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9.2

Final course notes on gdrive.

Two principal kinds of questions.
e Procedural. Given V¥ (x), given algorithm (by name), then implement/analyze it
Interesting Exam?2 sample questions (by pdf file page)

e pl: composite with ||z ||, and box constraint
e p20: LS + hinge regularizer
e p24: sigmoid as smooth 0-1 loss
e p43: prox for leaky ReLU
e p44: hinge + 0-norm

e Conceptual. Given application, then determine ¥ (x), choose algorithm, and implement/analyze it
e p2: ||x||, constraint
e p6: L+S
e p45: compressed sensing with transform/analysis sparsity
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9.3
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Binary classifier design: Review

General cost function for binary classifier design for sign(v'x) with £ € RN, A € RM*N g > 0:
U(x) = f(z) + Bllzl,, f(x)=1yh(Az), pe{l,2}

Quadratic

h(t) = 5t~ 1) = f(z) =

Method for p = 2?
A: GD B: CG C: OGM D: POGM E: ADMM

Other options?

Method for p = 1?
A: GD B: CG C: OGM D: POGM E: ADMM

Other options?
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Example
Same 5/8 handwritten digit data as in HW

Accuracy

80

B

9.5

—@— Validation both
—l- Test both
—@— Validation 8
—l- Test8

—@— Validation 5
—l- Test5
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27

LS classifier weights

0.002

0.001

0.001

0.000

o

27

Best regularized LS weights

9.6
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9.7

Logistic / Huber hinge

Method for p = 2?
A: GD B: CG

Other options?

Method for p = 1?
A: GD B: CG

Other options?

C: OGM

C: OGM

D: POGM

D: POGM

E: ADMM

E: ADMM
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9.8

Hinge

Method for p = 27?
A: GD B: CG

Other options?

Method for p = 17
A: GD B: CG

Other options?

C: OGM

C: OGM

D: POGM

D: POGM

E: ADMM

E: ADMM
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9.9

Sigmoid (smooth version of 0-1) loss

Method for p = 2?
A: GD B: CG C: OGM

Other options?

Method for p = 1?
A: GD B: CG C: OGM

Other options?

D: POGM

D: POGM

E: ADMM

E: ADMM
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0-1 loss
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(blank)
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(blank)
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9.13

9.1 If time had permitted...

recommender systems

neural networks

parallel computing

semidefinite programming

non-convex regularizers that lead to convex cost functions [9]
relationships of image models and priors for restoration problems [11]

Regularization parameter selection

SURE etc.
CNN training using SURE without ground-truth images [1] [2]

Optimization on manifolds

Minimization subject to constraints like a matrix being unitary (Stiefel manifold) [5-8]
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9.2 Towards CNN methods |

This section reviews some iterative algorithms based on sparsity models and summarizes how those algo-
rithms provide a foundation for “variational neural networks” when “unrolled.”

Review of denoising by soft thresholding

Consider the measurement model y = « + € and the signal model that assumes T'x is sparse for some unitary
transform 7'. The natural optimization problem for estimating x is

. 1 2
T = argm1n§ |z —yll; + BTl -
X
The non-iterative solution is the following denoising operation:
T =

The essential ingredients of a convolutional neural network (CNN) are present in this simple form:
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Review of compressed sensing with transform sparsity

For the compressed sensing measurement model y = Ax + ¢, again assuming T'x is sparse for some unitary
transform 7', the natural optimization problem for estimating x is

. 1
& = argmin || Az — |3+ B | T,

In this case there is no closed-form solution and iterative algorithms are needed. The simplest algorithm is
the proximal gradient method (PGM), aka ISTA, which is an MM update based on the majorizer

Ty = T — %AI(AIBk —y)
L —
on(x) = 3 [l —axlly + B[ T],
where L = || A||2, for which the minimization step is a denoising operation:
Lht+1 = arg;nin o() =

The “unrolled loop” block diagram for this algorithm is the basis for learned ISTA (LISTA) [3]:

y—>w0—>—>:i’0—>—>w1—>—>5:1—>—>a:2—>—>532---

Denoise options:
Can learn: Early SURE-LET work: [4].
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Review of patch transform sparsity

The natural cost function for a patch transform sparse model is

P
. 1 ) 1
&= argmin || Az — yl3+ BR(). R(x)=min} 2 TPz — 23 +az,
x =1

For a BCD approach, the Z update is simple:

(t+1)
p

z

To better understand the x update, it is helpful to expand the regularizer:

"1 2
> 5 ITPe— =, =
p=1

1
= iw’Ha: —x'x + e,

If T has orthonormal columns (e.g., is unitary), and if the patches have d pixels and are chosen with stride=1
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and periodic boundary conditions, then
H =
Completing the square for the regularizer term yields

...:§m’m—m’§:t+01: Ty

Thus the x update for the BCD algorithm is
1 d _
211 = argmin - | Az — yll3 + B o — @3,

Here, x; acts like a prior for the update. For some cases there is a closed-form solution (like single-coil
Cartesian MRI). Otherwise, one or more iterations are needed.

Unrolling the BCD loop in block diagram form:

y — o — |denoise| — &g — [data| — x; — [denoise| &, — |data] — z, — [denoise| — &, -

Denoise options:
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Mﬂ(hine'l.euming CIGSS by Robert W. Heath, Jr. and Nuria Gonzdlez-Prelcic

¥

Note: This cartoon was created entirely by real humans, no machine learning was involved with conception or realization to practice.

Me too! lsn "t machine
Learning great?

(c) Robert W. Heath Jr. and Nuria Gonzdlez-Prelcic, 2019

Digital Object Identifier 10.1109/MSP.2019.2908298
Date of publication: 26 April 2019
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