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INTRODUCTION 
Field inhomogeneity affects magnetic resonance (MR) imaging techniques that use long readout times (e.g., spiral pulse sequences and echo-planer imaging (EPI)).  To 
correct for reconstruction artifacts related to the inhomogeneity, one must have an accurate estimate of the off-resonance frequency at each voxel; i.e., a field map.  The 
conventional method to estimate the field map is to acquire two scans with different echo times, reconstruct the corresponding images, and then compute their phase 
difference and divide by the difference in echo times [1].  However, such estimates are highly corrupted by noise in voxels with low signal.  Instead, Funai et al. [1] 
proposed a statistical based estimator that enforces our a priori knowledge that the field maps should be smooth.  Although highly robust, this estimator has a non-
convex cost function that is complicated to minimize.  To address this, a solution using the optimization transfer principle and separable quadratic surrogates was 
proposed [1].  However, this approach can require thousands of iterations to converge.  Since field maps of a 3D volume are often estimated on a slice-by-slice basis, 
this cost is significant.   We present a novel optimization transfer method that uses Huber’s algorithm for quadratic surrogates [2] to minimize the non-convex cost 
function in [1] much faster.   
 
METHODS 
The field map estimator presented in [1] minimizes the following non-convex cost function: 2
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Note that ωj is the field inhomogeneity at the jth voxel, ω = (ω1, ω2, ..., ωN) is the unknown field map, N is the number of voxels, L is the number of scans, yj

n  is the jth 
voxel of image n, Δn is the echo time for scan n, β is a regularization parameter, and C is a finite differencing matrix.  This cost function is non-convex; however, it is 
differentiable and can therefore be minimized using optimization transfer methods [2].  The following quadratic surrogate for the data fit term, ( ),jmp jϕ ω was proposed 

in [1]:  
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=∑ ∑  and b is a vector of constants.  The Hessian of this surrogate cost function is                  

H = D(n) + βCHC.  Although CHC is very large for typical image sizes, it has a sparse banded structure, and thus, H also has this structure.  We can therefore use sparse 
Cholesky factorization techniques (e.g., [3]) to efficiently solve a linear system of equations based on H (i.e., solving H-1x for arbitrary x).  Exploiting this efficiency, 
we use Huber’s algorithm for quadratic surrogates [2] to obtain an iterative algorithm for monotonically decreasing the original cost function (Ψ(ω)): 
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RESULTS 
We evaluated our algorithm with a 128×128 pixel brain image and a field map acquired on a 3T GE 
scanner, Figure 1(a-b).  We combined this field map with the brain image to create three scan images, 
y(n), with echo times Δn = 0, 0.002, 0.01 s and R2 = 20 s-1.  Figure 1(c) presents the masked conventional 
field map estimate from the first two of these scans.  We also estimated the field maps using the 
separable quadratic surrogate method [1] and our proposed Huber’s algorithm approach, Figure 1(d-e).  
In both cases we used a masked version of the conventional estimate as the initialization image and set    
β = 2-6.  For each optimization transfer method, the RMS difference (RMSD) in Hz between each 
iteration and the corresponding converged estimate was computed within the object support.  Plots of 
these errors versus both time and iteration are presented in Figure 2. 
 
CONCLUSIONS 
The cost function is non-convex so the two optimization transfer function methods 
can converge to different local minima.  In this case we found that the two methods 
converged to solutions with an RMSD of only 0.05 Hz within the object support.  Our proposed Huber’s 
algorithm converged to an RMSD of 1 Hz in 29 steps, while the separable quadratic surrogate algorithm 
required approximately 15000.  This was expected because our proposed method uses the exact Hessian 
of the surrogate Θ(ω), whereas the algorithm in [1] uses a diagonal matrix with larger entries.  
Furthermore, although each step of our proposed algorithm took longer, it was also faster in time, 
converging in 6 s compared to 600 s for the existing algorithm.  It should be noted that although sparse 
Cholesky factorization is efficient on typical image sizes, it is memory intensive.  Thus, other approaches 
may be more appropriate for very large datasets such as true 3D volumes.  To address this, we have 
explored an augmented Lagrangian based solution, similar to [4], that provides estimates at a rate 
between that of our proposed method and the existing method. 
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Figure 1: Magnitude of the brain image (a) and field 
map (b) used in the experiment. Masked estimates using 
the conventional method (c), our proposed method (d), 
and the existing separable quadratic surrogate method (e).

Figure 2: Plots of RMSD to the converged estimate with
respect to iteration (left) and time (right) (cropped to show
detail).
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