Complex Quasi-Newton Proximal Methods for the Image Reconstruction in Compressed Sensing MRI

Tao Hong1, Jeffrey A. Fessler ${ }^{2}$, and Luis Hernander-Garcia ${ }^{1}$, ${ }^{1}$ Department of Radiology, University of Michigan, Ann Arbor, M,

Synopsis

Keywords: Image Reconstruction, Data Processing, Fast reconstruction algorithm
This work studies a complex quasi-Newton proximal method (CQNPM) for MRI reconstruction using wavelets or total variation (TV) based regularization. Our experiments show that our method is faster than the accelerated proximal method $[1,2]$ in terms of iteration and CPU time.

Introduction
The reconstruction of compressed sensing MRI can be formulated as the following minimization problem:

$$
\begin{equation*}
\min _{x \in \mathbb{C}^{N}} F(x), F(x) \equiv \underset{\text { U. }}{\frac{1}{2}\|A x-y\|_{2}^{2}+\lambda h(x)} \tag{1}
\end{equation*}
$$

where $\mathrm{A} \in \mathbb{C}^{\mathrm{M} \times \mathrm{N}}$ refers to the forward model describing a mapping from the signal x to the acquired data y and $\lambda>0$ is the trade-off parameter. Here, we focus on $\mathrm{h}(\mathrm{x})=\|\mathrm{Tx}\|_{1}$ for a wavelet transform T , or $h(x)=\operatorname{TV}(x)$. Traditionally, one can use the accelerated proximal method (APM) [1,2] to solve (1). Here we propose a complex quasi-Newton proximal method to solve (1) even faster.

Methods

Denote a weighted proximal operator by

$$
\begin{equation*}
\operatorname{Prox}_{\lambda \mathrm{h}}^{\mathrm{W}}(\mathrm{v}) \equiv \underset{\mathrm{x} \in \mathbb{C}^{\mathrm{N}}}{\arg \min _{2}} \frac{1}{2}\|\mathrm{x}-\mathrm{v}\|_{\mathrm{W}}^{2}+\lambda \mathrm{h}(\mathrm{x}) \tag{2}
\end{equation*}
$$

where $\mathrm{W} \in \mathbb{C}^{\mathrm{N} \times \mathrm{N}}$ is a Hermitian positive definite matrix and $\|\mathrm{x}\|_{\mathrm{W}}=\sqrt{\mathrm{x}^{\prime} \mathrm{W}} \mathbf{x}$ denotes the W -weighted Euclidean norm. When $\mathrm{W}=\mathrm{I}$, (2) becomes the well-known proximal operator. At the kth iteration, the CQNPM update is:

$$
\mathrm{x}_{\mathrm{k}+1}=\operatorname{Prox}_{\mathrm{a}_{\mathrm{k}} \lambda \mathrm{~h}}^{\mathrm{B}_{\mathrm{k}}}\left(\mathrm{x}_{\mathrm{k}}-\mathrm{a}_{\mathrm{k}} \mathrm{~B}_{\mathrm{k}}^{-1} \nabla_{\mathrm{x}} \mathrm{f}\left(\mathrm{x}_{\mathrm{k}}\right)\right)
$$

where a_{k} denotes the step-size. Here, the symmetric rank-1 method is used to compute $B_{k}[3]$ so that $B_{k} \in \mathbb{C}^{N \times N} \equiv D_{k} \pm u_{k} u_{k}^{\prime}$ with D_{k} a diagonal matrix and $u_{k} \in \mathbb{C}^{N}$.
For $\mathrm{h}(\overline{\mathrm{x}})=\|\overline{\mathrm{x}}\|_{1}$, one can solve (2) efficiently through the following lemma:
Lemma 1 [4]:
Let $\mathrm{W}=\mathrm{D} \pm \mathrm{uu}^{\prime}$. Then,

$$
\operatorname{Prox}_{\lambda h}^{W}(x)=\operatorname{Prox}_{\lambda h}^{D}\left(x \mp D^{-1} u \alpha^{*}\right)
$$

