
Chapter 4

Majorize-minimize methods

Contents (class version)
4.0 Introduction . 4.2

4.1 Majorize-minimize (MM) principles . 4.5
Properties of MM methods . 4.6

Quadratic majorizer for smooth cost functions . 4.7

4.2 Applications / MM examples . 4.10
MM methods for LRMC . 4.10

LRMC by iterative low-rank approximation . 4.12

LASSO / sparse regression / compressed sensing . 4.13

Convexity approach to separability . 4.16

Poisson measurements (MLEM) . 4.21

Line search using Huber’s majorizer . 4.23

Huber hinge function . 4.32

Acceleration methods . 4.35

4.3 Summary . 4.36

4.1

© J. Fessler, January 21, 2020, 07:38 (class version) 4.2

4.0 Introduction

The majorize-minimize (MM) “algorithm” is really a family of methods for deriving algorithms for various
applications. The applications are so numerous that entire books have been written on MM methods [1].
These notes focus on a couple of the most important approaches for designing majorizers for MM algorithms,
in the context of several SIPML applications where gradient descent is inapplicable.

Approach overview

There are numerous techniques for designing MM algorithms; see [2, Ch. 14] at
http://web.eecs.umich.edu/~fessler/book/c-ox.pdf

These notes focus on two main techniques that are used especially widely:
• quadratic majorizers, and
• majorizers built on convexity.

Perhaps surprisingly, both of these design methods can be useful even for nonconvex problems.

http://en.wikipedia.org/wiki/MM_algorithm
http://web.eecs.umich.edu/~fessler/book/c-ox.pdf

© J. Fessler, January 21, 2020, 07:38 (class version) 4.3

Applications

These notes focus on the following concrete motivating applications. The common thread of most of these
applications is that the standard gradient descent algorithm is inapplicable due to terms that are not differ-
entiable, or that are differentiable but do not have a Lipschitz continuous gradient.

• More efficient line search for certain cost functions

arg min
α

Ψ(x + αd) .

• Low-rank matrix completion (LRMC) (see EECS 551 notes) using the nondifferentiable rank constraint:

X̂ = arg min
X∈FM×N

1

2
|||M � (X − Y)|||2F + χ{rank(X)≤K}.

• LASSO / sparse regression

x̂ = arg min
x

Ψ(x), Ψ(x) =
1

2
‖Ax− y‖22 + β ‖x‖1 =

M∑
i=1

hi([Ax]i) +β ‖x‖1

hi(t) =
1

2
|t− yi|2 .

The sparsity promoting term ‖·‖1 is not differentiable, yet it is essential for problems with numerous
features (machine learning) or under-sampled measurements (compressed sensing).

http://en.wikipedia.org/wiki/Matrix_completion

© J. Fessler, January 21, 2020, 07:38 (class version) 4.4

• Binary classifier design using convex loss functions and sparsity regularization:

x̂ = arg min
x

Ψ(x), Ψ(x) =
M∑
i=1

h([Ax]i) + β ‖x‖1 ,

where the ith row of A is the product of the binary label yi = ±1 and the ith feature vector. We will
consider any convex loss function h including hinge loss (not differentiable), exponential loss (does not
have a Lipschitz continuous derivative), and logistic loss. Although the logistic loss is convex with
Lipschitz continuous derivative, the ‖·‖1 term is not differentiable.
• Measurements having Poisson distributions (gamma rays, X-rays, low light level optical imaging) where
y ∼ Poisson{Ax} for which the natural regularized estimator is:

x̂ = arg min
x

Ψ(x), Ψ(x) =
M∑
i=1

hi([Ax]i) +βR(x), hi(λ) = λ− yi log(λ),

where hi(·) is the negative log-likelihood of the Poisson distribution. P{Y = y;λ} = e−λ λy/y!

This hi(·) has a Lipschitz continuous derivative on (0,∞). (?)
A: True B: False ??

The latter three applications all have data terms of the form
∑M

i=1 hi([Ax]i) for different convex hi functions.

http://en.wikipedia.org/wiki/Poisson_distribution#Maximum_likelihood

© J. Fessler, January 21, 2020, 07:38 (class version) 4.5

4.1 Majorize-minimize (MM) principles

To solve an optimization problem like

x̂ = arg min
x∈X

Ψ(x)

using a majorize-minimize (MM) approach, we first
design a majorizer or surrogate function φk(x) that
satisfies the following two conditions:

Ψ(xk) = φk(xk) (4.1)
Ψ(x) ≤ φk(x), ∀x ∈ X . (4.2)

Then the MM algorithm update is simply the following
minimization step:

xk+1 = arg min
x∈X

φk(x). (4.3)

Ψ
(x
) Ψ(x)

φ(n)(x)

x
(n)

x
(n+1)

x

Surrogate function (majorizer)
Cost function

http://en.wikipedia.org/wiki/MM_algorithm

© J. Fessler, January 21, 2020, 07:38 (class version) 4.6

Properties of MM methods

Descent property

Any MM algorithm will monotonically decrease the cost function because of the sandwich inequality:

Ψ(xk+1) ≤ φk(xk+1) ≤ φk(xk) = Ψ(xk) .

Algebraic properties of majorizers

Affine invariance:
If φk is a majorizer for Ψ, then aφk + b is a majorizer for aΨ +b for any a > 0.

