estimated at every pixel. In the next chapter, we will present two general-

ized object models that permit pixels to contain tissue mixtures and that do away

with pre-segmentation. One of the models, the displacement model is appropriate

for objects containing distinct anatomical structures, with mixed pixels occurring

mostly at tissue boundaries. The other model, the solution model, is better suited

for estimating the density of mineral solutions.
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a. Soft−tissue corrected FBP

b. JS corrected FBP

c. Polyenergetic Statistical Reconstruction
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Figure 4.6: Soft-tissue, JS-corrected FBP and polyenergetic statistical reconstruc-
tions of simulated polyenergetic data.



CHAPTER V

Object Models for Polyenergetic CT for

Quantitative Applications

5.1 Introduction

In the previous chapter we presented an iterative algorithm for reconstruction

of polyenergetic X-ray CT data. The algorithm was based on a cost function that

inherently accounted for polyenergetic X-ray attenuation. Since the algorithm in-

corporated energy dependence, constraints were necessary to limit the number of

unknowns to equal the number of pixels. To keep the algorithm derivation simple,

we assumed that an initial image could be accurately segmented into soft tissue and

bone.

Requiring a segmented initial image was admittedly a restrictive condition, but

it was similar to the requirements of the classical beam hardening method (JS).

The polyenergetic CT algorithm was effective in giving reconstructions free of beam

hardening artifacts, but it could not give accurate density values at boundary pixels

or in objects where the water-bone decomposition did not hold. In this chapter1,

we augment the algorithm with object models that remove the pre-segmented image

requirement. Constraints on the object are still necessary to keep the number of

1The results presented in this chapter are based on [24].
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unknowns equal to the number of pixels.

In addition to the object models, we examine the robustness of the algorithm

to mismatches in the X-ray source spectrum with simulated data. We also assess

the algorithm performance in terms of the accuracy of the reconstructed values of

mineral solution densities from real measurements [24].

5.2 Polyenergetic Statistical Model

As in the previous chapter, we assume the following statistical model for the

measurements:

Yi ∼ Poisson{

∫
Ii(E)e

−
∫
Li
µ(x,y,E)dl

dE + ri}, i = 1, ..., N, (5.1)

where µ(x, y, E) is the unknown spatially- and energy-dependent attenuation map

of the object. The integral in the exponent is taken over the line Li and Ii(E)

incorporates the energy dependence of both the incident ray source spectrum and

the detector sensitivity. The assumed known scatter mean is denoted by ri and N is

the number of rays.

We parameterize object space using square pixels. We assume that the object

is comprised of K known materials (tissues) and each pixel may contain a mixture

of those materials. We model the attenuation coefficient as the product of the mass

attenuation coefficient and the tissue density [2, 49, 71]. For pixel j, the attenuation

coefficient is the weighted sum of the attenuation coefficients of all the tissues present

in the pixel. Expressed mathematically,

µ(x, y; E) =
p∑
j=1

µj(E)bj(x, y), (5.2)

where bj(x, y) is the square-pixel basis function and µj(E) is the unknown energy-

dependent attenuation coefficient of the materials in pixel j. Expressing µj(E) using
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the mass attenuation coefficient/density model gives

µj(E) = m(E)ρj =
K∑
k=1

mk(E)f
j
kρj (5.3)

where ρj is the density of pixel j, {mk(E)}Kk=1 are the mass attenuation coefficient of

theK tissues that constitute the object and f jk is a unitless fraction that describes the

contribution of material k to attenuation in pixel j. Unlike the work presented in the

previous chapter, we do not assume prior knowledge of a water-bone segmentation

map that predetermines the tissue fractions. We propose an alternative strategy that

avoids segmentation yet can be applied to a single-kVp scan. Using the principle that

high-density voxels tend to be composed of bone, we model the fraction of material

k in pixel j as a predetermined function of the density of the pixel:

µj(E) =
K∑
k=1

mk(E)ρjf
j
k(ρj). (5.4)

By predefining the {f jk} functions, there is only one unknown (ρj) per voxel, and

reconstruction from a single scan is possible. Denoting the system matrix by A =

{aij} where aij =
∫
Li
bj(x, y) dl, we can write the line integral of the attenuation

coefficient as

∫
Li

µ(x, y; E) dl =
p∑
j=1

K∑
k=1

mk(E)ρjf
j
k(ρj)

∫
Li

bj(x, y) dl

=

p∑
j=1

K∑
k=1

mk(E)ρjf
j
k(ρj)aij . (5.5)

From (5.1), and following the notation of the Chapter IV, the mean of the mea-

sured data along path Li is

E[Yi|ρ] =

∫
Ii(E) exp

(
−

K∑
k=1

mk(E)s
k
i (ρ)

)
dE + ri

=

∫
Ii(E)e

−m′(E)si(ρ)dE + ri
4
= Ȳi(si(ρ)) + ri (5.6)
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where m′(E) = [m1(E), ..., mK(E)]. We have expressed the mean measurements as a

function of the vector si which has as its elements the line integrals of the K different

material densities. Because Ȳi(si(ρ)) is strongly nonlinear, it is easier to work in the

log domain. Define

Fi(si(ρ))
4
= − log

Ȳi(si(ρ))

Ii
, (5.7)

where Ii
4
=
∫
Ii(E)dE . For monoenergetic X-rays, Fi would be linear in si. For polyen-

ergetic X-rays, Fi’s departure from linearity depends on the density and thickness of

the object scanned and the range of X-ray energies. Rewriting (5.6) using Fi gives

E[Yi|ρ] = Iie
−Fi(si(ρ)) + ri. (5.8)

From knowledge of the X-ray spectrum or equivalent measurements, we can deter-

mine Fi(·) and its gradient, often in the form of a polynomial approximation [10].

We next discuss the tissue fraction functions {f jk(ρj)}.

5.3 Tissue Fraction Functions

The function f jk(ρj) specifies a model for the fraction of the kth material in pixel

j. The actual tissue fraction may depend on more than the pixel density. Ideally,

we would want to estimate tissue fractions independently of density or any other pa-

rameter. However, that is apparently not possible without additional measurements,

as pointed out in the previous section. It is therefore necessary to make model as-

sumptions and impose constraints. The constraint imposed by the JS method and

in [22] is that each f jk(ρj) is either 1 or 0 as specified by the FBP segmentation. Our

goal is to improve upon that model.

Although not necessary, we require f jk(ρj) ≥ 0 and
∑
k f
j
k(ρj) = 1 for simplicity.

The crux of our beam hardening model lies in our choice of the tissue fraction func-
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Figure 5.1: Mass attenuation coefficient of human tissues normalized at 40 keV.

tions. To design reasonable models that are as consistent as possible with attenuation

physics, we examine the X-ray spectral characteristics of human tissues.

Fig. 5.1 illustrates the normalized mass attenuation coefficients of several human

tissues in the diagnostic X-ray energy range [46]. Several tissues (ovary, brain, mus-

cle, lung, blood) have spectral characteristics that are almost identical to those of

water. Fat (adipose tissue) and breast tissue differ somewhat from water, and bone

is significantly different. All soft tissues, including fat and breast, have densities in

the range 0.95− 1.06 g/cc. Because soft tissues are spectrally similar to water, and

have densities close to that of water, it is reasonable to use water as a base substance.

Cortical bone is another natural choice for a base substance. The model could be

augmented to include more base substances such as Iodine. We use K = 2 in (5.3)

(water and bone) and model the attenuation coefficient of tissue as follows:

µj(E) ≈
(
mw(E)f

j
w(ρj) +mb(E)f

j
b (ρj)

)
ρj (5.9)
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Tissue Density g/cc fw
Fat (adipose tissue) 0.95 1.0

Breast 1.02 1.0
Water 1.0 1.0
Lung 1.05 0.99
Blood 1.06 0.99
Ovary 1.05 0.99
Brain 1.04 0.99
Muscle 1.05 1.0
Eye lens 1.07 1.0
Testis 1.04 1.0

Cortical Bone 1.92 0.0

Table 5.1: Densities and water fractions of human tissues. Most soft tissues have
densities close to that of water. The water fraction fw is computed from
a weighted least squares fit to (5.10).

where mw(E) and mb(E) are the mass attenuation coefficients of the first (water)

and second (bone) base substances. The pixel tissue fraction functions f jw and f
j
b

determine to what extent the tissue in pixel j is spectrally water-like or bone-like,

depending on the tissue density.

To gain more confidence in our model and insight into possible forms of f jw and f
j
b

we used weighted (by a typical spectrum) least squares to compute the coefficients

fw and fb in

m(E) = mw(E)fw +mb(E)fb (5.10)

for the biological substances listed in Fig. 5.1. We also imposed the constraints that

the solutions be in the interval [0, 1], in addition to fw+fb = 1. The results are listed

in table 5.1. From table 5.1, we observe that the water coefficient fw is almost 1.0

for soft tissues and 0.0 for bone, reaffirming that soft tissues are spectrally similar

to water and that water and bone can be used as distinct base substances. The

pluses and circles in Fig. 5.2 illustrate the water and bone coefficients of the different

tissues, respectively.
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Figure 5.2: Water and bone fractions computed using constrained least squares fit to
(5.10), and the displacement model third order polynomial tissue fraction
functions fw(ρ) , fb(ρ).

One possible scheme that emerges from examining Fig. 5.2 is to set fw(ρ) = 1

when the density is less than some threshold value and 0 otherwise. This would be

closely related to our earlier approach, where pixels are forced to be either bone or

water and cannot contain mixtures of tissues [22].

Another approach would be to linearly interpolate the fkj (ρj) functions between

the water (density 1.0 g/cc) and bone (density 1.92 g/cc) coefficients. This implies

that the energy dependence of substances between water and bone are linear combi-

nations of the energy dependence of bone and water. This is similar to the approach

of De Man et al., [14]. The disadvantage of the piece-wise linear approach lies in

the fact that many tissue types do not fit this spectral linear combination model. In

fact, table 5.1 shows that soft tissues are better spectrally modeled as equivalent to

water. Also, the derivatives of fkj (ρj) would have complicating discontinuities in the

piecewise linear approach.
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5.3.1 Displacement Model

To model mixed pixels, we propose using the functions plotted in Fig. 5.2 using

the solid and dotted lines. These are third-order polynomial functions of the tissue

density. They have continuous first- and second-order derivatives, and satisfy fw(ρ)+

fb(ρ) = 1. In essence, this choice models tissues that have densities close to that of

water and that are spectrally similar to water as ‘dense water’. The model allows

tissue density to vary from that of water, while assuming it is spectrally equivalent

to water. This approach avoids the technical complications posed by the derivatives

of piecewise linear functions, and has the potential for better accuracy, particularly

for tissues that are spectrally similar to water but have densities larger than water.