where $\alpha^{*} \in \mathbb{C}$ is the unique zero of the following nonlinear equation $\mathbb{J}(\alpha): u^{\prime}\left(x-\operatorname{Prox}_{\lambda h}^{D}\left(x \mp D^{-1} u \alpha\right)\right)+\alpha$.
We solve $\mathbb{J}(\alpha)=0$ using "SciPy" library in Python. When $\mathrm{h}(\mathrm{x})=\|\mathrm{Tx}\|_{1}$ where T is an invertible transform, we can rewrite (1) as $\frac{1}{2}\left\|\mathrm{AT}^{-1} \mathrm{x}-\mathrm{y}\right\|_{2}^{2}+\lambda\|\mathrm{x}\|_{1}$ that Lemma 1 is still appliable.
For $\mathrm{h}(\mathrm{x})=\mathrm{TV}(\mathrm{x})$, we transform (2) to the following dual problem that is differentiable

$$
\begin{equation*}
\left(\mathrm{P}_{1}^{*}, \mathrm{Q}_{1}^{*}, \mathrm{P}_{2}^{*}, \mathrm{Q}_{2}^{*}\right)=\arg \min _{\substack{\left(\mathrm{P}_{1}, \mathrm{Q}_{1}\right) \in \square \\\left(\mathrm{P}_{2}, \mathrm{Q}_{2}\right) \in \square}}\left\|\phi\left(\mathrm{P}_{1}, \mathrm{Q}_{1}, \mathrm{P}_{2}, \mathrm{Q}_{2}\right)\right\|_{\tilde{W}}^{2} \tag{4}
\end{equation*}
$$

where $\tilde{W}=\left[\begin{array}{cc}\mathfrak{R}(\mathrm{W}) & -\mathfrak{I}(\mathrm{W}) \\ \mathfrak{I}(\mathrm{W}) & \mathfrak{R}(\mathrm{W}),\end{array}\right], \square$ denotes a set of real matrix-pairs (P, Q) that satisfy

$$
\begin{aligned}
\mathrm{P}_{\mathrm{i}, \mathrm{j}}^{2}+\mathrm{Q}_{\mathrm{i}, \mathrm{j}}^{2} \leq 1 & \text { isotropic TV, } \\
\left|\mathrm{P}_{\mathrm{i}, \mathrm{j}}\right| \leq 1,\left|\mathrm{Q}_{\mathrm{i}, \mathrm{j}}\right| \leq 1 & \text { anisotropic TV, }
\end{aligned}
$$

$\phi\left(\mathrm{P}_{1}, \mathrm{Q}_{1}, \mathrm{P}_{2}, \mathrm{Q}_{2}\right)=\left[\begin{array}{c}\mathfrak{R}(\mathrm{v}) \\ \mathfrak{J}(\mathrm{v})\end{array}\right]-\lambda(\tilde{\mathrm{W}})^{-1}\left[\begin{array}{c}\operatorname{vec}\left(\square\left(\mathrm{P}_{1}, \mathrm{Q}_{1}\right)\right) \\ \operatorname{vec}\left(\square\left(\mathrm{P}_{2}, \mathrm{Q}_{2}\right)\right)\end{array}\right]$, and $\square(\mathrm{P}, \mathrm{Q})_{\mathrm{i}, \mathrm{j}}=\mathrm{P}_{\mathrm{i}, \mathrm{j}}+\mathrm{Q}_{\mathrm{i}, \mathrm{j}}-\mathrm{P}_{\mathrm{i}-1, \mathrm{j}}-\mathrm{Q}_{\mathrm{i}, \mathrm{j}-1}$. Note that $\mathfrak{R}(\cdot)$ (respectively, $\mathfrak{F}(\cdot)$) refers to an operator to take the real (respectively, imaginary) partand $\operatorname{vec}(\cdot)$ denotes the vectorization of a matrix. We compute $(\tilde{W})^{-1}$ in $\phi\left(\mathrm{P}_{1}, \mathrm{Q}_{1}, \mathrm{P}_{2}, \mathrm{Q}_{2}\right)$ efficiently through the Schur complement since $\mathrm{W}=\mathrm{D} \pm \mathrm{uu}{ }^{\prime}$. After solving (4), we reach

