Chapter 8

Stochastic gradient / subgradient methods
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’ 8.0 Introduction

This chapter describes two families of algorithms:
e subgradient methods
e stochastic gradient methods aka stochastic gradient descent methods

Often we turn to these methods as a “last resort,” for applications where none of the methods discussed
previously are suitable. Many machine learning applications, such as training artificial neural networks,
use such methods. As stated in [1] “large-scale machine learning represents a distinctive setting in which
traditional nonlinear optimization techniques typically falter.”

For recent surveys, especially about stochastic gradient methods, see [1, 2].

Acknowledgment
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Rate of convergence review

Suppose the sequence {x;} converges to &. Consider the limiting ratio

12 gy 1Zen =2y

We define the rate of convergence of the sequence {x } as follows:
e Converges linearly with rate p if o € (0, 1)
e Converges sublinearly if ;1 =1
e Converges super-linearly if 1 = 0

Example: For z;, = p*, with |p| < 1, |T§:1_ 0] | = |/T,|O\ — = |p| = u, so the sequence converges linearly.
-0 1/(k+ 1)
Example: For 2, = 1/k¢, with ¢ > 0, |$|k+1 0] | = /<1/Z ) — 0 = p, so the convergence is sublinear.
_— xk‘ —_ C
1 5 .
For the sequence z, =1 — ETRY fork=1,2,..., the value of u is

A: 0 B:1/5 C:1/3 D: 1/2 E: 1
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Gradient descent (GD) review
e GD update:

Tpi1 = x — aV f(xy).

e Converges to a minimizer if f is convex and differentiable, and V f is L-Lipschitz continuous, and 0 <
« < 2/L; simple to analyze

e Worst-case sublinear rate of convergence of O(1/k) ifa <1/L

e Can be improved to a linear rate O(p"), where p < 1, under strong convexity assumptions on f

e In the usual case where f(z) = Y _, f,.(z), gradient computation is linear in M, i.e., takes O(M) time.
= Doubling the number of examples in the training set doubles the gradient computation cost.
GD is a “batch” method: V f uses all available data at once

The methods in this chapter relax the differentiability requirement, and scale better for large-scale problems.

Example. ImageNet [3] contains ~14 million images with more than 20,000 categories.
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‘ 8.1 The subgradient method ‘

The O(1/k) convergence rate of ISTA in Ch. 4 (aka PGM) may seem quite slow, and it is by modern stan-
dards, but convergence rates can be even worse! A classic way to seek a minimizer of a non-differentiable
cost function ¥ is the subgradient method, defined as [4, 5]:

Tpy1 = Tp — (8.1)

where g, € 0 V(x) denotes a subgradient of the (nondifferentiable) function W at the current iterate .

This method was published (in Russian) by Naum Shor in 1962 for solving transportation problems [6, p. 4].

Subgradients and subdifferentials

Define. If f : D+ R is a real-valued convex function defined on a convex open set D C RY,
a vector g € R” is called a subgradient at a point &, € D iff for all z € D we have

f(z) = f(z0) > (g, 2 — x0) -

Define. The set of all subgradients at x is called the subdifferential at 2 and is denoted 0 f (x) [6, p. 8].


http://en.wikipedia.org/wiki/Subgradient_method
http://en.wikipedia.org/wiki/Subderivative#The_subgradient
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Example. A rectified linear unit (ReLLU) in an ANN uses the rectifier function that has the following
definition and subdifferential:

0, z <0 ReLU(x) dReLU(z)
r(x) = max(z,0), Or(x)= = JA [

1, 0<zx. 0 €T 0 T

For this example, the derivative is defined almost everywhere, i.e., everywhere but a set of Lebesgue mea-
sure equal to zero, also known as a null set. Specifically, here the derivative defined for the entire real line
except for the point {0}. In most SIPML applications, the derivatives are defined except for a finite set of
points.

Unfortunately, even for a convex function the direction negative to that of an arbitrary subgradient is not
always a direction of descent [6, p. 4].

