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This work studies a complex quasi-Newton proximal method (CQNPM) for MRI reconstruction using wavelets or total variation (TV) based regularization. Our experiments show that our method is faster than the

accelerated proximal method [1,2] in terms of iteration and CPU time.

Introduction
The reconstruction of compressed sensing MRI can be formulated as the following minimization problem:

where  refers to the forward model describing a mapping from the signal  to the acquired data  and  is the trade-o� parameter. Here, we focus on  for a wavelet transform ,

or . Traditionally, one can use the accelerated proximal method (APM) [1,2] to solve (1). Here we propose a complex quasi-Newton proximal method to solve (1) even faster.

Methods
Denote a weighted proximal operator by

where  is a Hermitian positive de�nite matrix and  denotes the -weighted Euclidean norm. When , (2) becomes the well-known proximal operator. At the th iteration, the

CQNPM update is:

where  denotes the step-size. Here, the symmetric rank-  method is used to compute  [3] so that  with  a diagonal matrix and .

For ,one can solve (2) e�ciently through the following lemma:

Lemma 1 [4]:

Let . Then,

where  is the unique zero of the following nonlinear equation 

We solve  using ``SciPy'' library in Python. When  where  is an invertible transform, we can rewrite (1) as  that Lemma 1 is still appliable.

For , we transform (2) to the following dual problem that is di�erentiable

where  denotes a set of real matrix-pairs  that satisfy

 and  Note that  (respectively, ) refers to an operator to take the real (respectively, imaginary)

partand  denotes the vectorization of a matrix. We compute  in  e�ciently through the Schur complement since . After solving (4), we reach

Results
All experiments are implemented in SigPy [5]. We used the data from [6]. Figures 1-4 show the results and experimental details.

Conclusion
For a general matrix , solving (2) would be as hard as the original problem (1). By using the structure of , i.e., , we propose e�cient approaches to address (2) when  or .

Compared with the computational cost in the proximal operator, i.e., , the increased computation in (2) is insigni�cant, as illustrated by our CPU time comparisons.
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Figures

Figure 1 Test on a Cardiac dataset with regularizer  for an orthonormal wavelet transform  with  levels. Acquisition: spiral trajectory with  interleaves,  readout points and under-sampling

;  GE Healthcare scanner with -channel cardiac coil. Matrix size . TR .

Figure 2 Test on a radial brain dataset (  coils,  radial projections) with regularizer  an orthonormal wavelet transform  with  levels. This data comes from

https://github.com/mikgroup/sigpy-mri-tutorial [5].

Figure 3 Same data as Figure 1 but with TV regularizer .
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Figure 4 Same data as Figure 2 but with TV regularizer .h(x) = TV(x)
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