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Subspaces for data modeling

Subspaces are used for modeling
low-dimensional structure in many
signals and datasets:

Examples:

lines, planes containing origin
B bandlimited signals

images upsampled with a
fixed interpolation kernel

images with common support
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Subspaces for data modeling

Let X € R?*¢ be measured data.
One can estimate the best-fitting
subspace with optimization:

min || X — UGl

where U describes a basis for a
rank-k subspace of R¢ and
G < R***are weights of projection

onto that subspace.
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Dynamic subspaces for data modeling

Now let X; € R¥** be measured datafori=1,...,7T.
We are interested in estimating closest subspaces to each X; while also
constraining those subspaces to be smoothly related in some sense.

T
i X, — U;G;||% s.t. U; € V¥** are smoothly related
min ; [ I% €V y

where V?** denotes the Stiefel manifold of d x k matrices with
orthonormal columns.
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Dynamic subspaces for data modeling

Now let X; € R¥** be measured datafori=1,...,7T.
We are interested in estimating closest subspaces to each X; while also
constraining those subspaces to be smoothly related in some sense.

T
nin ; | X; — U;Gi||% s.t. U; € V¥ are smoothly related
This is useful in applications such as:
Wireless communications, where signal channels and interference
signals (modeled as lying in subspaces) change over time
Direction-of-arrival estimation in radar and sonar sensing
Reconstruction of dynamic medical images
Graph structure that changes over time (e.g. social networks)
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Dynamic subspaces for data modeling
X, € R™* are measured data for
i=1,...,T.

Optimize:

T
g}llgz 1X; — UiGill%

i=1

s.t. U; € V¥** lie on a (piecewise)
geodesic of the Stiefel manifold.
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Stiefel Geodesic Model

Optimize:
T
&171(1;11 ; X — UGl ¥
s.t. U; € V¥** lie on a (piecewise) geodesic of the Stiefel manifold:

U, =U(t;) = Hcos(Ot;) + Zsin(Bt,) ,

H < V¥ is a basis for the “starting” endpoint of the geodesic,

Z € V¥*k is a basis for the “ending” endpoint projected onto the
orthogonal complement of H,

O is a diagonal matrix with principal angles 6, € [0, 7/2],
t; € [0, 1] represents a 1d parameterization of the geodesic.
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Stiefel Geodesic Model

U, =U(t;) = Hcos(Ot;) + Zsin(Ot;) ,

In this picture, H = Hy,and Z = orth {(I - HH")H,}.
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Optimization Formulation

X; € R™* are measured; Assume we are givent;, i =1,...,7T.

mmZHX UG||F
vG =1
T

<:>m1nZ||X UU' X,||% sinceU,U; =1
& min Z U X% dropping constant terms

. . ) . ) T ) 2 . .
& min ZH (Hcos(®t;) + Zsin(©t;))' X;||% geodesic constraint
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Optimization formulation
Letting Q = [H Z}:

T
min  — || (Hcos(®) + Zsin(©t:))" X}

H,Z.® pa
cos(Ot;) !
(Q [sin(@tﬁ]) Xi

2
T

< min — E
Qevdx2k@
’ i=1

F
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Algorithm

2

-
sin(®t;)
F
Block MM [Kwon et al., 2023]:

Fix ©, form a linear majorizer and minimize over Q using a
Procrustes step.

Fix Q, then the objective is separable in each entry of ©, denoted 6,
j =1,..., k. Majorize for each 6; and iteratively minimize the
majorizer.
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Algorithm: Q@ update
Following [Breloy et al., 2021], we form a linear majorizer for our loss at
Q™ and minimize it with a Stiefel constraint. The update is then given by

T
QU —argmin[|Q - 3~ XX QU] R =WV, (1)
Qevdx% i=1
where
r 2 cos(Ot,;)
" | sin(@t)

W=V istheSVDof Y. X, X, Q"T,T;.
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Algorithm: © update
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FIG — An example of four cosines (top two rows, blue) that sum to form the (nonconvex)
loss for a single 6, (bottom row, blue). For each cosine function we construct a
quadratic majorizer; they sum to a quadratic majorizer for the loss (orange) at a point

05") (blue dot). The loss is often well-behaved on 0; € [—7/2, /2] (here, quasi-convex).
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Algorithm convergence

As an MM algorithm, we have monotonic descent.

In [Li et al., 2023], we proved convergence to a stationary point for a
slight variant of our algorithm, where proximal terms are included in
majorizers.

Moreover, if both proximal parameters Ag, Ae > 0, then the iteration
complexity is O(¢72), where ¢ is the distance to the stationary point
and 5(-) is big-O notation ignoring logarithmic factors.
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Synthetic Experiments

Average Geodesic Error
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FIG — The average geodesic error over 15 trials for varying rank k£ and number of sample

points T'. One vector was sampled at each of T points on a rank-k geodesic;
d = 40,¢ = 1, with AWGN o = 10-°. We see a phase transition at 7' = 2k; with at least

this many samples, we recover the true subspace with low error.
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Synthetic Experiments

FIG — Average geodesic error over 100 trials, with standard error bars, for varying
number of samples (¢) collected at each time point for a fixed number of time points
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(T = 11) on a planted rank-4 geodesic with AWGN o = 102.
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Oscillating Steady-State Imaging

We have an “inverse problem" version of our problem formulation and
algorithm:

We observe y; = A(X;) where the linear operator A : R¥*¢ — R™,

T
' A
i 2. 1: 1X; — UU X;||% + S llyi = A(X)|3
1=

s.t. U; = H cos(0Ot;) +Z sin(Ot;)
We may now apply our approach to functional MRI, where scanner drift

and patient breathing affects the images in a smooth time-varying way.
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Oscillating Steady-State Imaging

Reference

Nearest Neighbors

NRMSE: 19.05% NRMSE: 33.53% NRMSE: 27.26% NRMSE: 18.92% NRMSE: 22.25%

Geodesic (Ours)

NRMSE: 15.47% NRMSE: 16.23%  NRMSE: 16.96% NRMSE: 13.60% NRMSE: 14.96%

FIG — fMRI reconstructlon results, where each frame was masked by a 50% sampled
k-space mask. Our method outperforms nearest-neighbors reconstruction, which is
commonly used in dynamic image reconstruction.
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Dynamic Communities in Graphs

Spectral methods are commonly
used for identifying communities
in graphs, but many graphs are
dynamic with snapshots over
time.

This data captures an interaction
network in an elementary school
segmented into 10-minute
intervals.
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FIG — Network of contacts aggregated over the first
day showing those who interacted at least 2 minutes.
Link width corresponds to duration of contact, colors
correspond to classes, and teachers are shown in grey.
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Dynamic Communities in Graphs
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FIG — Evaluation of Adjusted Mutual Information (AMI) clustering performance on a two-day elementary
school face-to-face interaction network. Benchmarks are Label Smoothing (LS), Smoothed Louvain (SL),
and Graph Smoothing (SG). The three geodesic extensions of static clustering methods (Normalized
Spectral Clustering, Spectral Modularity Maximization, Bethe Hessian Clustering) uniformly outperform

the benchmarks. See [Hume and Balzano, 2024] for references and more results.
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Conclusion

We modeled the dynamic subspace estimation problem as geodesic
learning, and formulated a nonconvex Riemannian optimization
problem

We developed a Riemannian Block-MM algorithm to solve it and
proved convergence to a stationary point

We demonstrated the algorithm on several applications
Future:
Learn a piecewise geodesic from data
Simultaneously learn the geodesic parameter ¢;
Understand the initialization (PCA on first/last half of the data works)
Understand when we will find a global minimizer
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Thank you!
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