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Target Audience: researchers interested in fast imaging and efficient sampling
Purpose: Efficient sampling trajectories are important for fast imaging. This abstract presents a method named SNOPY (Stochastic 
Optimization of Non-Cartesian Sampling Trajectory). SNOPY proposes a gradient method for optimizing non-Cartesian sampling 
patterns, enabled by an efficient NUFFT’s Jacobian approximation approach [1]. SNOPY has several optimization objectives, including 
reconstructed image quality, compliance to hardware constraints (maximum slew rate and gradient strength), reduction of peripheral 
nerve stimulation (PNS), and parameter-weighted contrast. SNOPY is versatile for different applications, such as optimizing gradient 
waveforms or optimizing rotation angles of radial/spiral trajectories. SNOPY uses several computational strategies to relieve the high 
computation demand brought by this non-convex and large-scale
problem. 
Methods: SNOPY uses stochastic gradient descent (or its variants) to
learn sampling trajectories and other reconstruction parameters. The
method utilizes differentiable programming to compute the gradient
w.r.t. the sampling trajectories. The training loss includes several
terms. The image quality loss calculates the distance between images
reconstructed from undersampled k-space signals and the reference
image. By minimizing this loss, the trajectory (and possibly the
reconstruction method) learns to generate high-quality images.
The optimization also includes physical constraints, including
gradient strength, slew rate, and peripheral nerve stimulation
(PNS) effect. We formulated such constraints as soft penalty
terms. To maintain certain parameter-weighted contrasts,
SNOPY may also include a penalty on the echo time (TE). One
may optimize existing trajectory parameters, such as rotation
angles or (continuous) phase-encoding locations. It is also
possible to directly optimize gradient waveforms. Additionally,
SNOPY allows multiscale optimization to avoid sub-optimal
local minima and further improve optimization results. SNOPY
proposes several techniques for more accurate and efficient
optimization. See [2] for more details.
Results: The first simulation experiment compares the reconstruction quality of
SNOPY-optimized trajectories versus its kooshball initialization. The trajectories
were jointly optimized with reconstruction algorithms (CG-SENSE and MoDL
[3]). As is shown in Fig. 2, SNOPY improved the image quality. The second
experiment optimizes the in-plane rotation angles of a Stack-of-Stars sampling
trajectory. Fig. 3 shows the prospective experiment results. SNOPY-optimized
trajectories led to reduced aliasing artifacts. Experiment 3 optimized waveforms
of a rotational EPI trajectory [4], to reduce the high-PNS effect. Fig. 4 reports the
participants’ subjective rating of the PNS effect, which was dampened by
SNOPY optimization.
Discussion: SNOPY tailors sampling trajectories to specific training datasets
and reconstruction algorithms, which may raise concerns about overfitting. In
experiment 2, the training set used an MP-RAGE sequence, while the
prospective sequence was an RF-spoiled GRE. In a 2D experiment [5], we
found that trajectories learned with one anatomy (brain), contrast (T1w), and
vendor (Siemens) still improved the image quality of other anatomies (like the
knee), contrasts (T2w), and vendors (GE). These empirical studies indicate that
trajectory optimization is robust to a moderate distribution shift between training
and inference.
Conclusion: SNOPY presents a novel yet intuitive approach to optimizing non-Cartesian
sampling trajectories. Various applications and in-vivo experiments showed the applicability
and robustness of SNOPY.
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Figure 4. The subjective score of the PNS 
effect.

Figure 3. Prospective results of the second experiment, optimizing 
the rotation angles of the stack-of-stars (6× acceleration). ‘Best 
empirical’ uses the design from a previous study [6].

Figure 2. Slices of reconstructed images in simulation experiments.

Figure 1. Diagram of SNOPY