-1, <0
Example. For f(x) = |z|, the subdifferential is 0f(x) = x=0

1, 0<ux.
At z = 0 all elements of the subdifferential have negatives that are ascent directions except for 0.


http://en.wikipedia.org/wiki/Rectifier_(neural_networks)
http://en.wikipedia.org/wiki/Almost_everywhere
http://en.wikipedia.org/wiki/Lebesgue_measure
http://en.wikipedia.org/wiki/Lebesgue_measure
http://en.wikipedia.org/wiki/Null_set
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Properties of subdifferentials

Define. The subdifferential of a convex function f : RY — R is this set of subgradient vectors:

Of(x) = {geR" : f(z)— f(z) > (g, z—x), Vz€ RV},

Properties [7].
e A convex function f : D — R is differentiable at x € Diff 0f (x) = {Vf(x)}.
So a subgradient is a generalization of a gradient (for convex functions).
e For any « € D, the subdifferential is a nonempty convex and compact set (closed and bounded) [6, p. 9].

e If convex functions f, g : RY +— R have subdifferentials 0 f and g, respectively, and h(x) = f(x)+g(x),
then, for all x € RY, HW

Oh(x) = 0(f + g)(x) = 0f (®) + 9g(x) = {u+v : wedf(x), vedg(x)},

where the “+” here denotes the Minkowski sum of two sets.
The subdifferential of a sum of convex functions is the (set) sum of their subdifferentials [6, p. 13].

If convex function f : RY — R has subdifferential f and h(z) £ af(z) for a € R,
e then Oh(z) = adf(x) for all x € RY. (?)
A: True B: False

HW


http://en.wikipedia.org/wiki/Subderivative#The_subgradient
http://en.wikipedia.org/wiki/Compact_space#Euclidean_space
http://en.wikipedia.org/wiki/Minkowski_addition
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e x is a global minimizer of a convex function f iff 0 € 0f(x) [6, p. 12].

Example. f(r) = max(|z|, 1) f(x)
\/ of ()
m |

e One can define convex functions and subdifferentials using the extended reals R U {co} [7].

e There are also generalization for non-convex functions [6, p. 17] [7].

e A chain rule for affine arguments [8]. If g(x) = f(Ax + b) for convex f : RM — R, for z € RY and
A € RM*N "then we saw in earlier HW that g : RY — R is convex, and furthermore [7, 8]:

dg(x) = A'0f(Ax + b). (8.2)
Proof that (Read)
veIf(Ax +b) = A'v € dg(x).
Given that v € 9f(Ax + b), we know that Yy € RM:
fly) — f(Az +b) = v' (y — (Az + b))
In particular, choosing y = Az + b for any z € RY we have

f(Az+b)— f(Az +b) > v ((Az+b) — (Az + b))
=v'A(z—z)=(Av) (2 —x).
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So by construction, for any z € R we have
9(z) — g(x) = (A'v)' (z — )

implying that A’v € dg(x). Thus we have shown A’0f(Ax + b) C dg(x). O
Showing that dg(x) C A’0f(Ax + b), to complete the proof of (8.2), seems to be more complicated.
For details: https://maunamn.wordpress.com/9-the-subdifferential-chain-rule

Example. Consider compressed sensing with analysis sparsity regularizer and 3 > 0:
1
U(z) = [|Az — yl, + B | Tx|, = A’ (Az — y) + BT"sign .(Tx) € 9 ¥(x),

t

because sign(t) is a subgradient of |¢|, where we have applied several of the above properties:


https://maunamn.wordpress.com/9-the-subdifferential-chain-rule
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Convergence of the subgradient method

For suitable choice of {ay}, and suitable assumptions on W such as convexity, the convergence rate of the
subgradient method (8.1) is bounded by O(1/v/k) [4-6]. (See result on subsequent pages.)

Diminishing step sizes

Convergence theorems for SGM often assume that the step sizes diminish, but not too quickly.
Specifically, often we assume they satisty:

ar >0, ai — 0, Zzo_l o = 0. (8.3)
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SGM convergence for diminishing step sizes

A classic convergence theorem for SGM is the following [6, p. 26].