Linearity:
If fk(x) is a majorizer for f(x) and gk(x) is a majorizer for g(x), then afk(x) + bgk(x) is a majorizer for
af(x) + bg(x) for any a, b > 0.

Adding a suitable nonnegative function:
If ζ(x,xk) ≥ 0 is a (nonnegative) function for which ζ(xk,xk) = 0, then the following function defines a
majorizer for Ψ:

φk(x) , Ψ(x) + ζ(x,xk). (4.4)

These properties allow us to design majorizers for individual pieces of a composite cost function and then
combine them together to form a majorizer for the entire cost function.

© J. Fessler, January 21, 2020, 07:38 (class version) 4.7

Quadratic majorizer for smooth cost functions

Suppose Ψ(x) : FN → R is smooth, meaning its gradient is S-Lipschitz continuous per (3.14):∥∥S−1 (∇Ψ(x)−∇Ψ(z))
∥∥
2
≤ ‖S′ (x− z)‖2 , ∀x, z ∈ FN .

Then a majorizer for Ψ(x) (even for a nonconvex Ψ) is

φk(x) , Ψ(xk) + real{〈∇Ψ(xk), x− xk〉}+
1

2
‖S′(x− xk)‖22 . (4.5)

Proof (generalizing [3, p. 22]). Clearly φk(xk) = Ψ(xk) . By Taylor’s theorem with remainder:

Ψ(x) = Ψ(z) + real

{∫ 1

0

〈∇Ψ(z + τ(x− z)), x− z〉 dτ
}

= Ψ(z) + real{〈∇Ψ(z), x− z〉}+ real

{∫ 1

0

〈∇Ψ(z + τ(x− z))−∇Ψ(z), x− z〉 dτ
}

= Ψ(z) + real{〈∇Ψ(z), x− z〉}

+ real

{∫ 1

0

〈
S−1 (∇Ψ(z + τ(x− z))−∇Ψ(z)) , S′(x− z)

〉
dτ

}
.

http://en.wikipedia.org/wiki/Taylor's_theorem

© J. Fessler, January 21, 2020, 07:38 (class version) 4.8

=⇒ |Ψ(x)−Ψ(z)− real{〈∇Ψ(z), x− z〉}|

=

∣∣∣∣real

{∫ 1

0

〈
S−1 (∇Ψ(z + τ(x− z))−∇Ψ(z)) , S′(x− z)

〉
dτ

}∣∣∣∣
≤
∣∣∣∣∫ 1

0

〈
S−1 (∇Ψ(z + τ(x− z))−∇Ψ(z)) , S′(x− z)

〉
dτ

∣∣∣∣
≤
∫ 1

0

∥∥S−1 (∇Ψ(z + τ(x− z))−∇Ψ(z))
∥∥
2
‖S′(x− z)‖2 dτ

= ‖S′(x− z)‖2
∫ 1

0

∥∥S−1 (∇Ψ(z + τ(x− z))−∇Ψ(z))
∥∥
2

dτ

≤ ‖S′(x− z)‖2
∫ 1

0

‖τS′(x− z)‖2 dτ = ‖S′(x− z)‖22
∫ 1

0

τ dτ =
1

2
‖S′(x− z)‖22 ,

using the S-Lipschitz continuity and the Cauchy-Schwarz inequality.

Thus
Ψ(x)−Ψ(z)− real{〈∇Ψ(z), x− z〉} ≤ 1

2
‖S′(x− z)‖22

=⇒Ψ(x) ≤ Ψ(z) + real{〈∇Ψ(z), x− z〉}+
1

2
‖S′(x− z)‖22 .

This holds for all x, z ∈ FN and now take z = xk to establish (4.5). 2

A possible converse is explored in a HW problem.

http://en.wikipedia.org/wiki/Cauchy-Schwarz_inequality

© J. Fessler, January 21, 2020, 07:38 (class version) 4.9

The MM algorithm corresponding to the majorizer (4.5) has the following minimization step:

xk+1 = arg min
x

φk(x) (from (4.3))

φk(x) , Ψ(xk) + real{〈∇Ψ(xk), x− xk〉}+
1

2
‖S′(x− xk)‖22 (from (4.5))

∇φk(x) = ∇Ψ(xk) +SS′(x− xk)

xk+1 = xk − (SS′)−1∇Ψ(xk) .

This MM algorithm minimization step is the same as:
A: GD B: PGD C: PSD D: PCG E: None of these ??

Special cases

Intuition for twice differentiable cost functions with bounded curvature. Eqn. (4.5) holds if:

∇2 Ψ(x) � SS′, ∀x ∈ RN .

If S =
√
LI then

Ψ(x) ≤ φk(x) = Ψ(xk) + real{〈∇Ψ(xk), x− xk〉}+
L

2
‖x− xk‖22 .

© J. Fessler, January 21, 2020, 07:38 (class version) 4.10

4.2 Applications / MM examples

MM methods for LRMC

Problem statement (for noisy data, see EECS 551 notes):

Yij =

{
Xij + εij, (i, j) ∈ Ω
0, otherwise,

Mij ,

{
1, (i, j) ∈ Ω,
0, otherwise,︸ ︷︷ ︸
mask

M̃i,j =

{
0, (i, j) ∈ Ω
1, (i, j) /∈ Ω,︸ ︷︷ ︸

complement

for a sampling set Ω ⊂ {1, . . . ,M} × {1, . . . , N} . Equivalently: M̃ , 1M1′N −M .