The exact shape of the smooth curves is subjective and may be situation de-

pendent. If it were known that an object contained material with density in the

mid-range of say, 1.3-1.6 g/cc, the curves can be altered so that the algorithm can

correctly account for that material. The polynomials in Fig. 5.2 work well for anatom-

ical structures like the phantom shown in Fig. 5.6.

The polynomials shown in Fig. 5.2 do not match the partial volume fractions for

tissue mixtures, i.e, they are notmass fractions. Fig. 5.3 illustrates the mass fractions

of several soft tissues mixed with bone. For example, a 50% by mass mixture of bone

and water would have a density of 1.315 g/cc. Mixtures of other soft tissues with

bone would have different 50% density points and their mass fractions would be

different functions of density. To estimate mixtures accurately, an algorithm would

have to determine what mixture(s) a particular pixel contains and then parameterize

the mass fractions accordingly. This is a prohibitively complex problem. Our major

concern in designing the polynomials of Fig. 5.2 was to model the spectral properties

of homogeneous soft-tissue pixels as equivalent to water. Accurately determining the
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Figure 5.3: Partial volume soft tissue (mass) fractions of mixtures of the different
soft tissues with cortical bone. The bone fraction is equal to the soft
tissue fraction minus 1.

densities of pixels on tissue boundaries, inherently limited by system resolution, was

a secondary consideration. In situations where higher mixture accuracy is desired,

the tissue fraction functions can be redesigned to match the mass fractions over a

limited density range.

We call this model the displacement model, because it is designed for situations

where materials occupy distinct spatial regions, with mixed pixels arising mostly at

the boundaries. This model is appropriate for regions of the body with dense and

thick skeletal bones. Cortical bone is only about 12% water (by mass) and it contains

significant concentrations high Z materials (Z≥8) (22.5% Ca, 10.3 % P, by mass) [77]

. We therefore treat it as a distinct tissue type. This is possible because its density

value is also far enough from that of water. Other kinds of bones, on the other hand,

are better described as mineral solutions in water, with mineral composition of a few

percents [77].
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Figure 5.4: Solution model tissue fraction functions fw(ρ) , fb(ρ). The fractions in
this model represent the mass fractions of water and mineral as explained
in (5.13).

5.3.2 Solution Model

We also consider another approach that we call the solution model, where we

assume the object contains a mineral solution in water (or some other solvent). In

this model, the water-mineral solution density is greater than or equal to the density

of water, and the attenuation coefficient can be modeled as follows:

µ(E) ≈ mw(E)ρw +mb(E)(ρ− ρw) = ρ

(
mw(E)

ρw

ρ
+mb(E)(1−

ρw

ρ
)

)
, (5.11)

for ρ > ρw. The fraction functions for this model are shown in Fig. 5.4 and are given

by:

fw(ρ) =



1 if ρ ≤ ρw

ρw
ρ
if ρ > ρw

(5.12)

fb(ρ) =



0 if ρ ≤ ρw

1− ρw
ρ
if ρ > ρw

= 1− fw(ρ) (5.13)
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Figure 5.5: Physical density of potassium phosphate solution as a function of the
solution concentration. The displacement effect causes the density to
depend nonlinearly on concentration. One cubic centimeter of solution
will have less than 1 gram of water. The solid line is a second-order
polynomial fit to data points (x) reported in [11, 64]. Without post cor-
rection, the solution model assumes the density depends on concentration
according to the linear dash-circle line (- - -o- -).

where ρw is the density of water (or, more generally, the solvent). This model

effectively assumes that the object consists of water everywhere, whose density (in

some regions) has increased because of mineral content. The fraction functions in

this model are the mass fractions of water and mineral in the solution. This model

is designed for cases when bone is not very dense, and is more like a water-calcium

solution than solid bone mineral. One advantage of this approach is that it makes

no assumptions regarding the density of the mineral.

The solution model ignores what is known to chemists as the displacement effect2

which arises because the amount of water per cc varies nonlinearly with mineral con-

centration [11,64]. In other words, the physical density of a 100 mg/mL solution will

2Not to be confused with the displacement model discussed in the previous section.
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not be exactly equal to 1.1 g/cc. This effect is small at low concentrations. Although

it is possible to reparameterize (5.11) to account for this effect, we do not incorpo-

rate it at this point. We can correct for the error introduced by ignoring the effect

of displacement in solution by applying a simple polynomial correction, based on

empirical measurements of density versus concentration, to an image reconstructed

with the proposed solution model.

We developed the solution model in hindsight as we tried to apply our algorithm

to reconstruct real data generated from a phantom consisting of potassium phosphate

solutions of different concentrations. This approach gave better quantitative results

than the displacement model (see Section 5.5 below).

5.3.3 Problem Statement

After choosing one of the models for the fractions f jk(ρ), the reconstruction prob-

lem becomes one of estimating the density vector ρ from the measurements, using

the model (5.8). We use a likelihood-based estimation approach. The negative log-

likelihood for independent Poisson measurements is given by:

−L(ρ) =
N∑
i=1

E[Yi|ρ]− Yi log(E[Yi|ρ]) (5.14)

where E[Yi|ρ] is given by (5.6). When the system matrix A has full column rank

and the data is noise-free, minimizing the negative likelihood would give a perfect

result. In reality, the data is noisy and maximum likelihood (ML) will give a very

noisy reconstruction due to the ill-posedness of the problem, hence the need for

regularization. We regularize using the convex edge-preserving Huber penalty given

in (4.14).

Combining the likelihood and penalty gives a penalized-likelihood (PL) cost func-
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tion:

Φ(ρ) = −L(ρ) + βR(ρ) (5.15)

where β is a scalar that controls the tradeoff between the data-fit and the penalty

terms. The goal of the reconstruction technique becomes to minimize (5.15) subject

to certain object constraints such as non-negativity:

ρ̂ =
argmin

ρ ≥ 0
Φ(ρ). (5.16)

The next section describes an iterative technique for solving (5.16) approximately.

5.3.4 Polyenergetic X-ray CT Iterative Algorithm

The goal of the iterative algorithm is to find the minimizer in (5.16). The op-

timization transfer principle [15, 16, 22, 25] has proven to be a very effective tool in

simplifying such problems. Stated simply, optimization transfer enables us to re-

place a complex likelihood like (5.15) with surrogate cost functions that are simpler

and easier to minimize. Optimization transfer methods can ensure that the cost

function decreases monotonically each iteration. Because the Poisson likelihood in-

cludes a scatter term (ri) and because of the nonlinearity in Fi(s), the likelihood is

not convex. Monotonicity is all that can be claimed about the convergence of the

algorithm.

Along the lines of our earlier work [22], we apply successive surrogates to the

penalized likelihood cost function, ultimately resulting in a cost function that is

quadratic and separable in ρ. Quadratic functions are more easily minimized, and

separability allows the algorithm to update all pixels simultaneously.

We omit the details and refer the reader to [22] and to Appendix A. The resulting

algorithm is a diagonally-preconditioned gradient descent method of the following
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form:

ρn+1 =
[
ρn −D−1∇Φ(ρn)

]
+
, (5.17)

where ∇Φ(ρn) is the gradient of the cost function, D is a diagonal matrix that in-

fluences the rate of convergence and and monotonicity of the algorithm, and [·]+

enforces the nonnegativity constraint. For a monotonic algorithm, the elements of

D must be such that a surrogate satisfies the conditions of optimization transfer. It

is possible to derive a version of D that gives a monotone algorithm [25, 32, 82] but

the elements of the matrix will have to be updated at every iteration, resulting in a

more computationally expensive approach. Since monotonicity will be compromised

anyway by using ordered subsets to accelerate the algorithm, a precomputed approx-

imate D will suffice. By making certain assumptions about the object [22], we derive

an approximate precomputed “curvature” matrix using the second derivative of the

quadratic surrogate evaluated at the initial image:

dj = m
2
w(Eeff)

N∑
i=1

a2ijYi,

where dj is the jth entry of the diagonal matrix D and Eeff is the effective energy of

the X-ray spectrum defined as:

Eeff
4
=

∫
EIi(E)dE∫
Ii(E)dE

. (5.18)

See Appendix A for details. With this approximation, the method is not guaran-

teed to be monotonic. One could check the cost function at each iteration and apply

the monotonic update to those rare cases where the cost function does not decrease

using the approximate method. In our experience, with a good starting image, such

as a FBP reconstruction, the cost function always decreases. As far as the computa-

tional load of the algorithm, each iteration involves one forward projection and one
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backprojection. An iteration is therefore roughly equivalent to two runs of FBP.

5.4 Simulation Results

We assessed the effectiveness of our algorithm with simulated transmission

polyenergetic Poisson X-ray projections. We simulated a parallel beam geometry,

but the algorithm applies equally well to other geometries. We used a 100 kVp

spectrum (incident mean 45 keV and standard deviation 14.8 keV) using the code

available from [7] with 10 mm Aluminum filtration at the source to give a spectrum

shape similar to clinical practice.

Fig. 5.6 shows the phantom used. The phantom is based on on the NCAT phan-

tom [72], where in addition to (water-like) soft tissue and bone, we have manually

introduced regions of breast, fat (adipose tissue), blood and soft-tissue lesions with

contrast differences of -4% to 6%. The bones and soft tissue have densities 1.8− 2.0

g/cc and 0.2−1.0 g/cc respectively. The densities for fat, bone and blood are identical

to those cited in table 5.1. The measurements are simulated using the actual attenua-

tion properties of the different tissues, not just those of water and bone. The sinogram

has 1200 radial bins with 0.055 mm ray spacing and 1200 angular steps over 180o.

We did not simulate scatter. The blank scan value was 4.87× 106 counts/detector.

The ray with the lowest SNR had 77 counts. We generated pseudo-random Poisson

variates for each sinogram element. The original phantom was 1024 × 1024 (0.055

mm / pixel) but we reconstructed the data on a 512× 512 grid (0.11 mm/pixel) to

generate the effect of mixed pixels.

