A Min-Max CRLB Optimization Approach to Scan Selection for Relaxometry

Gopal Nataraj ${ }^{1}$, Jon-Fredrik Nielsen ${ }^{2,3}$, and Jeffrey A. Fessler ${ }^{1,2}$

${ }^{1}$ Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States, ${ }^{2}$ Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States, ${ }^{3}$ Functional MRI Laboratory, University of Michigan, Ann Arbor, MI, United States

Target audience: Researchers interested in quantitative MRI, T_{1} / T_{2} relaxometry, methods for scan design, and/or steady-state pulse sequences.

Introduction and Motivation

Many MR quantification methods require multiple scans with different scan parameters, to enable estimation of object parameters by per-voxel fitting. For such techniques, it is desirable to design fast scan protocols that provide maximal "information" about underlying parameters of interest. This "information" has previously been measured using contrast-to-noise ratio [1, 2] and variations [3, 4]. In this work, we instead contend that in relaxometry, estimator precision is a more natural benchmark for scan optimality. Specifically, we explore a min-max optimization approach for guiding scan design. At the heart of our method lies the Cramér-Rao Lower Bound (CRLB), a statistical metric useful for bounding the variance of an unbiased estimator. Though it has found success in optimizing scans for other applications [5, 6], to our knowledge the CRLB has not been used to guide scan design for relaxometry. Using this min-max CRLB approach, we optimized dual-echo steady state (DESS) [7] scans for T_{2} estimation in the brain.

Theory and Problem Formulation

A broad class of pulse sequences produce signals that can be described with the general model $y_{m}=f_{m}\left(\boldsymbol{\theta} ; \alpha_{m}, T_{R, m}, T_{E, m}\right)+\epsilon_{m}$, where f_{m} models the noiseless signal for a voxel in the m th dataset; $\boldsymbol{\theta}:=\left[M_{0}^{*}, T_{1}, T_{2}, \kappa\right]^{T}$ denotes the unknown object parameters;

Figure 1: Comparison of (a) predicted and (b) observed \hat{T}_{2} standard deviations. (a) Theoretical worst-case \hat{T}_{2} standard deviations, over a T_{1}, T_{2}, κ range relevant in brain imaging. (b) Empirical ML \widehat{T}_{2} standard deviations; for each flip angle pair, the max over (separately computed) WM and GM ROIs is shown. All values (ms) are plotted as $\boldsymbol{\alpha}$ is varied for 2 DESS scans. Predicted and empirical global minima (starred) occur at similar flip angle pairs $(a)(15,40)^{\circ}$ and $(b)(15,45)^{\circ}$, respectively. $\alpha_{m}, T_{R, m}, T_{E, m}$ are the m th choice of flip angle, repetition time, and echo time; and $\epsilon_{m} \sim \mathbb{C} \mathcal{N}\left(0, \sigma^{2}\right)$ is complex white Gaussian noise. Here $M_{0}^{*}:=M_{0} e^{-T_{E} / T_{2}^{*}}$ accounts for T_{2}^{*} relaxation; T_{1} and T_{2} are the spin-lattice and spin-spin relaxation parameters of typical interest; and κ captures spatial variation in the nominal flip angle. A complete scan profile contains a total M datasets and defines length- M vector extensions $\boldsymbol{y}, \boldsymbol{f}\left(\boldsymbol{\theta} ; \boldsymbol{\alpha}, \boldsymbol{T}_{\boldsymbol{R}}, \boldsymbol{T}_{\boldsymbol{E}}\right)$, and $\boldsymbol{\epsilon}$ of the corresponding scalar variables and functions.
The matrix CRLB states that the covariance of any unbiased estimator of $\boldsymbol{\theta}$ is bounded as $\operatorname{cov}\left(\boldsymbol{\theta} ; \boldsymbol{\alpha}, \boldsymbol{T}_{\boldsymbol{R}}, \boldsymbol{T}_{\boldsymbol{E}}\right) \geq \mathbf{F}^{-1}\left(\boldsymbol{\theta} ; \boldsymbol{\alpha}, \boldsymbol{T}_{\boldsymbol{R}}, \boldsymbol{T}_{\boldsymbol{E}}\right)$, where Fisher information \boldsymbol{F} takes the form $\boldsymbol{F}\left(\boldsymbol{\theta} ; \boldsymbol{\alpha}, \boldsymbol{T}_{R}, \boldsymbol{T}_{E}\right)=\frac{1}{\sigma^{2}}\left[\nabla \boldsymbol{f}\left(\boldsymbol{\theta} ; \boldsymbol{\alpha}, \boldsymbol{T}_{R}, \boldsymbol{T}_{E}\right)\right]^{T}\left[\nabla \boldsymbol{f}\left(\boldsymbol{\theta} ; \boldsymbol{\alpha}, \boldsymbol{T}_{R}, \boldsymbol{T}_{E}\right)\right]$. In relaxometry, we are interested in precise T_{1} and T_{2} estimation. To optimize scan parameters, a reasonable objective function to minimize is thus given by: $\Psi\left(\sigma_{T_{1}}, \sigma_{T_{2}}\right):=c \sigma_{T_{1}}+\sigma_{T_{2}}$, where

