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Synopsis
This work proposes a quantitative perfusion imaging using Velocity Selective Inversion pulses combined with an MR Fingerprinting ASL framework that
allows for the alleviation of several nuisance parameters in the model, and provides hemodynamic estimates over an extensive region of the brain in a
single scan. Preliminary in-vivo experiments indicate that the obtained hemodynamic estimates in gray and white matter agree with values typically
found in literature.

Introduction
As a tool for quantitative perfusion measurement, MRF-based (Magnetic Resonance Fingerprinting) Arterial Spin Labeling (ASL) is gaining increasing
popularity [1],[2],[3],[4] due to its ability to simultaneously yield unbiased estimates of perfusion and multiple other hemodynamic parameters and tissue
properties. However, to realize its potential for use in clinical imaging, MRF-ASL needs to be able to provide unbiased estimates of perfusion for an
extensive region of the brain in a relatively short period of time. This presents a challenge because shorter labeling durations inevitably result in
�ngerprints that contain less information about perfusion. Velocity Selective Inversion (VSI) pulses [5] have garnered attention for being particularly
sensitive to perfusion, while being able to eliminate nuisance parameters like magnetization transfer from the signal model, and producing signals
having reduced sensitivity to bolus arrival time (BAT) e�ects[6]. In this work, we aim to use VSI pulses in conjunction with an MRF-ASL framework to
quantify perfusion across multiple slices of the brain. Furthermore, with the aid of Velocity Selective Saturation (VSS) pulses across all acquired images in
the �ngerprint, we also eliminate sensitivity of the ASL �ngerprints to the Cerebral Blood Volume (CBV) fraction.

Methods
In our work, the ASL preparation was done with a VSI pulse—either velocity selective (label) or non-selective (control), a variable post-labeling delay, and
a VSS pulse for arterial suppression before acquisition. Fig. 1 shows a single repetition period for this method. The generated VSI pulses were based
upon the method described in [7]. 

The theorized model for our work e�ectively has two compartments: tissue and artery. The arterial compartment is further separated into two
components,  and , to represent fast and slow-moving spins, respectively. While there is a continuum of spin velocities in an artery, we use
these compartments to segregate the spins that are fast enough to not be inverted by the selective inversion pulses from the spins that move slowly
enough (especially when exchanging with tissue) to be inverted. We describe the signal in the tissue compartment as: 

where  is an arterial exchange compartment that represents the blood in the artery at the exchange site, consisting of slow-moving spins, 
 represent the perfusion, blood-brain partition coe�cient and magnetization in the tissue compartment, respectively. To incorporate the e�ects

of VSI pulses on the fast-moving spins in arterial blood, a separate compartment is included which represents the arterial blood . Spins enter the
arterial compartment at a ‘fast’ velocity, and slow down before exchanging into the tissue compartment after a delay. We track this behavior by modeling
the fast and slow/exchanging spins separately: 

However, at the end of every BAT, the contents of the  sub-compartment transfer over to the  sub-compartment as follows: 

where  denotes the time at which a velocity selective pulse is applied.  
To model the e�ects of the various velocity selective pulses we introduce three labeling e�ciencies into our model, namely and .
dictate the extent to which the VSI pulses invert spins in tissue and artery respectively, while  dictates the extent of inversion in slow-moving tissue
spins due to a velocity selective saturation pulse. We express these e�ects mathematically as: 
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Typical values for and  are obtained from separate Bloch simulations of the VSI pulses. Finally, the observed signal is given by: 

where  is the �ip angle. 
We test our method by estimating perfusion, BAT and tissue  on two healthy subjects. The PLDs in our �ngerprint were varied according to the
schedule in Fig. 2. The total duration for the scan was s for  slices across the brain. The data was acquired on a 3T GE MR750 scanner using a 32-
channel Nova Medical coil. The matrix size was , resolution= mm ,TE = ms, bandwidth= kHz, fast spin echo stack of
spirals readout. 

For estimation, we used individual neural networks for each parameter with two hidden layers and  nodes in each layer. The networks were trained
with  synthetic �ngerprints generated from a Bloch simulation of the model described above. The ground truth parameters for the training data
were varied uniformly across the range shown in Fig 3. White Gaussian noise with standard deviation of  was added to the �ngerprints during
training. The ADAM algorithm [8] was used as an optimizer.

Results
Fig 4 shows the results for quantifying perfusion, BAT and  using our proposed VSIASL+MRF technique for one human subject (4 of 18 slices). The
predicted perfusion values in gray and white matter are consistent with those found in ASL literature, and the contrast between gray and white matter
values is also as expected. This observation was consistent across both subjects.

Conclusion
We conclude that estimation of perfusion using an MRF-ASL framework combined with VSI pulses is feasible and allows for the estimation of multiple
hemodynamic parameters in the brain without hindrance from nuisance parameters, though further validation against other methods is required both
in-vivo and in-silico.
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Figure 1: Composition of a single repetition time (TR) and details of the pulse sequence used in our work. The TR is varied across acquisitions by varying
the Post Labeling Delays.

Figure 2: The varying post-labeling delays or PLDs (in seconds) across TRs for the schedule we use in our experiments is depicted above.

Figure 3: Ground truth parameter values used in training data generation for neural network estimation. The ground truth values for every individual
training �ngerprint were picked in a uniform random fashion within this range.

Figure 4: Estimates for Perfusion, BAT and tissue T1 obtained from a healthy human subject using our combined VSI and MRF-ASL framework.
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