The data was reconstructed by uncorrected FBP, JS-corrected FBP, the polyen-

ergetic statistical algorithm discussed in Chapter IV with a pre-segmented JS image

and an idealized oracle segmentation, and the proposed polyenergetic algorithm. We
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Figure 5.6: Simulation experiment. True 1024 x 1024 object containing soft tissue
(1), breast (2), blood (3), bone (4) and fat (5). The water lesions are (a)
-4%, (b) -3%, (c) -2%, (d) -1%, (e) 6%, (f) 3%, (g) 2%, (h) 1%, (i) 0.5%
different from 1 g/cc. Window level = -45 HU and window width = 150
HU.

used a Hanning window in all FBP reconstructions, and post-processed the FBP

images with a 5 x 5 median filter. We generated the pre-segmented JS image for the

statistical algorithm of the previous chapter using a pixel value threshold of 1.5. The

JS correction also used the idealized oracle segmentation. The oracle segmentation

combined every 4 pixels of the true object to either one bone pixel or one water

pixel. The iterative algorithm in [22] accommodates only water and bone, and re-

quires prior knowledge of their distribution in the image. With oracle segmentation,

we assume this algorithm has ‘perfect’ prior knowledge. This is not a practical case,

but is included for the sake of comparison to provide an upper bound on performance.

For the iterative methods, we included edge-preserving shift-variant regulariza-

tion [35]. The iterative algorithms ran until the absolute normalized maximum dif-

ference between successive iterations fell below a prespecified small value. To achieve

a maximum difference of less than 2 × 10−3, we used 21 iterations with 50 subsets.

Fig. 5.8 illustrates how the maximum difference decreases with iteration for the pro-



92

Uncorrected FBP

Oracle JS FBP

Figure 5.7: Simulation experiment. Top: uncorrected FBP (scaled by ratio of water
density to attenuation coefficient). Bottom: JS correction post processed
with a 5 x 5 median filter. Window level = -45 HU and window width
= 150 HU.
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Figure 5.8: Absolute maximum difference between successive iterations (normalized
by the maximum pixel of the current iteration) of the proposed algorithm
with simulated data of the phantom in Fig. 5.6.

posed algorithm.

5.4.1 Image Reconstruction Results

Since algorithms with beam hardening correction usually reconstruct density val-

ues, we display the reconstructed images using a density Hounsfield unit (HU) defined

as:

HU =
ρ− ρwater
ρwater

× 1000.

If one wishes to display attenuation Hounsfield units, the density images can be seg-

mented and each material scaled by its mass attenuation coefficient at some energy.

Fig. 5.7 shows the FBP image reconstruction results and Fig. 5.9 shows the iter-

ative reconstruction results. The uncorrected FBP image suffered from severe beam

hardening artifacts. The statistical iterative reconstructions exhibit significantly bet-

ter artifact reduction than the Joseph and Spital image because they inherently model

the nonlinearity and reconstruct the data accordingly. The segmentation-free algo-

rithm reconstruction is comparable to the oracle pre-segmented iterative reconstruc-
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Pre−segmented Iterative Image

Oracle−segmented Iterative Image

Segmentation−free Iterative Image

Figure 5.9: Simulation experiment reconstruction results. Top: pre-segmented iter-
ative algorithm. Middle: Oracle pre-segmented iterative reconstruction.
Bottom: proposed statistical reconstruction algorithm. Window level =
-45 HU and window width = 150 HU.
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tion. The JS-presegmented iterative image suffers from significant artifacts when

compared to the oracle or segmentation-free results. Although it may be possible to

reduce the artifacts by adjusting the segmentation threshold, this is a subjective and

error-prone process that is unlikely to eliminate the artifacts completely. This points

out the limitation of the pre-segmentation based statistical algorithm. None of the

reconstruction algorithms produced an image where breast tissue could be visually

discerned from the surrounding water.

In addition to qualitative assessment of artifact reduction, we quantify the perfor-

mance of the different algorithms using the percent normalized root mean squared

error (NRMSE) in uniform regions within each tissue type. The uniform regions

were selected far from edges, and contained between 100 and 300 pixels. It is diffi-

cult to quantify the performance of the algorithms at tissue boundaries because of

the intentional mismatch between image-domain grids used for data generation and

reconstruction.

Table 5.2 shows the NRMSE results. The proposed iterative method quanti-

tatively outperforms JS-corrected FBP with oracle segmentation for all tissues ex-

cept fat and breast. It also has better overall NRMSE performance than the pre-

segmented iterative reconstruction, and is comparable in performance to the idealized

oracle pre-segmented iterative algorithm image.

Table 5.2 suggests that the proposed algorithm gives more accurate results than

JS FBP and the pre-segmented iterative algorithm for all tissues, except fat and

breast tissue. We observed that fat (adipose tissue) and breast are generally under-

estimated by the algorithms. Fat is less dense and less attenuating than water. Since

the proposed algorithm uses the spectral attenuation properties of water, it is rea-

sonable for the estimated fat density to be less than the true value, to compensate for
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Reconstruction Method Water Fat Blood Breast Bone
RMS, σ RMS, σ RMS, σ RMS, σ RMS, σ

Oracle JS FBP 0.6, 0.5 3.8, 0.5 1.1, 0.7 1.6, 0.2 7.4, 0.3
Pre-segmented Iterative 0.5, 0.5 4.1, 0.3 0.3, 0.3 2.3, 0.1 0.4, 0.2
Segmentation-free Iterative 0.16, 0.15 4.1, 0.13 0.4, 0.1 2.1, 0.1 0.2, 0.2
Oracle-segmented Iterative 0.15, 0.1 4.2, 0.17 0.4, 0.1 2.1, 0.14 0.2, 0.2

Table 5.2: Percent normalized root mean squared error and percent standard devi-
ation of the different reconstructions of the altered NCAT phantom in
Fig. 5.6.
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Figure 5.10: Percent contrast of the soft tissue lesions in the phantom of Fig. 5.6 for
the different reconstruction algorithms.

the higher attenuation introduced by the water model. A similar argument follows

for breast tissue. In the case of breast tissue, however, tissue density is very close

to that of water, and breast tissue is only slightly less attenuating than water. This

explains the difficulty in producing images where breast is visually distinguishable

from water. At the effective energy of the 100 kVp spectrum used, the difference in

attenuation coefficient between water and breast is less than 1%, corresponding to

an attenuation Hounsfield unit difference of 6 HU.
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Fig. 5.10 illustrates the performance of the different algorithms in terms of low

contrast detectibility. The phantom has 9 soft tissue lesions with density HU values

of −40, −30, −20, −10, 5, 10, 20, 30, 60. The 5 HU lesion, corresponding to a 0.5%

difference from the actual density of water, could not be discerned from any of the

reconstructions. The other lesions were visible in both the JS FBP and statistical

reconstructions using a narrow display window. Fig. 5.10 shows that the iterative

reconstruction images are generally closer to the true contrast levels than the JS

FBP image.

5.4.2 Robustness to Spectrum Model Mismatch

Measuring the X-ray source spectrum is a challenging problem that requires care-

ful measurements and calibrations. Measuring the spectrum directly is difficult, and

indirect methods are often used. One possibility is to attempt to estimate the func-

tion Fi in (5.7) by measuring phantoms of different thicknesses and using polynomial

fits on the data. Another approach is to solve for the spectrum from a discretized

version of the transmission equation using measurements taken on phantoms with

varying thicknesses [66, 79]. Regardless, attempts to measure the scanner spectrum

are likely to give approximate results. Moreover, the kVp setting on X-ray scanners

may be imperfect, and the spectrum may change with tube drift over time.

It is therefore important to investigate the robustness of our reconstruction

method to mismatches between the spectrum that generates data and the assumed

spectrum used to tabulate Fi and its gradient.

We reconstructed 100 kVp data generated from a phantom similar to the one

described in the previous section, but without the soft-tissue lesions. In addition to

the matched 100 kVp algorithm, we used algorithms based on 80, 90, 110, and 120
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kVp spectra. The (incident) mean energies of these spectra deviate by 11.2%, 5.2%,

4.7% and 9.0% respectively, from that of the 100 kVp spectrum. This experiment

reflects a practical situation where the kVp setting is inaccurate, because of tube

drift or other effects. Fig. 5.11 shows the spectra used.
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Figure 5.11: Energy spectra used to examine effect of spectral mismatch in section
5.4.2.

The images shown in Fig. 5.12 were reconstructed using the algorithm parameters

listed in the previous section. The only difference between the different reconstruc-

tions was the spectrum used to tabulate Fi. The display window is the same for all

the images. Spectral mismatch resulted in images exhibiting different ‘brightness’

levels, and inaccurate pixel density values, as further illustrated by Fig. 5.13. Algo-

rithms with lower kVp settings underestimated density values and vice versa. The

error introduced in estimating tissue densities by spectral deviations is illustrated in

Fig. 5.14.

The error introduced by spectral mismatch is generally higher for higher density

bones. This is reasonable since dense bones are highly attenuating and the devi-
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(a) 80 kVp (b) 90 kVp

(c) 110 kVp (d) 120 kVp

Figure 5.12: Spectrum mismatch results. 100 kVp data reconstructed with (a) 80
kVp algorithm; (b) 90 kVp algorithm; (c) 110 kVp algorithm; (d) 120
kVp algorithm. Window level=-25 HU. Window width=250 HU.
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Figure 5.13: Spectrum mismatch results. Profile plots of one row of the reconstructed
images. The plots show that a lower kVp mismatch causes the algorithm
to underestimate tissue density. Higher kVp mismatch has the opposite
effect.
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Figure 5.14: Normalized root mean squared error for different tissues of the phantom
caused by different kVp settings.
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ation will be increasingly nonlinear. This can also be seen from the scatter plots

of Fig. 5.15. The solid lines in Fig. 5.15 are the identity lines for density values of

the image reconstructed using the correct spectrum. The dotted scatter plots illus-

trate the deviation of the images reconstructed with mismatched spectra from the

matched spectrum case. As the figure illustrates, the deviation is non-linear and

increases with object density, and results in overestimation and underestimation of

density values for higher and lower kVp settings, respectively.

Fig. 5.14 also shows an interesting pattern for fat and breast tissues. Their error

patterns are very similar and they have minimum error at 110 kVp. Fat and breast

tissues have similar attenuation properties (see Fig. 5.1), and are less attenuating

than water. Since the algorithm with exact spectrum underestimates fat, it is rea-

sonable that a higher kVp setting that tends to overestimate tissue densities will

give less error. Note also that blood and water, which have very similar attenuation

properties, have similar error patterns.

The acceptable degree of deviation between the actual and assumed spectra will

depend on the application. We note that the density errrors are closely related to the

percent errors of the tube potentials. Clearly, in quantitative applications, as close a

match as possible is desirable. If the application requires only visual and qualitative

assessments, then a mismatch of 20 kV in the kVp scanner setting may be tolerable.

