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2.0 Introduction

This chapter continues the previous chapter in giving an overview of many of the SIPML problems that
require iterative algorithms for optimization and that will be addressed later in the course. Again, this chapter
focuses on the cost functions, not the algorithms. This chapter has more applications involving nonconvex
optimization problems.

2.1 Signal processing applications

http://en.wikipedia.org/wiki/Convex_optimization#Hardness_of_nonconvex_optimization
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Patch-based regularization methods

The sparsity-based regularizers in Ch. 1 used dictionaries or sparsifying transforms for the entire image.
Especially for data-driven models, often it is more appropriate to synthesize or analyze each patch of an
image rather than trying to model the entire image.

To write patch-based regularizers mathematically we need a matrix representation of the process of extracting
a patch from an image.

Example. Patch extraction is easiest to illustrate in 1D. For a 1D signal of length N = 8, a few of the 3 × 8
matrices for extracting patches from the image with stride=1 are:

R1 =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0

 , R2 =

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

 , . . . , R6 =

0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 .
If we choose to use periodic boundary conditions then we will also use these two patch extraction matrices
in this example:

R7 =

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0

 , R8 =

0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0


In math, R2x =

[
x2 x3 x4

]T
, whereas in JULIA code it is simply x[2:4]
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The generalization to 2D is similar conceptually but more cumbersome to write explicitly and one must think
about lexicographical order.

To extract a 2D patch of size 2× 3, from a N1 ×N2 image x use a JULIA command like:
x[4:5,6:8]

If x represents a 2D image that is shaped as a 1D array of length N1N2, then use index chaining like this to
extract a patch:
reshape(x,N1,N2)[4:5,6:8][:]

This selection process is a linear operation, so it is possible to write it as a 6×N1N2 matrix R that is all zeros
except for one 1 in each row.

For N1 = 10 and N2 = 7, what is the column index for the 1 in the first row of the 6 × 70 matrix R
corresponding to the previous JULIA statement?
A: 27 B: 36 C: 39 D: 54 E: None ??

http://en.wikipedia.org/wiki/Lexicographical_order
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Patch-based synthesis regularizer

Let Rl ∈ {0, 1}d×N denote the matrix for extracting the lth of L patches. Assume Rlx ≈ Dzl where D is
d×K and zl ∈ FK is sparse. Usually d ≤ K.

Define Z =
[
z1 . . . zL

]
∈ FK×L. A typical patch-based synthesis regularizer is:

x̂ = arg min
x

1

2
‖Ax− y‖22 + βR(x), R(x) = min

Z∈FK×L

L∑
l=1

1

2
‖Rlx−Dzl‖22 + α ‖zl‖p , (2.1)

where typically p = 0, 1.

Patch-based analysis regularizer

A typical patch-based analysis (or sparsifying transform) regularizer is:

x̂ = arg min
x

1

2
‖Ax− y‖22 + βR(x), R(x) = min

Z∈FK×L

L∑
l=1

1

2
‖TRlx− zl‖22 + α ‖zl‖p , (2.2)

where T is a K × d sparsifying transform matrix for vectorized patches. Often K ≈ d.

http://en.wikipedia.org/wiki/Vectorization_(mathematics)
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Example. If the patches are piece-wise constant, then a couple reasonable choices for T are

T1 =


−1 1 0 . . .
0 −1 1 . . .

. . . . . .
0 . . . 0 −1 1

 , T2 =


−1 −1 1 1 0 . . .
0 −1 −1 1 1 0 . . .

. . . . . .
0 . . . 0 −1 −1 1 1

 , T3 =

[
T1

T2

]
.

Here T1 is (d− 1)× d and T2 is (d− 2)× d and T3 is (2d− 3)× d.

Example. In fact the most minimalist version would be d = 2 andK = 1 and T =
[
−1 1

]
, which essentially

ends up being very similar (but not identical) to a 1D TV regularizer, as discussed in Ch. 1.
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Aggregate (global) sparsity versus patch-wise (local) sparsity

Because the historical significance of the K-SVD algorithm [1, 2], per-patch sparsity constraints have been
popular. For image patches, regularizing based on aggregate sparsity seems more natural.

