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Introduction The optimal control method [1,2] is among existing techniques for large-tip-angle RF pulse design in parallel excitation [1,3-5]. 
Optimal control has some advantages over other methods; it is robust, it applies to general excitation trajectories, and it provides control over the 
excited phase pattern. However, it requires long computation times, rendering it unsuitable for online pulse design. We introduce a fast optimal 
control method that achieves the same accuracy as optimal control in a shorter time, and with reduced memory requirements. 

Theory The proposed fast optimal control method is based on a linearization of the spin-domain 
Bloch equation about an initial set of large-tip-angle pulses 

  

b1,K,bR{ }, where R is the number of 

coils. It is derived by subtracting the Bloch equation for 
  

b1,K,bR{ } from that of a perturbed pulse 

set 
  

b1 + ˜ b 1,K,bR + ˜ b R{ }, where 
  

˜ b 1,K, ˜ b R{ } are perturbation pulses we will design. This yields 

differential equations for the perturbations ˜ α *, ˜ β ( ) to the initial pulses’ spinor parameters (α0*,β0) 

caused by the perturbation pulses. Approximating cross terms between ˜ α *, ˜ β ( ) as zero decouples 

their solutions, and focusing on ˜ β  (a symmetric analysis applies to ˜ α ), we have: 

 
where sr is coil r’s transmit sensitivity and T is the pulse length. For pulse design, we would like to 
evaluate (1) rapidly using non-uniform fast Fourier transforms (NUFFT’s) [6]. Though it contains a 
Fourier kernel, (1) is non-Fourier due to α0*(x,t), which, when discretized, becomes a high-rank 
matrix α0. To enable fast computation, we transform α0*(x,t) to a frame rotating at the frequency 
induced by the gradients, and absorb the transforming complex exponential into the Fourier kernel. 
In the gradient frame α0 has low rank, and can be accurately approximated as: 

 
using small L. To obtain D’, we compute the SVD of α0* for a small subset of spatial locations. We 
then compute the least-squares optimal coefficients C for all spatial locations using a running sum 
during Bloch simulation, obviating the need to store the full α0* matrix. In matrix/vector form: 

 
where G is an NUFFT operator. We use ˜ β  and ˜ α  to calculate the 

perturbed magnetization. To design 
  

˜ b 1,K, ˜ b R{ } we form a least-

squares cost function in terms of the magnetization and minimize it 
using a linear Conjugate Gradient (CG) algorithm. 

We designed echo-planar (EP) inversion pulses using both methods 
for an 8-channel head array [7] in MATLAB 7.2 (Mathworks, Natick, 
MA, USA) on a 3.4GHz PIV PC with 2Gb RAM. The desired 
inversion pattern (Fig. 1) was a smoothed 10 x 5 cm rectangle, with 
FOV 24cm and resolution 0.375 cm. The EP trajectory had resolution 
0.625 cm and XFOV = 8 cm, (speedup factor = 3, T = 4.6 ms). The 
fast method alternated between 25 CG iterations and a Bloch simulation to update the (α0*,β0) approximations, which used L=4. Conventional 
optimal control used gradient descent, with a step size chosen to maximize the decrease in error per iteration while avoiding divergence.  Normalized 
RMS error (NRMSE) vs. compute time was recorded. Both methods were initialized with small-tip-designed pulses [8]. 

Results Figure 2 shows the longitudinal magnetization excited by the fast optimal control-designed pulses. NRMSE for these pulses is 0.0918. Figure 
3 shows that to reach this error, conventional optimal control required much more time than the fast method; 238 minutes compared to 6.5 minutes, 
or 37 times longer. Furthermore, efficient implementation of conventional optimal control requires storage of 6 Ns x Nt matrices, where Ns is the 
number of spatial points, and Nt is the number of RF pulse samples per coil. Storage of these matrices can be prohibitive for longer pulse lengths and 
for 3D pulse design. In contrast, the fast method only requires storage of NUFFT interpolators, 2 Ns x L matrices, and 2 Nt x L matrices.  

Conclusion We have introduced a fast optimal control method for parallel excitation, and demonstrated its ability to produce pulses of the same 
quality as conventional optimal control in a much shorter time, and with smaller memory requirements. The fast method uses the efficient linear CG 
algorithm to design pulses. Though pulse design with the fast method still required several minutes, the method presents several opportunities to 
accelerate computation, e.g. by computing NUFFT’s in parallel, and by parallelizing Bloch simulations temporally or spatially.  
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Figure 1. Desired inversion pattern. 

 
Figure 2. Inversion pattern excited by the fast 
optimal control-designed pulses, NRMSE = 0.0918.  

 
Figure 3. Measured design times for conventional and fast optimal control methods. 
The fast method achieves a 37-fold reduction in compute time. 
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