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Fig. 2: Enhancement curve 
for simulated lesion 

Fig. 4: True image (A) and reconstructions with zero-padding (B), 
Keyhole (C), RIGR (D), and accelerated iterative method (E). 
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Fig. 3: Reconstruction error 
 

Fig. 1: k-space trajectory 
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Introduction: 
The fundamental challenge in dynamic MR imaging is the tradeoff between spatial resolution and temporal resolution.  Most traditional dynamic 
image acquisition methods and associated image reconstruction methods have been based on k-space operations.  One acquires a temporal sequence 
of incomplete k-space sample sets, along with one (or two) complete reference datasets, and then employs some form of data sharing between the 
sets to find the “missing” data.  Finally an inverse FFT is applied to the imputed k-space datasets to form the dynamic image sequence.  The Keyhole 
method and reduced-encoding imaging with generalized-series reconstruction (RIGR) are two examples of data sharing techniques [1,2]. 

Both Keyhole and RIGR are based on the implicit assumption that the object varies smoothly over time.  In this work, we use a model-
based reconstruction method that does not require recovering data in the frequency domain, but rather relies on explicit temporal interpolation in the 
image domain.  Similar formulations have been studied in electrocardiography [3-5], and applied to simulated cardiac MRI data [6].  This method 
requires minimization via the iterative Conjugate Gradient (CG) algorithm, which requires more computation than traditional keyhole methods.  To 
reduce computation, we present an accelerated CG algorithm for dynamic imaging based on Toeplitz matrices and FFT operations [7]. 
 
Theory: 
In a dynamic acquisition, the measured data is a collection of M scans, y1,…, yM.   
We parameterize the dynamic object ( , )f r t

r

during the m-th scan using 

 
Based on the signal equation, the measurement model becomes  
 
 
where 1 ,( ) is the Fourier Transform of ( ) and ( ,..., ).m m m NP p r x x xυ =r r

  

 Our reconstruction is formulated as 
 
 
 
 
where R1(x) and R2(x) are temporal and spatial regularization terms, respectively.  
A key step (and the most computationally expensive one) in minimizing Ψ(x) via 
CG is computing its gradient: 
 
 
We can rewrite this as 
 
 
where T = A’A and b = A’y.  Because b does not depend on x, it needs to be 
computed only once.  For equally spaced basis functions, T is block Toeplitz with 
Toeplitz blocks.  Calculating the gradient involves multiplying T by the current 
guess of x, which can be done efficiently by embedding T into a block circulant 
matrix and doing an FFT [7].  This acceleration technique has been investigated  
previously in field-corrected MR image reconstruction [8], but has not yet been  
applied to dynamic MRI. 
 
Results and Discussion: 
Contrast agent uptake was simulated using a real bilateral breast image with an inserted (simulated) circular lesion.  The lesion exhibited 
enhancement over time according to the curve in Fig. 2, while the rest of the image remained static.  We generated k-space data for one reference 
frame (prior to enhancement) and eight subsequent, undersampled (by a factor of 16) frames, using the k-space trajectory in Fig. 1.  The data was 
reconstructed using four methods: zero-padding, Keyhole, RIGR, and our accelerated iterative temporally regularized method.  Fig. 3 shows the 
normalized root mean square (NRMS) error for each of the reconstruction methods.  The Fig. 4 shows reconstructed images from the 5th timepoint.  
The regularized method yields lower NRMS error and reduced blur.  For this study, the Toeplitz-modified CG method was 1.7 times faster than the 
original CG method.  In summary, iterative reconstruction using temporal regularization shows promise for dynamic contrast enhanced MRI, both in 
terms of spatial resolution and temporal resolution.  The computation time for this method can be greatly reduced by using the proposed Toeplitz 
acceleration of the CG algorithm. 
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