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Synopsis
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Motivation: Gu et al. [3] showed one can obtain comparable performance as the physics-guided deep learning (PG-DL) networks [4] for CS-MRI reconstruction by using multiple wavelets as the regularizers.

Goal(s): Develop an efficient numerical algorithm for CS-MRI reconstruction with multiple wavelets.

Approach: Study a fast double stochastic proximal method (FDSPM) for compressed sensing MRI (CS-MRI) reconstruction.

Results: Our experiments demonstrate that FDSPM converges in less CPU time than classical CS algorithms for image reconstruction.

Impact: Exploring efficient algorithms for multiple regularizers CS-MRI reconstruction can motivate new efficient network structures that are easy to train.

Introduction
The CS-MRI reconstruction with  coils and  different regularizers can be formulated as the following minimization problem [3]:

where  denotes the forward model defining a mapping from the signal  to the acquired data . , , , and  represent the downsampling mask, the nonuniform FFT, the

sensitivity mapping, and the (e.g., non-orthogonal) wavelet transform, respectively. Here, we focus on .

Methods
Denote by

At th iteration, FDSPM needs to compute

where ,  denotes the Lipschitz constant of , and  a randomly chosen subset of the whole . Define . Then the adjoint of 

is  with . With the definition of , we rewrite (1) as

where  and . Since  is nonsmooth, we solve (3) via its dual formulation which is

where  and  are the convex conjugate functions of  and , respectively. Since  can be much larger than , we use the randomized block proximal gradient method (RBPGM) for (4) that the computation

at each iteration is independent of the number of . By using the the Moreau decomposition property ( ), we can write the primal sequence representation of RBPGM for (4) as

described in Figure 1. The main computation at each iteration of Figure 1 is to apply one time  and its adjoint since we only need to update one .

Results
All experiments are implemented in SigPy [5] and the brain and knee images from [7] are used as our test image. Figures 1-4 show the results and experimental details.

Conclusion
We propose a FDSPM method for CS-MRI reconstruction using multiple wavelet regularizers.The computation at each iteration of FDSPM is independent of the number of coils  and the number of used

wavelets . Gu et al. [3] proposed an unroll network based on the alternating direction method of multipliers (ADMM) [1] to solve (1) by only learning  and stepsizes. Moreover, [3] showed that their

approach yields comparable performance as the PG-DL networks [4] which need to learn millions of parameters.One of the interesting applications of FDSPM is to efficiently train the model proposed in [3] by

unrolling FDSPM instead of ADMM; one may also use FDSPM to accelerate the testing stage of the network proposed in [3].
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Figures

Figure 1. The Randomized block proximal gradient method for (4).

Figure 2. Performance on the brain image with  different wavelets, i.e., 'haar', 'db2', 'db3', and 'db4' with  levels and 'db10', 'sym3', 'sym5', 'sym8', and 'sym9' with  levels. Acquisition: spiral trajectory with

 interleaves  readout points and  coils. Matrix size . FDSPM settings:  and Max_Iter = 6. First row: the cost and PSNR versus the CPU time; Second row: the final reconstructed

images and the ground truth; Third row: the corresponding error maps .

Figure 3. Performance on the knee image. Same setting as Figure 2.

Figure 4. Performance on the brain image with  different wavelets. Acquisition: radial trajectory with  spokes  readout points and  coils. Matrix size . FDSPM settings: 

and Max_Iter = 6.

Figure 5. Performance on the knee image. Same setting as Figure 4.
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