Chapter 4

Majorize-minimize methods
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4.0 Introduction |

The majorize-minimize (MM) “algorithm” is really a family of methods for deriving algorithms for various
applications. The applications are so numerous that entire books have been written on MM methods [1].
These notes focus on a couple of the most important approaches for designing majorizers for MM algorithms,
in the context of several SIPML applications where gradient descent is inapplicable.

Approach overview

There are numerous techniques for designing MM algorithms; see [2, Ch. 14] at
http://web.eecs.umich.edu/~fessler/book/c-ox.pdf

These notes focus on two main techniques that are used especially widely:
e quadratic majorizers, and
e majorizers built on convexity.

Perhaps surprisingly, both of these design methods can be useful even for nonconvex problems.


http://en.wikipedia.org/wiki/MM_algorithm
http://web.eecs.umich.edu/~fessler/book/c-ox.pdf
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Applications

These notes focus on the following concrete motivating applications. The common thread of most of these
applications is that the standard gradient descent algorithm is inapplicable due to terms that are not differ-
entiable, or that are differentiable but do not have a Lipschitz continuous gradient.

e More efficient line search for certain cost functions
argmin V(x + ad) .

[0}

e Low-rank matrix completion (LRMC) (see EECS 551 notes) using the nondifferentiable rank constraint:

~

1
X = argmin §|||M ® (X — Y)H|12; + X{rank(X)<K}-
XGIFJWXN

e LLASSO / sparse regression

M
. . 1 2
¢ =argmin¥(z), V(x)=g Az —yl,+B ], = > hi([Azl) +B |z,
® i=1
1 2
hi(t) = = [t —yl?.
(t) =5 It =il
The sparsity promoting term ||-||,; is not differentiable, yet it is essential for problems with numerous
features (machine learning) or under-sampled measurements (compressed sensing).


http://en.wikipedia.org/wiki/Matrix_completion
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e Binary classifier design using convex loss functions and sparsity regularization:

M
& =argmin¥(z), V(z)=) h([Az])+B |z,
® i=1

where the ith row of A is the product of the binary label y; = +1 and the ¢th feature vector. We will
consider any convex loss function h including hinge loss (not differentiable), exponential loss (does not
have a Lipschitz continuous derivative), and logistic loss. Although the logistic loss is convex with
Lipschitz continuous derivative, the |||, term is not differentiable.

e Measurements having Poisson distributions (gamma rays, X-rays, low light level optical imaging) where
y ~ Poisson{ Az} for which the natural regularized estimator is:

& =argmin¥(z), U(x)=Y h([Az])+BR(x),  hi(X) =X —ylog()),

xr

where h;(+) is the negative log-likelihood of the Poisson distribution.

This h,(-) has a Lipschitz continuous derivative on (0, co). (?)
A: True B: False

The latter three applications all have data terms of the form 3", h;([Ax];) for different convex h; functions.


http://en.wikipedia.org/wiki/Poisson_distribution#Maximum_likelihood
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‘ 4.1 Majorize-minimize (MM) principles

To solve an optimization problem like

& = argmin V(x)
TeX

using a majorize-minimize (MM) approach, we first
design a majorizer or surrogate function ¢, (x) that —
8

satisfies the following two conditions:

U(xy) = onl(xk)
U(x) < ¢p(x), Ve € X.

4.1)
4.2)

Then the MM algorithm update is simply the following

minimization step:

Tier = argmin ¢y ().
reX

4.3)

~—

=4

—6—Surrogate function (majorizer)
—k—Cost function

(1) o (ntD)



http://en.wikipedia.org/wiki/MM_algorithm
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Properties of MM methods
Descent property

Any MM algorithm will monotonically decrease the cost function because of the sandwich inequality:

U(xpi1) < Op(@rgr) < dulxr) = V()

Algebraic properties of majorizers

Affine invariance:
If ¢y, is a majorizer for W, then a¢y + b is a majorizer for a ¥ +b for any a > 0.

Linearity:
If fi(x) is a majorizer for f(x) and gx () is a majorizer for g(x), then afy(x) + bgi(x) is a majorizer for
af(x) + bg(x) for any a, b > 0.