If W is convex and has a bounded set of minimizers X,, and {4} satisfies (8.3), then the sequence {x; }
generated by (8.4) for any x has the property that either
e the sequence {g(x)} is bounded and the sequence {x;} converges in the sense that {d(xy, X,)} — 0
and {U(xy)} — VU,, or
e the sequence {g(x;)} is unbounded and there is no convergence.

Note that this theorem does not ensure that {x;} converges to some particular point & € X, only that
it approaches the set. Of course if the set contains a single unique global minimizer, then the sequence
converges to that point if it converges.

The “either” in the above theorem might seem unsatisfying, but often we know that the subgradients are
bounded. In particular, if ¥ is piecewise linear with a finite number of pieces, then the subgradients are
bounded (essentially by the maximum “‘slope”).

The hinge loss function with 1-norm regularizer considered on p. 8.17 (and in HW) is piecewise
linear with a finite number of pieces. (?)
A: True B: False

Another theorem [6, p. 26] shows that if W has a unique minimizer x, and some other conditions hold,
then ||z; — .|, < axs1v/2, which implies O(1/v/k) convergence due to (8.3).
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Normalized subgradient method

Another way to avoid the “either” of the preceding convergence theorem is to use a normalized subgradient
method of the form
gr € 0¥ (xy) . (8.4)

gk
T g
2

Diminishing step size factors

This version has the following convergence theorem [6, p. 25] for diminishing step size factors that satisty:

me>0, =0, Y = oo 8.5)

If ¥ is convex and has a bounded set of minimizers X, and {7} satisfies (8.5), then the sequence {x; }
generated by (8.4) for any @ has the property that either x € X, for some finite K € N, or {d(x, X,)} —
O0and {¥(xy)} — V..
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Constant step-size factors

The normalized SGM (8.4) has the following convergence theorem for fixed step-size factors [4].

If U is L-Lipschitz (itself, not its gradient!) then for 7, = ¢/L [4, Thm. 1.2]:

.....

It seems difficult to use this result in practice because we must choose € in advance to specify 7, and we
must know ||zy — &||, to determine the number of iterations.



© J. Fessler, April 12, 2020, 17:55 (class version) 8.14

Projected subgradient method

For constrained optimization, i.e., for minimizing ¥ subject to a convex constraint x € C where C C RN,
there is also an approach called the projected subgradient method:

Tpi1 = Pe (ifik - ﬁgk) gr € 0V(xy).
2

This algorithm has the following O(1/+v/k) convergence rate bound [5, Thm. 3, eqn. (21)].

If

e U is L-LipschitzonC, i.e., ||g|l, < L, Vg € 0¥ (x), Vx € C,

e U, = mingcc is finite,

o X,={xecC : U(x)=VU,} is nonempty,

e R £ dist(zg, X) = ||z — Pe(o)|l,,

e and we choose 7, = r/v/ K + 1 for some r > 0, and specified number of iterations &, then

in U(x;)—V, < i ( +R2)
min z,) "V, < ———|1r+—|.
=0,...,K 2vVK +1 T

What is the best choice of r for the step size?
AR B: R? C:1/R D: 1/R? E: None

The need to choose K in advance is unappealing.
Of course the ordinary normalized subgradient method is the special case where C = R¥.


http://en.wikipedia.org/wiki/Subgradient_method#Projected_subgradient
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Example. Consider the simple absolute value function f(x) = |z| with 2o = 8 and suppose we take the
“oracle” choice r = x and use the step size n, = r/v/ K + 1 for K = 12 iterations. The following figure
shows how z;, evolves and how the cost function does indeed decrease to below the bound by iteration K.
However, the sequence {z}} does not converge with this choice of step size and normalization.

8w 8te
B bound for K=12 ®
[ J \Il(xk)—\ll*
o W) — 0,
| ox o V@) - W .
* [ ]

» ° ® ® [ ° ° ° ° [ )
* ok * KX * X & k &
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Other notes about subgradient methods

There is a more general proximal subgradient method that has that same O(1/v/k) rate [5].
This very slow convergence is why previous chapters described so many other algorithms.

Useful reference:
https://stanford.edu/class/ee364b/lectures/subgrad_method_notes.pdf

Here are additional references, some of which we may discuss if time permits:
[10] [11] [12] [13] [14] [15] [16]. For a survey, see [17].
A “conjugate subgradient” method is given in [18].