One possible LRMC formulation uses a (non-convex) rank constraint:

X̂ = arg min
X : rank(X)≤K

q(X), q(X) , |||M � (X − Y)|||2F. (4.6)

Now define the following function:

Q(X;Z) = |||X −Z + M � (Z − Y)|||2F =
∣∣∣∣∣∣∣∣∣X − (M̃ �Z + M � Y)

∣∣∣∣∣∣∣∣∣2
F
. (4.7)

This function is a majorizer of q(X) because

q(X) = Q(X;X)

q(X) ≤ Q(X;Z), ∀Z ∈ FM×N .

© J. Fessler, January 21, 2020, 07:38 (class version) 4.11

Proof: Verifying Q(X;X) = q(X) is easy. (Read)

Q(X;Z) = |||X −Z + M � (Z − Y)|||2F =
∣∣∣∣∣∣∣∣∣(M̃ + M)� (X −Z) + M � (Z − Y)

∣∣∣∣∣∣∣∣∣2
F

=
∣∣∣∣∣∣∣∣∣M̃ � (X −Z) + M � (X − Y)

∣∣∣∣∣∣∣∣∣2
F

=
∣∣∣∣∣∣∣∣∣M̃ � (X −Z)

∣∣∣∣∣∣∣∣∣2
F

+ |||M � (X − Y)|||2F
≥ |||M � (X − Y)|||2F = q(X),

where the 4th equality holds because M̃ �M = 0. 2

In the earlier notation, define qk(X) , Q(X,Xk) at the kth iteration. Then the MM requirements hold:

qk(Xk) = Q(Xk,Xk) = q(Xk)

qk(X) = Q(X,Xk) ≥ q(X), ∀X.

I originally designed this majorizer by making a 2nd-order Taylor expansion of q(X) about Z and then
using the fact that the elements of M are all 0 or 1. We’ll see another application of that approach later
in this chapter. Here, the proof above illustrates a simpler way to design the majorizer, using the following
definition:

Q(X,Z) , q(X) +
∣∣∣∣∣∣∣∣∣M̃ � (X −Z)

∣∣∣∣∣∣∣∣∣2
F
, (4.8)

because the 2nd term is nonnegative and is zero when X = Z, per (4.4).

Now we use the quadratic majorizer (4.7) = (4.8) to develop a MM algorithm for LRMC that is practical
for problems that are not too large.

© J. Fessler, January 21, 2020, 07:38 (class version) 4.12

LRMC by iterative low-rank approximation

Consider LRMC using the rank constraint (4.6):

X̂ = arg min
X : rank(X)≤K

|||M � (X − Y)|||2F.

The MM algorithm update for this formulation is simply

Xk+1 = arg min
X : rank(X)≤K

Q(X;Xk)

= arg min
X : rank(X)≤K

∣∣∣∣∣∣∣∣∣X − (M̃ �Xk + M � Y)
∣∣∣∣∣∣∣∣∣2
F

= arg min
X : rank(X)≤K

∣∣∣∣∣∣∣∣∣X − X̃k

∣∣∣∣∣∣∣∣∣2
F
, X̃k , M̃ �Xk + M � Y =

{
Yi,j, (i, j) ∈ Ω
[Xk]i,j, (i, j) /∈ Ω.

This algorithm alternates between two steps:
◦ Take the current guess Xk and replace all the values at sampled locations with the measurements from Y

to get X̃k. (As mentioned earlier, this can be done “in place” using X[M] .= Y[M])
◦ Perform low-rank (rank at most K) approximation (using SVD) to X̃k to get the next iterate Xk+1.

Because this is a MM method, we know it decreases the Frobenius norm cost function monotonically.

(There is still no guarantee here of convergence of {Xk} to a global minimizer because the rank constraint
set is nonconvex. For convex formulations see [4].)

© J. Fessler, January 21, 2020, 07:38 (class version) 4.13

LASSO / sparse regression / compressed sensing

These applications all involve the following composite cost function:

x̂ = arg min
x

Ψ(x), Ψ(x) = f(x) + β ‖x‖1 , f(x) =
1

2
‖Ax− y‖22 . (4.9)

There are simple non-iterative solutions when A is identity, diagonal, or unitary, but not otherwise.

First draw inspiration from (4.4) to define a quadric majorizer for f(x):

fk(x) , f(x) +
1

2
‖x− xk‖2H (4.10)

=
1

2
‖Ax− y‖22 +

1

2
(x− xk)

′H (x− xk)

=
1

2
(x− xk)

′(A′A + H)(x− xk) + real{(∇f(xk))
′(x− xk)}+c1,

=
1

2

∥∥x− (xk − (A′A + H)−1∇f(xk)
)∥∥2

A′A+H
+ c2, (4.11)

by completing the square, where c1, c2 are constants independent of x.
Here we require H � 0 and A′A + H � 0, but we do not insist that H � 0.

http://en.wikipedia.org/wiki/Completing_the_square#Matrix_case

© J. Fessler, January 21, 2020, 07:38 (class version) 4.14

ISTA: iterative soft thresholding algorithm

H = LI −A′A � 0, L , σ2
1(A) > 0 if A 6= 0

fk(x) =
L

2

∥∥∥∥x− (xk − 1

L
∇f(xk)

