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Homework #1, EECS 755, W13. Due Wed. Sep. 25 by 5:00 PM

Hand in solutions to any 5 of the following problems.

Image restoration

1. [10]

An image restoration method uses object model (1.3.6) with a 2D rectangular basis function: β0(x, y) = rect2(x/△X, y/△Y) .

The sensor is shift invariant with a rectangular blur: b(x, y) = 1
4△X△Y

rect2

(
x

2△X
, y
2△Y

)
. Assuming zero end conditions,

determine the values of elements aij of the system matrix A. Assume both the spacing of the sensor elements and the spacing of
the object basis functions are (△X,△Y).

2. [10] If a matrix M is square and circulant, then computing QMQ−1 will yield an exactly diagonal matrix, where Q
is the DFT matrix defined in (1.4.27). Consider the following four representations of a system matrix A: (1.4.7), (1.4.9),
(1.4.10), and (1.4.13). For each representation, using MATLAB to compute D = QA′AQ−1 for the impulse response b[n] =
δ[n− 1]+2 δ[n] + δ[n+ 1] and for N = 64. (Hint: you can create each of the A matrices needed in one or two lines of
MATLAB using convmtx.) Display for yourself the D matrices to visualize how close to diagonal they are. Compute the
fractional off-diagonal “energy” as follows: √∑

k ̸=j |dkj |
2√∑

k,j |dkj |
2
.

Compare the four models using this quantitative measure of “non-circulant-ness.”

3. [10] For any np × np unitary matrix U , consider the penalized-likelihood cost function

Ψ(x) =
1

2
∥y −Ux∥2 + β

np∑
j=1

ψ(xj) .

• Defining ỹ = U ′y, and using the fact that

∥y −Ux∥2 = ∥U ′y − x∥2 =

np∑
j=1

|ỹj − xj |2 ,

find an analytical solution for x̂ in terms of ỹ, for the l1 regularized case where ψ(t) = |t|. Sketch x̂j vs ỹj .
• Compare to the solution when an l2 penalty is used where ψ(t) = 1

2 |t|
2.

Repeat for at least one more of the following potential functions.
• l0 potential: ψ(t) = 1{t ̸=0}.
• The truncated absolute value potential: ψ(t) = min(|t| , δ).
• The broken parabola potential: ψ(t) = min

(
1
2 |t|

2
, 1

2δ
2
)

.
• Huber potential (1.10.9).
• Generalized-gaussian potential (challenging!): ψ(t) = |t|p, for p ̸= 1. (Focus on p ∈ {1/2, 4/3, 3/2, 2, 3, 4} [2].)

• The hyperbola potential (challenging!): ψ(t) = δ2(

√
1 + |t/δ|2 − 1).

This problem relates to wavelet-based denoising using shrinkage [3] and soft thresholding [4, 5].

4. [10] Let DN denote the (N−1)×N one-dimensional finite-differencing matrix shown in (1.8.4), and IN denote theN×N
identity matrix. Show that the simple quadratic penalty (1.10.1) that uses only horizontal and vertical differences can be written
in the form (1.10.7), where C is the following [M(N − 1) +N(M − 1)]×NM matrix:

C =

[
IM ⊗DN

DM ⊗ IN

]
, (E1)

and “⊗” denotes the Kronecker product defined in (25.1.12).
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5. [10]

For regularized restoration of a N ×M image using a penalty function R(x) = 1
2 ∥Cx∥2 , one option is to use

C =

[
DNM

T

]
, (E2)

where T is an N(M − 1) × NM Toeplitz matrix with first row [−1 0′
N−1 1 0′

NM−N−1], where 0′
N denotes the row vector of

N zeros. Another option is to use C defined in (E1). Using (E2) may be slightly faster (in ANSI C). Explain the advantage of
using (E1).

6. [10] The 1D regularizer Hessian matrix in (1.8.6) has eigenvalues given in footnote 12.

Consider the 2D regularizer C for aN×M image given in (E1), and define the Hessian matrix R = C ′C. Determine analytically
the eigenvalues of R.

7. [10] This problem considers whether the penalized least-squares cost function Ψ(x) in (1.10.11) has a unique minimizer in
the usual cases where A and C have disjoint null spaces.
• Prove that if the potential function ψ used in (1.10.11) is twice differentiable with a positive second derivative, then Ψ is

strictly convex (and thus has a unique minimizer).
• What if ψ is strictly convex, but does not necessarily have a positive second derivative? An example would be ψ(t) = t4.
• What if ψ is merely convex, like the Huber function? Hint: see Fig. 1.
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Figure 1: Contours of data fit term, regularizer, and cost function Ψ(x) for Problem 1.25.

8. [10]

Consider the regularized least-squares problem (1.10.11) with regularizer (1.10.10) and the usual 1st-order finite differencing
matrix C.
• Ken uses the generalized-gaussian potential function ψ(t) = |t|q with q = 1.5, and states that the solution x̂ satisfies the

recursive expression (1.10.15). Discuss.
• Maria uses the Geman & McClure potential function ψ(t) = t2/(1 + t2) and also states that the solution x̂ satisfies the

recursive expression (1.10.15). Discuss.

9. [10] Use circulant end conditions to synthesize a gaussian random field image like that in Fig. 1.7.1, for the 2D finite
differencing matrix C defined in (1.10.8).

Hint. The goal is to draw x ∼ N(0,Kx), so let x = K
1/2
x w where w ∼ N(0, I) . In this case, Kx = [C ′C]

−1
. Because Kx is

not invertible, use its pseudo inverse.
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10. [10] Consider the discrete-space denoising problem with no boundary conditions and zero-mean white noise:

g[n] = f [n] + ε[n], n ∈ Z, .

Analyze the spatial resolution properties of the following quadratically-regularized denoising estimator for β > 0:

f̂ = argmin
f∈ℓ2

∞∑
n=−∞

1

2
|g[n]− f [n]|2 + β

∞∑
n=−∞

1

2
|f [n]− f [n− 1]|2 .

Hint. Using the DTFT, first find the frequency-domain relationship between E
[
f̂
]

and f .

Optional: show that E
[
f̂
]
= h ∗ f, where the impulse response is

h[n] = ab|n| = a e−|log b||n| , b =
1 + 2β−

√
1 + 4β

2β
=

2β

1 + 2β+
√
1 + 4β

,

where a = 1+b2

1−b2
1

1+2β . Note that 0 < b < 1. Use §26.6.1. This is one of the few cases where we can find an explicit expression
for the impulse response of a regularized problem [6, 7].
Determine the FWHM of the impulse response in terms of b.

11. [10] Find a matrix C such that when f(t) =
∑np

j=1 xj tri(t− j),we get equivalent values for the following continuous-space
and discrete-space roughness penalty functions: ∫ ∣∣∣ḟ ∣∣∣2 dt = ∥Cx∥2 .
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