A “best” step-size rule of 1/v/k + 11is given in [19], where they state that a vanishing step size for subgradient
method is “absolutely necessary.”


https://stanford.edu/class/ee364b/lectures/subgrad_method_notes.pdf

© J. Fessler, April 12, 2020, 17:55 (class version) 8.17

8.2 Example: Hinge loss with 1-norm regularizer for binary classifier design

One motivating application is binary classifier design using the hinge loss function and a 1-norm to encourage

parsimony for M x N matrix A:
1
U(x) = Mlhh.(Aa:) + B ||lxll;, h(t) =max(l—1¢,0).

Both terms in this cost function are non-smooth, but both are convex and have well defined subgradients.

For g(z) = |z| the subdifferential is

-1, x <0
dg(x) =4 [-1.1], ==0,
1, x> 0.

Thus for g(x) = ||«||, , an appropriate subgradient is
sign.(x) € dg(x).

For h(t) = max(1 — ¢, 0) the subdifferential is

-1, t <1,
Oh(t) =< [-1,0], t=1
0, t>1.
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Thus for f(x) = 1'h(Ax) an appropriate subgradient is
A'h.(Ax) € Of(x), where h(t) £ —sign(l —t).

Thus a subgradient method for solving this problem has an update like
1 ., _
L1 = T — Ok MA h(ACBk) -+ 81gn.(:vk) s

for an appropriate step-size sequence {cy }.

A HW problem will compare the subgradient method to ADMM for this application.

Preview of stochastic subgradient method

To apply a stochastic subgradient method to this problem, we write the cost function as:

fun(®),  fn(®) = h([AZ]) + MB |||, -

S
&
]
=| =
M=

m=1

For each update we pick m at random, compute a subgradient g,,(xy) of f,,, select a step size ay, and
update &1 = T — axgm (). Then repeat until some convergence criterion is reached.
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’ 8.3 Incremental (sub)gradient method

Problem setup

Many applications in signal processing and machine learning involve finding the minimizer of a cost function
f : RN — R that is the sum (or average) of M functions:

) . I

T = argwmln flx) = argwmln i mZ:l fm(x). (8.6)

e This form arises in many signal processing problems because sensor data often has independent noise, so
the negative log-likelihood of the measurements becomes a summation.

e This form arises in many (supervised) machine learning problems because we assume that the training
data consists of independent samples from some joint distribution and the average above is an empirical
estimate of the risk or loss [1].

Example: Regularized logistic regression

Consider M training examples with feature vectors {v,,} € R" and labels y,, € {—1, +1}. The problem of
learning weights & € R” for binary classification (using logistic loss) can be written as

1 M
orgmin f(@) = argmin 37 3 fu(@), (@) = h({umvm @)+ MB el hle) =log(1-+ 7).

xr
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Lipschitz constant

If each f,, in (8.6) is differentiable, with an L,,,-Lipschitz continuous gradient
IV (@) =V fm(2)]ly < Lin [|® = 2[l,, Ve, 2z € dom(f),

then a Lipschitz constant for V f is L £ ﬁ Z%Zl L,,, though this might not be the best Lipschitz constant.
GD
If a cost function of the form (8.6) is differentiable, then the GD update:

Ty = — aVf(xy) —wk—a—Zme xy).

The subgradient method is similar.
Both of those methods require computing all the terms in the (possibly large) sum.
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Incremental (sub)gradient method

For cost functions having the summation form (8.6), the main idea of incremental gradient methods (for
differentiable cost functions) and incremental subgradient methods (for non-differentiable cases) is to use
just one term in the summation to update:

g =V fm.(xr), [m,differentiable

€T = . — 1
k+1 k kGmy» gc 8fmk (wk)7 otherwise,

where here we choose the indexes sequentially, aka cyclic ordering: m; = 1+ k& mod M.

This approach has a long history in the optimization literature; e.g., the 1979 Russian paper [20] in turn cites
a 1966 paper. Early work focused on the differentiable case whereas later work extended the analysis to
subgradients [9, 17, 21-25]. There are also proximal versions [26] and versions based on majorization [27].
In the signal processing literature, a related approach is the least-mean squares (LMS) algorithm [2, 28].

