
5/19/2019 https://index.mirasmart.com/ISMRM2019/PDFfiles/0370.html

https://index.mirasmart.com/ISMRM2019/PDFfiles/0370.html 1/3

0370
Evaluation of Sparse Sampling Approaches for 3D Functional MRI
Michelle Karker , Claire Lin , Jeffrey A Fessler , and Douglas C Noll
 
University of Michigan, Ann Arbor, MI, United States

Synopsis
This work evaluates the performance of a novel sampling pattern compared to common undersampling techniques with the ultimate goal of
obtaining high spatiotemporal resolution 3D fMRI via sparse sampling and model-based reconstruction. We examine a novel 3D Cartesian sampling
pattern with random phase encodings in ky-kz rotated by the golden angle, resulting in a variable density sampling of k-space, with dense sampling
of the high-signal energy k-space center. The functional activation and noise amplification (g-factor) results of this sampling technique are compared
to those of standard sampling regimes.

Introduction
Some common approaches to fMRI acceleration include parallel imaging techniques such as simultaneous multislice imaging (SMS) that achieves acceleration
in the slice dimension  and sensitivity encoding (SENSE) using multiple receiver coils . Another approach to improving temporal resolution in fMRI is to
undersample 3D k-space during acquisition and then exploit an appropriate model-based image reconstruction . This work proposes a novel approach for
efficient, sparse sampling of 3D k-space for fMRI data that maintains high image quality by applying a low-rank plus sparse (L+S) matrix decomposition for
image reconstruction, where the L component is a low-rank matrix that models the temporally correlated brain background, and the S component is a sparse
representation of noise and functional activity that overlies the brain background . Validating these undersampling methods and reconstruction techniques for
fMRI will enable prospective undersampling, leading to improved temporal resolution and reduced physiological noise aliasing.

Methods
The novel sampling pattern (“Poisson-PROPELLER”), inspired by the PROPELLER pulse sequence , as well as 3D hybrid radial-Cartesian EPI , incorporates
both Poisson-disk sampling and golden-angle rotation. It consists of multiple “blades” in ky-kz, each containing Poisson-disk samples. For each shot, a new
blade is formed with a golden-angle (180/1.618 ∼ 111.25°) update and new Poisson-disk samples, as shown in Figure 1. We included a slew rate constraint to
ensure feasibility in prospective implementation. For comparison, we investigated Poisson-disk sampling as well as a uniform R = 2 x 2 undersampling, both
with a circular support. The Poisson-disk based sampling methods have different samples for each frame. Figure 2 shows representative examples of these
retrospective sampling patterns, all of which are compared to fully sampled results.

3D EPI fMRI data were acquired for a healthy volunteer with a 32-channel receiver (Nova Medical) on a GE 3T MRI scanner, α/TE/TR = 25°/15/37.5 ms, and 3
mm isotropic resolution. The subject performed a visual-motor task. We applied both CG-SENSE reconstruction and L+S model-based reconstruction
algorithm to the fully sampled and retrospectively undersampled fMRI data, reconstructing the low-rank (L) and sparse (S) space-time matrices using the
following optimization problem:

 

where E is an encoding operator that includes a phase correction term for N/2 ghosting, d is fully sampled or undersampled k-t data, T is the temporal Fourier
transform, and regularization parameters λ  and λ  determine the relative contributions of data consistency with low-rankness and sparsity . We solved this
problem using the Proximal Optimized Gradient Method . Regularization parameters were chosen to obtain approximately 30% sparsity and rank of 5-6.

We analyzed the reconstructed images for functional activation via correlation with a canonical hemodynamic response function (HRF) convolved with task
timing. Correlation maps were overlaid on corresponding structural images. We used Monte Carlo simulation with 100 noise replicas to compute g-factor
maps .

Results
Figure 3 shows g-factor maps for the sampling patterns shown in Figure 2. The g-factor map for the fully sampled case is included as a reference, since, by
definition, it has a g-factor of 1. Mean values for an ROI in each g-factor map were calculated as 1.0 (fully sampled), 0.81 (uniform), 0.72 (Poisson-disk), and
0.78 (novel sampling method). Figure 4 shows a slice revealing the activation in the primary visual (V1) cortex.

Discussion 
The g-factor maps indicate that the novel sampling pattern has reduced noise amplification compared to other sampling regimes of comparable acceleration
factor. G-factor <1 is observed, as can be the case with regularized SENSE reconstruction . Functional activation is observed in all retrospectively sampled
cases. While activation is more strongly present in the fully sampled case (i.e., higher correlation and larger region of activation), we are able to resolve a similar
ROI in the V1 cortex that is activated during the task. This indicates that the novel sampling approach is feasible for prospective implementation in fMRI. For
example, implemented prospectively, this sampling pattern can achieve a temporal resolution of 300 ms with 8 shots, 37.8 ms TR, isotropic spatial resolution of
3 mm, and a net acceleration of R = 5.

Conclusion
This work demonstrates a novel 3D k-space sampling pattern that is feasible for prospective acceleration in fMRI. Future work aims to achieve high temporal
resolution trajectories by using these sampling techniques prospectively. Other future work will include modeling and compensation for physiological noise, as
well as motion correction.
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Figures

Figure 1. Example of Poisson-PROPELLER sampling for 3 shots, each with 48 samples. Golden angle rotation is used between each shot. (Frequency encoding
in kx not shown.)

 

Figure 2. Sampling patterns with R = 1, 4, 3.2, and 3.9 (acceleration factors are calculated from circular region).
 

Figure 3. G-factor maps corresponding to the sampling patterns in Figure 2 applied to in vivo data. Mean values of an ROI in these g-factor maps are (left to
right): 1.0, 0.81, 0.72, and 0.78.
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Figure 4. Functional activation correlation maps for the fully sampled data and the three retrospective sampling patterns.
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