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Synopsis
We introduce a new type of small-tip angle prewinding RF pulse that compensates for spin dephasing attributed to o�-resonance and is also slab-
selective, which can help limit the volume of coverage. We design purely spectral slab-selective pulses that prewind a limited global o�-resonance
bandwidth, and spectral-spatial slab-selective pulses that adapt the prewinding bandwidth spatially. We demonstrate these pulse designs in simulation
and in experiments using a gel phantom with a distorted �eld and a volunteer’s brain. Both pulses create sharp slab pro�les, while the spectral-spatial
pulse outperforms in terms of target magnetization phase.

Introduction
Spectral “prewinding” RF pulses provide spin-echo like re-phasing of spins in gradient echo sequences . A small-tip angle  purely spectral prewinding
pulse recovered a limited bandwidth of o�-resonance for imaging in the small-tip fast recovery sequence (STFR), a steady state sequence with similar
contrast to balanced-SSFP . A spectral-spatial pulse increased the e�ective prewinding bandwidth by varying the bandwidth spatially using a 2D �eld
map . Here, we demonstrate for the �rst time the incorporation of spectral prewinding into slab-selective pulses; these are practically important for
limiting the FOV in the slab dimension.

Methods
We designed slab-selective prewinding pulses to excite target pattern, , by sampling the function:

where  is the slab dimension,  is a range of o�-resonance frequencies within a 3D �eld map,  is the slab-select envelope, and echo time  is half
the steady-state free precession time for STFR. As written,  de�nes the purely spectral  slab-selective pulse, and we replicate it over transverse
dimensions  and  to create a 4D spectral-spatial  slab-selective pulse.

We designed the RF pulses by solving a small-tip angle approximation (STA)  constrained optimization problem:

Where  is the STA system matrix,  is a weighting matrix, and  is the peak RF amplitude limit (0.2 Gauss). For the purely spectral slab-selective
pulse,  is unity except for the transition regions between in-slab and out-of-slab areas as well as for frequencies outside of the �eld map within the
slab which are allowed to vary freely. For the spectral-spatial version  is a 4D weighting function, extending ref. (4) to 3D. Figure 1 shows a 3D �eld map
and an example of a 2D spectral target pattern and weighting matrix.

We obtain slab selectivity by applying excitation gradients during the RF pulse that sweep through kz-space. In the spectral-spatial slab-selective pulse,
we employ additional x and y gradients that span the transverse excitation k-space as kx-ky blips, making a 3D spokes trajectory. We explored multiple
spokes trajectories for the RF designs to balance between spectral and slab selectivity, while still maintaining a short pulse length. We generally found
that four spokes at  and , repeated twice, worked su�ciently well--however spoke selection remains an open area of research.

To mimic realistic �eld distortions, we attached a small piece of metal to a gel phantom, and then acquired a �eld map. We then designed 5.04ms
spectral and spectral-spatial slab-selective pulses to excite a 4cm slab. For both pulse types, we designed tip-down and tip-up pulses for the STFR
sequence, where the tip-up pulse is formed by negating and reversing a pulse designed to excite the simulated magnetization magnitude and phase
accrued at the end of free precession . We used these pulses to acquire STFR images [FA/TE/TR=16°/3.6ms/18.3ms, FOV=24cm/24cm/24cm, matrix size
256x256x60] using a birdcage single channel T/R head coil on a 3T GE MR750 scanner. We repeated this experiment in a volunteer’s brain. The 4D
spectral-spatial slab-selective pulses were the most computationally demanding, taking about 3 min to compute online. 

Results
Figure 2 shows the tip-down RF and gradient waveforms and the 3D spokes k-space trajectory for the spectral-spatial pulse used in the phantom. Figure
3 shows the simulated magnetization and phase for the target design pattern and the spectral and spectral-spatial slab-selective pulses in the phantom
at TE after a single excitation (i.e., not in steady-state). The simulated full-FOV  magnitude NRMSE and in-slab phase RMSE were 0.31/15.5° and 0.15/2.1°
for the spectral and spectral-spatial pulses, respectively. Figure 4 shows the experimental images in the phantom.

Figure 5 shows the experimental images from the analogous experiment repeated in a volunteer. The magnitude NRMSE and phase RMSE computed
from simulated images (not shown) were 0.25/7.2° and 0.12/1.4° for the spectral and spectral-spatial pulses, respectively.

Discussion and Conclusion
Prewinding slab-selective pulses are challenging because there is an inherent trade-o� between slab-selectivity and phase prewinding. In simulation,
spectral-spatial pulses balanced these competing needs more e�ectively than purely spectral slab-selective pulses by achieving lower magnitude NRMSE
and phase RMSE. The spectral pulse achieved a sharper slab pro�le in the phantom than the spectral-spatial pulse, but again was outperformed by the
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spectral-spatial pulse slab pro�le in the human experiment as well as all phase images (phantom and human). Performance di�erences between
simulation and experiment in the phantom might be attributed to steady-state behavior of the STFR sequence, as the simulation is conducted at TE
directly after a single tip-down pulse.

Future work will involve optimizing the 3D excitation trajectory to balance slab-selectivity and spectral prewinding. Additionally, strategies to improve the
tip-up pulse design could better match the simulated magnetization with the experimental steady-state results using STFR.
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Figures

Figure 1. Full and within-slab 3D �eld maps of gel phantom with small piece of metal (top row) and 2D target pattern and weighting matrix (bottom row)
for a spectral slab-selective pulse. On the bottom row, the horizontal red lines highlight the bandwidth of o�-resonance frequencies found within the
slab, although the entire object �eld map covers a larger range. The weighting matrix contains “don’t care” regions for frequencies outside of this range
within the slab, as well as “don’t care” transition regions between in in-slab and out-of-slab in the spatial dimension, z.

 

Figure 2. RF pulse magnitude (top left), phase (middle left), excitation gradients (bottom left), and excitation k-space in 3D space (right) for the spectral-
spatial slab-selective pulse used to image the phantom. The RF pulse is peak-amplitude constrained to 0.2 Gauss (red line on top left). The excitation
trajectory is a spokes trajectory where the four side spokes are located at ±k and ±k  . The entire spokes trajectory is repeated twice during a
single excitation.
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Figure 3. Target design pattern and Bloch simulated magnetization magnitude (top row) and phase (bottom row) at the echo time after one tip-down
pulse displayed at the center slice in xy, xz, and yz planes in the phantom with a small piece of metal. The target magnitude is uniform within the slab and
the target phase is zero, to provide spin-echo like contrast in the STFR sequence.

 

Figure 4. Experimental magnetization magnitude (top left row) and phase (bottom left row) for the steady-state STFR images in the xy, xz, and yz planes in
the gel phantom with a small piece of metal. On the right are the x and y slab pro�les for both spectral (dotted line) and spectral-spatial (solid line)
pulses. The spectral slab-selective pulse has the best slab pro�le while the spectral-spatial slab-selective pulse has the �attest phase image.

 

Figure 5. Experimental magnetization magnitude (top row) and phase (bottom row) for the steady-state STFR images in the xy, xz, and yz planes in the
human brain. On the right are the x and y slab pro�les for both spectral (dotted line) and spectral-spatial (solid line) pulses. Here, the spectral-spatial
slab-selective pulse has the best slab pro�le and the �attest phase.
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