A typical convergence result is [17, Prop. 3.4]. If the step sizes oy, satisfy (8.3), then lim infy_, ., f(xx) = f..
Furthermore if X, is nonempty and >, o < oo, then {@} converges to some x, € X,.

The theorem cited above actually covers more general cases where the cost function is composite with a
combination of prox-friendly and non-differentiable terms needed a subgradient approach.

In machine learning, it is more common to pick the indices m at random, rather than cyclically, leading to the
stochastic (sub)gradient method discussed next.
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Keeping in mind that typically we prefer larger step sizes to achieve faster convergence, which of
these step size sequences {«;} satisfies the conditions of the previous convergence result and is

most preferable?
Al B:1/Vk C:1/k D: 1/k%/2 E: 1/k?

1/k, the harmonic series, satisfies Y, 1/k = oo, >, 1/k* < cc.
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8.4 Stochastic gradient (SG) method ‘

SG update

When each f,, is differentiable, the stochastic gradient (SG) update is nearly identical to the incremental
gradient update:
Tii1 = T — UV [ (T0),

except that here the index my, is drawn randomly from the set {1,2, ..., M}.
e This approach estimates gradient using only one f,, function.
e Computation of each update is very fast: O(1) instead of O(M)
e Intuition: In expectation, the stochastic gradient equals the full gradient, i.e., it is an unbiased estimate of
the full gradient. Specifically, if j is a discrete random variable drawn randomly (uniformly) from the set
{1,2,..., M}, then

£V (a Z Vin(@)pli =m) = 5= 3" Vful@) = V(@)

e The SG approach and its variants are used widely in machine learning software frameworks.
e The name stochastic gradient descent is misleading because it does not always descend in general!
These notes will use the term stochastic gradient method instead.
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Minibatching
Instead of one data vector at a time, on can use groups of b data points called mini batches. The update

becomes:

1
Tps1 = T — gy > Vi),

meDBy,

where By, is drawn randomly from the set of all subsets of {1,2,..., M} of size b.
o Intermediate approach between a stochastic gradient (SG) and the full gradient.
e Computational cost is more than SG O(b), but also reduces variance of the gradient estimate by a factor b.
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Example: Regularized logistic regression. /M = 10,000 and N = 20; fixed step-sizes used for all methods.
(Slide adapted from Pradeep Ravikumar & Aarti Singh (CMU).)

— Full o
- SLtJ s tochastic
tochastic ini-batch, b=10
Mini-batch, b=10 ini-batch, b=100
o —— Mini-batch, b=100 Q| i
© - =}
o
<
< 2 = 8 n
g o] 8 °
) =
= o
wn
wn wn
g — o
3 4 2
pd o
T T T T T l I I I
0 10 20 30 40 50 1e+02 1e+04 1e+06

Iteration number k Flop count
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Stochastic gradient algorithm: convergence analysis
Framework for analysis following [1]

Choose an initial iterate x

fork=0,1,...
e Generate a realization of random variable &;
e Compute a stochastic vector g(xy, )
e Choose a step-size 7, > 0

e Update 11 = & — mg(xr, §i)
Here, g(xy, ) is a stochastic estimate of V f(xy).

Typically, & is simply my, the random index drawn from {1, ..., M}, and the stochastic vector g(xy, &) is
simply V f(xy).
But the theory is presented more generally, to allow for mini-batches and other variations.

Stochastic gradients - bias & variance

Bias:
bias(g(xx, &) = Egg(xr, &) =V f(21).

Variance:
var(g(z, &) = Ee, [l9(zr. &0)|I5] — ||Eeelg (@, &0)]|15 -
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SG - fixed vs. diminishing step-sizes

0 0.5 1 15 . 2 0 0.5 1 1.5 2

Figure: SG run with a fixed stepsize (left) vs. diminishing stepsizes (right)

Figure from F. Curtis, L. Bottou, J. Nocedal, “Beyond SG: Noise Reduction and Second-Order Methods,” ICML, 2016.

