Regularized Estimation of Magnitude and Phase of Multiple-Coil B1 Field via Bloch-Siegert B1 Mapping

Feng Zhao¹, Jeffrey A. Fessler², Jon-Fredrik Nielsen¹, Daehyun Yoon², and Douglas C. Noll¹

¹Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States, ²Electrical Engineering, University of Michigan, Ann Arbor, MI, United States

Introduction: Parallel excitation pulse design usually requires accurate magnitude and phase maps of the B_1 field produced by each coil. Bloch-Siegert (BS) B_1 mapping [1] has been shown to be fast and accurate; however, the B1 map produced by this phase-based method may suffer from low SNR in low magnitude regions having insufficient excitation or low spin density. This problem has been mitigated in [2] by using combinations of multiple coils for imaging excitation. However, it does not help for low spin density regions and insufficient excitation is still possible as accurate B₁ maps are unknown; furthermore, estimation of B₁ phase needs another set of scans, which is time-consuming and information redundant. In this work, we propose a regularized method to jointly estimate the magnitude and (relative) phase of multi-coil B1 maps from BS B1 mapping data without using additional scans for phase estimation. By utilizing the prior knowledge that B1 maps are smooth [3], the regularization terms can help improve quality of the B₁ maps in low magnitude regions. The method was demonstrated by phantom experiments.

Theory: We propose to acquire the standard BS B_1 mapping data [1] that needs 2*R scans (R = the number of coils). In each scan, the same coil combination is used for the BS pulse and its corresponding slice excitation pulse. The composite B_1^+ field $E_r(x)$ produced at each time r is described in (1), where $\alpha_{r,i}$ is a complex weight that indicates how the coils are combined at each time, $B_i(x)$ is the magnitude of the B₁ map produced by the *jth* coil with a unit input current, and $\phi_i(\mathbf{x})$ is the corresponding B₁ phase map. A convenient choice of $\alpha_{r,j}$ is the "all-but-one" strategy, where $\alpha_{r,r} = 0$ and $\alpha_{r,j} = 1$ when $j \neq r$. The signal models for the BS data (reconstructed images) of the *rth* pair of scans are described in (2), where r = 1, 2, ..., R; the superscripts +/- denote the scan with $+\omega_{RF}$ or $-\omega_{RF}$ BS pulse, $I_r^{\pm}(\mathbf{x})$ is the image of each scan, μ is the ratio between the actual flip and $|E_r(\mathbf{x})|$, $m_r^{\pm}(\mathbf{x})$ is the magnitude related to spin density, T₁, T₂, T_R, T_E, flip angle, receive sensitivity, magnetization transfer (MT) effect, etc., $\phi_h(x)$ is the corresponding background phase, and $K_{RS}^{\pm}(x)$ is the BS pulse constant that incorporates the B₀ field map $\omega_0(\mathbf{x})$ [1]. We simplify (2) into (3) by changing variables: $z_r(\mathbf{x}) \triangleq$ $E_r(\mathbf{x})e^{i\phi_b(\mathbf{x})}, \ \tilde{\phi}_r(\mathbf{x}) \triangleq \angle z_r(\mathbf{x}), \ \tilde{B}_r(\mathbf{x}) \triangleq |z_r(\mathbf{x})|, \ \text{and} \ M_r^{\pm}(\mathbf{x}) \triangleq sin(\mu|z_r(\mathbf{x})|) \ m_r^{\pm}(\mathbf{x}).$ Thus we can obtain the magnitude and relative phase of the B_1 maps by only estimating $\tilde{B}_r(\mathbf{x})$ and $\tilde{\phi}_r(\mathbf{x})$. $M_r^{\pm}(\mathbf{x})$ is a set of nuisance parameters that needs to be jointly estimated, but they are fortunately linear terms that can be easily estimated.

$$\begin{aligned} & \left| E_{r}(\mathbf{x}) = \sum_{j=1}^{R} \alpha_{r,j} B_{j}(\mathbf{x}) e^{i\phi_{j}(\mathbf{x})} & (1) \\ & \left\{ I_{r}^{+}(\mathbf{x}) = \sin(\mu | E_{r}(\mathbf{x})|) e^{i\lambda E_{r}(\mathbf{x})} m_{r}^{+}(\mathbf{x}) e^{i\phi_{b}(\mathbf{x})} e^{iK_{BS}^{+}(\mathbf{x})|E_{r}(\mathbf{x})|^{2}} \\ & I_{r}^{-}(\mathbf{x}) = \sin(\mu | E_{r}(\mathbf{x})|) e^{i\lambda E_{r}(\mathbf{x})} m_{r}^{-}(\mathbf{x}) e^{i\phi_{b}(\mathbf{x})} e^{iK_{BS}^{+}(\mathbf{x})|E_{r}(\mathbf{x})|^{2}} \\ & \left\{ I_{r}^{+}(\mathbf{x}) = M_{r}^{+}(\mathbf{x}) e^{i[K_{BS}^{+}(\mathbf{x})^{2} + \tilde{\phi}_{r}(\mathbf{x})]} \\ & I_{r}^{-}(\mathbf{x}) = M_{r}^{-}(\mathbf{x}) e^{i[K_{BS}^{+}(\mathbf{x})^{2} + \tilde{\phi}_{r}(\mathbf{x})]} \\ & \left\{ I_{r}^{-}(\mathbf{x}) = M_{r}^{-}(\mathbf{x}) e^{i[K_{BS}^{+}(\mathbf{x})^{2} + \tilde{\phi}_{r}(\mathbf{x})]} \\ & \left\{ H_{r}^{-}(\mathbf{x}) = M_{r}^{-}(\mathbf{x}) e^{iE_{BS}^{-}(\mathbf{x})^{2} + \tilde{\phi}_{r}(\mathbf{x})]} \\ & \left\{ H_{r}^{-}(\mathbf{x}) = M_{r}^{-}(\mathbf{x}) e^{iE_{BS}^{-}(\mathbf{x})^{2} + \tilde{\phi}_{r}(\mathbf{x})} \\ & \left\{ H_{r}^{-}(\mathbf{x}) = M_{r}^{-}(\mathbf{x}) e^{iE_{BS}^{-}(\mathbf{x})} \\ & \left\{ H_{r}^{-}(\mathbf{x}) = H_{r}^{-}(\mathbf{x}) e^{iE_{BS}^{-}(\mathbf{x})} \\ & \left\{ H_{r}^{-}(\mathbf{x}) = H_{r}^{-}(\mathbf{x}) e^{iE_{BS}^{-}(\mathbf{x})} \\ & \left\{ H_{r}^{-}(\mathbf{x}) e^{iE_{BS}^{-}(\mathbf{x})} \\ & \left\{ H_{r}^{-}(\mathbf{x}) e^{iE_{SS}^{-}(\mathbf{x})} \\ & \left\{ H_{r}^{-}(\mathbf{x}) e^{iE_{SS}^{-}(\mathbf{x}$$

