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I. INTRODUCTION

In this paper we provide su�cient conditions for

convergence of a general class of alternating estimation-

maximization (EM) type continuous-parameter estima-

tion algorithmswith respect to a given norm. This class

includes EM, penalized EM, Peter Green's OSL-EM,

and other approximate EM algorithms. The conver-

gence analysis can be extended to include alternating

coordinate-maximization EM algorithms such as Meng

and Rubin's ECM and Fessler and Hero's SAGE. For il-

lustration, we apply our results to estimation of Poisson

rate parameters in emission tomography and establish

that in the �nal iterations the logarithm of the EM it-

erates converge monotonically in a weighted Euclidean

norm.

Let � = [�

1

; : : : ; �

p

]

T

be a real parameter residing

in an open subset � of the p-dimensional space IR

p

.

Given a general function Q : � � � ! IR and an

initial point �

0

2 �, consider the following recursive

algorithm, called the A-algorithm:

A-algorithm: �

i+1

= argmax

�2�

Q(�; �

i

): (1)

If there are multiple maxima, then �

i+1

can be taken

to be any one of them. Let �

�

2 � be a �xed point of

(1), i.e. �

�

satis�es: �

�

= argmax

�2�

Q(�; �

�

)

The A-algorithm contains a large number of popu-

lar iterative estimation algorithms such as: the maximum-

likelihoodEM algorithm (ML-EM) (e.g. Dempster, Laird,

and Rubin (1977), Shepp and Vardi (1982), Lange and

Carson (1984), Miller and Snyder (1987), the penalized

EM algorithm (e.g. Hebert and Leahy (1989)) , and

EM-type algorithms implemented with E-step or M-

step approximations (e.g., Antoniadis and Hero (1994),

Green (1990), DePierro (1994)).

A general property of the ML-EM algorithm is that

successive iterates monotonically increase the likelihood.

This property guarantees global convergence when the

likelihood function satis�es conditions such as bound-

edness and unimodality (Wu (1983), Csiszar and Tus-

nady (1984)). While increasing the likelihood is an
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attractive property, it does not guarantee monotone

convergence of the parameter estimates in norm, i.e.

k�

i

� �

�

k may not decrease monotonically to zero as i

tends to in�nity. When global convergence to a given

�xed point cannot be established using the methods of

Wu, investigation of regions of monotone convergence

can often yield a radius of convergence for the algo-

rithm. The radius of convergence provides useful in-

formation about the proper choice of initialization �

0

for the algorithm. Furthermore, the property of mono-

tone convergence provides a practical veri�cation tool

for testing for errors in algorithm implementation. This

tool can be used as a complement to the popular proce-

dure of checking an implementation for the increasing-

likelihood property.

II. CONVERGENCE THEOREM

A region of monotone convergence relative to the

vector norm k � k of the A-algorithm (1) is de�ned as

any open ball B(�

�

; �) = f� : k� � �

�

k < �g centered

at � = �

�

with radius � > 0 such that if the initial

point �

0

is in this region then k�

i

� �

�

k, i = 1; 2; : : :,

converges monotonically to zero. Note that as de�ned,

the shape in IR

p

of the region of monotone conver-

gence depends on the norm used. For the Euclidean

norm kuk

2

= u

T

u the region of monotone convergence

is a spherically shaped region in �. For a general posi-

tive de�nite matrix B the induced norm kuk

2

= u

T

Bu

makes this region an ellipsoid in �. Since all norms

are equivalent for the case of a �nite dimensional pa-

rameter space, monotone convergence in a given norm

implies convergence, however possibly non-monotone,

in any other norm.

De�ne the p � p matrices obtained by averaging

r

20

Q(u; u) and r

11

Q(u; u) over the line segments u 2

�!

��

�

and u 2

�!

��

�

:

(2)

A

1

(�; �) = �

Z

1

0

r

20

Q(t� + (1� t)�

�

; t� + (1� t)�

�

)dt

A

2

(�; �) =

Z

1

0

r

11

Q(t� + (1� t)�

�

; t� + (1 � t)�

�

)dt:



Also, de�ne the following set:

S(�) = f� 2 � : Q(�; �) � Q(�; �)g:

By the construction of the A-algorithm (1), we have

�

i+1

2 S(�

i

).