)∥∥∥∥2
2

+ c2

Thus a majorizer for the original cost function is

φk(x) = fk(x) + β ‖x‖1

=
L

2

∥∥∥∥x− (xk − 1

L
∇f(xk)

)∥∥∥∥2 + c2 + β ‖x‖1 . (4.12)

The minimization step is the iterative soft thresholding algorithm (ISTA) [5]:

xk+1 = arg min
x

φk(x) = soft
(
xk −

1

L
∇f(xk),β/L

)
= proxβ/L‖·‖1

(
xk −

1

L
∇f(xk)

)
. (4.13)

It is also called the proximal gradient method (PGM), especially for more general regularizers.
This MM algorithm is remarkably simple, especially given that that 1-norm is non-differentiable.

A serious drawback of ISTA is its slow convergence O(1/k) and it needs |||A|||2.

http://en.wikipedia.org/wiki/Proximal_gradient_methods_for_learning

© J. Fessler, January 21, 2020, 07:38 (class version) 4.15

The threshold above is:
A: β B: β/L C: βL D: βL2 E: None ??

PGM with diagonal majorizers

Recall from HW1#10 :

H = D −A′A � 0, D � A′A, e.g., D = diag{|A′A|1N}+εI (4.14)

With this choice of H , the majorizer becomes

φk(x) =
1

2

∥∥x− (xk −D−1∇f(xk)
)∥∥2

D
+ c2 + β ‖x‖1

and the MM algorithm becomes

xk+1 = arg min
x

φk(x) = soft
(
xk −D−1∇f(xk),β� d

)
, (4.15)

where D = diag{d} and � denotes ./ element-wise division. So the jth element of the gradient step is
thresholded by β/dj . No Lipschitz constant or operator norm is needed.

It still has slow O(1/k) convergence rate, but there is a fast version called FISTA [6] and an even faster
version called the proximal optimized gradient method (POGM) [7] that both have O(1/k2) bounds.

A HW problem will compare ISTA / FISTA / POGM with the lasso_cls constrained least-squares for-
mulation from Ch. 1.

© J. Fessler, January 21, 2020, 07:38 (class version) 4.16

Convexity approach to separability

All of the preceding examples used quadratic majorizers for the data term. Now we turn to non-quadratic
examples.

Many of cost functions have data-fit terms of this form:

f(x) =
∑M

i=1 hi([Ax]i),

where each function hi is convex (but not necessarily smooth).

Examples:
• hi(t) = 1

2
|t− yi|2

• hi(t) = max(1− t, 0) (hinge loss, the tightest convex upper bound on the 0-1 loss)
• hi(t) = e−t (exponential loss)
• hi(t) = t− yi log(t) (Poisson negative log-likelihood)

The commonality of all of these cost function components is convexity (only), i.e.,

αj ≥ 0,
N∑
j=1

αj = 1 =⇒ hi

(
N∑
j=1

αjxj

)
≤

N∑
j=1

αj hi(xj) . (4.16)

The importance of this inequality is that the RHS is additively separable.

http://en.wikipedia.org/wiki/Hinge_loss
http://en.wikipedia.org/wiki/Loss_functions_for_classification

© J. Fessler, January 21, 2020, 07:38 (class version) 4.17

Here is the key technique for designing a separable majorizer using convexity:

[Ax]i =
N∑
j=1

aijxj =
N∑
j=1

αij
aij
αij

xj =
N∑
j=1

αij

(
aij
αij

(xj − x(k)j) + [Axk]i

)

hi([Ax]i) = hi

(
N∑
j=1

αij

(
aij
αij

(xj − x(k)j) + [Axk]i

))

≤
N∑
j=1

αij hi

(
aij
αij

(xj − x(k)j) + [Axk]i

)

=⇒
M∑
i=1

hi([Ax]i) ≤
N∑
j=1

f
(k)
j (xj), f

(k)
j (xj) ,

M∑
i=1

αij hi

(
aij
αij

(xj − x(k)j) + [Axk]i

)
.

Note that
∑N

j=1 f
(k)
j (x

(k)
j) =

∑N
j=1

∑M
i=1 αij hi([Axk]i) =

∑M
i=1 hi([Axk]i), so (4.1) holds.

© J. Fessler, January 21, 2020, 07:38 (class version) 4.18

Now consider a cost function like

Ψ(x) =
M∑
i=1

hi([Ax]i) +β ‖x‖1 =
M∑
i=1

hi([Ax]i) +β

N∑
j=1

|xj| .

The above inequalities establish the following separable majorizer:

φk(x) =
N∑
j=1

φ
(k)
j (xj), φ

(k)
j (xj) = f

(k)
j (xj) + β |xj| . (4.17)

The (parallelizable!) minimization step of the MM algorithm for this majorizer is

xk+1 = arg min
x

φk(x), x
(k+1)
j = arg min

xj

φ
(k)
j (xj) = arg min

xj

f
(k)
j (xj) + β |xj| , j = 1, . . . , N.

© J. Fessler, January 21, 2020, 07:38 (class version) 4.19

Example. Consider again the LASSO problem (4.9), where hi(t) = 1
2
|t− yi|2 .