5.5 Real Data Results

5.5.1 Mineral Density Measurement

To validate our method with real data, we obtained real transmission data ac-

quired on the table-top system described in [70]. The phantom consisted of a water

cylinder (15 cm in diameter) with five embedded smaller cylinders (2.5 cm diameter)
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spectrum. The dotted lines are scatter plots that illustrate the devia-
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filled with different concentrations of (dry) potassium phosphate dibasic (K2HPO4)

solution. The powder was mixed with water to form the following solutions: 50, 100,

141, 150 an 200 mg/mL, corresponding to densities3 of 1.04, 1.08, 1.108, 1.115 and

1.153 g/cc respectively. This powder is quite soluble in water, so we used the solu-

tion model (5.12) and (5.13) for image reconstruction. This phantom was intended

to mimic a range of trabecular bone densities.

Fan-beam data (834 angular view, 576 detector bins) were collected at 60kVp

using a 360o scan with axial collimation and no scatter grid. The beam was filtered

with 1 mm Aluminum and 0.5 mm Copper and the spectrum estimated from Monte

Carlo simulations. The data was reconstructed on 256×256 grids using the proposed

polyenergetic statistical algorithms (10 iterations, 36 subsets) with both the displace-

ment and solution models, as well as water-corrected FBP. We applied a polynomial

correction to the solution model image to account for the displacement effect in so-

lution. The polynomial coefficients were computed to fit density and concentration

data reported for K2HPO4 in [11, 64].

5.5.2 Scatter Estimation

Initial reconstruction suffered from streaking that was typical of the kind caused

by scatter, but no scatter estimate was available with the data. To estimate scat-

ter, we computed a difference sinogram between the real sinogram and a synthetic

sinogram corresponding to a numerical water phantom based on a segmentation of

an initial reconstruction. We excluded sinogram rays passing through the potassium

phosphate regions from the difference sinogram and replaced them with interpo-

lated values. We applied smoothing to the difference sinogram to estimate scatter.

Fig. 5.17 shows the estimated scatter sinogram. The measured transmission sino-

3These densities were not measured directly, but were calculated based on data in [11, 64].
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Figure 5.16: Measured sinograms. Note that the display range has been warped to
better illustrate details.

gram is shown in Fig. 5.16 with a narrow display window to illustrate fine details.

We estimate scatter at about 1% of the overall measured signal.

The shape and value of the estimated scatter sinogram are similar to those in

earlier reports [37, 51]. This is not a fully developed scatter estimation/correction

technique. Rather, it is a heuristic approach to help verify that scatter is the likely

source of the observed artifact and to correct for it in the absence of any information

on the scatter properties of the system.

Results and Comparisons

Fig. 5.18 shows the polyenergetic iterative reconstructed image. We do not show

the FBP reconstruction because this phantom has no high density regions that cause

severe beam hardening streaking, and the images are visually comparable. We do,

however, compare the quantitative accuracy of our approach with water-corrected

FBP in determining the density of the different K2HPO4 concentrations in Fig. 5.19.

We also compare the accuracy of the displacement and solution object models in
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Figure 5.17: Estimated scatter sinogram obtained by smoothing the difference be-
tween an idealized sinogram and the real sinogram.

Fig. 5.19. The apparent roughness of the edges of the phantom image in Fig. 5.18 is

due to the algorithm attempting to reconstruct the walls of the plastic container in

the phantom.

Although both the displacement and solution models give good visual results, the

solution model has significantly higher quantitative accuracy. The solution model

polyenergetic statistical reconstruction has the best accuracy of all methods, with

maximum error of −1.2% (2.7% error before post-correction for water displacement).

The values in the Figure 5.19 are the averages of uniform regions inside each cylinder.

Trying to address the apparent bias present in the potassium phosphate cylinders

in the displacement model reconstruction was the motivation behind deriving the

solution model.

5.5.3 MicroCT Reconstruction

MicroCT scanners, which offer micron-level resolution, are being promoted and

used to image small animals for research and drug development purposes. We ac-
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Figure 5.18: Iterative reconstruction of real data using 10 iterations and 26 subsets
with an edge-preserving penalty.

quired cone beam data on a microCT system4 (EVS Corp., now part of General

Electric Medical Systems) that is routinely used for bone density measurements on

small animals. We extracted and reconstructed fan-beam data. The scanner tube

emitted 50 kVp X-rays and the detector collected 278 views over a range of 180o.

There were 875 detector channels at a resolution of 25µm each. The scanner did not

have a scatter rejection grid.

The scanned phantom was a mouse-sized cylinder containing smaller cylinders

of water, air, fat mimic and bone mimic. We are uncertain as to the exact density

values of the bone and fat mimic. Since the phantom is used for calibration purposes

for bone density measurements, we reconstructed it using the solution model. We

ran the algorithm for 10 iterations with 20 subsets with an edge-preserving penalty

function. We compared the statistical reconstruction to the FBP algorithm available

4Courtesy of Pfizer Research and Development BioImaging Center, Ann Arbor, MI.
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values (—-); solution model ( ); displacement model (...); water-
corrected FBP ( . .). The solution model reconstruction values are
very close to the true values (max. error -1.2%). The displacement
model has errors on the order of 8%. The solution model image was
post-corrected for the displacement effect. The error bars represent the
width of one standard deviation of each measurement.
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on the scanner. As Fig. 5.20 illustrates, the FBP reconstruction suffers from beam

hardening artifacts that are mostly absent in the statistical reconstruction. Ring

artifacts appear in the iterative image. Close examination reveals similar artifacts in

the FBP image, obscured by the higher noise level. These artifacts are most likely

caused by some detector effect that is not accounted for in the reconstruction. In the

absence of accurate information about the densities of the bone and fat mimics, we

compared the density of the water insert to the known value of 1.0 g/cc, and found

the statistical algorithm to be within 3%.

5.6 Conclusions

We have introduced a statistical iterative reconstruction algorithm for energy

dependent X-ray attenuation that produces images with significantly reduced beam

hardening artifacts, and we have demonstrated its effectiveness for bone and soft

tissue objects. Unlike most other transmission CT iterative algorithms, our algo-

rithm is based on a realistic polyenergetic model and has been extended to allow for

mixed pixels and mineral solutions. The algorithm we present requires knowledge of

the incident spectrum or tabulated measurements of the line integrals of two base

substances. The statistical algorithm minimizes a separable paraboloidal surrogate

to the Poisson likelihood and is parallelizable and fairly simple to implement. We

use ordered subsets and pre-computed surrogate curvatures to accelerate convergence

and reduce computation. It is possible to derive curvatures such that the algorithm

monotonically decreases the cost function with one subset [25, 32, 82]. This is about

the most that can be said about convergence since the cost function is not convex.

When compared with the post-processing technique of Joseph and Spital [49],

the statistical algorithm yielded fewer artifacts. The JS method estimates the line-
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microCT data FBP reconstruction

microCT data iterative reconstruction

Figure 5.20: Phantom reconstruction from microCT data. Top: FBP reconstruc-
tion. Bottom: Statistical reconstruction. Window level=-250 HU and
window width=1500 HU.
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integral dependent nonlinearity for each sinogram bin and then recalculates the line

integrals. The statistical method needs no such post-processing since it inherently

accounts for the nonlinearities. This is likely the reason for its higher accuracy. Dis-

placement model reconstruction gives images with reduced artifacts in anatomical

objects. The solution model is promising for quantitative applications where esti-

mating the density of mineral solutions is needed. One possible clinical application

of the solution model is in bone mineral density studies. Many structures within

bone can be characterized as mineral solutions and quantitative estimates of their

densities are useful in understanding the progress of certain diseases.

The displacement model was less accurate in estimating the density of fat and

breast tissue. As seen in Fig. 5.1, fat spectral properties deviate most from water,

when compared to other soft tissues. This deviation may explain the inaccuracy

in estimating fat density. In the case of breast tissue, its density is very close to

that of water and this contributes to the difficulty in visually distinguishing it from

water in the reconstructed images. The linear attenuation coefficient of breast is also

very close to that of water at clinical kVp settings. In applications where fat must

be estimated accurately, a modified object model is necessary. One possibility, for

example, is to use the mass attenuation coefficient of fat as a base substance instead

of water. Another alternative would be to segment the fat regions of an image and

model the beam hardening nonlinearity they introduce in the projection. It may also

be possible to generalize the tissue fraction functions to include the known spectral

properties of different tissues.

The solution model did not incorporate the nonlinear dependence of solution

density on mineral concentration. This dependence can be expressed in terms of

a low-order polynomial fit to empirical measurements of solution density and con-
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centration. This polynomial fit can be used to post-correct the image, or can be

incorporated in the design of the solution model fraction functions.

Future work will include applying the polyenergetic approach to objects with

three or more tissue types. The bone/soft-tissue model is sufficient for most cases, but

a three-class model is necessary when contrast agents such as Iodine are introduced

[48] and possibly when metallic implants are present. A three-substance model may

also help accurately estimate the density of fat.

Future work will also address some of the challenges posed by the penalized-

likelihood approach. Penalized likelihood is attractive because it improves the con-

ditioning of the problem and enables one to choose penalty functions that control

desired properties such as edge preservation. One drawback, however, is the absence

of an intuitive method for choosing the values of the regularization parameters, which

is often done by trial and error. This is inefficient and time consuming, and there is

a need for a more systematic method for choosing the parameters. Another undesir-

able property of penalized-likelihood image reconstruction is its non-uniform spatial

resolution [35]. A remedy for quadratic penalties exists [68]. For transmission imag-

ing, we prefer to use the edge-preserving Huber penalty, for which the non-uniform

resolution problem has not been addressed.

Recent advances with dual-energy statistical reconstruction [33, 71] have offered

another approach for polyenergetic image reconstruction. Dual energy provides an

additional set of measurements that enable reconstruction of separate bone and water

images. It will be interesting in the future to compare the performance of single-

energy and dual-energy statistical reconstruction.



CHAPTER VI

System Model for the GE LightSpeed Scanner

6.1 Introduction

The ultimate test of the usefulness of the techniques proposed in this dissertation

is their clinical utility. The use of ordered subsets with transmission X-ray CT image

reconstruction algorithms [1,3,26] significantly accelerates algorithm convergence to

a solution. In addition, the development of statistical algorithms for CT that account

for the polyenergetic source spectrum and other physical effects has advanced the

potential for practical use of statistical methods in X-ray CT.

This chapter reports on the progress of a collaboration with GE Medical Systems

(Milwaukee, WI) to evaluate the potential of statistical image reconstruction methods

on real X-ray CT data acquired on the GE LightSpeed CT scanner (GE Medical

Systems, Milwaukee, WI). The LightSpeed is a third generation scanner capable

of multislice and helical scanning. For purposes of the preliminary phases of this

collaboration, only single slice data has been acquired.