Here are dictionary versions of both regularizers for comparison:

R(x) = min
Z∈FK×L

L∑
l=1

1

2
‖Rlx−Dzl‖22 + α ‖zl‖0 , R(x) = min

Z∈FK×L

L∑
l=1

1

2
‖Rlx−Dzl‖22 + χ{‖zl‖0≤K}

(2.3)
(aggregate/global) (patch-wise/local)

There are interesting extensions of such patch-based regularizers, e.g., integration with a Gaussian mixture
model (GMM) for image segmentation [3].

Patch-based model learning

In earlier work, the dictionary D in (2.1) and the transform T in (2.2) were defined mathematically, e.g.,
using the discrete cosine transform (DCT). More recent work focuses on adaptive methods where D or T
are learned from training data.

http://en.wikipedia.org/wiki/K-SVD
http://en.wikipedia.org/wiki/Mixture_model#Gaussian_mixture_model
http://en.wikipedia.org/wiki/Mixture_model#Gaussian_mixture_model
http://en.wikipedia.org/wiki/Image_segmentation
http://en.wikipedia.org/wiki/Discrete_cosine_transform
http://en.wikipedia.org/wiki/Training,_validation,_and_test_sets
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Dictionary learning

Given a collection of L training signals x1, . . . ,xL ∈ Fd (e.g., patches taken from some population of
images), the dictionary learning problem is to learn a matrix D =

[
d1 . . . dK

]
∈ Fd×K consisting of

K atoms such that each xl ≈ Dzl where the zl ∈ FK coefficient vectors are sparse, either individually
or collectively when considering the coefficient matrix Z =

[
z1 . . . zL

]
∈ FK×L. A typical dictionary

learning optimization problem is:

D̂ = arg min
D∈D

min
Z∈FK×L

Ψ(D,Z), Ψ(D,Z) ,
L∑
l=1

1

2
‖xl −Dzl‖22 + αφ(zl), (2.4)

where the “arg min” and “min” above are deliberately different.

Typical choices for the sparsity regularizer φ are
• φ(z) = ‖z‖0 (global sparsity)
• φ(z) = ‖z‖1 (convex relaxation of ‖·‖0)
• φ(z) = χ{‖z‖0≤K} (local sparsity).

If D is a convex set and we choose φ(z) = ‖z‖1 then (2.4) is a convex optimization problem.
A: True B: False ??

http://en.wikipedia.org/wiki/Sparse_dictionary_learning
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To avoid a scale ambiguity, typically

D =
{
D ∈ Fd×K : ‖dk‖1 = 1, k = 1, . . . , K

}
(nonconvex)

or
D =

{
D ∈ Fd×K : ‖dk‖1 ≤ 1, k = 1, . . . , K

}
(convex)

The first D is a convex set. (?)
A: True B: False ??

If we use the latter choice and also choose the sparsity regularizer φ(z) to be a convex function, then (2.4) is
a biconvex optimization problem because the cost function Ψ(D,Z) is convex in D with Z held fixed, and
convex in Z with D held fixed.

To see why a function of the product of two arguments is nonconvex, consider f(x, y) = xy and try
https://www.google.com/search?q=plot+x*y&oq=plot+x*y

Define. A function f(x1, . . . ,xK) 7→ R where xk ∈ FNk is called block multi-convex iff f is convex with
respect to each argument when all other arguments are held fixed. In other words, if we define fk : FNk 7→ R
by fk(·) = f(x̄1, . . . , x̄k−1, ·, x̄k+1, . . . , x̄K) for any given values of x̄j for j 6= k, then f is block multi-
convex iff each fk is convex for k = 1, . . . , K.

http://en.wikipedia.org/wiki/Biconvex_optimization
https://www.google.com/search?q=plot+x*y&oq=plot+x*y
http://en.wikipedia.org/wiki/Biconvex_optimization
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Sparsifying transform learning

Instead of learning a dictionary D such that xl ≈ Dzl, which is a synthesis model, and alternative is to
learn a transform T ∈ FK×d such that {Txl} is sparse (either individually or collectively). This is called
sparsifying transform learning. Often K = d but we also consider other cases here.

Again let Z =
[
z1 . . . zL

]
∈ FK×L denote the transform coefficient matrix. A typical transform learning

optimization problem is:

T̂ = arg min
T∈T

min
Z∈FK×L

Ψ(T ,Z), Ψ(T ,Z) ,
L∑
l=1

1

2
‖Txl − zl‖22 + αφ(zl), (2.5)

where the “arg min” and “min” above are deliberately different and φ is some sparsity regularizer.