Adding a suitable nonnegative function:
If ((x, x) > 0 is a (nonnegative) function for which ((xy, xx) = 0, then the following function defines a
majorizer for :

or(x) = U(x) + ((x, ). 4.4)

These properties allow us to design majorizers for individual pieces of a composite cost function and then
combine them together to form a majorizer for the entire cost function.
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Quadratic majorizer for smooth cost functions

Suppose ¥(x) : FY — R is smooth, meaning its gradient is S-Lipschitz continuous per (3.14):
||S_1 (VU(x)-V \If(z))H2 < |8 (x — 2)|],, Ve, z € FV.
Then a majorizer for U (x) (even for a nonconvex V) is

1
or(x) 2 U(xy) +real{(V U(xy), x — x4)} +5 118 (2 - x5 (4.5)
Proof (generalizing [3, p. 22]). Clearly ¢x(xx) = W(xy) . By Taylor’s theorem with remainder:
1
U(x) =V(z) +real{/ (VU(z+71(x—2)), — 2) dr}
0

=U(z)+real{(VVU(z), ¢ — 2)} +real{/0 (VU(z+71(x—2) - VVU(2), z—2) dT}
=VU(z)+real{(VU(2z), z — 2)}
+ real{/O (S (VU(z +7(z—2)) — VI(2)), Sz 2)) dT} |


http://en.wikipedia.org/wiki/Taylor's_theorem
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= |V (x) — V(z) —real{(VV¥(2), x — 2)}|

maul{/o1 (ST (VU¥(z+7(x—2))— VU(2)), S(x-=2)) dT}

< /0 (ST (VU¥(z+7(x—2))—VU(2), S'(x—2))dr

< / 187 (VU(z + (- 2) - VU(2))|, 18'(@ — 2)]], dr
_ HS’(w—z)Hz/o 1S (VU(z + 7(z — 2)) - VU(2)|, dr

1 1
!/ ! !/ 1 !
<I8@=2), [ IrS@=2l,dr = [S@=2I [ rdr=5185@-2)I,

using the S-Lipschitz continuity and the Cauchy-Schwarz inequality.

Thus ]
U(@) — V() - real{(VU(z), & - 2)} < 5 |S'(z — 2)];
1
— U(x) < ¥(z)+real{(VV¥(2),  — 2)} —|—§ |8 (x — z)Hg )
This holds for all ¢, z € F" and now take z = x;, to establish (4.5). O

A possible converse is explored in a HW problem.


http://en.wikipedia.org/wiki/Cauchy-Schwarz_inequality
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The MM algorithm corresponding to the majorizer (4.5) has the following minimization step:

Xjy1 = argmin ¢ () (from (4.3))

or(x) 2 V() +real {(VU(xy), © — 1)} —1—3 18" (x — x)|)> (from (4.5))

Lr+1 =

This MM algorithm minimization step is the same as:
A: GD B: PGD C: PSD D: PCG E: None of these

Special cases

4.9

Intuition for twice differentiable cost functions with bounded curvature. Eqn. (4.5) holds if:

V2U(x) <88, Ve c RY.
If S = /LI then

W(w) < Gyl) = Wlay) +real{(V (), @ — i)} + o — il
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4.10

4.2 Applications / MM examples

MM methods for LRMC
Problem statement (for noisy data, see EECS 551 notes):

Y. — Xij+€ij> (Zaj)EQ M. & 1, (i,j)GQ, M: 0, (Z:J)GQ
” 0, otherwise, * 0, otherwise, " 1, (i,7) ¢ 9,

-~

mask complement
for a sampling set Q € {1,..., M} x {1,..., N} . Equivalently: M 2 1,1y — M.
One possible LRMC formulation uses a (non-convex) rank constraint:

X = argmin ¢(X), ¢(X)£[|Mo (X -Y)|
X :rank(X)<K

Now define the following function:
~ 2
QX Z)=|X-Z+Mo(Z-Y)|2= H‘X —(MOZ+Mo Y))HF.

This function is a majorizer of ¢(X ) because
9(X) = Q(X; X)
4(X) < Q(X;Z), VZ € TV,

(4.6)

4.7)
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Proof: Verifying Q(X; X) = q(X) is easy. (Read)
- 2
QX:2) =X -Z+ Mo (Z-Y);=||(M+M)o(X-2)+Mo(Z-Y)|
—|Meox-z)+Mox-Y)

2 ~ 2
= |Mex-2)| +iMox -V}

> |M o (X - Y)[p = o(X),
where the 4th equality holds because Mo M =0. ]
In the earlier notation, define ¢,(X) = Q(X, X},) at the kth iteration. Then the MM requirements hold:

ar (X)) = Q( Xy, Xi) = ¢(Xy)
a(X) = Q(X, X}) > ¢(X), VX.