The LightSpeed scanner employs a highly optimized version of FBP for image

reconstruction. Since raw CT data almost never conform to the assumptions used

to derive FBP, data conditioning and pre-correction are necessary. Although it is

possible to apply iterative reconstruction algorithms to preprocessed data, such an

112
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approach does not capture the full utility of these algorithms. Data preprocessing al-

ters the statistical properties of the data, and determining the statistical distribution

of the processed data is challenging. Moreover, one of the advantages of iterative

algorithms is their ability to incorporate the physics and system parameters involved

in data formation in the forward CT model to give superior image quality.

An accurate forward model for a CT scanner needs to account for such things as

the polyenergetic source spectrum, detector response and source effects, etc., which

are considered deviations from ideal conditions in FBP image reconstruction. In

statistical reconstruction we do not precorrect data for ‘spurious’ effects, but rather

accommodate them in the forward CT transmission model. In general terms, given

a data set, we seek to find a solution (reconstructed image), that best fits the data

according to a model that incorporates physical and system effects.

To formulate such a model may require extensive experiments and empirical veri-

fication. At the initial stages of this investigation, we are seeking to model the various

physical effects that preprocessing addresses by essentially implementing the ‘inverse’

of the preprocessing steps used by GE Medical Systems. Although this approach is

suboptimal, it is a good starting point and can provide an initial assessment of the

usefulness of statistical reconstruction. An understanding of the preprocessing steps

is therefore important, and we discuss some preprocessing steps in the next section.

6.2 Data Preprocessing Steps

In this section we outline a partial list of data correction steps typically applied

to raw CT data. Much of the detailed information about preprocessing is proprietary

in nature. We will by necessity keep our discussion general, and restrict it to what

is public information. We rely heavily on information provided in [45].
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6.2.1 Noise Reduction

Noise in CT measurements arises from two sources: X-ray quantum noise and

electronic additive noise. Since the X-ray photons are approximately Poisson dis-

tributed, signal variation increases with diminished photon flux reaching the detector.

Excessive noise can lead to severe streaking. In fact, it can be shown that after the log

operation, signal variance is inversely proportional to photon flux. In addition, the

filtering operation in FBP is essentially a derivative operator, further increasing the

adverse effects of noise. The backprojection operation maps highly fluctuating noise

samples to dark and bright streaks in the image [45]. Fig. 6.15-Fig. 6.17 illustrate

the effect of different levels of SNR on image quality.

Noise reduction schemes in the data domain involve nonlinear and adaptive signal

processing techniques that adjust noise-reduction filtering depending on the signal

level [41].

6.2.2 Offset and Gain Correction

Offset correction addresses the effect of electronic dark current inevitably arising

in the detector electronics. Detector electronics are designed to keep dark current to

a minimum. Artifacts arise, however, when there are significant channel-to-channel

variations in the offset current of the detector. Such variations can lead to ring or

band artifacts [45]. To correct for the dark current offset, the dark current is mea-

sured right before a scan. The average offset is then subtracted from the projection

measurements prior to image reconstruction.

Another important detector effect that is simple to compensate for is the nonuni-

form gain factor in the detector channels. It is impossible to manufacture identical

detector channels, and gain variations can lead to ring or band artifacts. Most CT
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scanners use air scans to correct for this effect [45]. Typically, a number of air scans

are taken and their average used for gain correction. Projection data are divided

by the gain vectors to produce gain-normalized projection set. Fig. 6.1 illustrates

transmission data from one view before and after air scan correction.
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Figure 6.1: Left: one view of transmission data before air calibration. Right: same
view after air calibration

6.2.3 Primary Speed and Afterglow

Solid-state scintillating detectors exhibit exponential signal decay once the X-

ray flux is turned off. Depending on the characteristics of the detector, a residual

signal persists from a few microseconds to milliseconds. In CT, this effect causes the

measurements acquired at any particular view angle to be contaminated by residual

signals from earlier views. This effect results in resolution loss and other artifacts.
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The impulse response of this phenomenon can be characterized by a multi-term

exponential [43, 45]:

h(t) =

N∑
n=1

αn
τn
e−

t
τnU(t), (6.1)

where U(t) is the unit step function, αn represents the relative strength of each decay

term, and τn is the time constant for each decay term. Often times it is sufficient to

use N = 2 terms.

Based on linear system theory and (6.1), a recursive relationship between ideal

and corrupted (sampled) data provides the data correction algorithm for afterglow

[43]:

ytk =
yck −

∑N
n=1 βne

−∆t
τn Snk∑N

n=1 βn
, (6.2)

where

Snk = xk−1 + e
−∆t
τn Sn(k−1)

and

βn = αn

(
1− e−

∆t
τn

)
,

where ytk is the true measurements at sample k, y
c
k is the corrupted measurement,

and ∆t is the data sampling period. The details of the derivation are in [43].

6.2.4 Off-focal Radiation

In Chapter II we briefly mentioned off-focal radiation in our discussion of X-

ray tubes. Off-focal radiation in the X-ray tube is caused mainly by secondary

electrons [45]. High-speed electrons emitted from the cathode generate secondary

electrons upon impact with the anode target. These secondary electrons can in

turn return to the target at points outside the focal spot and produce X-rays. This

results in a beam profile consisting of a high-intensity center spot surrounded by a
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low-intensity halo. This effect can cause degradation in low-contrast detectability as

well as shading artifacts.

Off-focal radiation can be reduced by source collimation, but it cannot be com-

pletely eliminated if the system is to retain a reasonable signal level. Proprietary

software correction algorithms are used to eliminate off-focal radiation or reduce its

effects to acceptable levels. The algorithm is complicated by the fact that off-focal

radiation has a non-stationary point spread function. Fig. 6.2 illustrates one view of

the GE QA phantom data (Fig. 6.4) before and after off-focal radiation correction.

6.2.5 Beam Hardening Correction

Beam hardening has already received a lot of attention in this dissertation The

standard beam hardening algorithm available on most commercial scanners is water

correction applied in the data domain. This approach is based on the fact that

80% of the human body is water, and therefore water correction is adequate in

most cases. When the object of interest contains dense bones or metallic implants,

water correction is not sufficient, and more elaborate schemes are necessary. See for

example [49].

With a polyenergetic X-ray spectrum, the relationship between tissue thickness

and the log signal is nonlinear. Fig. 6.3 illustrate the deviation of log-processed data

from linearity with respect to the path length of X-rays in water. The relationship

between the measured signal and the path length is a smooth, monotonically increas-

ing concave function, with a one-to-one relationship to the ideal straight line. It is

therefore possible to map the nonlinear curve onto the straight line. Following the

notation of Chapter V, denote by Fi the nonlinear curve, which can be mapped to a
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Figure 6.2: Effect of off-focal radiation on CT measurements. Top: data prior to
correction (note blured edges). Bottom: Data after correction.

linear function Pi by a polynomial [45]:

Pi =
∑
n

anF
n
i (6.3)
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where an is the polynomial coefficient for the nth term and can be computed using

a minimum least-squares fit.
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Figure 6.3: Water log transmission data deviation from a linear relationship with
tissue thickness as a result of polyenergetic X-ray propagation and at-
tenuation.

6.3 System Model

We utilized the information provided by GE Medical Systems about the data

correction steps to formulate a forward model for the measurement process. During

each step of the iterative algorithm, the system model is used to generate CT data

from the current image, and that data is compared to the raw measurements.

The system model includes an accurate two-dimensional software forward projec-

tor based on the LightSpeed geometry. The projector computes the area of intersec-

tion between each pixel and a fan X-ray beam defined by the source and a detector

element. This projector is more geometrically accurate than necessary and is used at

this stage to eliminate any error inadvertently introduced by an inaccurate projector.

At this stage, the system model also includes water beam hardening effects, off-

focal radiation, primary speed and afterglow, and blank scan and offset corrections.

In the context of statistical reconstruction, noise reduction is accomplished by basing
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the algorithm on a statistical distribution that closely reflects the measurements

statistical properties. In this work, we assume Poisson statistics. In the algorithm

implementation, we use a penalized likelihood approach to reduce image noise.

Mathematically, let Ȳi be the mean of the data measured at detector i. The

current system model is a discretized version of the following:

Ȳi =

∫ ∫ ∫
gi(β)ki(γ)Ii(E)e

−Fi(s(β,γ,E);γ)dE dβ dγ + ri, (6.4)

where β and γ represent the source and fan angles, respectively, and gi(β) and ki(γ)

represent the effects of afterglow and off-focal radiation, respectively. The function

Fi(·) denotes beam hardening distortion of the line integral, and Ii(E) is the energy-

dependent intensity. We denote the line integral with s(β, γ, E) and the background

measurements with ri.

6.3.1 Iterative Algorithm

We will not present a detailed derivation of the iterative algorithm, since it is very

similar to what was presented in earlier chapters and in related work [33, 82]. The

algorithm optimizes a cost function that is a surrogate of the Poisson log likelihood,

given in (4.11), where E[Yi] is replaced with the expression in (6.4). The algorithm

is a gradient descent algorithm, where the iterative updated depends on the ratio of

the first and second derivatives of the cost function. Since we use ordered subsets to

accelerate convergence, a precomputed denominator suffices.

6.4 Preliminary Results

In this section we discuss the preliminary results of iterative reconstruction of

data from the GE LightSpeed scanner. We do not conduct an extensive bias-variance

analysis and comparison of the performance of statistical reconstruction compared
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to FBP. We try to compare noise performance at equivalent resolutions and assess

the visual quality of the images.

6.4.1 GE QA Phantom

Fig. 6.4 shows an image of the GE QA phantom. This phantom is cylindrical,

consisting mostly of water with some high resolution structures. The image shown

in Fig. 6.4 is of a FBP standard reconstruction with 190mAs data. This high SNR

makes it possible to discern the fine structure so clearly. We will compare FBP and

iterative reconstruction performance at a much lower mAs.

Figure 6.4: GE QA Phantom

6.4.2 Reconstruction Algorithms

We reconstruct a single slice of the GE QA phantom data acquired with a 10mAs

scan. This is a fairly low signal level, and the reconstruction generally suffers from

high noise that significantly decreases visibility of fine structures. We reconstruct
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using the following algorithms:

• In-house fan beam FBP (with a Hanning window). Although an initial image

with the better optimized GE FBP reconstruction is available, we use the in-

house FBP image to initialize the statistical algorithm. This avoids any errors

introduced by subtle geometric differences between the two algorithms (since

the in-house FBP uses the same geometric model as the iterative algorithm).

The FBP was applied to preprocessed data.

• Statistical reconstruction with edge-preserving penalty applied to raw data.

