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Homework #1, EECS 755, W13. Due Wed. Sep. 25 by 5:00 PM

Hand in solutions to any 5 of the following problems.

Image restoration

1. [10]

An image restoration method uses object model (1.3.6) with a 2D rectangular basis function: 5o (z,y) = recta(x/Dx,y/Ay) .
The sensor is shift invariant with a rectangular blur: b(z,y) = m rects ( zA -, 74 ) - Assuming zero end conditions,

determine the values of elements a;; of the system matrix A. Assume both the spacing of the sensor elements and the spacing of
the object basis functions are (Ax, Av).

2. [10] If a matrix M is square and circulant, then computing Q@ M Q™" will yield an exactly diagonal matrix, where Q
is the DFT matrix defined in (1.4.27). Consider the following four representations of a system matrix A: (1.4.7), (1.4.9),
(1.4.10), and (1.4.13). For each representation, using MATLAB to compute D = Q A’ AQ ™" for the impulse response b[n] =
d[n —1]+26[n]+d[n+ 1] and for N = 64. (Hint: you can create each of the A matrices needed in one or two lines of
MATLAB using convmtx.) Display for yourself the ID matrices to visualize how close to diagonal they are. Compute the

fractional off-diagonal “energy” as follows:
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Compare the four models using this quantitative measure of “non-circulant-ness.”

3. [10] For any n;, x n;, unitary matrix U, consider the penalized-likelihood cost function

(@)= 5y~ Ual* + B v(x).

Jj=1

e Defining gy = U'y, and using the fact that
"p
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ly = Uz|® = Uy — || =Y 1§, — I,
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find an analytical solution for & in terms of g, for the I, regularized case where ¥ (t) = |t|. Sketch & vs ;.
e Compare to the solution when an I, penalty is used where ¢(t) = 3 |2
Repeat for at least one more of the following potential functions.
e lo potential: 1 (t) = 114403
e The truncated absolute value potential: ¢ (¢) = min(|¢t|, ¢).
e The broken parabola potential: 1(t) = min(% It]?, %52)
e Huber potential (1.10.9).
e Generalized-gaussian potential (challenging!): 1 (t) = |¢|?, for p # 1. (Focus on p € {1/2,4/3,3/2,2,3,4} [2].)

e The hyperbola potential (challenging!): 1(t) = 62(1/1 + |t/8]* — 1).

This problem relates to wavelet-based denoising using shrinkage [3] and soft thresholding [4,5].

4. [10] Let Dy denote the (N —1) x N one-dimensional finite-differencing matrix shown in (1.8.4), and Iy denote the N x N
identity matrix. Show that the simple quadratic penalty (1.10.1) that uses only horizontal and vertical differences can be written
in the form (1.10.7), where C is the following [M (N — 1) + N(M — 1)] x N M matrix:

C:{IM@DN], (E1)

Dy @Iy

and “®” denotes the Kronecker product defined in (25.1.12).
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5. [10]

For regularized restoration of a N x )M image using a penalty function R(z) = 3 |C||* , one option is to use

| Dnu
C= { T ], (E2)
where T is an N (M — 1) x NM Toeplitz matrix with first row [—1 0%y _; 1 0%y, y_,], Where 0y denotes the row vector of
N zeros. Another option is to use C' defined in (E1). Using (E2) may be slightly faster (in ANSI C). Explain the advantage of
using (E1).

6. [10] The 1D regularizer Hessian matrix in (1.8.6) has eigenvalues given in footnote 12.

Consider the 2D regularizer C for a N x M image given in (E1), and define the Hessian matrix R = C’C'. Determine analytically
the eigenvalues of R.

7. [10] This problem considers whether the penalized least-squares cost function () in (1.10.11) has a unique minimizer in
the usual cases where A and C have disjoint null spaces.
e Prove that if the potential function v used in (1.10.11) is twice differentiable with a positive second derivative, then U is
strictly convex (and thus has a unique minimizer).
e What if 1 is strictly convex, but does not necessarily have a positive second derivative? An example would be v(t) = t*.
e What if ¢ is merely convex, like the Huber function? Hint: see Fig. 1.
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Figure 1: Contours of data fit term, regularizer, and cost function ¥ () for Problem 1.25.

8. [10]

Consider the regularized least-squares problem (1.10.11) with regularizer (1.10.10) and the usual 1st-order finite differencing
matrix C.
e Ken uses the generalized-gaussian potential function v(¢) = |¢|? with ¢ = 1.5, and states that the solution % satisfies the
recursive expression (1.10.15). Discuss.
e Maria uses the Geman & McClure potential function v(t) = t2/(1 + t2) and also states that the solution & satisfies the
recursive expression (1.10.15). Discuss.

9. [10] Use circulant end conditions to synthesize a gaussian random field image like that in Fig. 1.7.1, for the 2D finite
differencing matrix C' defined in (1.10.8).

Hint. The goal is to draw « ~ N(0, K ), so let x = K2/?w where w ~ N(0, I) . In this case, K, = [C'C] " . Because K is
not invertible, use its pseudo inverse.
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[10] Consider the discrete-space denoising problem with no boundary conditions and zero-mean white noise:
gln] = f[n] +¢[n], nezZ,.

Analyze the spatial resolution properties of the following quadratically-regularized denoising estimator for 3 > 0:

fmagmin 3 3 lgll = Sl +B 3" 3 Uflnl Sl — 1)

n=—oo n=—oo

Hint. Using the DTFT, first find the frequency-domain relationship between E [ ﬂ and f.

Optional: show that E [ f} = h * f, where the impulse response is

hin] = ab"! = qeosblinl - j — L+28 —V1+4B _ 2p ’
28 1+ 2B+ vIt4ap
1

where a = % T7ap - Note that 0 < b < 1. Use §26.6.1. This is one of the few cases where we can find an explicit expression

for the impulse response of a regularized problem [6, 7].
Determine the FWHM of the impulse response in terms of b.

[10] Find a matrix C such that when f(t) = 2?21 x; tri(t — j), we get equivalent values for the following continuous-space
and discrete-space roughness penalty functions:
12
1] at=cape.
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