I originally designed this majorizer by making a 2nd-order Taylor expansion of ¢(X) about Z and then
using the fact that the elements of M are all 0 or 1. We’ll see another application of that approach later
in this chapter. Here, the proof above illustrates a simpler way to design the majorizer, using the following
definition: )

Q(X,Z) 2 q(X) + WM o(x-2)| 4.8)

because the 2nd term is nonnegative and is zero when X = Z, per (4.4).

Now we use the quadratic majorizer (4.7) = (4.8) to develop a MM algorithm for LRMC that is practical
for problems that are not too large.
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LRMC by iterative low-rank approximation

Consider LRMC using the rank constraint (4.6):

X = agmin Mo (XY
X :rank(X)<K

The MM algorithm update for this formulation is simply

Xpp1 = argmin  Q(X; Xy)
X :rank(X)<K

= argmm ”‘X M@Xk—i—M@Y)
X :rank(X F

= argmln ‘HX Xk
X :rank(X

- [ Yy, (i,5)eQ
I Xk_M@Xk+M®Y_{ [Xk]i,ja (%])%Q

This algorithm alternates between two steps:
o Take the current guess X and replace all the values at sampled locations with the measurements from Y’
to get X x- (As mentioned earlier, this can be done “in place” using X [M] .= Y[M] )
o Perform low-rank (rank at most X) approximation (using SVD) to X, to get the next iterate X ;.

Because this is a MM method, we know it decreases the Frobenius norm cost function monotonically.

(There is still no guarantee here of convergence of { X} to a global minimizer because the rank constraint
set is nonconvex. For convex formulations see [4].)
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LASSO / sparse regression / compressed sensing
These applications all involve the following composite cost function:
. . 1
& =argmin¥(z), ¥(z)=f(@)+Blzll,, fl=)=;lAz—yl,. (4.9)

There are simple non-iterative solutions when A is identity, diagonal, or unitary, but not otherwise.

First draw inspiration from (4.4) to define a quadric majorizer for f(x):

fr(z) £ (4.10)

= (4.11)

by completing the square, where c;, co are constants independent of x.
Here we require H = 0 and A’A + H > 0, but we do not insist that H > 0.


http://en.wikipedia.org/wiki/Completing_the_square#Matrix_case
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ISTA: iterative soft thresholding algorithm

fi(x) =

Thus a majorizer for the original cost function is

o(x) =
= (4.12)
The minimization step is the iterative soft thresholding algorithm (ISTA) [5]:
Ty = argmin ¢g(x) = (4.13)

T

It is also called the proximal gradient method (PGM), especially for more general regularizers.
This MM algorithm is remarkably simple, especially given that that 1-norm is non-differentiable.

A serious drawback of ISTA is its slow convergence O(1/k) and it needs || A|,.


http://en.wikipedia.org/wiki/Proximal_gradient_methods_for_learning
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The threshold above is:
A: B B:B3/L C:BL D: BL?

PGM with diagonal majorizers

4.15

E: None

Recall from HW1#10 :

With this choice of H, the majorizer becomes

o(T) =
and the MM algorithm becomes

T4l = argmin ¢p(x) =
€

(4.14)

(4.15)

where D = diag{d} and © denotes ./ element-wise division. So the jth element of the gradient step is

thresholded by (3/d;. No Lipschitz constant or operator norm is needed.

It still has slow O(1/k) convergence rate, but there is a fast version called FISTA [6] and an even faster
version called the proximal optimized gradient method (POGM) [7] that both have O(1/k?) bounds.

A HW problem will compare ISTA / FISTA / POGM with the lasso_cls constrained least-squares for-

mulation from Ch. 1.
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Convexity approach to separability

All of the preceding examples used quadratic majorizers for the data term. Now we turn to non-quadratic
examples.

Many of cost functions have data-fit terms of this form:

flx) =

where each function h; is convex (but not necessarily smooth).

