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Synopsis
Optimization techniques can be used to design scan parameters for quantitative imaging. The Cramér-Rao Lower Bound (CRLB) is often used for such

designs, but it only characterizes unbiased estimators. We propose an end-to-end approach to scan design that optimizes scan parameters with a

particular estimator in mind. We compare CRLB-based and end-to-end scan designs in the context of myelin water imaging. The end-to-end scan design

results in lower estimation error in simulation and an in vivo myelin water fraction (MWF) map with improved contrast. The proposed end-to-end scan

design approach is thus a promising alternative to using the CRLB.

Introduction
Quantitative MRI seeks to estimate parameters of interest from one or more MR images. Not all sets of images are created equal, however—some have

more information than others about the parameters to quantify. Choosing scan parameters to maximize one’s ability to accurately and precisely

estimate parameters of interest can be automated using optimization techniques. A common approach to optimizing scan parameters involves

minimizing the Cramér-Rao Lower Bound (CRLB), a lower bound on the variance of unbiased estimates of parameters; the CRLB has been used for

optimizing scan parameters for myelin water imaging , for T1/T2 estimation , in magnetic resonance �ngerprinting , and when estimating parameters

using machine learning . However, the CRLB characterizes only unbiased estimators; therefore, scan parameters optimized using the CRLB may be

suboptimal when paired with a biased estimator (such as machine learning models).

In this work, we introduce an alternative, end-to-end approach to scan parameter optimization that selects scan parameters to minimize the estimation

error of the particular estimator used for parameter estimation. We demonstrate the improved performance gained from an end-to-end scan design for

quantifying myelin water fraction (MWF) using a two-pool model.

Theory and Methods
To optimize a set of scan parameters , one can solve

where  is a cost function to minimize. For a CRLB-based scan design,  computes an average CRLB over a distribution of non-scan parameters (e.g.,

tissue parameters, �eld map, etc.) that one expects to see when scanning. For the proposed end-to-end scan design,  computes the mean square error

(MSE) of parameters estimated from simulated data with non-scan parameters drawn from the same distribution as for the CRLB-based design. Note

that the end-to-end approach is tailored to a particular estimator and minimizes the same metric that is used to evaluate the estimator’s performance.

In this work, we focus on estimating MWF, the proportion of a voxel’s MR signal arising from water within myelin bilayers. To estimate MWF, we used

PERK (parameter estimation via regression with kernels) , a nonlinear estimator that is trained using simulated training data. We then de-biased the

MWF estimates .

We optimized the �ip angles and tip-up phases of two sets of 18 steady-state small-tip fast recovery (STFR)  scans: one using the CRLB (denoted dCRLB)

and another using the end-to-end approach (denoted dE2E). Two of the 18 scans were �xed spoiled gradient recalled echo (SPGR) scans (equivalent to

STFR without the tip-up RF pulse) with a TE o�set (TR/TE1/TE2 = 13.1/4.0/6.3 ms, FA = 5°) used for separate B0 mapping. (We incorporated the B0 map

when estimating MWF using PERK.) The remaining 16 STFR scans had �xed timing parameters (T  /T  /TE = 8.0/2.8/4.0 ms, TR = T  + T ). To compute

the average CRLB for dCRLB and for generating validation and training data for PERK for dE2E, non-scan parameters were drawn from distributions

covering tissue parameter values present in cerebral white matter (WM) and gray matter (GM). We used a two-compartment tissue model: one

compartment representing myelin water, and another representing non-myelin water. We also modeled exchange between the two compartments. We

computed the solution to the Bloch-McConnell equation  using BlochSim.jl  in the Julia programming language . We initialized the two scan designs at

the same starting point and ran the BFGS optimizer  to local convergence. 

We compared the two designs by generating noisy test data by simulating STFR scans using dCRLB and dE2E and with tissue parameters randomly drawn

from wide WM/GM distributions. We also used a digital BrainWeb phantom  with WM and GM tissue parameters �xed to typical values but varying MWF

from top to bottom and varying o�-resonance from left to right. Finally, we scanned a healthy volunteer with the two scan designs (32-channel head coil,

3D 1.1 mm isotropic, matrix size 200 × 200 × 8). Because of the high �ip angles of dCRLB, we increased the timing parameters (of both designs) to T  /T

/TE = 10.6/7.2/5.5 ms to reduce SAR. For each of these experiments, we compared the MWF estimates produced from the two scan designs.

Results
Figure 1 shows the parameters of the optimized scan designs dCRLB and dE2E.

Table 1 compares the root MSE (RMSE), mean absolute bias, and standard deviation of MWF estimates in simulation. dE2E results in better values in all

cases.

Figure 2 shows 2D histograms of bias and standard deviation of MWF estimates resulting from the two designs. While both result in unbiased MWF

estimates on average, dE2E results in lower variation in the estimates.
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Figure 3 shows the BrainWeb MWF estimates. dE2E results in a cleaner image with better contrast between di�erent MWF values.

Figure 4 shows the in vivo MWF estimates. dE2E results in a better-looking MWF map with greater WM/GM contrast.

Discussion and Conclusion
We optimized two sets of scan parameters, one using the CRLB and another using the proposed end-to-end optimization. The two designs resulted in

very di�erent �ip angles, and the experimental results show the superiority of dE2E over dCRLB.

Future areas of research include modifying the end-to-end cost function to minimize a tradeo� between bias and variance, incorporating di�erent types

of scans into the scan design, and evaluating the proposed approach with patient data.
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Figures

Figure 1: Optimized STFR scan parameters for the scan designs dE2E and dCRLB, sorted by increasing tip-down angle. The tip-up phases are comparable

across designs, but the end-to-end design led to much smaller �ip angles, despite the 90° maximum allowed in the optimization. Scans 1 and 2 are the

�xed TE-o�set SPGR scans, and thus are the same between the two designs.
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Table 1: Comparison of scan designs dE2E and dCRLB. Noisy test data was randomly generated from a wide range of tissue parameters covering cerebral

WM and GM values. The true MWF values were uniformly randomly drawn from the range [0.02, 0.31]. dE2E led to better RMSE, mean absolute bias, and

standard deviation of PERK MWF estimates than dCRLB.

Figure 2: Bias and standard deviation of MWF estimates obtained using scan designs dE2E and dCRLB versus true MWF. Both designs are approximately

unbiased on average (after de-biasing the MWF estimates), but dE2E results in almost half the standard deviation. Each point in the histogram

corresponds to a particular set of tissue parameters, randomly drawn from a wide range of tissue parameters covering cerebral WM and GM values.

Figure 3: MWF estimates from a digital phantom simulation including WM- and GM-like tissue parameters. The true MWF varied in WM from 0.1 to 0.2

and in GM from 0.02 to 0.05 from bottom to top. The MWF estimates from dE2E scans are less noisy and show more contrast from top to bottom and

between WM and GM than those from dCRLB scans.

Figure 4: In vivo MWF estimates. The STFR scans from dE2E appear to be more informative of MWF, as seen by the improved contrast of the MWF map;

the MWF estimates from dE2E show greater WM/GM contrast, whereas the STFR scans from dCRLB resulted in PERK regressing towards the mean

training MWF value (0.165).
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