The algorithm incorporates the full forward model. We use 10 iterations with

82 subsets and then reduce the number of subsets to 41 for 30 more iterations

to avoid any subset-induced noise amplification.

• Statistical reconstruction with edge-preserving penalty applied to preprocessed

data. The data is preprocessed with all steps except for beam hardening cor-

rection (which is applied in the log domain). The statistical algorithm includes

the beam hardening model. We use the same number of iterations and subsets

as above.

• GE standard FBP reconstructions were provided to us for comparison.

Fig. 6.5 shows the FBP reconstruction, and Fig. 6.7 and Fig. 6.8 show the 20-

and 40-iteration images of the iterative reconstruction using raw data. The outlined

regions (A and B) in Fig. 6.11 were used to compute variance, plotted in Fig. 6.12.

Fig. 6.6 shows GEMS FBP reconstruction of the data and Fig. 6.10 shows the 40-

iteration image of the iterative reconstruction using preprocessed data. Fig. 6.9 is

the GE FBP reconstruction with some blur introduced to approximately match the

resolution of the iterative reconstruction image.
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UM FBP of 1 View

Figure 6.5: Filtered Backprojection Reconstruction

GE FBP of 1 View

Figure 6.6: GE Filtered Backprojection Reconstruction
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PL 20 Iterations

Figure 6.7: Iterative Reconstruction after 20 Iterations with Raw Data

PL 40 Iterations

Figure 6.8: Iterative Reconstruction after 40 Iterations with Raw Data
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Blurred GE FBP

Figure 6.9: Blurred GE Filtered Backprojection Reconstruction

PL 40 iterations with preprocessed data

Figure 6.10: Iterative Reconstruction after 40 Iterations with Preprocessed Data
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Figure 6.11: ROI A and B were used to compute variance, and rows between lines
C D were averaged to examine resolution

Reconstruction Average % Standard Deviation % Standard Deviation
Method FWHM in Region A in Region B
FBP 4.69 4.27 3.98
GE FBP 2.63 5.40 4.92

PL at 20 iterations 3.60 1.64 1.65
PL at 40 iterations 3.52 1.54 1.61
GE FBP blurred 3.57 2.04 1.82

Table 6.1: Noise performance comparison between GE FBP and statistical recon-
structions of GE QA phantom at approximately equivalent resolution.

We compare the resolution of the different reconstructions by averaging 100 image

rows between lines C and D in Fig. 6.11. We then compute the full-width half-max

(FWHM) of the first derivative of the average row at the rightmost and leftmost

edges of the center region of the phantom. An averaged FWHM is obtained from

these results. We also compute the percent standard deviation in the two uniform

regions A and B, inside and outside the center of the phantom (each region had

100× 50 pixels). The first derivatives are illustrated in Fig. 6.13, and the results of
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the FWHM and standard deviation comparisons are outlined in table 6.4.2. Note that

the FWHM measurements are in units of pixels and the percent standard deviation

is the ratio of the standard deviation to the mean.

At roughly equivalent resolution, iterative reconstruction gives better noise per-

formance than (blurred) GE standard FBP reconstrucion. This gives us confidence

that we can determine regularization parameters which will give equivalent resolution

to FBP, with better noise reduction.

0 10 20 30 40 50
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10

12

14

16

18
Raw data PL region A
Raw data PL region B
Preprocessed data PL region A
Preprocessed data PL region B
Blurred GEMS FBP region A
Blurred GEMS FBP region B

Figure 6.12: Variance of regions A and B as a function of iteration

These preliminary results indicate that while the iterative algorithm resolution

performance is equivalent to FBP, it outperforms FBP in terms of noise reduction.

Fig. 6.12 shows a promising decrease in variance with iteration. With statistical iter-

ative reconstruction, the variance reduction is significantly larger with raw data than

with preprocessed data. This illustrates the noise-reduction potential of statistical

techniques.
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Figure 6.13: First derivatives of the average of 100 rows within the center region of
the QA phantom

The noise texture in iterative reconstruction is different from the ‘conventional’

appearance of CT images. Whereas the FBP noise is correlated radially, the penal-

ized likelihood noise is correlated tangentially. This may be due to the regularization

penalty, and is an area of future investigation.

Less iterations may be necessary if more of the initial iterations are run with a

larger number of subsets. Also, less iterations are needed if the iterative algorithm

is initialized with a better image, such as the GEMS FBP reconstruction. Deter-

mining the optimal iteration/subset combination is important for considerations of

computational load, and is a topic of future work.
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% Standard Deviation
Scan Statistical Algorithm GE Standard FBP
10 mAs 20.5 23.6
50 mAs 4.0 5.4
200 mAs 2.1 2.2

Table 6.2: Noise performance of GE FBP and statistical reconstruction of shoulder
phantom.

6.4.3 Shoulder Phantom

We next investigate an anthropomorphic shoulder phantom. This phantom con-

tains bone-like structures that are more attenuating than water. It also has fine

details that can help assess the resolution performance of the different algorithms on

data that are more similar to clinical practice. The asymetry of this phantom is also

a good test of the accuracy of the system model.

We reconstruct 120 kVp data at three different mAs values: 10mAs, 50mAs

and 200mAs. Fig. 6.15 - Fig. 6.17 illustrate the reconstruction results. The left

hand side of each figure is the statistical reconstruction of raw data, and the right

hand side is the GE FBP standard reconstruction1 The upper and lower rows of

each figure display soft tissue and lung window levels, respectively. The iterative

algorithm parameters are similar to those described for the QA phantom in the

previous section.

Statistical reconstruction gives lower noise, as expected. However, the improve-

ment in noise performance is modest, as table 6.4.3 shows. In addition, the trained

eye can observe subtle shading artifacts in the statistical reconstructions.

The cause of the shading artifact is possibly some degree of mismatch between

1Unfortunately, the GE FBP and statistical reconstruction images are not for the same slice.
Fig. 6.14 is a reconstruction of the 200mAs data set with the UM inhouse FBP, provided for
reference.
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Figure 6.14: UM FBP reconstruction of 200mAs shoulder phantom data.

the system model and the actual data acquisition process. The artifact may also

be caused by an implementation error. The next step in our collaboration with GE

Medical Systems will be to determine and eliminate the cause of this shading artifact.

6.5 Conclusion

In this chapter we reported on the results of applying statistical reconstruction

to data acquired on the GE LightSpeed scanner. Only single slice data has been

considered so far. An iterative algorithm based on a system model that incorporates

significant physical effects and system parameters has been shown to give promising

results in terms of noise performance. Iterative reconstruction of raw data outper-

forms iterative reconstruction of preprocessed data, further confirming the notion

that reconstruction based on accurate forward models and raw data produces supe-
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Figure 6.15: Statistical (left) and GE standard FBP (right) reconstructions of 10mAs
shoulder phantom data.

rior image quality.

Extensions of this collaboration will include investigating and eliminating the

cause of shading artifacts and confirming the accuracy of the system model, fol-

lowed by extensive and systematic evaluation to quantify the advantages of iterative

reconstruction.
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Figure 6.16: Statistical (left) and GE standard FBP (right) reconstructions of 50mAs
shoulder phantom data.
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Figure 6.17: Statistical (left) and GE standard FBP (right) reconstructions of
200mAs shoulder phantom data.



CHAPTER VII

Conclusions and Future Work

7.1 Conclusions

This thesis introduces statistical reconstruction algorithms for X-ray CT within

the general framework of formulating accurate data forward models for the CT prob-

lem. In addition to statistical and system models and algorithm derivations, we

present simulation and real data reconstruction results and incorporate detector and

X-ray tube effects in the system model for the GE lightSpeed.

In Chapter III we developed a compound Poisson statistical model for X-ray CT

measurements that is more sophisticated and more realistic than the Poisson model.

The model accounted for energy-dependent statistics, random light (or electron-hole

pair) generation in detector crystals and additive readout noise. We also derived

a practical approximation to the exact compound Poisson likelihood using a gener-

alization of the saddle-point integration method. Comparisons between the exact

compound Poisson likelihood, the saddle point approximate likelihood and the or-

dinary Poisson likelihood showed that the saddle point approximate likelihood may

have some utility in image reconstruction in very low X-ray flux situations.

We introduced a statistical iterative reconstruction algorithm for energy depen-

dent X-ray attenuation that produces images with significantly reduced beam hard-

134
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ening artifacts in Chapter IV. The algorithm is based on polyenergetic X-ray attenu-

ation, and is derived by successive applications of the optimization transfer principle.

The algorithm is parallelizable and fairly simple to implement and can be acceler-

ated with ordered subsets and a pre-computed surrogate curvature. The algorithm

is applicable for an arbitrary number of non-overlapping materials in the object, and

we demonstrated its effectiveness for bone and soft tissue objects. The algorithm re-

quires prior knowledge of the incident X-ray spectrum and pre-segmented bone and

soft tissue maps. In this regard it is comparable that the classical beam hardening

correction method of Joseph and Spital.

In Chapter V we develop object models that relieve the polyenergetic algorithm

of its pre-segmentation requirement. This enables the algorithm to accommodate

mixed pixels that arise at tissue boundaries and to accommodate more tissues with-

out requiring more scans. Two object models are proposed in Chapter V. The

displacement model works well for anatomical tissues and objects with distinct tis-

sues where mixed pixels arise mostly at tissue boundaries. The model is based on

the fact that most soft tissues in the body have densities and attenuation properties

similar to those of water. The solution model is designed for quantitative determina-

tion of the density of mineral solutions, and was shown to give more accurate results

that conventional water correction.

In addition to algorithm validation with simulated and real data in Chapter IV

and Chapter V, we applied one version of the algorithm to the data acquired on the

GE LightSpeed scanner. The algorithm was based on a system model that included

some of the more important ‘spurious’ effects that are routinely corrected for on the

LightSpeed such as beam hardening, detector afterglow and tube off-focal radiation.

The algorithm gave promising results in terms of noise performance. Iterative re-
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construction of raw data outperformed iterative reconstruction of preprocessed data,

further confirming the notion that reconstruction based on accurate forward models

and raw data produces superior image quality.

7.2 Future Work

Like any research endeavor, the work presented in this thesis has generated some

answers and questions. Realizing the impossibility of getting tenure as a student, I

leave the answers to the following open problems for future researchers:

• The value of the compound Poisson likelihood derived in Chapter III for image

reconstruction is still to be determined. For most clinical CT situations, signal

levels are likely to be high enough for the regular Poisson model to be adequate.

