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Synopsis
Iterative parallel imaging reconstruction can be very time-consuming for dynamic imaging applications such as functional MRI. GRAPPA is non-iterative
but is generally not well-suited for non-Cartesian acquisitions. In this work, we propose a generalization of GRAPPA applicable to arbitrary non-Cartesian
readouts. Our non-Cartesian GRAPPA method works by associating a unique kernel with each unsampled (missing) k-space location, and synthesizing
non-Cartesian autocalibration (ACS) data by phase-shifts. This approach requires calibrating a very large number of distinct patterns, for which we
propose an e�cient NUFFT-like algorithm. With this approach we demonstrate fast reconstruction of 3D stack-of-spirals and stack-of-stars images.

Introduction 
GRAPPA  is a non-iterative Parallel Imaging (PI) technique that, unlike SENSE, does not require explicit knowledge of coil sensitivity maps (i.e., is auto-
calibrating). However, GRAPPA generally assumes Cartesian k-space sampling, and direct application of GRAPPA to arbitrary non-Cartesian trajectories is
not possible. Partial workarounds for speci�c readout trajectories have been proposed, e.g., segmenting spiral trajectories into “wedges” that undergo
rectilinear GRAPPA , or GROG gridding , an approximate interpolation scheme. However, a general GRAPPA reconstruction approach for arbitrary 2D/3D
non-Cartesian sampling does not yet exist. 

Here we propose a general non-Cartesian GRAPPA reconstruction that is not restricted to speci�c readout trajectories. It works by assigning a unique
kernel to each unsampled k-space point. To keep computational costs down, we propose an e�cient NUFFT-based algorithm . We apply our method to
the reconstruction of 3D stack-of-stars/spirals datasets.

Methods
GRAPPA �rst identi�es all (unique) kernel patterns to be calibrated (Fig.1). Then, for each pattern, all combinations of autocalibration signals (ACS) that
match the pattern are obtained. These combinations become the rows of , whose columns
are ordered by coils and elements’ positions within the kernel (  are number-of-combinations/coils/neighbors). Then, the corresponding
GRAPPA weights is the solution to the least squares (LS) problem,

 

where c indexes coils.

For arbitrary non-Cartesian readouts, where each unsampled k-space location generally has a unique pattern of sampled neighbors, it is in general not
feasible to acquire the necessary ACS data for every unsampled location. Our approach is therefore to synthesize o�-grid ACS data (for each unsampled
location) from a Nyquist-sampled ACS k-space region, by using the phase-shift property of the Fourier transform (FT) (Fig.1d) such that Eq.1 can be
applied (Fig.1c). This approach is general as it puts no requirement on readout trajectory, and can be fully automated, i.e., it requires no manual
intervention to specify k-space wedges or other trajectory-speci�c information.

The main drawback of this approach is increased computational and storage costs, since for each unsampled k-space location, ACS data must be
synthesized and Eq.1 must be solved. To address this computational issue, we propose a novel algorithm for obtaining the kernel weights from Eq.1.
Speci�cally, we treat the ACS region as having circulant boundary conditions, i.e., we allow ACS data to wrap around as needed to form matches for the
pattern being calibrated. When the ACS region is su�ciently large, we hypothesize that the wraparounds have negligible impact on reconstruction
quality. Due to the circulant boundary, ’s columns are circularly (phase) shifted replicas of . Then, an image domain view of the solution to Eq.1 is:

where unitary matrix  is a properly sized FT. Converted by FT, ’s columns are (low-resolution coil images)  modulated by linear phases. As pointwise
products of two linear phases is another a linear phase, we have (Fig.2):

where  are coil indices, and m,n are column indices of . In other words, these entries are (spatial) frequency components of , which are
pairwise products of low-resolution coil images (Fig.2c). The  are shared among all kernel patterns and only need to be computed once. We propose to
exploit this by �rst zero-padding  (equivalently ), thus preparing a �nely sampled spectrum. Good approximations to  and  can then be
e�ciently computed (for arbitrary non-Cartesian pattern) by simple interpolations with small interpolation kernels (bilinear), instead of expensive dense
matrix multiplications. This reduces computation complexity from  to , where  is typically a few thousand
for 3D calibration (e.g., ACS size 20×20×10).

Results
Figures 3-4 compare our method with the commonly used conjugate gradient SENSE (cg-SENSE) on two 3D non-Cartesian data sets (stack-of-stars and
stack-of-spirals). We reconstructed both data sets without changing the reconstruction code in any way. Di�erent PI acceleration factors are achieved by
retrospective undersampling (skipping spokes or interleaves). Our approach reconstructs images with comparable quality to cg-SENSE, using image-error
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or g-factor metrics, while our approach (6secs/frame) is much faster than cg-SENSE (2mins/frame) due to its non-iterative nature. The NUFFT idea
reduces calibration time from 40mins to 2mins (detailed sequence setups are described in the �gure captions.)

Discussion and Conclusions:
Our results show that the proposed general, non-iterative, non-Cartesian GRAPPA algorithm can rival cg-SENSE in image quality. For reconstructing an
fMRI (time-series) data set, our approach provides a fast alternative to cg-SENSE. Storage of GRAPPA kernel weights may impose high memory demands
for, e.g., high-resolution imaging with a high coil count, and may bene�t from coil compression.
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Figures

Figure 1: Constructing Cartesian and non-Cartesian GRAPPA calibration matrices. (a) On-grid ACS-data from dense-sampling (or gridding). (b) Calibration
for a simple Cartesian kernel pattern  with,  neighbors used to reconstruct the center. One can obtain  combinations from the ACS
region that match the relative positions described by the pattern. Neighbors and centers are separated into matrices, 

, where . Then for coil , least squares problem 

gives GRAPPA weights . (c) Non-Cartesian o�-grid kernel pattern  has no direct match in the on-grid ACS-data; instead, they are
synthesized through phase-shifts. (d) Phase-shift by linear phase .
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Figure 2: NUFFT-based e�cient calibration algorithm using pairwise coil-image products. (a) Zero-padding (in image-space) of a low-resolution coil-image
. (b) Computation of an element of , which is the inner product between a column of  and a column of . Circulant boundary makes these

columns the phase-modulated low-resolution coil-images. (c) Visualization of (b). Linear-phases and coil-images are combined (after conjugation). (d) Due
to the zero-padding, the spectrum is �nely gridded, such that the frequency component corresponding to the combined linear phase ( ) can be
interpolated with a small kernel (bilinear) from the �xed spectrum-pro�le that is shared across patterns.

 

Figure 3: Stack-of-stars reconstruction results. 3D reconstruction quality comparison between the proposed non-Cartesian GRAPPA (upper row) and cg-
SENSE (lower row). Panels from left to right show reconstructions with di�erent retrospective acceleration factors (R=1,2,3,4), error images against a fully
sampled reconstruction, and g-Factor maps. 2 slices are selected out of 20. Our non-Cartesian GRAPPA exhibits comparable reconstruction quality to cg-
SENSE. [GE 3T scanner; 8-channel receive array; 20 kz-plates each composed of 315 spokes; FOV 20x20x20 cm ; matrix 200x200x20; �ip angle 30°; TR
15ms; minimum TE.]

 

Figure 4: Stack-of-spirals reconstruction results. 3 slices are selected out of 40. Without modifying our algorithm and implementation, our non-Cartesian
GRAPPA again exhibits comparable reconstruction quality to cg-SENSE. [GE 3T scanner; 8-channel receive array; 40 plates each composed of 60 spokes,
FOV 22x22x20 cm ; matrix 200x200x40, �ip angle 8°, TR 15ms, minimum TE.] 
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