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Subspaces for data modeling
Subspaces are used for modeling
low-dimensional structure inmany
signals and datasets:

Examples:
lines, planes containing origin
B bandlimited signals
images upsampled with a
fixed interpolation kernel
images with common support
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Subspaces for data modeling
Let X ∈ Rd×` be measured data.
One can estimate the best-fitting
subspace with optimization:

min
U ,G
‖X −UG‖2F

where U describes a basis for a
rank-k subspace of Rd and
G ∈ Rk×` areweights of projection
onto that subspace.
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Dynamic subspaces for data modeling
Now let Xi ∈ Rd×` be measured data for i = 1, . . . , T .
We are interested in estimating closest subspaces to each Xi while also
constraining those subspaces to be smoothly related in some sense.

min
Ui,Gi

T∑
i=1

‖Xi −UiGi‖2F s.t. Ui ∈ Vd×k are smoothly related

where Vd×k denotes the Stiefel manifold of d× k matrices with
orthonormal columns.

This is useful in applications such as:
Wireless communications, where signal channels and interference
signals (modeled as lying in subspaces) change over time
Direction-of-arrival estimation in radar and sonar sensing
Reconstruction of dynamic medical images
Graph structure that changes over time (e.g. social networks)
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Dynamic subspaces for data modeling
Xi ∈ Rd×` are measured data for
i = 1, . . . , T .

Optimize:

min
Ui,Gi

T∑
i=1

‖Xi −UiGi‖2F

s.t. Ui ∈ Vd×k lie on a (piecewise)
geodesic of the Stiefel manifold.
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Stiefel Geodesic Model
Optimize:

min
Ui,Gi

T∑
i=1

‖Xi −UiGi‖2F

s.t. Ui ∈ Vd×k lie on a (piecewise) geodesic of the Stiefel manifold:

Ui = U(ti) = Hcos(Θti) +Zsin(Θti) ,

H ∈ Vd×k is a basis for the “starting” endpoint of the geodesic,
Z ∈ Vd×k is a basis for the “ending” endpoint projected onto the
orthogonal complement of H ,
Θ is a diagonal matrix with principal angles θj ∈ [0, π/2],
ti ∈ [0, 1] represents a 1d parameterization of the geodesic.
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Stiefel Geodesic Model
Ui = U(ti) = Hcos(Θti) +Zsin(Θti) ,

In this picture, H = H1, and Z = orth
{
(I −HH>)H2

}
.
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Optimization Formulation
Xi ∈ Rd×` are measured; Assume we are given ti, i = 1, . . . , T .

min
Ui,Gi

T∑
i=1

‖Xi −UiGi‖2F

⇔min
Ui

T∑
i=1

‖Xi −UiU
>
i Xi‖2F since U>i Ui = I

⇔min
Ui

−
T∑
i=1

‖U>i Xi‖2F dropping constant terms

⇔ min
H,Z,Θ

−
T∑
i=1

‖ (Hcos(Θti) +Zsin(Θti))>Xi‖2F geodesic constraint
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Optimization formulation
Letting Q =

[
H Z

]
:

min
H,Z,Θ

−
T∑
i=1

‖ (Hcos(Θti) +Zsin(Θti))>Xi‖2F

⇔ min
Q∈Vd×2k,Θ

−
T∑
i=1

∥∥∥∥∥∥
(
Q

[
cos(Θti)
sin(Θti)

])>
Xi

∥∥∥∥∥∥
2

F
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Algorithm

min
Q,Θ

−
T∑
i=1

∥∥∥∥∥∥
(
Q

[
cos(Θti)
sin(Θti)

])>
Xi

∥∥∥∥∥∥
2

F

Block MM [Kwon et al., 2023]:
Fix Θ, form a linear majorizer and minimize over Q using a
Procrustes step.
Fix Q, then the objective is separable in each entry of Θ, denoted θj ,
j = 1, . . . , k. Majorize for each θj and iteratively minimize the
majorizer.
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Algorithm: Q update
Following [Breloy et al., 2021], we form a linear majorizer for our loss at
Q(n) and minimize it with a Stiefel constraint. The update is then given by

Q(n+1) = argmin
Q∈Vd×2k

‖Q−
T∑
i=1

XiX
>
i Q

(n)ΓiΓ
>
i ‖2F = WV >, (1)

where

Γi
4
=

[
cos(Θti)
sin(Θti)

]
WΣV > is the SVD of

∑T
i=1XiX

>
i Q

(n)ΓiΓ
>
i .
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Algorithm: Θ update
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FIG – An example of four cosines (top two rows, blue) that sum to form the (nonconvex)
loss for a single θj (bottom row, blue). For each cosine function we construct a
quadratic majorizer; they sum to a quadratic majorizer for the loss (orange) at a point
θ
(n)
j (blue dot). The loss is often well-behaved on θj ∈ [−π/2, π/2] (here, quasi-convex).
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Algorithm convergence

As an MM algorithm, we have monotonic descent.
In [Li et al., 2023], we proved convergence to a stationary point for a
slight variant of our algorithm, where proximal terms are included in
majorizers.
Moreover, if both proximal parameters λQ, λΘ > 0, then the iteration
complexity is Õ(ε−2), where ε is the distance to the stationary point
and Õ(·) is big-O notation ignoring logarithmic factors.
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Synthetic Experiments
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FIG – The average geodesic error over 15 trials for varying rank k and number of sample
points T . One vector was sampled at each of T points on a rank-k geodesic;
d = 40, ` = 1, with AWGN σ = 10-5. We see a phase transition at T = 2k; with at least
this many samples, we recover the true subspace with low error.
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Synthetic Experiments