Examples:

o hi(t) = LIt -yl

e h;(t) = max(1 —t,0) (hinge loss, the tightest convex upper bound on the 0-1 loss)
e h;(t) = e”! (exponential loss)

e h;(t) =t — y;log(t) (Poisson negative log-likelihood)

The commonality of all of these cost function components is convexity (only), i.e.,

(4.16)

The importance of this inequality is that the RHS is additively separable.


http://en.wikipedia.org/wiki/Hinge_loss
http://en.wikipedia.org/wiki/Loss_functions_for_classification
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Here is the key technique for designing a separable majorizer using convexity:

[Ax]; =

IN

Note that 3 | F My = S S g hi([Amy)s) = S0 hi([Azyi), so (4.1) holds.
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Now consider a cost function like
M M N
U(x) = hi([Az)) +B =], =Y hi([Az]) +B > |z
i=1 i=1 j=1

The above inequalities establish the following separable majorizer:

The (parallelizable!) minimization step of the MM algorithm for this majorizer is

. k+1
Ty = argmin ¢y (), 955 ) =
€T
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Example. Consider again the LASSO problem (4.9), where h;(t) = 1 |t — yil? .
The separable majorizer (4.17) is:

o () = 17 (x;) + Blay] = Zazj (au zj—a)) + [Amk]i) +B |z

Qi

M 1 Qi 2
- Z%’g — (1 — $§k)) + [Azy]i —yi| + B |yl
i=1 i
M
11 K 2
=> — 5 |l - o) + ai([Az) — )| + B ||
=1 Yij
1 2 S 2
= édj Ty — [mk — D_IA/(AQJk — y)]]’ -+ [?) |Z‘j| -+ Cs3, D = dlag{d]}, dj £ Z ‘aij| /Oéij,
i=1

where c3 is a constant independent of x.
So the minimization step of the MM algorithm is simply soft thresholding:
L1 — SOft(.’Bk — DilA/(AZBk — y), B @ d)

To finalize the algorithm we must specify «;; factors satisfying (4.16). A natural choice, cf. (4.14), is:
M

M 2 N
|azJ| |azg| ‘aij| /
ij = = d; = N =2 lasl laie| | = [|A["|A[1];.
Sy lail Z i e |aij| /D =y |aix| 2 kz—;

=1 =1 =1
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If 3 =0, this MM algorithm is the same as:
A: GD B: PGD C: PSD D: PCG E: None of these

If B > 0, this MM algorithm is the same as:
A:GD  B:PGD  C:ISTA/PGM (4.13)  D:ISTA/PGM (4.15)  E: None of these

Example. Exponential loss for binary classifier design h;(t) = e™*. (Read)
For this application the separable majorizer (4.17) is

gbgk)(xj) = fj (a:]) + Bz = Zam (aw, Tj— xgk)) + [Awk]Z) +B ||

1)

— Z aj exp( (ZZ( w1y + [A:Bkh)) + B |z -

There is no closed-form expression for the MM algorithm update, but one can perform parallel 1D minimiza-
tion for each coordinate j = 1,..., N:

k Qij k
x§ +) _ arg. m1n¢ )(z,) = arg mlnz Qi exp( (a_]](x] — ;cg )+ [Aka)) + B |z, .
X i=1 1,

The same principle applies to the hinge loss function. However, in both cases the 1D minimization itself
seems challenging: the exponential does not have a Lipschitz derivative and the hinge is not differentiable.
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Poisson measurements (MLEM)

For the Poisson noise problem with h;(t) = ¢ — y; log(t), we must have a;; > 0 and we use the convexity
inequality with a slightly different approach:

[Az]; = Z QijTj =
N aijx(k) Z; N aija:(-k) €T
hi([Az];) = h; (;([Aa:k]i> @[Awk]i) < ; ([ijk]i) hi (xgi) [Afl?k]i>
M N Mo (R) .
=D hullAel) <350, 7w 2 ([Llh) " <x¢> [Aw’“]i>

Here we are essentially using iteration-dependent convexity parameters:

Oéij =
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Again considering 1-norm regularization, the separable majorizer is

N

on(@) =3 (@), o (@) = £ (a;) + Bl

Here we need x; > 0 so |z;| = z;.

Differentiating to find the minimizer over x;:

9w ZM x M 2y,
0= O ™7 (z) o h2< ®) [Aka,) +P Zf i <1 Ij[Amk]i> +P

i=1 Ig i=1
M x(_k) M ”
— o J A
Z @ij T; Z @ij [Awk]z + B
=1 =1
(k+1) e - Yi
+ 1
Y = Y g

D1 @i + B S [Ay];

The version with 3 = 0 is used in clinical PET and SPECT systems daily.
The 1-norm seems to be of much less help in enforcing sparsity here compared to the case of the 2-norm data

term [8].
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Line search using Huber’s majorizer

Recall that for “inverse problem” cost functions of the form ¥ (x) = ijl f;(Bjx) where each component
function f; is convex and smooth, we used GD to solve the 1D line-search minimization problem:

J
ar = argmin hy(a), hi(a) = V(x, + ady) = ijl fituj +av;), w; = Bz, v; = Bjdy.

