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Sub 2 mm resolution fMRI at 3T using randomly undersampled 3D-EPI with locally low-rank + temporally sparse reconstruction
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Motivation: Many fMRI applications require sub 2 mm resolution, but most existing methods lose functional sensitivity at sub 2 mm resolution due to thermal noise, especially at 3T.

Goal(s): To investigate and develop acquisition and reconstruction methods for high resolution BOLD fMRI at 3T.

Approach: 3D-EPI with randomized sampling was used for acquisition. Images were reconstructed via locally low-rank plus sparse decomposition. A finger tapping task is used for testing.

Results: Motor activation was detected at 1.8 mm resolution, with our protocol producing activation maps with higher specificity compared to standard reconstruction methods.

Impact: Randomized 3D-EPI and locally low-rank plus temporally sparse decomposition are novel approaches for high resolution fMRI. Other fMRI scientists can use our vendor-agnostic, open-source

implementation as a template, adapting it to suit their specific high resolution fMRI needs.

Introduction
Typical 3T fMRI protocols use SMS-EPI with 2.4 mm spatial resolution and 0.8 s volume TR [1][2]. This is insufficient for higher resolution applications such as brainstem, hippocampal, or layer-specific fMRI [3][4]

[5]. Increasing spatial resolution means lower SNR and longer encoding times, and to combat that, low rank spatial and/or temporal modeling has been proposed, both as a denoising step and as image

reconstruction regularization. However, how to best implement such methods to detect functional signal while achieving reduced noise and aliasing artifacts is an open research question. Here we report an

open-source, vendor-neutral implementation of a randomized 3D-EPI acquisition and locally low-rank plus temporally sparse (LLR + S) reconstruction pipeline. We demonstrate our protocol’s feasibility through

an fMRI experiment at 1.8 mm resolution.

Methods
Compressed sensing approaches to MRI [6] says that randomly sampling k-space results in incoherent aliasing artifacts that are easier to remove, so we investigated 3D-EPI with random undersampling along ky

and kz. We generated sampling patterns independently for each time point, which should improve the spatial and temporal incoherence of aliases. Given that SNR generally increases towards the center of k-

space, we sampled each location with a probability depending on its distance from the origin based on a zero-mean Gaussian distribution, while also enforcing a fully sampled central region. For every echo

train, we fixed both the echo train length and the number of echoes before crossing ky = 0 to achieve a consistent TE of 30 ms for T2* contrast, and constrained the gaps between consecutive echoes to prevent

the need for large gradient blips.

For reconstruction, we try to minimize:

where:

 denotes the underlying image matrix to be reconstructed.  denotes number of spatial locations.

 denotes the LLR and S component matrices.

 denotes the measured k-space vector.  denotes number of receiver coils.  denotes acceleration factor.

 denotes MRI forward operator, mapping the image to k-space.

 denotes the th patch extraction operator.  denotes number of patches.

 denotes the unitary temporal FT operator.

 denote regularization parameters.

Figure 3 illustrates the iterative algorithm for LLR + S image reconstruction. For patch extraction, overlapping cubic patches with fixed size and stride were used. Patch sizes were chosen such that

 for singular value decomposition efficiency. Strides varied from 1 to 4, trading between reconstruction quality and speed.

For experimental validation, we used a finger tapping task with alternating 20 second blocks of tap/rest for 7 cycles. T2*-weighted images were acquired using 3D-EPI with the following parameters: FOV =

 (in cm), resolution = 1.8 mm , acquisition array = , volume TR = 0.9 s, acceleration factors = [R , R ] = [2, 2.86].

Results & Discussion
Figure 4 shows that LLR + S reconstruction detects motor activation with similar sensitivity as SENSE reconstruction with -regularization in the spatial wavelet domain. LLR + S images show fewer false

activations outside the brain, which we speculate is due to removal of temporally incoherent aliasing artifacts during promotion of low-rankness. Residual aliasing artifacts in the S/I (z) direction are observed, as

expected from our sampling pattern design.

Conclusion
Our randomized 3D-EPI and LLR + S protocol produced feasible activation maps at 1.8 mm. Randomized ky and kz undersampling results in spatially and temporally incoherent aliases, which are removed along

with noise by LLR + S reconstruction. Other fMRI scientists can use our vendor-agnostic, open-source implementation as a template, adapting it to suit their specific high resolution fMRI needs to study new

regions such as the brainstem, hippocampus, and specific cortical layers.

Several future research directions follow our work. First, a tailored RF pulse can be used with 3D-EPI to image an even smaller, non-cuboid volume. Second, sampling trajectory can be further improved, such as

sampling multiple kz locations in one shot to increase incoherence of aliases. Third, theory for tuning LLR reconstruction parameters for specific imaging applications have yet to be established and should be

valuable given the recent popularity of LLR models.
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Figures

Randomized ky and kz sampling results in spatially incoherent aliasing artifacts along y and z. Top row: sampling masks (every point represents a fully sampled kx line). Bottom row: corresponding point spread

functions in the image domain, where height and color represent intensity. Aliasing along z is still quite coherent as kz locations are still being sampled in an all-or-none fashion. Changing sampling along time

results in temporally incoherent aliasing artifacts.

Snippet of pulse sequence consisting of 2 TRs. Each excitation acquires a kx-ky plane at one kz location. Number of excitations per volume corresponds to number of kz locations to be sampled. Fat saturation is

applied every TR. Echo spacing, defined as the time interval between consecutive echoes, is fixed for effective pulse sequence storage, which may result in complicated off-resonance artifacts.

Iterative algorithm for LLR + S image reconstruction. Bottom: sequence of operations for the th iteration. First, singular value soft-thresholding (SVST) is applied to patches  then recombined

to get . Here, overlapping patches are used to avoid blocky artifacts. Mean denotes voxel-wise averaging across all contributing patches. Second, soft-thresholding (ST) is applied in the temporal Fourier

Transform of  to get . Third, data consistency is enforced to get .

(c) LLR + S reconstruction detects motor activation at 1.8 mm resolution with similar sensitivity to (b) -regularized SENSE reconstruction with significantly fewer false detections outside the brain. (a) zero-filled

root-sum-of-squares (RSOS) combined images show aliasing artifacts that are removed by both reconstruction methods, although motor activation can still be detected at lower significance. Activation (t-score)

maps are thresholded at 1, then overlaid onto the 1st frame of T2*-weighted images.
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