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Synopsis
DWI acquired with b-values greater than 1000 s/mm  and higher-order di�usion analyses based on such DWI series have the potential to improve tumor
di�erentiation, while the extended sampling of b-values makes the acquisition time inconveniently long. We propose an acceleration scheme that
sparsely samples k-space and reconstructs images using a new low-rank tensor model which exploits both global and local low-rank structure. Under an
acceleration factor of 8, parameter mapping results on one simulated and 7 patient datasets show improved accuracy over another low-rank tensor
model that exploits global correlation only, and comparable accuracy to clinically used four-fold GRAPPA reconstruction.

Introduction
Di�usion-weighted MR images (DWI) acquired with b-values greater than 1000 s/mm  and higher-order di�usion analyses based on high b-value DWI
series have the potential to improve tumor di�erentiation . However, extended sampling of b-values makes the acquisition time inconveniently long for
clinical use. We propose to reduce scan time by using sparse k-space sampling and a new low-rank tensor model for DWI reconstruction which exploits
both global and local low-rank structure of DWI data, and integrates partial Fourier acquisition naturally.

Method
The target DWI data is acquired using an imaging matrix of , with  coils and  b-values. To model the local low-rank structure (i.e.,
correlation between neighboring k-space samples), we �rst organize k-space data at each b-value into a block-Hankel matrix 

 using the SAKE  method with a window size . Next we stack block-Hankel matrices at di�erent b-values along the third

dimension to form a tensor  to exploit the global low-rank structure (i.e., correlation of signal decays across voxels). We
propose the following constrained image reconstruction scheme that enforces low-rankness of 

where  denotes the k-space samples,  is the sampling operator,  is the phase maps of each b-value/coil, estimated from the center of k-space, and 
 is the reference coil phase map estimated at b = 0 s/mm  . By introducing  and , we seek to correct phase variations across b-values that would

invalidate the low-rank assumption, while maintaining coil phases needed for multi-coil combination. Furthermore, by forcing  to be real, our method
incorporates the POCS method for partial Fourier acquisition .  is the block-Hankel matrix operator. We chose the regularizer  as a hard constraint
on the tensor -rank  of  such that , where  is the th order matrix unfolding of  . We solve the
problem using an ADMM algorithm where the augmented Lagrangian function is written as

We solve the subproblem of  using truncated multi-linear singular value decomposition . All other subproblems have closed-form solutions.

Evaluation
Under IRB approval, 7 patients with glioblastoma were scanned on a 3T scanner (SKYRA, Siemens Healthineers) with 20-channel coil arrays using a DW-
EPI sequence with di�usion weighting in 3 orthogonal directions. Eleven b-values were sampled uniformly from 0 s/mm  to 2500 s/mm . Four-fold
parallel imaging and partial Fourier were applied and the acceleration factor (AF) was 4.5. We further retrospectively undersampled the datasets along
the phase-encoding direction only to achieve an AF of 8. The center of k-space was fully sampled and the peripheral k-space was randomly
undersampled. A simulated DWI dataset was also generated using a brain phantom from brainweb  and the same imaging parameters as the patient
scan. Bi-exponential  decays were simulated for brain tissues. Coil sensitivities and k-space noise were estimated from the patient data and linear phase
variations across b-values were further added . The simulated dataset was undersampled the same way as the patient dataset. Figure 1 shows the
sampling scheme. Before performing constrained image reconstruction, we �rst calculated a GRAPPA  kernel from the auto-calibration region at b = 0
s/mm  to �ll up the regularly undersampled k-space center for other b-values, and estimated phase maps from the center. We �tted two higher-order
di�usion models to our reconstructed images: bi-exponential model  for simulated data and stretched model  for patient data. We compared our
method to another low-rank tensor-based method (LRT method) .

Result
The root-mean-square error of our reconstruction on the simulated data is 3.1%, compared to the noise-free ground truth. Figure 2 shows parameter
maps �tted by the bi-exponential model. Comparing to the LRT method, our method reduces the error by 18.9%, 39.6% and 7.1% for the three model
parameters (two di�usion coe�cients and one ratio). Figures 3 and 4 show example reconstructed patient images. No systematic di�erence is observed
between our method with AF=8 and four-fold GRAPPA reconstruction, while our method improves the SNR at b>1000 s/mm  by 20.1% across patients.
Figure 5 shows the DDC maps �tted using the stretched model on GRAPPA as well as our reconstruction. The mean absolute di�erence of DDC between
GRAPPA and our method is 0.02×10  mm /s across patients.
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Discussion and Conclusion
A new low-rank tensor model that exploits both local and global low-rank structure achieves performance superior to models that exploit global low-rank
structure only. Image reconstructions using undersampled data with AF= 8 can support higher-order di�usion analysis with accuracy comparable to
parallel imaging-only reconstructions currently used clinically.
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Figures

Figure 1: Example sampling scheme of a patient dataset. White lines indicate sampled readouts.
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Figure 2: Parameter mapping results using bi-exponential decay model (S(b)/S(0) = ratio×exp(-b×D )+(1-ratio)×exp(-b×D )) for simulated data with AF=8.
D and D  are di�usion coe�cients of the two compartments respectively. Ratio stands for the portion of the �rst compartment. The parameter maps
using the LRT reconstruction shows aliasing artifacts (red arrow) that are reduced using the proposed method.

 

Figure 3: Comparison of image reconstruction results of a representative patient at di�erent b-values. Our method shows improved Signal-to-Noise ratio
(de�ned as the ratio of mean signal within the image object and the standard deviation of the background) at high b-values.

 

Figure 4: Comparison of image reconstruction results of another patient at di�erent b-values. Our method shows improved Signal-to-Noise ratio (de�ned
as the ratio of mean signal within the image object and the standard deviation of the background) at high b-values.

 

Figure 5: Example DDC maps of two patients, �tted by the stretched model (S(b)/S(0) = exp(-(b×DDC) ). Column (a): DDC maps from four-fold GRAPPA
reconstruction. Column (b): DDC maps from our proposed reconstruction with AF = 8. Parameter maps obtained by our method are very similar with the
one obtained by clinically used parallel imaging method. Conventional ADC maps �tted by mono-exponential decay model (column (c)) and
corresponding DW images (column (d) and column (e), reconstructed using GRAPPA) are also included for reference.
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