Are there situations (inefficient detectors, low signal, etc.) in which the more

sophisticated compound Poisson model is useful? How about microCT? In

addition to comparing the compound Poisson and regular Poisson likelihoods,

the utility of the compound Poisson likelihood will be better understood by

deriving and evaluating an algorithm based on it. The algorithm derivation

will involve application of the optimization transfer principle and derivation of

surrogates to the compound Poisson likelihood. There are also additional pos-

sible refinements of the statistical model, such as incorporating the wavelength

dependence of the detector photodiodes and the nonlinearities in the detector

electronics.

• The iterative algorithms of Chapter IV and Chapter III were tested based on a

two-material categorization of tissues, namely bone (or bone mineral) and the

general category of soft tissue (or water). One of the interesting problems arises

when a third highly attenuating material such as a contrast agent is introduced.
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How can the displacement model be generalized to include tissue fractions for

a third base substance? How can issues relating to the temporal change in

contrast agent concentration in the blood stream be resolved? Also, is there a

possible hybrid object model that incorporates properties of the displacement

and solution models that better captures the complexities of human tissues?

• For higher accuracy at mixed pixels, one can design the fraction functions of the

displacement model to better match the mixture mass fractions of soft tissues

and bone in the range of tissue densities between 1.0 g/cc and 1.92 g/cc.

• The solution model can easily incorporate the displacement effects in solution

by reparameterizing the fraction functions in terms of mineral concentration.

• In this work we adopted a penalized-likelihood reconstruction approach. Penal-

ized likelihood is attractive because it improves the conditioning of the prob-

lem and enables one to choose penalty functions that control desired properties

such as edge preservation. However, we have suffered through the process of

determining the values of regularization parameter in the absence of systematic

methods for choosing them. Will it be possible to generalize the results of [68]

to edge-preserving penalties? Noting the circularly correlated noise of Fig. 6.8,

one may be inclined to consider whether the CT reconstruction problem will

require a unique penalty design.

• In Chapter V, single-slice data obtained from cone beam systems were con-

taminated by scatter. Short of measuring or simulating a scatter estimate,

we applied an ad-hoc method for scatter estimation from the real sinogram.

Better scatter estimation is certainly one of the first things that can be done

to improve the accuracy of the proposed algorithms.
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• In addition to scatter, there are several other effects that are important for the

system model to account for. These include partial volume and exponential

edge-gradient effects [42, 50]. These effects occur when a scanned object is

partially intruded into the scan plane. Addressing the partial volume effect

may require revising our projector. The current projector calculates areas of

overlap between X-ray beams and pixels. To account for partial volume may

require a more refined projector of thin rays traversing pixels.

• The relationship in (5.7) can be determined through measurements made on

wedge or step phantoms of known thicknesses and densities, and can be mathe-

matically described by a low-order polynomial. Assuming the beam hardening

polynomial is slowly varying and independent of detector channel, it is cer-

tainly feasible to derive an image reconstruction algorithm that estimates the

polynomial coefficients simultaneously with the image. This algorithm can take

the form of an alternating maximization algorithm.

• One inherent limitation of our polyenergetic reconstruction methods lies in

the fact that we are reducing a problem with K × p unknowns to one with

p unknowns only. This limitation may be overcome (at least when K = 2)

with dual-energy reconstruction. Recent advances with dual-energy statistical

reconstruction [33, 71] may enable enough dose reduction for the two energy

scans needed such that the cost and patient dose concerns are eliminated.

• The system model so far has assumed single-slice fan-beam geometry. One of

the advantages of iterative reconstruction is its applicability to more arbitrary

geometries such as cone beam and helical CT, and that is certainly an area in

which the work presented in this thesis may be extended.
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APPENDIX A

Segmentation-free Polyenergetic Algorithm

Surrogate Function

In this appendix we outline details of the derivation of the statistical algorithm for

polyenergetic CT described in Chapter V. The goal of the iterative algorithm is to

find the minimizer in (5.16). We use the optimization transfer principle [15,16,22,25]

which has proven to be a very effective tool in simplifying such problems. Under

certain conditions, a simpler and easier to minimize surrogate function can replace

the likelihood in the iterative algorithm.

We apply successive surrogates to the penalized likelihood cost function, ulti-

mately resulting in a cost function that is quadratic and separable in ρ. Quadratic

functions are more easily minimized, and separability allows the algorithm to up-

date all pixels simultaneously. The derivation is complicated by the fact that tissue

fractions are now functions of the independent variable ρ and that the polyenergetic

dependence is expressed indirectly through Fi(si(ρ)).

The goal of the algorithm is to minimize the Poisson negative log likelihood:

−L(ρ) =
N∑
i=1

hi(Ȳi(si(ρ)) + ri) (A.1)

hi(t)
4
= −Yi log t+ t, (A.2)
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where Ȳi(si(ρ)) is given in (5.6). Although the algorithm includes a regularization

term, in this appendix we focus on algorithm derivation with the likelihood term

only. Generalizing the result to include regularization is straightforward.

Define the new function gni that has a surrogate q
n
i

gni (l)
4
= hi

(
Iie
−l + ri

)
≤ qni (l), (A.3)

where

qni (l) = g
n
i (l
n
i ) + ġ

n
i (l
n
i )(l − l

n
i ) +

1

2
Cni (l − l

n
i )
2. (A.4)

It is possible to design curvatures such that qni satisfies the conditions of optimization

transfer. One possibility is the maximum curvature give by [25, 82]:

Cni =

[
Ii −

Yiri

(1 + ri)2

]
+

≤ [Ii]+ . (A.5)

Note that qni is a quadratic in l, but not in the variable of interest, ρ. Combining

(A.4) and (A.2), we arrive at the following surrogate function:

Q1(ρ; ρ
n) =

N∑
i=1

qni (Fi(si(ρ))). (A.6)

Next we derive a quadratic surrogate in si. Let

q̃ni (si)
4
= qni (Fi(si)) (A.7)

≤ pni (si) (A.8)

where

pni (si) = q̃ni (s
n
i ) +∇q̃

n
i (s

n
i ) · (si − s

n
i ) +

1

2
(si − s

n
i )
′ · C̃ni · (si − s

n
i )

= q̃ni (s
n
i ) +

K∑
k

∂q̃ni (si)

∂ski

∣∣∣∣
si=s

n
i

(ski − s
k,n
i ) +

1

2

K∑
k

C̃n,ki (s
k
i − s

k,n
i )

2.
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The surrogate thus far is:

Q2(ρ; ρ
n) =

N∑
i=1

pni (si(ρ)). (A.9)

Next we derive a quadratic surrogate in ρ. Let

p̃ni (ρ)
4
= pni (si(ρ)) ≤ ζni (ρ) (A.10)

where

ζni (ρ) = p̃ni (ρ
n) +∇p̃ni (ρ

n) · (ρ− ρn) +
1

2
(ρ− ρn)′ · Ĉni · (ρ− ρ

n)

= p̃ni (ρ
n) +

p∑
j

∂p̃ni (ρ)

∂ρj

∣∣∣∣
ρ=ρn
(ρj − ρ

n
j ) +

1

2

p∑
j

Ĉn,ji (ρj − ρ
n
j )
2. (A.11)

We again assume that Ĉni is a curvature that ensures ζ
n
i is a sound surrogate. By

construction, this surrogate is also separable since all of the pixels are decoupled in

the sums over j. The final surrogate is:

Q(ρ; ρn) =

p∑
j=1

N∑
i=1

ζni (ρ). (A.12)

Tedious algebra shows that the first and second derivatives of the surrogate eval-

uated at ρn are:

∂Q

∂ρj

∣∣∣∣
ρ=ρn

=
N∑
i=1

K∑
k=1

aij
∂(ρjf

k
j (ρj))

∂ρj

∣∣∣∣∣
ρ=ρn

ġni (Fi(s
n
i ))

∂Fi(s
n
i )

∂ski

=
N∑
i=1

(
Yi

Ȳi(s
n
i ) + ri

− 1

)
aij

K∑
k=1

∂
(
ρjf

k
j (ρj)

)
∂ρj

∣∣∣∣∣
ρ=ρn

∂Fi(s
n
i )

∂ski
Iie
−Fi(sni )

=

N∑
i=1

K∑
k=1

aij
∂
(
ρjf

k
j (ρj)

)
∂ρj

∣∣∣∣∣
ρ=ρn

(
1−

Yi

Ȳi(sni ) + ri

)
∇kȲi(s

n
i ) (A.13)

= −
∂L

∂ρj

∣∣∣∣
ρ=ρn

(A.14)

∂2Q

∂ρ2j

∣∣∣∣
ρ=ρn

=
N∑
i=1

Ĉn,ji . (A.15)
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The resulting algorithm is a diagonally-preconditioned gradient descent method

of the following form:

ρn+1 =
[
ρn −D−1∇Q(ρn)

]
+
, (A.16)

where ∇Q(ρn) is the gradient of the cost function, D is a diagonal curvature matrix

that influences the rate of convergence and monotonicity of the algorithm, and [·]+

enforces the nonnegativity constraint.

The entries of D are determined by our choices for the various curvature terms

in the above derivation (Ĉni , C̃
n
i , C

n
i ). For a monotonic algorithm, the elements of

D must be such that a surrogate satisfies the conditions of optimization transfer. To

derive a version of D that gives a monotone algorithm, it is sufficient to assume a

finite upper bound on the density ρ and to require the fraction functions of the object

model to be twice continuously differentiable. Since monotonicity will be compro-

mised anyway by using ordered subsets to accelerate the algorithm, a precomputed

approximate D will suffice. By making certain assumptions about the object [22],

we derive an approximate precomputed “curvature” matrix using second derivatives

of the surrogates used at different stages of the derivation.