100 101 102

Samples per Point (`)

10−2

10−1

A
ve

ra
ge

E
rr

or

` = k

k SVD per point
k proposed

FIG – Average geodesic error over 100 trials, with standard error bars, for varying
number of samples (`) collected at each time point for a fixed number of time points
(T = 11) on a planted rank-4 geodesic with AWGN σ = 10-2.
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Oscillating Steady-State Imaging
We have an “inverse problem" version of our problem formulation and
algorithm:

We observe yi = A(Xi) where the linear operator A : Rd×` → Rm.

min
H,Y ,Θ,Xi

T∑
i=1

‖Xi −UiU
>
i Xi‖2F +

λ

2
‖yi −A(Xi)‖22

s.t. Ui = H cos(Θti)+Z sin(Θti)

We may now apply our approach to functional MRI, where scanner drift
and patient breathing affects the images in a smooth time-varying way.
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Oscillating Steady-State Imaging
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FIG – fMRI reconstruction results, where each frame was masked by a 50% sampled
k-space mask. Our method outperforms nearest-neighbors reconstruction, which is
commonly used in dynamic image reconstruction.
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Dynamic Communities in Graphs
Spectral methods are commonly
used for identifying communities
in graphs, but many graphs are
dynamic with snapshots over
time.

This data captures an interaction
network in an elementary school
segmented into 10-minute
intervals.

group of classes could efficiently mitigate the propagation of a
disease at the school level. Finally, as highlighted by Figures 8 and
10 and by Video S1 of the Supplementary Information, preventive
measures such as shifts of the class schedules could substantially
reduce contacts between classes, which could be particularly
relevant for preventing transmission events from asymptomatic
cases.

Informing mathematical models
The development of mathematical models that aim at

describing the spread of the infection and its prevention and
control is hindered by the lack of information on the contact
patterns between individuals. Epidemiological models of disease
transmissions in structured populations depend heavily on the
knowledge of the amount and duration of contacts between
individuals of different age groups. To reduce this knowledge gap,
we provide the exposure matrix of Tables 2 and 3. In these
matrices, the cells at row A and column B give the average number

and duration of contacts between one individual of category A with
any individual of category B. This may help to refine the young
age groups of the contact matrices proposed by Zagheni [6],
Wallinga [7] and Mossong [8]. Given the important role of
children and young adolescents in the community spread of
respiratory infections, it is important to detail this part of the
matrix. In particular, we remark that most contacts occur within a
given class, and relatively few contacts occur across classes,
effectively limiting the ability for diseases to spread between
different classes.

These results highlight important properties of the contact
patterns between school children that need to be taken into
account when modeling the propagation of diseases and when
evaluating control measures. On the one hand, our results tend to
indicate that assumptions such as the homogeneity of contact
durations, or a homogeneous mixing between classes, may yield
misleading results. On the other hand, Figures 7 and 8 (together
with Video S1 of the Supplementary Information) show that

Figure 9. Network of contacts aggregated over the first day. Edges between individuals having interacted less than 2 minutes have been removed,
thus keeping only the strongest links. The width of links corresponds to the cumulative duration of contacts, and nodes with higher number of edges have
larger size. Colors correspond to classes, teachers are shown in grey. Figure created using the Gephi software, http://www.gephi.org.
doi:10.1371/journal.pone.0023176.g009

Table 5. Comparison of some characteristics of the networks of day 1 and 2.

Day 1 Day 2

Number of individuals 236 238

Average number of contacts of an individual (CV2) 317 (0.22) 338 (0.27)

Average total time in contact of an individual, in minutes (CV2) 172 (0.25) 183 (0.33)

Average number of distinct persons contacted (CV2) 50 (0.14) 46.5 (0.18)

Average cumulated time spent in contact by two persons, in seconds (CV2) 207 (5.4) 236 (4.7)

Average duration of a contact , in seconds(CV2) 32.6 (1.2) 32.6 (1.1)

Average clustering coefficient 0.5 0.56

doi:10.1371/journal.pone.0023176.t005

Face-to-Face Contact Patterns in a Primary School

PLoS ONE | www.plosone.org 10 August 2011 | Volume 6 | Issue 8 | e23176

FIG – Network of contacts aggregated over the first
day showing those who interacted at least 2 minutes.
Link width corresponds to duration of contact, colors
correspond to classes, and teachers are shown in grey.
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Dynamic Communities in Graphs
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FIG – Evaluation of Adjusted Mutual Information (AMI) clustering performance on a two-day elementary
school face-to-face interaction network. Benchmarks are Label Smoothing (LS), Smoothed Louvain (SL),
and Graph Smoothing (SG). The three geodesic extensions of static clustering methods (Normalized
Spectral Clustering, Spectral Modularity Maximization, Bethe Hessian Clustering) uniformly outperform
the benchmarks. See [Hume and Balzano, 2024] for references and more results.
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Conclusion
We modeled the dynamic subspace estimation problem as geodesic
learning, and formulated a nonconvex Riemannian optimization
problem
We developed a Riemannian Block-MM algorithm to solve it and
proved convergence to a stationary point
We demonstrated the algorithm on several applications

Future:
Learn a piecewise geodesic from data
Simultaneously learn the geodesic parameter ti
Understand the initialization (PCA on first/last half of the data works)
Understand when we will find a global minimizer
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Thank you!
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