[0}

To apply GD for the line search, in HW you found a Lipschitz constant of the derivative of h;(«) to be

J 2
Lhk = ijl LfJ ||vj||2 ’

That Lipschitz constant leads to correct but undesirably small step sizes for many functions of interest, thereby
possibly requiring excess numbers of inner line search iterations.

We focus on component functions of the form (note the JULIA dot):

fi(w) =1"4; .(v),

for which
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If ) has a Lipschitz continuous derivative, then specializing (4.5):
(4.18)

The GD-based line-search used in HW was essentially a MM method using this quadratic majorizer. I call
this the maximum curvature majorizer because if

() = (s)

Sqult—S|

and v is twice differentiable at ¢, then

o(t) =

So the Lipschitz constant for the derivative of a function is a (tight) bound for its maximum second derivative.
Often we can find quadratic majorizers for ¢» with lower curvature than L.

Lower curvature majorizers lead to larger step sizes and hence convergence in fewer iterations.
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Huber’s majorizer

Theorem (Huber, 1981 [9, p. 184], [2, Ch. 14]). Suppose ¢ : R — R satisfies the following conditions

U(t)
Y(t) = P(—t), Yt (symmetry),

wy(t) £ 1(t) /t is bounded and monotone nonincreasing for ¢ > 0. (4.19)

is differentiable,

Then the parabola function defined by

qlt; s) &

_ (w@ _ww_(S')s2) L %T(S)t{ (4.20)

is a majorizer for 1), i.e., it satisfies conditions analogous to (4.1) and (4.2), namely

(s75)

=q
P(t) < qlt;s), Vs, t.

The curvature wy, is optimal in the sense of being the smallest value that ensures those requirements.

Challenge. Prove or disprove: Under Huber’s conditions, Y is Lipschitz continuous, and L; = wy (0).
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Example. This figure illustrates the Huber quadratic majorizer (4.20) and the Lipschitz quadratic majorizer
(4.18) for the Fair potential with 6 = 3 at s = 2. Clearly the Huber majorizer is tighter, allowing larger step

S1Zes.
3
Lipschitz majorizer
Huber majorizer ¢(t; s)
Potential function ¥ (t)
o
&
o
el
=]
<
=
=
=
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MM line search using Huber’s majorizer

To realize these larger steps, one uses a MM approach instead of GD for the line search.
Dropping the iteration & subscript to simplify notation, the line-search problem is

J A
a, = argminh(a), h(a)=V(x+ad) = le fi(u; + av;), N ﬁj;” [i(v) =1"¢; .(v).

« vj

(Dropping k here also avoids confusion with the inner MM iteration for the line search.)

Assuming each 1); satisfies Huber’s conditions, the following quadratic function is a majorizer for h(c) for
the nth inner iteration:

J

n(a) £ glas o) =Y gj(as o)

J=1

: 1
gj(as o) =1 (l/Jj (uj + onv;) + 95 (u; + a,v)) O vj(la—ay) + 5 i (uj+ ;) Ov; .2 (o — ozn)2>

=co + c1(an)(a — ap) + =calan) (@ — ay,)?

2
co = h(ay,)
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real{v; U; . (uj + an'uj)} = h(ay)

C1 (O./n)

I
&M“

J
ca(a,) = Z(vj 2 wi (g + apv;) Zv diag{w; .(u; + a,v;)} v; < ZLw v,]13.

i=1 j=1

j=
Differentiating ¢(«; cv,) w.r.t. a and setting to zero leads to the following MM update:

Qpy1 = argmin ¢, (a) =
«

A HW problem will compare the speed of this to the GD-based line search used previously.
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1D optimization using Huber’s majorizer

Facts:
| X
arg min Z |z — z,|” = =~ Z T, (sample mean)
n=1 n=1
N
arg min Z |x — x,| = median(xy,...,xy) (sample median)
r n=1

What about more general 1D case:

Z = argmin f(z Zwaz—xn :

x
In general there is no closed-form solution for z. If v satisfies Huber’s conditions then we can form a
quadratic majorizer:

N

f(z) < ?b(t)(x) = Z¢(x(t) - In) +"b(x(t) - xn) (x — I(t)) + wy (x(t) — xn)

n=1

(z — 2®)?

