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Introduction

Li-SPIRIT [1] incorporates £1-norm regularization into the auto-calibrating parallel imaging reconstruction method SPIRIT [2]. Although such regularized methods
promise to improve image quality, allowing greater undersampling, selecting an appropriate value for the regularization parameter can impede practical use. This
paper proposes a parameter selection criterion based on Stein's unbiased risk estimate (SURE) [3], which estimates the mean-squared error (MSE) without
knowledge of the true signal. Traditionally, SURE may be difficult to compute for iterative nonlinear reconstruction algorithms. Recently, a SURE-guided iterative
reconstruction [4] was developed for single-channel MRI; we extend this work to multi-channel L1-SPIRIT reconstruction with arbitrary k-space undersampling using a
complex-valued Monte-Carlo-based approach. Here, we apply it to reconstruct real parallel-imaging data with varying levels of noise.

Theory

The Li-SPIRIT estimator X = fk(y) minimizes the wavelet-domain joint sparsity of the multi-channel images from full k-space x that preserves the acquired data y

(where the observations have noise covariance Q) and is consistent with the SPIRIT kemel convolution matrix G; i.e. x = Gx. Joint sparsity is enforced using
wavelet-domain soft-thresholding with parameter A; the choice of this parameter determines the sparsity (and the quality) of the reconstruction. We would like to
choose A to minimize the MSE, but since only the acquired data is available, we use SPIRIT to provide the full k-space from the true values at the sample locations.
Since the true values at the sample locations are unknown, we turn to SURE to approximate the MSE and form a Monte-Carlo estimate [5] using only a single
realization of a complex iid zero-mean unit-variance random vector b and two evaluations of f;: f,(y) and f,(y+eb), where we use € = 107,

Methods 2 «
We initially validated this approach using simulated data; here, we show our results for real data. We acquired T1- SURE
weighted brain data of a consented subject using 3D SPGR (TR/TE/FA = 25ms/5.2ms/25°) on a 3 T GE scanner with I L =

an eight-channel coil, and the noise covariance for this coil was measured from a noise-only pre-scan. We extract a
256x144 axial slice with 1.0x1.25 mm spatial resolution, and we Poisson-disc undersample the data by a factor of 4,
retaining a 24x24 block of calibration data. The sparsifying transform for L1-SPIRIT is a four-level “db4' wavelet; each
L1-SPIRIT reconstruction consists of 20 iterations of the POCS implementation [1]. Un-regularized SPIRIT uses 20 CG
iterations. The SURE values depicted in Figure 1 contain a constant term that depends on the true sample values; this
constant does not affect the minimization and is only included to ease comparison with MSE. For the second
experiment, we choose the SURE-optimal A’s via two-level coarse-to-fine parameter sweeps. The SNR of the real data

Squared error (dB)

is 16.7 dB; we add complex Gaussian noise to reduce the SNR by factors of 2, 4, 8, and 16. The MSE and signal-to- 10" 10° 2 10° 10"
error ratio (SER) values are computed with respect to the fully-sampled acquired data. Fig. 1: SURE nearly matches the MSE.
Results

Figure 1 compares the SURE estimate and MSE (using the acquired full k-space as ground-truth) for L1-SPIRIT 30 % 191
reconstructions from data with 16x amplified noise for A’s from 104 to 0.1. These error criteria closely match in shape, L1 -SPIF/E;//@ =
with @ maximum deviation of 0.2 dB. The second experiment uses SURE-optimal A selection for a range of noise levels. 825 ) o £
Figure 2 shows the optimal X’s and reconstructed image SERs for both SPIRIT and L1-SPIRIT (with the SURE-optimal A) T 20 ‘ii>@/§/ 10.01 ‘gm
at these noise levels; as SNR decreases, increased regularization leads to greater improvement over un-regularized oc G ;/4; . T
SPIRIT. Figure 3 depicts sum-of-squares reconstructed images and difference images for the 4 x amplified noise case. ) 15 ) *9\ 0:1)
Discussion SPIRIT © n
These results using real data suggest that this Monte-Carlo method for automatic regularization parameter selection is 10 ‘ ‘ 0.001
effective for L1-SPIRIT reconstruction. We expect this method can be used to tune L1-SPIRIT without user intervention, 5 10 15

which is useful in practice. Because Monte-Carlo SURE is a black-box approach that uses only the output of the SNR (dB)

reconstruction and not the structure of f;, this implementation can be generalized to other parallel imaging Fig. 2. L1-SPIRIT (green) outperforms
reconstruction and denoising methods without substantial adjustment. SPIRIT (blue), while the SURE-optimal
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