Issues with fixed step-sizes:
e For fixed step-size, SG sequence approaches a noise ball (proportional to step-size) around the optimum.
e Choosing a lower constant size reduces the size of the noise ball, but leads to slower convergence.
e Intuition: use larger step-sizes initially and gradually decrease


https://icml.cc/2016/tutorials/part-3.pdf
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SG: diminishing step-sizes

8.28

* Diminishing step-size schemes are often chosen to be O(1/k).
For example (https://scikit-learn.org/stable/modules/sgd.html):

1

T = ko + k)

* The hyperparameters a and %, could be hand-tuned or chosen through an automatic process.

* Sufficient conditions for convergence:

o) 00
D me=00 ) <00
k=1 k=1

So the step sizes should diminish, but not too quickly.


https://scikit-learn.org/stable/modules/sgd.html
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Convergence rates
e Full (batch) GD:
For convex f, with L-Lipschitz gradient, under suitable stepsizes:

flar) — fo = O(1/k)

e Stochastic gradient method:
For convex f, under diminishing stepsizes (along with other conditions):

E[f ()] —f. = O(1/Vk).

(Here k can be a full iteration or a batch, the factor M is just a constant.)

Convergence rates (strong convexity)

Under strong convexity assumptions on f (with parameter 1)
e Full GD:
For strongly convex f, With L-Lipschitz gradient, for suitable stepsizes GD has a linear rate:

f(zx) — f. = O(p*), where p < 1.
e SG method: Under strong convexity (plus other assumptions as before), SG sequence has sublinear rate:
E[f(zx)] —f = O(1/k)

Can we do better than sublinear convergence for the SG method?
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Improving the SG method
e Diminishing stepsizes (learning rates) are needed due to the variability of stochastic gradients.
e Can we reduce the variability of those stochastic gradients and use a constant learning rate?

e Can we use better learning rate schedules to accelerate SG method?

Variance reduction methods:
e SAG, SAGA [36],

e SVRG [37]

e S2GD, SDCA etc.

e SARAH [38]

Adjusting learning rate:
e Momentum, Nesterov accelerated gradient [39]
e Adagrad, ADAM, (RMSProp) etc. http://cs231n.github.io/neural-networks-3/
e Fixed/adaptive restart (SGDR) [40]


http://cs231n.github.io/neural-networks-3/

© J. Fessler, April 12, 2020, 17:55 (class version) 8.31

SVRG (Stochastic Variance Reduced Gradient)

Algorithm SVRG

1: Choose an initial iterate w1 € R?, stepsize « > 0, and positive integer m.
2: for k=1,2,... do

3: Compute the batch gradient V F'(wy).

4: Initialize wy, 1 < wy,.

5: for j=1,...,mdo

6: Chose i uniformly from {1,...,n}.

7 Set gr; + Vfi(wg, ;) — (Vfi(wr) — VF(wg)).

8: Set wy j11 ¢ Wk ; — Gk, ;-

9: end for

10: Option (a): Set wiy1 = Wyt

11: Option (b): Set w41 = % Do Wit

12: Option (c): Choose j uniformly from {1,...,m} and set wy41 = Wj41.

13: end for

Credit: Leon Bottou, Frank Curtis, Jorge Nocedal
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SAGA (Stochastic Averaged Gradient)

Algorithm SAGA
1: Choose an initial iterate w1 € R? and stepsize a > 0.
2: for:=1,...,n do

3: Compute V f;(w1).

4

Store V fi(wp;) <= V fi(wi).
: end for
: for k=1,2,... do
Choose j uniformly in {1,...,n}.
Compute Vf;(wy).
Set gr  Vfj(wr) — VFj(wy) + + 2iey Viilwp).
10: Store V fj(wp;)) < Vfj(wg).
11: Set w41 Wi — agg.
12: end for

O o O

Credit: Leon Bottou, Frank Curtis, Jorge Nocedal
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Variance reduction: overview

Consider 2 random variables X, Y. Define a new random variable as follows:

Zo 2 a(X —-Y)+E[Y], a € [0,1].