The separable majorizer (4.17) is:

φ
(k)
j (xj) = f

(k)
j (xj) + β |xj| =

M∑
i=1

αij hi

(
aij
αij

(xj − x(k)j) + [Axk]i

)
+β |xj|

=
M∑
i=1

αij
1

2

∣∣∣∣ aijαij (xj − x(k)j) + [Axk]i − yi
∣∣∣∣2 + β |xj|

=
M∑
i=1

1

αij

1

2

∣∣∣aij(xj − x(k)j) + αij([Axk]i − yi)
∣∣∣2 + β |xj|

=
1

2
dj

∣∣∣xj − [xk −D−1A′(Axk − y)
]
j

∣∣∣2 + β |xj|+ c3, D = diag{dj}, dj ,
M∑
i=1

|aij|2 /αij,

where c3 is a constant independent of x.

So the minimization step of the MM algorithm is simply soft thresholding:

xk+1 = soft
(
xk −D−1A′(Axk − y),β� d

)
.

To finalize the algorithm we must specify αij factors satisfying (4.16). A natural choice, cf. (4.14), is:

αij =
|aij|∑N
k=1 |aik|

=⇒ dj =
M∑
i=1

|aij|2

αij
=

M∑
i=1

|aij|2

|aij|/
∑N

k=1 |aik|
=

M∑
i=1

|aij|

(
N∑
k=1

|aik|

)
= [|A|′ |A|1]j.

© J. Fessler, January 21, 2020, 07:38 (class version) 4.20

If β = 0, this MM algorithm is the same as:
A: GD B: PGD C: PSD D: PCG E: None of these ??

If β > 0, this MM algorithm is the same as:
A: GD B: PGD C: ISTA/PGM (4.13) D: ISTA/PGM (4.15) E: None of these ??

Example. Exponential loss for binary classifier design hi(t) = e−t . (Read)
For this application the separable majorizer (4.17) is

φ
(k)
j (xj) = f

(k)
j (xj) + β |xj| =

M∑
i=1

αij hi

(
aij
αij

(xj − x(k)j) + [Axk]i

)
+β |xj|

=
M∑
i=1

αij exp

(
−
(
aij
αij

(xj − x(k)j) + [Axk]i

))
+ β |xj| .

There is no closed-form expression for the MM algorithm update, but one can perform parallel 1D minimiza-
tion for each coordinate j = 1, . . . , N :

x
(k+1)
j = arg min

xj

φ
(k)
j (xj) = arg min

xj

M∑
i=1

αij exp

(
−
(
aij
αij

(xj − x(k)j) + [Axk]i

))
+ β |xj| .

The same principle applies to the hinge loss function. However, in both cases the 1D minimization itself
seems challenging: the exponential does not have a Lipschitz derivative and the hinge is not differentiable.

© J. Fessler, January 21, 2020, 07:38 (class version) 4.21

Poisson measurements (MLEM)

For the Poisson noise problem with hi(t) = t − yi log(t), we must have aij ≥ 0 and we use the convexity
inequality with a slightly different approach:

[Ax]i =
N∑
j=1

aijxj =
N∑
j=1

(
aijx

(k)
j

[Axk]i

)
xj

x
(k)
j

[Axk]i

hi([Ax]i) = hi

(
N∑
j=1

(
aijx

(k)
j

[Axk]i

)
xj

x
(k)
j

[Axk]i

)
≤

N∑
j=1

(
aijx

(k)
j

[Axk]i

)
hi

(
xj

x
(k)
j

[Axk]i

)

=⇒
M∑
i=1

hi([Ax]i) ≤
N∑
j=1

f
(k)
j (xj), f

(k)
j (xj) ,

M∑
i=1

(
aijx

(k)
j

[Axk]i

)
hi

(
xj

x
(k)
j

[Axk]i

)
Here we are essentially using iteration-dependent convexity parameters:

αij =
aijx

(k)
j

[Axk]i
≥ 0,

N∑
j=1

αij = 1.

© J. Fessler, January 21, 2020, 07:38 (class version) 4.22

Again considering 1-norm regularization, the separable majorizer is

φk(x) =
N∑
j=1

φ
(k)
j (xj), φ

(k)
j (xj) = f

(k)
j (xj) + β |xj| .

Here we need xj ≥ 0 so |xj| = xj .

Differentiating to find the minimizer over xj:

0 =
∂

∂xj
φ
(k)
j (xj) =

M∑
i=1

aij ḣi

(
xj

x
(k)
j

[Axk]i

)
+ β =

M∑
i=1

aij

(
1−

x
(k)
j yi

xj[Axk]i

)
+ β

=
M∑
i=1

aij −
x
(k)
j

xj

M∑
i=1

aij
yi

[Axk]i
+ β

=⇒x(k+1)
j =

x
(k)
j∑M

i=1 aij + β

M∑
i=1

aij
yi

[Axk]i
.

The version with β = 0 is used in clinical PET and SPECT systems daily.
The 1-norm seems to be of much less help in enforcing sparsity here compared to the case of the 2-norm data
term [8].