$$
\sigma_{T_{1}}:=\sqrt{\left[\mathbf{F}^{-1}\left(\boldsymbol{\theta} ; \boldsymbol{\alpha}, \boldsymbol{T}_{\boldsymbol{R}}, \boldsymbol{T}_{E}\right)\right]_{(2,2)}} \text { and } \sigma_{T_{2}}:=\sqrt{\left[\mathbf{F}^{-1}\left(\boldsymbol{\theta} ; \boldsymbol{\alpha}, \boldsymbol{T}_{\boldsymbol{R}}, \boldsymbol{T}_{\boldsymbol{E}}\right)\right]_{(3,3)}}
$$

are bounds on the standard deviations of unbiased T_{1}, T_{2} estimates; and $c \in[0,1]$ controls the relative importance of T_{1} versus T_{2} estimation. This optimization cannot be performed directly over scan parameters $\boldsymbol{\alpha}, \boldsymbol{T}_{\boldsymbol{R}}, \boldsymbol{T}_{\boldsymbol{E}}$ because of an implicit dependence on the unknown $\boldsymbol{\theta}$. We instead solve the following min-max optimization problem:

$$
\left(\boldsymbol{\alpha}^{*}, \boldsymbol{T}_{\boldsymbol{R}}^{*}, \boldsymbol{T}_{E}^{*}\right) \in \arg \min _{\boldsymbol{\alpha}, \boldsymbol{T}_{\boldsymbol{R}}, \boldsymbol{T}_{E} T_{1}, T_{2}, k} \Psi\left(\sigma_{T_{1}}, \sigma_{T_{2}}\right) \text { s.t. }\left\|\boldsymbol{T}_{\boldsymbol{R}}\right\|_{1} \leq T_{t o t}
$$

where $T_{t o t}$ defines a scan time constraint. This optimization minimizes over $\left(\boldsymbol{\alpha}, \boldsymbol{T}_{\boldsymbol{R}}, \boldsymbol{T}_{E}\right)$ the worst-case cost, viewed over an application-specific range of T_{1}, T_{2}, κ values.

Experimentation and Results

Figure 2: Regularized T_{2} estimates from DESS data, for (a) two optimized flip angles $(15,40)^{\circ}$, and (b) all 18 flip angles $(5,10, \ldots, 90)^{\circ}$. WM and GM ROIs are indicated. T_{2} estimates from two optimized DESS scans versus many are qualitatively similar.