De�nition 1 For a given vector norm k�k and induced

matrix norm jjj � jjj de�ne R

+

� � as the largest open

ball B(�

�

; �) = f� : k� � �

�

k < �g such that for each

� 2 B(�

�

; �):

A

1

(�; �) > 0; for all � 2 S(�) (3)

and for some 0 � � < 1

�

�

�

�

�

�

�

�

�

�

A

1

(�; �)

�

�1

�A

2

(�; �)

�

�

�

�

�

�

�

�

�

� �; for all � 2 S(�). (4)

The following convergence theorem establishes that,

if R

+

is not empty, the region in De�nition 1 is a re-

gion of monotone convergence in the norm k � k for an

algorithm of the form (1). It can be shown that R

+

is

non-empty for su�ciently regular problems (Hero and

Fessler (1995)).

Theorem 1 Let �

�

2 � be a �xed point of the A al-

gorithm (1), where �

i+1

= argmax

�2�

Q(�; �

i

), i =

0; 1; : : :. Assume: i) for all � 2 �, the maximum

max

�

Q(�; �) is achieved on the interior of the set �;

ii) Q(�; �) is twice continuously di�erentiable in � 2 �

and � 2 �, and iii) the A-algorithm (1) is initialized

at a point �

0

2 R

+

for a norm k � k.

1. The iterates �

i

; i = 0; 1; : : : all lie in R

+

,

2. the successive di�erences ��

i

= �

i

� �

�

of the A

algorithm obey the recursion:

��

i+1

= [A

1

(�

i+1

; �

i

)]

�1

A

2

(�

i+1

; �

i

) ���

i

: (5)

3. the norm k��

i

k converges monotonically to zero

with at least linear rate, and

4. ��

i

asymptotically converges to zero with root

convergence factor

�

�

�

�r

20

Q(�

�

; �

�

)

�

�1

r

11

Q(�

�

; �

�

)

�

< 1:

If the iterates are initialized within a region R

+

, or

for that matter if any iterate �

i

lies inR

+

, then all sub-

sequent iterates will also lie within R

+

. Within that

region, Theorem 1 provides a functional relationship

(5) between successive iterates, which in turn ensures

that the iterates converge monotonically in norm to �

�

with an asymptotic linear rate governed by the spectral

radius of a matrix depending on the partial derivatives

of Q. When specialized to the EM algorithm, the root

convergence factor is equivalent to the expression ob-

tained by Dempster, Laird and Rubin (1977) and used

by Meng and Rubin (1991) to estimate the asymptotic

estimator covariance matrix.

III. APPLICATION

In the ECT problem the objective is to estimate the

intensity vector � = [�

1

; : : : ; �

p

]

T

, �

b

� 0, governing the

number of gamma-ray emissions N = [N

1

; : : : ;N

p

]

T

over an imaging volume of p pixels. The estimate of �

must be based on the projection dataY = [Y

1

; : : : ;Y

m

]

T

.

The elements N

b

of N are independent Poisson dis-

tributed with rate parameters �

b

, and the elements Y

d

of Y are independent Poisson distributed with rate pa-

rameters �

d

(�) =

P

p

b=1

P

djb

�

b

, where P

djb

is the transi-

tion probability corresponding to emissions from pixel

b being detected at detector module d.

The Shepp-Vardi implementation of the ML-EM al-

gorithm for estimating the intensity � has the form:

�

i+1

b

=

�

i

b

P

b

m

X

d=1

Y

d

P

djb

�

d

(�

i

)

; b = 1; : : : ; p; (6)

where P

b

def

=

P

p

b=1

P

djb

is positive under the assump-

tion that P

djb

has full column rank.

Using Theorem 1 we can obtain the following result:

Theorem 2 Assume that the unpenalized ECT EM al-

gorithm speci�ed by (6) converges to the strictly posi-

tive limit �

�

. Then, for some su�ciently large positive

integer M :

k ln �

i+1

� ln �

�

k � �k ln �

i

� ln �

�

k; i � M;

where � = �([B+C]

�1

C), B = B(�

�

), C = C(�

�

), the

norm k � k is de�ned as:

kuk

2

def

=

p

X

b=1

P

b

�

�

b

u

2

b

; (7)

and P

b

def

=

P

m

d=1

P

djb

.

Lange and Carson (1984) showed that the ECT EM

algorithm converges to the maximum likelihood esti-

mate. As long as �

�

is strictly positive, the theorem

asserts that in the �nal iterations of the algorithm the

logarithmic di�erences ln �

i

� ln �

�

converge monoton-

ically to zero relative to the norm (7).
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