N —

and update by zeroing its derivative:

. N
.ﬁE(t—H) — l’(t) _ ¢(t) (x(t)) — $(t) _ En:l w(x(t) - xn) '
AW (20) SV wp(@® — )
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This update will decrease f(z) monotonically, whereas Newton’s method has no such guarantee in general.

£/ for which wy () ! and the
—— for which w = —
1+ 12 v (1+12)2

case where 1 = 1, o = 2, 3 = 4. Here the Huber quadratic majorizer works as needed, whereas the
Newton parabola would fail.

Example. Consider the Geman & McClure potential ¥ (t) =

f(@)
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Huber’s conditions and uniqueness

Do Huber’s 3 conditions (4.19) ensure v has a unique minimizer?
1 differentiable, symmetric and wy,(t) = ¢(t) /t is bounded and nonincreasing for ¢ > 0.

Example. wy(t)
Consider this weighting function and note that 1
t t 11 t
(t) :/ w(s)ds:/ swy(s)ds. i
0 0 % w(céegcexc(.vls
of et 4
—%&\ Cndhine
Now suppose we add a 4th condition: wy(t)
wy 2 0 : H
Now we have that ¢(t) > 0Vt > 0, -
so 1(t) is non-decreasing for ¢ > 0. -1 t
P
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Huber hinge function
The hinge loss function is not differentiable, making it unsuitable for gradient-based methods.
The (continuously differentiable) Huber hinge loss function for classifier design is defined, for § > 0, as
[10]:
1—t—0/2, t<1-9§
h(t;6) =4 5(t—1)?2 1-6<t<1
0, 1<t

The Lipschitz constant of the derivative of this function is:

A:1/82 B:1/6 C:1 D: § E: §2
A quadratic majorizer with this curvature is used in [ 10, eqn. (34)] to train a support-vector machine (SVM).

For s > 1, find the quadratic function having optimal, i.e., smallest possible curvature:

q(t; s) =

What is ¢(s)? (group)


http://en.wikipedia.org/wiki/Hinge_loss
http://en.wikipedia.org/wiki/Support-vector_machine
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Example. The following figure illustrates the case where § = 2/5 and s = 3.

5

I

Lipschitz majorizer

Optimal majorizer
Huber hinge § = 0.4

1 1 1
0.0 0.61.0

L
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If 1 — § < s < 1then the curvature of the optimal quadratic majorizer is?
A:1/62 B:1/6 C:1 D: § E: §°

If 1 — 0 < s <1 then the vertex of the optimal quadratic majorizer is?
A: 0 B: s C:1 D:1/s E: None of these

A HW problem considers the case s < 1 — ¢.

The “best quadratic majorizer” for the (nondifferentiable) case 6 = 0 (the ordinary hinge function) is given
in [11, eqn. (9)]. They call it “sharp” quadratic majorization. However, the expression there is invalid at the
hinge corner point, so the authors propose an ad hoc modification that destroys the guarantee of the monotone
descent property of MM methods, so is quite undesirable. Using 6 > 0 gives us the Huber hinge for which
our quadratic majorizer is optimal.

An alternative to the Huber hinge is the “squared hinge loss” function [12] given by h(t) = (max(1 — ¢,0))”.
This function is convex and continuously differentiable and has a Lipschitz continuous derivative. However
it increases unnecessarily rapidly (quadratically) for negative values, whereas the Huber hinge increases
linearly.
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Acceleration methods

For unconstrained problems, one acceleration method that retains monotonicity is the over-relaxation ap-
proach of [13]. In the MM setting, one first makes a standard MM update:

141 2 arg min ¢;(x)
xT
and then takes an extrapolated step
Ty = Ty + Oét(ﬁb(tﬂ) — ;)

where the step size o, is chosen to ensure that

Pr(Ti11) < de(x4),

which in turn ensures that ¥(x,) decreases monotonically. This method is viable when evaluating the ma-
jorizer ¢; is less expensive than a line search on V.
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4.3 Summary

This chapter has touched on a few of the many methods for designing MM optimization algorithms, focusing
on quadratic majorizers and majorizers based on convexity.

One can combine the methods. For example in transmission tomography the data-fit term involves h;(t) =
(b exp(—t) + r;) — y; log(b; exp(—t) 4+ r;) which is nonconvex. Nevertheless, one can design a quadratic
majorizer for it [14] and then make a separable quadratic majorizer of that [15] to derive a simple MM
algorithm.

For generalizations of MM, see the “relatively smooth” approach of [16] and the generalized MM (G-MM)
approach, see [17].
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