© J. Fessler, January 21, 2020, 07:38 (class version) 4.23

Line search using Huber’s majorizer

Recall that for “inverse problem” cost functions of the form Ψ(x) =
∑J

j=1 fj(Bjx) where each component
function fj is convex and smooth, we used GD to solve the 1D line-search minimization problem:

αk = arg min
α

hk(α), hk(α) = Ψ(xk + αdk) =
∑J

j=1
fj(uj + αvj), uj , Bjxk, vj , Bjdk.

To apply GD for the line search, in HW you found a Lipschitz constant of the derivative of hk(α) to be

Lḣk =
∑J

j=1
Lḟj ‖vj‖

2
2 .

That Lipschitz constant leads to correct but undesirably small step sizes for many functions of interest, thereby
possibly requiring excess numbers of inner line search iterations.

We focus on component functions of the form (note the JULIA dot):

fj(v) = 1′ ψj .(v),

for which
Lḟj = Lψ̇.

© J. Fessler, January 21, 2020, 07:38 (class version) 4.24

If ψ has a Lipschitz continuous derivative, then specializing (4.5):

ψ(t) ≤ ψ(s) + ψ̇(s)(t− s) +
1

2
Lψ̇ (t− s)2 . (4.18)

The GD-based line-search used in HW was essentially a MM method using this quadratic majorizer. I call
this the maximum curvature majorizer because if∣∣∣ψ̇(t)− ψ̇(s)

∣∣∣ ≤ Lψ̇ |t− s|

and ψ is twice differentiable at t, then

ψ̈(t) = lim
s→t

ψ̇(t)− ψ̇(s)

t− s
≤ Lψ̇.

So the Lipschitz constant for the derivative of a function is a (tight) bound for its maximum second derivative.

Often we can find quadratic majorizers for ψ with lower curvature than Lψ̇.

Lower curvature majorizers lead to larger step sizes and hence convergence in fewer iterations.

© J. Fessler, January 21, 2020, 07:38 (class version) 4.25

Huber’s majorizer

Theorem (Huber, 1981 [9, p. 184], [2, Ch. 14]). Suppose ψ : R→ R satisfies the following conditions

ψ(t) is differentiable,
ψ(t) = ψ(−t), ∀t (symmetry),

ωψ(t) , ψ̇(t) /t is bounded and monotone nonincreasing for t > 0. (4.19)

Then the parabola function defined by

q(t; s) , ψ(s) + ψ̇(s)(t− s) +
1

2
ωψ(s)(t− s)2

=

(
ψ(s)−ωψ(s)

2
s2
)

+
ωψ(s)

2
t2, (4.20)

is a majorizer for ψ, i.e., it satisfies conditions analogous to (4.1) and (4.2), namely

ψ(s) = q(s; s)

ψ(t) ≤ q(t; s), ∀s, t.

The curvature ωψ is optimal in the sense of being the smallest value that ensures those requirements.

Challenge. Prove or disprove: Under Huber’s conditions, ψ̇ is Lipschitz continuous, and Lψ̇ = ωψ(0) .

© J. Fessler, January 21, 2020, 07:38 (class version) 4.26

Example. This figure illustrates the Huber quadratic majorizer (4.20) and the Lipschitz quadratic majorizer
(4.18) for the Fair potential with δ = 3 at s = 2. Clearly the Huber majorizer is tighter, allowing larger step
sizes.

-3 -2 0 2 3

0

3

Compare to Newton parabola from 2nd-order Taylor expansion.

© J. Fessler, January 21, 2020, 07:38 (class version) 4.27

MM line search using Huber’s majorizer

To realize these larger steps, one uses a MM approach instead of GD for the line search.
Dropping the iteration k subscript to simplify notation, the line-search problem is

α∗ = arg min
α

h(α), h(α) = Ψ(x + αd) =
J∑
j=1

fj(uj + αvj),
uj , Bjx,

vj , Bjd,
fj(v) = 1′ ψj .(v).

(Dropping k here also avoids confusion with the inner MM iteration for the line search.)

Assuming each ψj satisfies Huber’s conditions, the following quadratic function is a majorizer for h(α) for
the nth inner iteration:

φn(α) , q(α;αn) =
J∑
j=1

qj(α;αn)

qj(α;αn) = 1′
(
ψj .(uj + αnvj) + ψ̇j .(uj + αnvj)� vj(α− αn) +

1

2
ωj .(uj + αnvj)� vj .^2 (α− αn)2

)
= c0 + c1(αn)(α− αn) +

1

2
c2(αn)(α− αn)2

c0 = h(αn)

© J. Fessler, January 21, 2020, 07:38 (class version) 4.28

c1(αn) =
J∑
j=1

real
{
v′j ψ̇j .(uj + αnvj)

}
= ḣ(αn)

c2(αn) =
J∑
j=1

(vj .^2)′ ωj .(uj + αnvj) =
J∑
j=1

v′j diag{ωj .(uj + αnvj)}vj ≤
J∑
j=1

Lψ̇j
‖vj‖22 .

Differentiating q(α;αn) w.r.t. α and setting to zero leads to the following MM update:

αn+1 = arg min
α

φn(α) = αn −
c1(αn)

c2(αn)
.

A HW problem will compare the speed of this to the GD-based line search used previously.