Regularization enforces prior knowledge to improve estimation. It is reasonable to

assume that the magnitudes of the composite B₁ maps, $\tilde{B}_r(\mathbf{x})$, are spatially smooth. Although the absolute phase $\tilde{\phi}_r(\mathbf{x})$ is not necessarily smooth, the difference of it relative to a reference coil, e.g., $\tilde{\phi}_r(\mathbf{x}) - \tilde{\phi}_1(\mathbf{x})$, should be smooth. Therefore, a finite differencing matrix C can be applied in regularization terms to penalize roughness. Since $\tilde{\phi}_r(\mathbf{x}) - \tilde{\phi}_1(\mathbf{x})$ is likely to have phase wrap, we use the regularizer proposed in [4] that instead regularizes the roughness of $e^{i[\tilde{\phi}_r(\mathbf{x}) - \tilde{\phi}_1(\mathbf{x})]}$. Our final cost function for estimating B1 is in (4), where $\tilde{B}(\mathbf{x}) = [\tilde{B}_1(\mathbf{x}), ..., \tilde{B}_R(\mathbf{x})], \tilde{\phi}(\mathbf{x}) = [\tilde{\phi}_1(\mathbf{x}), ..., \tilde{\phi}_R(\mathbf{x})], M(\mathbf{x}) = [M_1(\mathbf{x}), ..., M_R(\mathbf{x})], \beta_1 \text{ and } \beta_2 \text{ are scalar regularization parameters.}$ We estimate all the unknowns by minimizing $\Psi(\tilde{B}(x), \tilde{\phi}(x), M(x))$, during which $\tilde{B}(x), \tilde{\phi}(x)$ and M(x) are cyclically updated. We update M(x) by simply taking the real least square solution of (4) in each iteration. We use conjugate gradients with line search algorithm [5] to update $\tilde{B}(x)$ and $\tilde{\phi}(x)$, where backtracking line search [6] and monotonic line search [5] are used for $\tilde{B}(x)$ and $\tilde{\phi}(x)$ respectively. The standard approach [1] produces good initial guess for $\tilde{B}(x)$, and initial guess of $\tilde{\phi}(x)$ can then be solved analytically from equation (3) once $\tilde{B}(\mathbf{x})$ is initialized, without knowing $M(\mathbf{x})$. Once $\tilde{B}(\mathbf{x})$ and $\tilde{\phi}(\mathbf{x})$ are estimated, the magnitude and relative phase of the original coils can be derived easily by (5), where $\phi'_r(\mathbf{x}) = \phi_r(\mathbf{x}) + \phi_b(\mathbf{x})$ which does not change the relative phase of the *r*th coil.

Methods and Results: The proposed method was tested by a phantom experiment on a 3T GE scanner equipped with an 8-coil custom parallel transmit/receive system [7]. Other than a routine B_0 mapping, we did a total of 16 scans with "all-but-one" coil combinations for the excitation and the BS pulse, where 8 ms Fermi BS pulses with ±4000 Hz off-resonance were followed by 2D spin-warp readout. Sequence parameters: 5 mm slice thickness, matrix 64*64, 26 cm FOV. Fig. 1 shows the results by the proposed method and the conventional magnitude is method (\mathbf{B}_1) computed as in [1] and B_1 phase is computed by solving (3)).

Conclusions: The proposed method uses the same coil combinations for the slice excitation and BS pulses to jointly estimate B₁ phase and magnitude, which saves the set of R scans for phase estimation. This iterative

Fig. 1: B1 magnitude and relative phase of each individual coil

regularized estimation produces improved B1 magnitude and phase maps for low SNR regions. Future work will be to optimize the coil combinations, *i.e.*, $\alpha_{r,i}$ in (1), to better reduce low excitation regions.

References: [1] Sacolick et al., MRM 63:1315-1322, 2010. [2] Sacolick et al., Proc. ISMRM 19:2926 (2011). [3] Funai et al., IEEE ISBI, 2007. [4] Zhao et al., Proc. ISMRM 19:2841 (2011). [5] Fessler et al., IEEE TIP, 8: 688-99, 1999. [6] K. Lange. Numerical analysis for statisticians, 1999. [7] System provided by group from Texas A&M University

Acknowledgements: This work is supported by NIH Grant R01NS58576.