October 7, 2013 12:40

Homework #2, EECS 755, W13. Due Wed. Oct. 9 by 5:00 PM

Hand in solutions to at least 3 of the first 7 problems and do problem 8.

_ Regularization _____

1. [10] Often it is assumed that the constrained minimization problem

$$\hat{\boldsymbol{x}}_k \triangleq \operatorname*{arg\,min}_{\boldsymbol{x}} \boldsymbol{\mathsf{L}}(\boldsymbol{x}) \text{ sub. to } \boldsymbol{\mathsf{R}}(\boldsymbol{x}) \le k$$
 (E1)

1

is equivalent, for some choice of regularization parameter β , to the following regularized problem:

$$\hat{\boldsymbol{x}}(\boldsymbol{\beta}) \triangleq \arg\min \boldsymbol{\mathsf{L}}(\boldsymbol{x}) + \boldsymbol{\beta} \, \mathsf{R}(\boldsymbol{x}) \,.$$
 (E2)

Consider the Poisson denoising problem where $y \sim \text{Poisson}\{x+r\}$, where r is a known nonnegative vector, with *counting* measure regularizer $R(x) = ||x||_0$. Find analytical solutions to \hat{x}_k and $\hat{x}(\beta)$ above and determine if they are equal for some choices of β and k [1,2].

2. [10] Use 2D FT properties to prove that the thin-plate regularizer (2.4.2) is rotation invariant.

- 3. [10] Use (2.5.6) to describe how to determine the value of β that minimizes the *worst case* MSE over all signals with $\|x\| \le 1$. This is a *min-max regularization parameter* selection method.
- 4. [10] Choose an image x_{true} and a shift-invariant blur b[n,m] with circulant end conditions and create a noisy, blurry image $y = Ax + \epsilon$. Apply the image restoration method of Example 2.5.1 with quadratic regularization based on 1st-order finite differences for a range of values of β . Plot MSE $_{\beta}$ and locate β_{MSE} . Plot at least one of $|RSS(\hat{x}_{\beta}) n_d|$ or $|RSS(\hat{x}_{\beta}) REDF(\beta)|$ or $\Phi_{CV}(\beta)$ or $\Phi_{GCV}(\beta)$ and indicate the corresponding "optimized" β values to compare to β_{MSE} . Examine the restored images \hat{x}_{β} at β_{MSE} and the optimized value of β select by the criterion you chose. Hint: no iterations are needed; this can be done using FFT operations.
- 5. [10] Extend Problem 1.12 to the case of the generalized Fair potential in §2.7.4.
- 6. [10] This problem generalizes (2.8.2) and outlines the derivation of (2.8.3). (It also relates to certain *half quadratic* methods in the literature.) Let ψ be any differentiable, symmetric potential function for which (see Theorem 12.5.5) the *potential weighting* function $\omega_{\psi}(t) = \dot{\psi}(t) / t$ is finite at t = 0 and monotone decreasing for t > 0. Let $g(l) \triangleq \omega_{\psi}^{-1}(l)$ denote the inverse of ω_{ψ} and, motivated by (12.5.15), define the function

$$u(l) = \psi(g(l)) - \frac{1}{2}lg^2(l).$$
(E3)

Show that minimizing (2.8.2) over l_k yields $l_k = \omega_{\psi} \left(\sqrt{\sum_{m=1}^{M} \left| \left[\boldsymbol{C} \boldsymbol{x}_m^{(n)} \right]_k \right|^2} \right)$. Determine which potential function ψ corresponds to (E3).

- 7. [10] Consider a trapezoid defined by $f(x) = \begin{cases} h, & |x| < a \\ h\left(1 \frac{|x|-a}{b-a}\right), & a \le |x| < b \text{ for } 0 \le a < b \text{ and } h > 0. \end{cases}$ Solve the optimization problem $\min_{a,b,h} \text{TV}(f)$ subject to $\int f(x) \, dx = 1$ and $f(x_0) = 0$ for a given $x_0 > 0$.
- 8. [0] Please do the mid-term course evaluation online. Your feedback is very important to me. Thanks.

D. J. Lingenfelter, J. A. Fessler, and Z. He. Sparsity regularization for image reconstruction with Poisson data. In *Proc. SPIE 7246 Computational Imaging VII*, page 72460F, 2009.

^[2] M. Nikolova. Description of the minimizers of least squares regularized with ℓ_0 -norm. Uniqueness of the global minimizer, 2013.