© J. Fessler, January 21, 2020, 07:38 (class version) 4.29

1D optimization using Huber’s majorizer

Facts:

arg min
x

N∑
n=1

1

2
|x− xn|2 =

1

N

N∑
n=1

xn (sample mean) (Picture)

arg min
x

N∑
n=1

|x− xn| = median(x1, . . . , xN) (sample median) (Picture)

What about more general 1D case:

x̂ = arg min
x

f(x), f(x) =
N∑
n=1

ψ(x− xn) .

In general there is no closed-form solution for x̂. If ψ satisfies Huber’s conditions then we can form a
quadratic majorizer:

f(x) ≤ φ(t)(x) =
N∑
n=1

ψ
(
x(t) − xn

)
+ ψ̇

(
x(t) − xn

)
(x− x(t)) + ωψ

(
x(t) − xn

) 1

2
(x− x(t))2

and update by zeroing its derivative:

x(t+1) = x(t) − φ̇(t)(x(t))

φ̈(t)(x(t))
= x(t) −

∑N
n=1 ψ̇

(
x(t) − xn

)∑N
n=1 ωψ(x(t) − xn)

.

© J. Fessler, January 21, 2020, 07:38 (class version) 4.30

This update will decrease f(x) monotonically, whereas Newton’s method has no such guarantee in general.

Example. Consider the Geman & McClure potential ψ(t) =
t2/2

1 + t2
for which ωψ(t) =

1

(1 + t2)2
, and the

case where x1 = 1, x2 = 2, x3 = 4. Here the Huber quadratic majorizer works as needed, whereas the
Newton parabola would fail.

0.3 1.0 2.0 4.0
0

1

© J. Fessler, January 21, 2020, 07:38 (class version) 4.31

Huber’s conditions and uniqueness

Do Huber’s 3 conditions (4.19) ensure ψ has a unique minimizer?
ψ differentiable, symmetric and ωψ(t) = ψ̇(t) /t is bounded and nonincreasing for t > 0.

Example.
Consider this weighting function and note that

ψ(t) =

∫ t

0

ψ̇(s) ds =

∫ t

0

s ωψ(s) ds .

ωψ(t)

t-1

1

Now suppose we add a 4th condition:
ωψ ≥ 0
Now we have that ψ̇(t) ≥ 0 ∀t ≥ 0,
so ψ(t) is non-decreasing for t ≥ 0.

ωψ(t)

t-1

1

© J. Fessler, January 21, 2020, 07:38 (class version) 4.32

Huber hinge function

The hinge loss function is not differentiable, making it unsuitable for gradient-based methods.
The (continuously differentiable) Huber hinge loss function for classifier design is defined, for δ > 0, as
[10]:

h(t; δ) =


1− t− δ/2, t ≤ 1− δ
1
2δ

(t− 1)2, 1− δ ≤ t ≤ 1
0, 1 ≤ t.

Picture

The Lipschitz constant of the derivative of this function is:
A: 1/δ2 B: 1/δ C: 1 D: δ E: δ2 ??

A quadratic majorizer with this curvature is used in [10, eqn. (34)] to train a support-vector machine (SVM).

For s > 1, find the quadratic function having optimal, i.e., smallest possible curvature:

q(t; s) = 0 + 0 +
c(s)

2
(t− s)2 ≥ h(t).

What is c(s)? (group)

Find the point p where ḣ(p) = q̇(p; s) and h(p) = q(p; s), i.e., −1 = (p − s)c and 1 − p − δ
2

= c
2
(p − s)2.

So p = s− 1
c

and 1− (s− 1
c
)− δ

2
= 1

2c
, so 1− s− δ

2
= − 1

2c
and c(s) = 1

2 (s−1+δ/2) ≤ 1/δ.

http://en.wikipedia.org/wiki/Hinge_loss
http://en.wikipedia.org/wiki/Support-vector_machine

© J. Fessler, January 21, 2020, 07:38 (class version) 4.33

Example. The following figure illustrates the case where δ = 2/5 and s = 3.

-1.4 0.0 0.61.0 3.0

0

1

2

3

4

5

© J. Fessler, January 21, 2020, 07:38 (class version) 4.34

If 1− δ ≤ s ≤ 1 then the curvature of the optimal quadratic majorizer is?
A: 1/δ2 B: 1/δ C: 1 D: δ E: δ2 ??

If 1− δ ≤ s ≤ 1 then the vertex of the optimal quadratic majorizer is?
A: 0 B: s C: 1 D: 1/s E: None of these ??

A HW problem considers the case s < 1− δ.
The “best quadratic majorizer” for the (nondifferentiable) case δ = 0 (the ordinary hinge function) is given
in [11, eqn. (9)]. They call it “sharp” quadratic majorization. However, the expression there is invalid at the
hinge corner point, so the authors propose an ad hoc modification that destroys the guarantee of the monotone
descent property of MM methods, so is quite undesirable. Using δ > 0 gives us the Huber hinge for which
our quadratic majorizer is optimal.

An alternative to the Huber hinge is the “squared hinge loss” function [12] given by h(t) = (max(1− t, 0))2 .
This function is convex and continuously differentiable and has a Lipschitz continuous derivative. However
it increases unnecessarily rapidly (quadratically) for negative values, whereas the Huber hinge increases
linearly.

