
Fig. 1: Results of experiment with breast 
phantom dataset. (a) Plot comparing the 
convergence rates of the AL and CG 
algorithms. (b) Body coil image. (c) One 
surface coil image. (d) Polynomial fit 
initialization image. (e) AL sensitivity 
estimate. 
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INTRODUCTION 
Accurate coil sensitivity estimates are necessary to avoid artifacts from parallel imaging techniques such as SENSitivity Encoded reconstruction (SENSE) [1].  The 
simplest sensitivity estimate is the quotient of an image obtained using the surface coil (z) and an image obtained using a body coil (b) with near uniform sensitivity 
over the field-of-view (FOV), z/b.  However, such an estimate will be highly corrupted in areas of low signal and will have discontinuities at object edges, contrary to 
the smooth nature of true coil sensitivities.  Several improved sensitivity estimation methods have been developed (see [2] for a summary), the most accurate of these 
being regularized methods such as the variational approach [2] and inpainting [3].  These regularized methods require significant computation in cases of high noise or 
when the FOV has large regions of low signal.  We therefore propose a method that uses the Augmented Lagrangian (AL) formalism to efficiently compute regularized 
estimates.  We also present an orthonormal polynomial fitting procedure that provides cost effective initializations for iterative estimation methods. 
 
METHODS 
We pose the sensitivity estimation problem as the minimization of a regularized cost function, C0: argmin  1 2⁄ λ , where s is the coil 
sensitivity, D diag{b} is a diagonal matrix, λ is a regularization parameter, R corresponds to a finite differencing matrix, and M diag{  is a binary mask with 1 for object pixels.  The mask helps ensure that the estimate is based only on pixels that provide meaningful sensitivity information.  As in [2], we use quadratic 
regularization as it provides accurate estimates while enabling efficient implementations.  The non-iterative solution to C0 requires the inversion of a large matrix, thus 
we propose an iterative AL solution method. 
 We rewrite C0 as the equivalent constrained optimization problem C1: argmin , ,  1 2⁄ λ  subject to u0 Ru  and u1 s.  Following 
[4], we then construct an AL function for C1 as L , , μ 1 2⁄ λ μν 2⁄ μν 2⁄ , where η=[ ,  are 
Lagrange multipliers, u=[ , , , and μ, ν , ν 0 are scalar parameters that control the convergence properties.  We use an alternating minimization scheme to solve 
the AL function resulting in the final estimation algorithm (see below).  In step 2 of the algorithm, we avoid inverting a large matrix by approximating the update using 
a few iterations of the conjugate gradient (CG) method with a circulant pre-conditioner.  Step 3 can be efficiently computed as the matrix requiring inversion is 
diagonal.  We choose the AL parameters by first setting ν 0.05 and then selecting ν  and μ so that the condition numbers of the matrices in step 2 and step 3 are 120 
and 10, respectively.  These parameter values have worked well for several distinct datasets.  
 To reduce the convergence time of the iterative methods, we initialize with an estimate based on polynomial fitting.  We avoid computing the ratio z/b by posing 
the initialization problem as argmin  , where , , … ,  is a matrix of 2D-Chebyshev polynomials of the first kind.  The least squares 
solution to this problem is well conditioned due to the orthonormality of the Chebyshev polynomials. 
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RESULTS 
We evaluated our algorithm with a set of contrast-enhanced breast phantom images acquired using four surface coils 
and one body coil and reconstructed with an iFFT (Philips 3T, TR = 4.6 ms, matrix = 94 384).  Figs. 1b and 1c 
present the body coil image and a representative surface coil image, respectively.  This dataset is particularly 
challenging for sensitivity estimation due to the large regions with both low and zero signal.  Based on extensive 
simulation, we chose R to be a second order finite differencing matrix, λ 2 , and selected M by thresholding the 
body coil image.  Estimates of the coil sensitivities were found using both the AL method and by applying CG to C0.  
For step 2 of the AL method, one iteration of CG provided the fastest overall convergence time.  Polynomials of up to 
degree three provided the best initialization for both the AL and CG algorithms (Fig. 1d), saving 40 seconds of 
computation time.  Fig. 1e presents the resulting AL estimate for the surface coil in Fig. 1c.  The four AL estimates 
were used in a SENSE reconstruction with acceleration factor of two. The resulting reconstructed image contained no 
noticeable artifacts, indicating sufficient estimation accuracy.  Since the true coil sensitivities are unknown, we ran 
both algorithms to convergence and used an average of their final estimates as the “truth”, .  Fig. 1a compares the 
convergence properties of the AL and CG algorithms by plotting the normalized L2-distance between the estimate 
and the converged image ( ⁄ ) against the elapsed time including initialization.  It is apparent that the 
AL algorithm converged in approximately half the time of the CG method.  Similar results (not shown) were obtained 
for the other breast phantom surface coils, as well as for simulated brain data with known sensitivity maps. 
 
CONCLUSIONS 
Our Augmented Lagrangian estimation method provides accurate coil sensitivity estimates even in challenging cases 
where the images have large regions of low signal.  Furthermore, the AL method exhibits significantly improved 
convergence times compared to CG.  We have also developed an efficient initialization method that can notably 
reduce the time to convergence. 
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