We applied this min-max scan design method to joint T_{1}, T_{2} estimation from DESS data. DESS has recently been proposed as a fast technique for T_{2} relaxometry [8] because it provides two datasets with widely different T_{2} contrasts per acquisition. With four unknowns, a minimum of two scans are required to yield $M=4$ datasets. As a simple example, we selected $c=0$ and optimized two DESS scans for precise T_{2} estimation. We constrained unknown parameter T_{1}, T_{2}, κ ranges [500, 900]ms, $[50,90] \mathrm{ms}$, and $\left[2^{-0.5}, 2^{0.5}\right]$, respectively, to encourage precise estimation in the brain. We selected our search space to keep scans as short as possible, fixing $\boldsymbol{T}_{\boldsymbol{R}}$ and $\boldsymbol{T}_{\boldsymbol{E}}$ to the minimum possible values and varying only $\boldsymbol{\alpha}$ over $[5,90]^{\circ}$. For $M=4$ datasets from two DESS scans, we found the minimizer to be at $\boldsymbol{\alpha}^{*}=(15,40)^{\circ}($ Fig. 1 a$)$.
We evaluated our method by comparing our scan design against all possible two-scan combinations, within 5° resolution. We collected in vivo DESS data $\left(\alpha=5: 5: 90^{\circ} ; T_{R} / T_{E}=17.3 / 4.7 \mathrm{~ms} ; 240 \times 240 \times 6\right.$ matrix size; $24 \times 24 \times 1.8 \mathrm{~cm}^{3}$ FOV; 2 cycles of gradient dephasing along the slice-selective direction) from a 32 -channel Nova receive head array in a 3 T GE scanner and combined the coil data using coil sensitivity estimates [9]. For each flip angle combination, we estimated parameter maps by solving a nonlinear least-squares maximum-likelihood (ML) problem using the Variable Projection Method [10]. We then computed empirical \widehat{T}_{2} standard deviations (Fig. 1b) within white matter (WM) and grey matter (GM) regions of interest (ROIs). Predicted and empirical \widehat{T}_{2} standard deviations were minimized for similar choices of flip angles.

	$\boldsymbol{\alpha}^{*}=(15,40)$	$\boldsymbol{\alpha}=(5, \ldots, 90)^{\circ}$
WM	39.1 ± 2.6	40.4 ± 1.3
GM	59.7 ± 9.8	66.6 ± 7.2

Table 1: T_{2} means \pm standard deviations in the WM and GM ROIs marked in Fig. 2. Much T_{2} content in DESS can be accurately and precisely captured with just two well-chosen scans.

Table 1 compares T_{2} estimates from the optimized flip angles $\boldsymbol{\alpha}^{*}=(15,40)^{\circ}$ (Fig. 2a) against a T_{2} estimate from all (2 echoes) (18 flip angles) $=36$ datasets (Fig. 2b). We obtained these images by adding modest edge-preserving regularization (through an optimization problem similar to the one proposed in [11]) to the unbiased T_{2} maps. These numbers emphasize that, beyond two well-chosen acquisitions, collecting additional DESS data does not substantially change T_{2} estimates.

Conclusions

We have described a CRLB-inspired min-max optimization problem for guiding scan design in relaxometry. As an illustration, we optimized a scan protocol consisting of two fast DESS acquisitions for T_{2} relaxometry in the brain. Our results showed that predicted and empirical \widehat{T}_{2} standard deviations over WM/GM regions of interest recommend similar combinations of scan parameters. We then compared a regularized T_{2} estimate from our suggested scan protocol against one from many acquisitions and found that much of the T_{2} content in DESS data is well captured with only two scans.

Acknowledgments

We thank Daniel Weller and Donghwan Kim for their insightful discussions and NIH P01 CA87634 for partial support.

References

[1] Hardy et al., JMRI, 6(2):329-35, 1996. [2] Dufour et al., MRI, 11(1):87-93, 1993. [3] Deoni et al., MRM, 49(3):515-26, 2003. [4] Deoni et al., MRM, 51(1):194-9, 2004. [5] Pineda et al., MRM, 54(3):625-35, 2005. [6] Funai et al., Proc. IEEE ISBI, 712-5, 2010. [7] Bruder et al., MRM, 7(1):35-42, 1988. [8] Welsch et al., MRM, 62(2):544-9, 2009. [9] Roemer et al., MRM, 16(2):192-225, 1990. [10] Golub et al., Inv. Prob., 19(2):R1-26, 2003. [11] Nataraj et al., Proc. IEEE ICIP, 1877-81, 2014.