© J. Fessler, January 21, 2020, 07:38 (class version) 4.35

Acceleration methods

For unconstrained problems, one acceleration method that retains monotonicity is the over-relaxation ap-
proach of [13]. In the MM setting, one first makes a standard MM update:

x̃t+1 , arg min
x

φt(x)

and then takes an extrapolated step

xt+1 , x̃t+1 + αt(x̃
(t+1) − xt)

where the step size αt is chosen to ensure that

φt(xt+1) ≤ φt(xt),

which in turn ensures that Ψ(xt) decreases monotonically. This method is viable when evaluating the ma-
jorizer φt is less expensive than a line search on Ψ.

© J. Fessler, January 21, 2020, 07:38 (class version) 4.36

4.3 Summary

This chapter has touched on a few of the many methods for designing MM optimization algorithms, focusing
on quadratic majorizers and majorizers based on convexity.

One can combine the methods. For example in transmission tomography the data-fit term involves hi(t) =
(bi exp(−t) + ri) − yi log(bi exp(−t) + ri) which is nonconvex. Nevertheless, one can design a quadratic
majorizer for it [14] and then make a separable quadratic majorizer of that [15] to derive a simple MM
algorithm.

For generalizations of MM, see the “relatively smooth” approach of [16] and the generalized MM (G-MM)
approach, see [17].

© J. Fessler, January 21, 2020, 07:38 (class version) 4.37

Bibliography

[1] K. Lange. MM optimization algorithms. Soc. Indust. Appl. Math., 2016 (cit. on p. 4.2).

[2] J. A. Fessler. Image reconstruction: Algorithms and analysis. Book in preparation. ., 2006 (cit. on pp. 4.2, 4.25).

[3] Y. Nesterov. Introductory lectures on convex optimization: A basic course. Springer, 2004 (cit. on p. 4.7).

[4] C. Grussler and P. Giselsson. “Low-rank inducing norms with optimality interpretations”. In: SIAM J. Optim. 28.4 (Jan. 2018), 3057–78 (cit. on p. 4.12).

[5] I. Daubechies, M. Defrise, and C. De Mol. “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint”. In: Comm. Pure
Appl. Math. 57.11 (Nov. 2004), 1413–57 (cit. on p. 4.14).

[6] A. Beck and M. Teboulle. “A fast iterative shrinkage-thresholding algorithm for linear inverse problems”. In: SIAM J. Imaging Sci. 2.1 (2009), 183–202
(cit. on p. 4.15).

[7] A. B. Taylor, J. M. Hendrickx, and Francois Glineur. “Exact worst-case performance of first-order methods for composite convex optimization”. In:
SIAM J. Optim. 27.3 (Jan. 2017), 1283–313 (cit. on p. 4.15).

[8] D. J. Lingenfelter, J. A. Fessler, and Z. He. “Sparsity regularization for image reconstruction with Poisson data”. In: Proc. SPIE 7246 Computational
Imaging VII. 2009, 72460F (cit. on p. 4.22).

[9] P. J. Huber. Robust statistics. New York: Wiley, 1981 (cit. on p. 4.25).

[10] P. J. F. Groenen, G. Nalbantov, and J. C. Bioch. “SVM-Maj: a majorization approach to linear support vector machines with different hinge errors”. In:
Advances in Data Analysis and Classification 2.1 (Apr. 2008), 17–43 (cit. on p. 4.32).

[11] J. de Leeuw and K. Lange. “Sharp quadratic majorization in one dimension”. In: Comp. Stat. Data Anal. 53.7 (May 2009), 2471–84 (cit. on p. 4.34).

[12] Z. Zhang, D. Liu, G. Dai, and M. I. Jordan. “Coherence functions with applications in large-margin classification methods”. In: J. Mach. Learning Res.
13 (Sept. 2012), 2705–34 (cit. on p. 4.34).

[13] Y. Yu. “Monotonically overrelaxed EM algorithms”. In: J. Computational and Graphical Stat. 21.2 (2012), 518–37 (cit. on p. 4.35).

[14] H. Erdogan and J. A. Fessler. “Monotonic algorithms for transmission tomography”. In: IEEE Trans. Med. Imag. 18.9 (Sept. 1999), 801–14 (cit. on
p. 4.36).

[15] H. Erdogan and J. A. Fessler. “Ordered subsets algorithms for transmission tomography”. In: Phys. Med. Biol. 44.11 (Nov. 1999), 2835–51 (cit. on
p. 4.36).

© J. Fessler, January 21, 2020, 07:38 (class version) 4.38

[16] H. Lu, R. M. Freund, and Y. Nesterov. “Relatively smooth convex optimization by first-order methods, and applications”. In: SIAM J. Optim. 28.1 (Jan.
2018), 333–54 (cit. on p. 4.36).

[17] S. N. Parizi, K. He, S. Sclaroff, and P. Felzenszwalb. “Generalized majorization-minimization”. In: Proc. Intl. Conf. Mach. Learn. Vol. 97. 2019,
5022–31 (cit. on p. 4.36).

	Majorize-minimize methods
	4.0 Introduction
	4.1 Majorize-minimize (MM) principles
	Properties of MM methods
	Quadratic majorizer for smooth cost functions

	4.2 Applications / MM examples
	MM methods for LRMC
	LRMC by iterative low-rank approximation
	LASSO / sparse regression / compressed sensing
	Convexity approach to separability
	Poisson measurements (MLEM)
	Line search using Huber's majorizer
	Huber hinge function
	Acceleration methods

	4.3 Summary

