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9.0 Review

Final course notes on gdrive.

Two principal kinds of questions.
• Procedural. Given Ψ(x), given algorithm (by name), then implement/analyze it

Interesting Exam2 sample questions (by pdf file page)
• p1: composite with ‖x‖1 and box constraint
• p20: LS + hinge regularizer
• p24: sigmoid as smooth 0-1 loss
• p43: prox for leaky ReLU
• p44: hinge + 0-norm

• Conceptual. Given application, then determine Ψ(x), choose algorithm, and implement/analyze it
• p2: ‖x‖0 constraint
• p6: L+S
• p45: compressed sensing with transform/analysis sparsity
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Caroline’s review diagram 
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Binary classifier design: Review

General cost function for binary classifier design for sign(v′x) with x ∈ RN , A ∈ RM×N , β ≥ 0:

Ψ(x) = f(x) + β ‖x‖pp , f(x) = 1′Mh.(Ax), p ∈ {1, 2}

Quadratic

h(t) =
1

2
(t− 1)2 =⇒ f(x) = 1′Mh.(Ax) =

1

2
‖Ax− 1M‖22 Picture

Method for p = 2?
A: GD B: CG C: OGM D: POGM E: ADMM ??

Other options? PGD, PSD, FGM, OGM-LS, MM

Method for p = 1?
A: GD B: CG C: OGM D: POGM E: ADMM ??

Other options? GP u-v, PGM, FPGM, OGM-LS, MM
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Example
Same 5/8 handwritten digit data as in HW
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Logistic / Huber hinge

These choices for h are convex, smooth, and we know their Lipschitz constants and their (optimal for Huber
hinge) quadratic majorizers.

Method for p = 2?
A: GD B: CG C: OGM D: POGM E: ADMM ??

Other options? PGD, PSD, CG-GD1d, FGM, OGM-LS, MM (convex)

Method for p = 1?
A: GD B: CG C: OGM D: POGM E: ADMM ??

Other options? GP u-v, PGM, FPGM, OGM-LS, MM
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Hinge

Convex, but non-smooth.

Method for p = 2?
A: GD B: CG C: OGM D: POGM E: ADMM ??

Other options? MM (convex, but difficult), duality (545)

Method for p = 1?
A: GD B: CG C: OGM D: POGM E: ADMM ??

Other options? MM (convex, but difficult), SG
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Sigmoid (smooth version of 0-1) loss

nonconvex but smooth; inspired by w20 student
Initialization x0 likely matters.

Method for p = 2?
A: GD B: CG C: OGM D: POGM E: ADMM ??

Other options? SG

Quadratic majorizer (cf Huber hinge)

Method for p = 1?
A: GD B: CG C: OGM D: POGM E: ADMM ??

Other options? SG
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0-1 loss

Start with convex hinge, use that to initialize sigmoid, then let sigmoid width→ 0.
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(blank)
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(blank)



© J. Fessler, April 21, 2020, 08:53 (class version) 9.13

9.1 If time had permitted...

recommender systems

neural networks

parallel computing

semidefinite programming

non-convex regularizers that lead to convex cost functions [9]

relationships of image models and priors for restoration problems [11]

Regularization parameter selection

SURE etc.

CNN training using SURE without ground-truth images [1] [2]

Optimization on manifolds

Minimization subject to constraints like a matrix being unitary (Stiefel manifold) [5–8]
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9.2 Towards CNN methods

This section reviews some iterative algorithms based on sparsity models and summarizes how those algo-
rithms provide a foundation for “variational neural networks” when “unrolled.”

Review of denoising by soft thresholding

Consider the measurement model y = x+ε and the signal model that assumes Tx is sparse for some unitary
transform T . The natural optimization problem for estimating x is

x̂ = arg min
x

1

2
‖x− y‖22 + β ‖Tx‖1 .

The non-iterative solution is the following denoising operation:

x̂ = T ′ soft .(Ty,β).

The essential ingredients of a convolutional neural network (CNN) are present in this simple form:
some filters, a nonlinearity, and more filters.
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Review of compressed sensing with transform sparsity

For the compressed sensing measurement model y = Ax+ε, again assuming Tx is sparse for some unitary
transform T , the natural optimization problem for estimating x is

x̂ = arg min
x

1

2
‖Ax− y‖22 + β ‖Tx‖1 .

In this case there is no closed-form solution and iterative algorithms are needed. The simplest algorithm is
the proximal gradient method (PGM), aka ISTA, which is an MM update based on the majorizer

x̃k = xk −
1

L
A′(Axk − y)

φk(x) =
L

2
‖x− x̃k‖22 + β ‖Tx‖1 ,

where L = |||A|||22, for which the minimization step is a denoising operation:

xk+1 = arg min
x

φk(x) = T ′ soft .(T x̃k,β/L).

The “unrolled loop” block diagram for this algorithm is the basis for learned ISTA (LISTA) [3]:

y → x0 → data → x̃0 → denoise → x1 → data → x̃1 → denoise → x2 → data → x̃2 · · ·

Denoise options: hand-crafted transform (e.g., wavelets), transform learned from training data, CNN

Can learn: T β soft T ′ Early SURE-LET work: [4].
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Review of patch transform sparsity

The natural cost function for a patch transform sparse model is

x̂ = arg min
x

1

2
‖Ax− y‖22 + βR(x), R(x) = min

Z

P∑
p=1

1

2
‖TPpx− zp‖22 + α ‖zp‖1 .

For a BCD approach, the Z update is simple:

z(t+1)
p = soft .(TPpxt, α).

To better understand the x update, it is helpful to expand the regularizer:

P∑
p=1

1

2

∥∥TPpx− z(t+1)
p

∥∥2
2

=
1

2
x′

(
P∑

p=1

P ′pT
′TPp

)
x− x′

(
P∑

p=1

PpTz(t+1)
p

)
+ c1

=
1

2
x′Hx− x′x̃t + c1, H ,

P∑
p=1

P ′pT
′TPp, x̃t ,

P∑
p=1

PpTz(t+1)
p

If T has orthonormal columns (e.g., is unitary), and if the patches have d pixels and are chosen with stride=1
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and periodic boundary conditions, then

H =
P∑

p=1

P ′pT
′TPp =

P∑
p=1

P ′pPp = dI.

Completing the square for the regularizer term yields

... =
d

2
x′x− x′x̃t + c1 =

d

2
‖x− x̄t‖22 + c2, x̄t ,

1

d

P∑
p=1

PpTz(t+1)
p =

1

d

P∑
p=1

PpT soft .(TPpxt, α).

Thus the x update for the BCD algorithm is

xt+1 = arg min
x

1

2
‖Ax− y‖22 + β

d

2
‖x− x̄t‖22 .

Here, x̄t acts like a prior for the update. For some cases there is a closed-form solution (like single-coil
Cartesian MRI). Otherwise, one or more iterations are needed.

Unrolling the BCD loop in block diagram form:

y → x0 → denoise → x̄0 → data → x1 → denoise → x̄1 → data → x2 → denoise → x̄2 · · ·

Denoise options: hand-crafted transform (e.g., wavelets), transform learned from training data, CNN
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