$$
\left[\begin{array}{l}
\mathfrak{R}\left(\operatorname{Prox}_{\lambda \mathrm{h}}^{\mathrm{W}}(\mathrm{v})\right) \\
\Im\left(\operatorname{Prox}_{\lambda \mathrm{h}}^{\mathrm{W}}(\mathrm{v})\right)
\end{array}\right]=\phi\left(\mathrm{P}_{1}^{*}, \mathrm{Q}_{1}^{*}, \mathrm{P}_{2}^{*}, \mathrm{Q}_{2}^{*}\right) .
$$

Results

All experiments are implemented in SigPy [5]. We used the data from [6]. Figures 1-4 show the results and experimental details.

Conclusion

For a general matrix W , solving (2) would be as hard as the original problem (1). By using the structure of W , i.e., $\mathrm{W}=\mathrm{D} \pm \mathrm{uu}^{\prime}$, we propose efficient approaches to address (2) when $\mathrm{h}(\mathrm{x})=\|\mathrm{Tx}\|_{1}$ or TV (x). Compared with the computational cost in the proximal operator, i.e., $\mathrm{W}=\mathrm{I}$, the increased computation in (2) is insignificant, as illustrated by our CPU time comparisons.

Acknowledgements

This work is supported in part by R01 NS 112233.

References

[1] A. Beck and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems," SIAM Journal on Imaging Sciences, vol. 2, no. 1, pp. 183-202, 2009.
[2] A. Beck and M. Teboulle, "Fast gradient-based algorithms for constrained totalvariation image denoising and deblurring problems," IEEETransactions on Image Processing, vol. 18, no. 11, pp. 2419-2434, 2009.
[3] J. Nocedal and S. J. Wright, Numerical Optimization.Springer, 2006.
[4] S. Becker, J. Fadili, and P. Ochs, "On quasi-Newtonforward-backward splitting: Proximal calculus and con-vergence," SIAM Journal on Optimization, vol. 29, no. 4, pp. 2445-2481, 2019.
[5] F. Ong and M. Lustig, "Sigpy: a python package forhigh performance iterative reconstruction," in Proceedingsof the ISMRM 27th Annual Meeting, Montreal, Quebec, Canada, vol. 4819, 2019.
[6] S. S. Iyer, F. Ong, X. Cao, C. Liao, D. Luca, J. I.Tamir, and K. Setsompop, "Polynomial preconditionersfor regularized linear inverse problems," arXiv preprintarXiv:2204.10252, 2022.

Figures

Figure 1 Test on a Cardiac dataset with regularizer $\mathrm{h}(\mathrm{x})=\|\mathrm{Tx}\|_{1}$ for an orthonormal wavelet transform T with 5 levels. Acquisition: spiral trajectory with 3 interleaves, 3996 readout points and under-sampling $=8 ; 1.5 \mathrm{~T}$ GE Healthcare scanner with 8 -channel cardiac coil. Matrix size $=320 \times 320$. $\mathrm{TR}=25.8 \mathrm{~ms}$.

Figure 2 Test on a radial brain dataset (12 coils, 96 radial projections) with regularizer $\mathrm{h}(\mathrm{x})=\|\mathrm{Tx}\|_{1}$ an orthonormal wavelet transform T with 5 levels. This data comes from https://github.com/mikgroup/sigpy-mri-tutorial [5]

[^0]

Figure 4 Same data as Figure 2 but with TV regularizer $\mathrm{h}(\mathrm{x})=\mathrm{TV}(\mathrm{x})$.
Proc. Intl. Soc. Mag. Reson. Med. 31 (2023)

[^0]: Figure 3 Same data as Figure 1 but with TV regularizer $\mathrm{h}(\mathrm{x})=\mathrm{TV}(\mathrm{x})$