Can we design Z, to obtain a “good” estimator of E[X]?
e o = 1 results in an unbiased estimator: E[Z;] = E[X].
o Var{Z,} = a® (Var{X} +Var{Y} -2 Cov{X,Y}).
e If X and Y are highly correlated, Z,, has reduced variance.
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SG variants with reduced variance

Let X be the current SG direction V f;(x;) and Y be a past stored gradient V fj((ﬁgk)).

(SAG) xp1 =xp — 1

(SAGA) 1 =z, —n | Vi(ze) — V(e

m=1

M
Z V fn(®) >

1 (Vhiten) - ij<¢§’“>>) F > me<¢£,’?>>

i |

M
(SVRG) xpp1 =z —1n Vf](-’llk) Vf] Z >

e (SAG) - Stochastic Average Gradient [41]

m=1

e (SVRG) - Stochastic Variance Reduced Gradient
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Momentum

(a) SGD without momentum (b) SGD with momentum

Vi1 = pv, — niV f (k)
Tpt1 = T + Vg1

e 11 € [0, 1] is the momentum coefficient; typically chosen to be high (~0.9)
e /1, = 0 same as ordinary GD

Image taken from [39]
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Nesterov momentum

Momentum update Nesterov momentum update

“lookahead” gradient
step (bit different than
original)

momentum
step

momentum
step
actual step

actual step

gradient
step

Image from http://cs231n.github.io/assets/nn3/nesterov. jpeg

Vi1 = pog — iV f(2r + poy)
Titr1 = T + Vg4

e Gradient is computed at lookahead point x;, + pvy instead of at x.
e 1, = 0 reverts to ordinary GD


http://cs231n.github.io/assets/nn3/nesterov.jpeg
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Adaptive step-sizes

* Idea: Instead of assigning the same learning rate for each feature, why not vary the rate per feature
(depending on importance)?

Choose step-sizes adaptively based on measurements and heuristics (instead of an a priori schedule).

* Examples:

Adagrad:
e Tracks sum of squared gradients.
e Learning rate is different for different directions (depending on past gradients).
e Caveat: The learning rate decays too aggressively (due to monotonicity).

RMSprop:
e Similar to Adagrad, but looks at past gradients only over a moving window.
e Due to this short-term memory, learning rates do not get monotonically smaller; better than Adagrad.

Adam:
e Can be thought of as RMSprop with momentum.
e Includes bias correction terms for first and second moments.
e Very widely used for training deep networks.
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Optimizer choice

¢ No one-size-fits-all choice

* Use momentum approaches for higher training speed

If dataset is sparse, adaptive learning rates are a reasonable choice

Default algorithms to try:
e Adam is widely used for training networks
e SG + momentum is also surprisingly effective for many applications

Visualizations of optimizer trajectories:
e https://github.com/Jaewan—-Yun/optimizer—-visualization
e http://ruder.io/optimizing—gradient—-descent/

[ ] http://louistiao.me/notes/visualizing-and-animating-optimization-algorithms-with-matplotlib/


https://github.com/Jaewan-Yun/optimizer-visualization
http://ruder.io/optimizing-gradient-descent/
http://louistiao.me/notes/visualizing-and-animating-optimization-algorithms-with-matplotlib/
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Restart

Blue - Optimal momentum (with strong
convexity parameter known) —q=¢" .
Red - Nesterov Momentum 01— g =0 .
Green - Adaptive restart adaptive restart
Image from [42]

0.05f

x2
o

-0.051

e Function scheme: Restart whenever objective function value increases
e Gradient scheme: Restart when negative gradient and momentum form an obtuse angle
e Stochastic Gradient Descent with Warm Restarts (SGDR)
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Example: Ordinary Least-Squares

8.40

This figure compares the ADAM optimizer (in the Flux.jl toolbox), using its default learning rate, to

ordinary CG for an ordinary LS problem & = arg min,_, % |Ax — y||§ . The paper on Adam [49] claims “The
hyper-parameters have intuitive interpretations and typically require little tuning.”

