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Several important estimation problems, in particular the quantitation of blood vessel 
position and radius from projections, involve tracking of dynamics shift band shape param
eters. Most of the published algorithms for blood vessel quantitation consist of two steps: 
1) obtaining preliminary estimates of the position and radius parameters, and 2) smoothing 
those estimates using and ad hoc method such as local averaging. Bresler [1] has recently 
presented a minimum mean-square error algorithm for nonlinear estimation of these pa
rameters, but his formulation assumes a known (parametric) Gauss- Markov stochastic 
state-space model for the dynamic evolution. The parameters of his Gauss-Markov model 
are unknown and unmotivated for biological phenomena such as the variations in radius 
along a stenotic (narrowed) section of a blood vessel. In this paper, we present an alter
native algorithm for tracking shift and shape parameters that is based on non-parametric 
cubic-spline smoothing [2]. Rather than requiring a known Gauss-Markov model, our al
gorithm assumes only that the shift and shape functions be smoothly varying in a sense 
defined below. 

The paper discusses the physical motivation for our (global) optimality criterion, de
rives an efficient algorithm for computing the optimal estimates, and demonstrates the 
performance on angiographic data. The performance of the algorithm is demonstrated on 
simulated angiogram data below. 
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1 Introduction 

Several important estimation problems, in particular the quantization of blood vessel position and ra

dius from projections, involve tracking of dynamic shift and shape parameters. Bresler [1] has recently 

presented an algorithm for nonlinear estimation of these parameters from a fixed set of measurements. 

His formulation assumes a known (parametric) discrete-time Gauss-Markov stochastic state-space model 

for the dynamic evolution of the shift and shape parameters, and he derives a minimum mean-sq ua re 

error estimator. This parametric approach is certainly appropriate for dynamic systems governed by 

differential equations. However, many biological phenomena, such as the variations in radius along a. 

stenotic (narrowed) section of a blood vessel, are not well modeled by Gauss-Markov processes. In this 

paper, we present an alternative algorithm for tracking shift and shape parameters that is based on 

non-parametric cubic-spline smoothing [2, 3]. Rather than requiring a known Gauss-Markov model, Ollr 

algorithm requires only that the shift and shape functions be smoothly varying in a sense defined below. 
The performance of the algorithm is demonstrated on simulated angiogram data. 

2 The Problem 

Consider Fig. 1; each row of this (N x M) image is a sampled semi-ellipse function of unknown radius and 

of unknown shift (position). Our goal is to estimate the shift and shape functions from such an image. 

·This work was supported in part by National Institute of Health contract NOI-HV-38045 and grant ROI-HL-390.t5. 
National Science Foundation contract ECS-8213959, and General Electric contract 22-84. 
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Let X(z) = [Xt(z) X2(Z)1', where Xt(z) and X2(Z) denote the shift and shape parameters for row z, where 

z=l, ... ,N. 
We use the following model for images of this type: 

yet; z) = set - Xt(z); X2(Z» + vet; z), (1) 

where t = tt, ... , tM, and set; X2) is a known (nonlinear) function of t and X2, and vet; z) is additive white 
Gaussian noise (AWGN). This measurement model can be rewritten 

Y(z) = S(X(z» + V(z), 

where SeX) = [S(tl - Xl; X2), ••• , S(tM - Xl; X2)]', Y(z) = [y(tl; z), ... , y(tM; z)]" and V(z) is similarly 

defined. 
One trivial approach to estimating X is to use the Maximum Likelihood estimator: 

XML(Z) = argmin I\Y(z) - S(X)1I2. 
X 

However, this approach is suboptimal since it ignores the a priori knowledge that the shift and shape 

parameters, Xt(z) and X2(Z), are smooth functions of z. Shmueli et. al. [4] first attempted to quantify 

smoothness with a Gauss-Markov model: X(z + 1) = AzX(z) + Bzv(z). We propose instead to use the 

following estimator: 

N N N 
X = argmin E I\Y(z) - S(X(z»1I2 + al I £12(z) dz + a2 ( X2 2(Z) dz. 

X z=1 11 11 
(2) 

This formulation is generalization of the criterion used for non-parametric smoothing with cubic splines. 

The solution is a compromise between fit-to-the-data and the roughness (as measured by the integrated 

squared second derivate) of the estimated parameters. The tradeoff is controlled by Q = [ai, a2]; a: ca 11 

be estimated from the data using cross validation [3], so that the relative smoothness of the shift a Ild 

shape functions is not predetermined, in contrast to parametric approaches. This tradeoff is similar to 

the regularization methods being applied to machine vision [5]. 

Equation (2) is very similar to the formulation of spline smoothing [2], except t~at the signal S is a 

nonlinear function of X. In the next section we present an iterative algorithm for computing X. 

3 Computation 

To compute the solution to (2), we make the same approximation used in the derivation of the extended 
Kalman filter (EKF) [6]: 

SeX) ~ SeX) + H(X) . (X - X), 

where X is an initial estimate for X and H(X) is the (Mx2) Jacobian of SeX). With this approximation. 

we can rewrite (2) as 
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where C(z) = Y(z) - S(X(z)) + H(X(z))X(z). The solution to (4) is now feasible since it is linear in J:r. 
We can simplify the solution by noting (due to the approximation (3» that: C(z) :::::: H(X(z»X(z) + 

V(z). Let D(z) = (H(X(z))'H(X(z)))-lH(X(z))'C(z), then D(z):::::: X(z)+N(z), where N(z) is AWGN 

with covariance ~(z) = (H(X(z))'H(X(z)))-l. This results in the final form for the estimator: 

(5) 

This minimization is performed using a vector measurement generalization [7] of the scalar spline smooth

ing algorithm [8]. 
Since (3) is most accurate for X very close to X, we evaluate (5) iteratively, using the estimate ~t. of 

one iteration as the initial estimate X of the next iteration. 

4 Frequency space algorithm 

As explained in detail by Bresler [1], the procedure described above is not robust to significant errors in 

the initial estimate X, for the same reasons that an EKF can "lose track" and diverge. This is due to the 

fact that the support of the function s is typically a small fraction of the window [tl' tM], as described 

in [9). Bresler proposed using the discrete Fourier transform (DFT) of the measured data, and showed 

that the transformed data is more amenable to linearization [1,9]. This approach can be directly applied 

to make our algorithm more robust to poor initial estimates. 

Let 

and similarly define Su and iiu' Then 

where 

Su(X) ~ s. (~ U; X2) exp (-j~ UXI) , 

and Sa(w; $2) is the continuous Fourier trasnform of set; $2). 
If we let Y/ ( z) = [iil ( z), ... , ii / ( z)]" then we can apply the algorithm of the previous section to Y/ ( z ), 

for increasing values f (more and more frequency components), to get estimates of increasing accuracy. 
In practice, only the first few frequency components are needed. 

5 Experimental Results 

Fig. 1 is a simulated noisy X-ray projection of a cylindrical blood vessel, with N = M = 64. For this 
example, 

set; r) = 2r.j1- (t/r)2 l{ltl<r}' 
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Pseudo random AWGN with standard deviation 4.0 was added to the measurements; the resulting signal 

to noise ratio (height of projection / noise standard deviation) varied from 2.7 to 4. 

Fig. 2 compares the real and estimated shift fu nctions, using only 4 of the 64 frequency components . 

Despite the severe background noise, the errors are all less than the dimension of a pixel. 

Figure 1: Noisy measurement image. 
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Figure 2: True (solid) vs. estimated (dashed) shift parameter. 
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