Using the second derivatives of the functions in the second-order terms of their

surrogates, we can show that the second derivative of the surrogate function Q(ρ; ρn)

evaluated at ρ = ρn is:

∂2Q

∂ρ2j

∣∣∣∣
ρ=ρn

=

N∑
i=1

Ĉn,ji

=

N∑
i=1

K∑
k=1


ġni (Fi(sni ))∂

2Fi(s
n
i )

∂ski
2 + Cni

(
∂Fi(s

n
i )

∂ski
2

)2

(
∂ski (ρj)

∂ρj

∣∣∣∣
ρ=ρn

)2

=
N∑
i=1

K∑
k=1

a2ij

(
∂

∂ρj
(ρjf

k
j (ρj))

∣∣∣∣
ρ=ρn

)2{
ġni (Fi(s

n
i ))

∂2Fi(s
n
i )

∂ski
2 + Yi

(
∂Fi(s

n
i )

∂ski

)2}
,
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where we took advantage of (4.34). This expression is iteration-dependent, and can

be simplified even further. Assuming that the object is mostly water, we can make

the following approximate:

∂

∂ρj
(ρjf

k
j (ρj)) = fkj (ρj) + ρj ḟ

j
k(ρj)

≈



1 for k = 1 (water)

0 for k = 2 (bone)

where we assume that the density of bone and the first derivative of the water fraction

function are zero when the object is mostly water. We can also approximation

Fi(si) ≈ mw(Eeff)s
1
i ,

∂Fi(si)

∂s1i
≈ mw(Eeff),

∂2Fi(si)

∂s1i
2 ≈ 0,

where s1i is the line integral of the density of water, and

Eeff
4
=

∫
EIi(E)dE∫
Ii(E)dE

is the effective X-ray energy. With these approximations, we arrive at a precomputed

version of the curvature:

dj = m
2
w(Eeff)

N∑
i=1

a2ijYi,

where dj is the jth entry of the diagonal matrix D

In summary, the algorithm takes the following shape:

• Precompute dj

• Tabulate Fi(·) and its gradient over an appropriate range of break points
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• Initialize with ρ̂ and choose displacement or solution model

• for each iteration n = 1, ..., niter

– for each subset S = 1, . . . ,M

∗ compute ŝki =
p∑
j=1

aijf
j
k(ρ̂)ρ̂j for k = 1, . . . , K, set ŝi = [ŝ

1
i , ..., ŝ

K
i ]

∗ compute Ȳi(ŝi) and ∇Ȳi(ŝi) = [∇1Ȳi(ŝi), ...,∇KȲi(ŝi)] using interpo-

lation from the precomputed tables of Fi and its gradient

∗ evaluate N̂j =
N∑
i=1

K∑
k=1

aij
∂
(
ρjf

k
j (ρj)

)
∂ρj

∣∣∣∣∣
ρ=ρ̂

(
1−

Yi

Ȳi(ŝi) + ri

)
∇kȲi(ŝi)

∗ compute

ρ̂j =


ρ̂j −

MN̂j + β
∂R̃

∂ρj

∣∣∣∣∣
ρ=ρ̂

dj + β
∂2R̃

∂ρ2j

∣∣∣∣∣
ρ=ρ̂



+

, j = 1, . . . , p (A.17)

– end

• end

where R̃ is an appropriate surrogate for the regularization penalty.
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APPENDIX B

X-ray CT Measurements Probability Mass

Functions

In this appendix we derive the probability mass functions for the different cases of

X-ray detection described in chapter III. In each case, we use contour integration

to invert the Z-transform of the moment generating function. We make use of the

Cauchy integral theorem:

1

2πj

∮
c

z−kdz =



1, k = 1,

0, k 6= 1,
(B.1)

where c is a counterclockwise contour that encircles the origin.

The exact likelihoods follow from the probability mass functions. Except for the

simplest case of monoenergetic radiation and deterministic light generation in the

detector, the likelihoods have infinite series, and are therefore not practical for image

reconstruction, as pointed out in chapter III.

• Monoenergetic X-rays and Deterministic Light

For the idealized case of monoenergetic X-rays and deterministic light scintil-
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lation, the moment generating function was shown to be

gY (z) = exp(−N̄(1− zxo))

= e−N̄eN̄z
xo

= e−N̄
∞∑
k=0

1

k!
(N̄zxo)k (B.2)

To find the p.m.f of Y , we use the contour integration version of the inverse

Z-Transform:

PY (y) = e−N̄
∞∑
k=0

1

k!
N̄k
1

2πj

∮
c

z−y−1(zxo)kdz

= e−N̄
∞∑
k=0

1

k!
N̄k
1

2πj

∮
c

zkxo−y−1dz

=
e−N̄

(y/xo)!
N̄

y
xo , (B.3)

when y
xo
is an integer and where we have used the Cauchy integral theorem

(B.1).

• Monoenergetic X-rays and Poisson Light

In section 3.4.2 we showed the that moment generating function for the case

of monoenergetic X-rays with Poisson light in the detector is:

gY (z) = exp(−N̄(1− e−xo(1−z)))

= e−N̄ exp(N̄e−xo(1−z))

= e−N̄
∞∑
k=0

1

k!

(
N̄e−xo(1−z)

)k

= e−N̄
∞∑
k=0

1

k!
(N̄e−xo)kekxoz

= e−N̄
∞∑
k=0

1

k!
(N̄e−xo)k

∞∑
i=1

1

i!
(kxo)

izi. (B.4)
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To find the p.m.f of Y , we use the contour integration version of the inverse

Z-Transform:

PY (y) =
1

2πj

∮
c

z−y−1gY (z)dz

= e−N̄
∞∑
k=0

1

k!
(N̄e−xo)k

∞∑
i=1

1

i!
(kxo)

i 1

2πj

∮
c

z−y−1+idz

= e−N̄
∞∑
k=0

1

k!
(N̄e−xo)k

(kxo)
y

y!
, (B.5)

where we used Cauchy’s theorem to reduce the sum over i to a single term.

• Polyenergetic X-rays and Poisson Light

The moment generating function for the realistic case of polyenergetix X-rays

and Poisson light was derived in section 3.5. We restate it here for convenience

and manipulate it to express it in terms of the moment generation functions of

each energy l:

gY (z) = exp

(
−N̄(1−

L∑
l=1

p̃le
−xl(1−z))

)

= e−N̄ exp{N̄
L∑
l=1

p̃le
−xl(1−z)}

= e−N̄ΠLl=1 exp{N̄ p̃le
−xl(1−z)}

= e−N̄ΠLl=1g
l
Y (z), (B.6)

where

glY (z) = exp{N̄ p̃le
−xl(1−z)}

=

∞∑
k=1

1

k!

(
N̄ p̃le

−xl(1−z)
)k

=
∞∑
k=1

1

k!

(
N̄ p̃le

−xl
)k
exlzk

=
∞∑
k=1

1

k!

(
N̄ p̃le

−xl
)k ∞∑
i=0

1

i!
(xlk)

izi. (B.7)
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Using the contour integral inverse of the Z-transform, we get

P lY (y) =

∞∑
k=1

1

k!

(
N̄ p̃le

−xl
)k ∞∑
i=0

1

i!
(xlk)

i 1

2πj

∮
c

z−y−1+idz

=

∞∑
k=1

1

k!

(
N̄ p̃le

−xl
)k (xlk)y

y!
. (B.8)

Using the convolution property of the Z-transform in (B.6) above, we get the

p.m.f. of Y :

PY (y) = e
−N̄
[
P 1Y (y) ∗ P

2
Y (y) ∗ ... ∗ P

L
Y (y)

]
. (B.9)

To compute the p.m.f. of Y requires L convolutions, where L is equal to the

number of distinct energies in the spectrum. Each term in the convolution

consists of an infinite series. Recall that the number of energies L results

from discretizing (for computational purposes) what is essentially a continuous

spectrum. Clearly, using the log of (B.9) as a log likelihood is not practical for

image reconstruction.
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ABSTRACT

X-ray Computed Tomography Statistical Iterative Reconstruction

by

Idris A. Elbakr

Chair: Jeffrey A. Fessler

Statistical reconstruction for transmission tomography is emerging as potential al-

ternative to conventional analytic image reconstruction. To fully realize their poten-

tial in noise reduction and image quality improvement, statistical algorithms should

be based upon a system model that incorporates measurement statistics, attenuation

physics and system parameters.

CT measurements are often assumed to follow Poisson statistics. CT detectors,

however, are energy integrators that give rise to more complex compound Poisson

statistics. We derive the compound Poisson probability mass function and a practical

but approximate likelihood. The likelihood is based on a statistical model that

accounts for energy-dependent statistics, Poisson scintillation light and electronic

additive Gaussian noise. We compare the approximate likelihood with the ordinary

Poisson and exact likelihoods. The approximate likelihood is more accurate than



the ordinary Poisson likelihood in low count situations, and may be useful for image

reconstruction in such situations.

We derive a polyenergetic statistical X-ray CT reconstruction algorithm. The

algorithm is based on polyenergetic X-ray attenuation physics and has been derived

for objects containing an arbitrary number of materials. The algorithm derivation

involves successive application of the optimization transfer principle to arrive at

a simple and easy to maximize cost function. The algorithm requires knowledge

of the X-ray spectrum or related measurements and a pre-segmented map of the

distributions of different tissues within the image. Such a map is available from FBP

reconstruction. The pre-segmentation map keeps the number of unknowns in the

reconstruction problem equal to the number of pixels. In this regard the algorithm

is comparable to conventional beam hardening correction methods. The algorithm

is a gradient descent algorithm that can be accelerated using ordered subsets and

a precomputed curvature. It is also possible to derive a curvature that guarantees

monotonicity. We use the algorithm to reconstruct objects that contain materials

that can be categorized as bone and (water-like) soft tissue. The iterative algorithm

is superior to conventional beam hardening reduction methods in terms of artifact

suppression and noise reduction.

To relax the requirement for a pre-segmentation map, we propose object models

that parameterize the scanned object in terms of spatial and energy components. The

object models keep the number of unknowns equal to the number of pixels, which

is necessary if one does not wish to rely on multiple-energy scans. The models are

based on the attenuation properties of tissues, and allow pixels to contain mixtures

of tissues. This is accomplished by restricting the tissue fractions at each pixel to be

(known) functions of the pixel density. We develop models (for two base materials)



suitable for distinct anatomical structures as well as for objects better characterized

as mineral solutions in water. The segmentation-free iterative algorithms perform

better than the FBP pre-segmented iterative algorithm and conventional beam hard-

ening correction methods. Moreover, the segmentation-free algorithm is not hyper

sensitive to mismatch between the model spectrum and the actual tube spectrum.

We also develop a system model for the GE LightSpeed CT scanner (General

Electric Medical Systems, Milwaukee, WI) by examining spurious effects for which

CT measurements are typically corrected. The system model accounts for first or-

der polyenergetic effects, X-ray tube off-focal radiation and detector afterglow. A

penalized likelihood algorithm based on the system model gives promising noise per-

formance results, when compared to FBP. Image reconstruction of a large asymmetric

object produces a shading artifact, that may be due to a mismatch in the measure-

ments forward model. Eliminating the shading artifact and improving the forward

model are important future work topics.

The performance of the proposed algorithms are examined with simulation and

real data. The polyenergetic statistical algorithm is effective in suppressing beam

hardening artifacts. Its performance is shown to be comparable to a statistical al-

gorithm based on an idealized oracle segmentation. The algorithm with an object

model for mineral solutions is promising for quantitative applications, and is shown

to estimate mineral solution density values within 1%.