CG has no tuning parameters. The point here is that one should use the right tool for the job.

log (W (zr) — W)

@® costadam °
@® costncg_inv °

0 10 20 30
iteration [K]

logyo(llzx — 2I/1121)

1.0

0.5

0.0

-0.5

-10k

® NRMSD adam °
® NRMSD ncg_inv °

Time [s]
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8.5 Example: X-ray CT reconstruction ‘

1
& = argmin ¥ (z) £ - ||y — Az, + BR(x)

xeX 2

TABLE 1
508 METHODS

1: Initialize ='?) and compute D such that (5) and (6) hold.
2:forn=0,1,---
30 20t =Py [ — DIV ()]

Can use an MM algorithm with D = Diag{ A’W A1}, called separable quadratic surrogates (SQS [50]
Background: X-ray CT model

a: Unknown attenuation image to be reconstructed
y: Noisy sinogram data
A: CT system matrix
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Ordered subsets

¢ We can rewrite the cost function as:

M
1 1
\Ij(m) = Z\Ijm(w)v \Ijm(m) £ §||ym_Amw||%Vm+MR($), m = 1,...,M.
m=1

¢ Intuition:

Divide the total projections into M “subsets” (akin to minibatches in a machine learning problem). The
idea is to save computation by replacing a full gradient with a subset-specific gradient.

Ordered subsets + momentum
e Incorporate momentum into the algorithm with ordered subsets [50] (somewhat analogous to minibatch-
SGD plus momentum).
e Choose subsets to maintain the subset balance approximation (to reduce variance):

V()= MV U ()~ ...~ MV Uy (x)
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TABLE 1l
PrROPOSED OS5-50QS METHODS WITH MOMENTUM IN [17] (OS-moOM1)

1: Initialize x(?) = 2(0), to = 1 and compute D.
2:forn=20,1,---

form=0,1,---, M —1

4: kE=nM+m

50t =3 (1 T m)

6: x5 = Py [zf%} _ D—lﬂfvmm(z‘in—‘il)}
7

2 — g 4 Lot (mi%} m(ﬁ-))
k+1
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Experimental setup - CT fan beam reconstruction

e Image size 128 x 128

e Sinogram size 222 x 50

e Hyperbola function used as the regularizer potential function

e Reference image was generated by running 5000 iterations of the 1 subset version of OS-SQS algorithm.
e regularization parameter = 16

1
e At iteration k, root mean square difference (RMSD) = \/ 9] Z |x§k) — ;]2
jeQ

(2 = cylindrical region-of-interest
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RMSD plots
0.06
—0S5-5QS
—0S-5QS-mom
" —0S-5QS-mom-restart (every subiteration)
0.05 0S-SQS-mome-restart (every iteration)

0.04

0 0.03

RMSD [HU]

0.02

0.01

0 5 10 15 20 25 30 35 40
iteration

e All algorithms were run with 8 subsets. Restart scheme was function-based.
e Note: Using momentum causes plot to diverge; restart helps stabilize it.

Errata: RMSD is in units of inverse length (1/cm), not in HU.
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Reconstructed images

xtrue
0.4 0.4
0 0
1 128 1 128
085-5Q5-mom with restart
1 0.4 1 0.4
128 0 128 0

1 128

e x,.¢ = reference image; initial image x, = FBP ramp image

8.49
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’ 8.6 Summary
e For large-scale machine learning problems, the SG method (or one of its variants) is a popular optimization
approach.
e SG methods are applicable to a wide variety of smooth/non-smooth, and convex/non-convex problems.
e Some broad approaches to improve SG convergence:
e Reduce variance of the stochastic estimate (keeping the learning rate fixed).
e Design better learning rate schedules, using momentum methods or adaptive methods like Adagrad,
RMSprop and Adam.
e Caveat: Algorithm hyperparameter tuning can be difficult for many of these algorithms (in contrast with
GD, POGM, NCG etc.)

This is an active research area; e.g., see [11] and these additional topics:
e Proximal subgradient methods

e Primal-dual subgradient methods (dual averaging) [51]

e Computer-aided analysis [52]

e Universal catalysts [53]

e Optimal methods [54] [55]

e Online methods [56] [57]

Caution: “(SG) method” might mean a subgradient method, or a stochastic gradient method (or a combi-
nation of both).
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