An alternative formulation that is easier to write but perhaps harder to optimize is

T̂ = arg min
T∈T

Ψ(T ), Ψ(T ) ,
L∑
l=1

φ(Txl).

If T is a convex set and we choose φ(z) = ‖z‖1 then (2.5) is a convex problem in (T ,Z).
A: True B: False ??

A HW problem examines the (joint) convexity of the term involving both T and Z.
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For transform learning, we need to avoid a scale ambiguity and make sure the rows of T are not redundant.
One approach is to use the following “hard” orthonormality constraint:

T =
{
T ∈ FK×d : TT ′ = IK

}
(nonconvex) .

With this choice of T the problem (2.5) is always nonconvex.

Example. Consider the case K = 1 and d = 2 so T =
[
t1 t2

]
. Then

T =
{
T ∈ R1×2 : TT ′ = I1

}
=
{[
t1 t2

]
: t11 + t22 = 1

}
. Picture
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Regularized transform learning

An alternative transform learning formulation using a regularizer rather than an orthonormality constraint is:

T̂ = arg min
T∈FK×d

min
Z∈FK×L

Ψ(T ,Z), Ψ(T ,Z) ,
L∑
l=1

1

2
‖Txl − zl‖22 + αφ(zl) + βR(T ), (2.6)

where a typical regularizer for T when K ≤ d is [4]:

R(T ;µ) = µ trace{TT ′}− log det{TT ′} .

This approach is nonconvex in T but has convenient alternating minimization algorithms [5]. Its drawback is
that now one much choose additional regularization parameters β and µ, although µ = 1 is a natural choice.
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To help understand this R(T , 1), suppose T has economy SVD T = UΣKV
′
K , so TT ′ = UΣ2

KU
′.

Then when µ = 1:

R(T , 1) = trace
{
Σ2

K

}
− log det

{
Σ2

K

}
=

K∑
k=1

(
σ2
k − 2 log σk

)
.

This function is convex in each σk. (?)
A: True B: False ??

Its minimizer is σk = 1. (?)
A: True B: False ??

So large values of β encourage T to have singular values near unity, which is a kind of “soft” constraint.
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Convolutional filter learning

Instead of extracting image patches and learning a transform that can sparsify those patches, a related alter-
native is to learn filters that produce sparse outputs when applied to the entire image. Let x1, . . . ,xL ∈ FN

denote training images. We want to learn filters h1, . . . ,hK ∈ FR such that zl,k = hk ∗ xl is sparse for all
(or most) k and l.

Collect the filters into a matrix H ,
[
h1 . . . hK

]
∈ FR×K and let Z denote the collection of the {zl,k}

outputs. Then convolutional filter learning is typically posed as an optimization problem like [6, 7]:

Ĥ = arg min
H∈H

min
Z

Ψ(H ,Z), Ψ(H ,Z) =
L∑
l=1

K∑
k=1

1

2
‖hk ∗ xl − zl,k‖22 + αφ(zl,k),

where φ(·) is some sparsity regularizer such as the 1-norm.

If φ is convex, then Ψ(H ,Z) is jointly convex in H and Z (?)
Hint. Letting Xl denote the N × R or (N + R − 1) matrix (depending on boundary conditions)
consisting of patches from xl:

‖hk ∗ xl − zl,k‖ = ‖Xlhk − zl,k‖ .

A: True B: False ??
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If one usedH = FR×K then the problem would have the trivial solution Ĥ = 0.

To ensure diversity, one can use the following (scaled) orthogonality constraint

H =

{
H ∈ FR×K : HH ′ =

1

R
IR

}
.

This constraint is related to a tight frame condition [6, 7].

There are also synthesis versions of convolutional model learning [8].

An early approach used a Markov random field perspective and constrained the filters to have mean zero [9,
10], but no other diversity constraint.
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Blind deconvolution

Another signal processing optimization problem that is often biconvex is blind deconvolution [11–14].

In 1D, the typical model here os
y = h ∗ x + ε,

where h ∈ FK is the point-spread function (PSF) of the unknown blur, x ∈ FN is the unknown image, and
y ∈ FN+K−1 is the observed blurry image. This is an under-determined problem with N +K unknowns.

((Picture)of
√
K ×

√
K h

for camera shake)

A typical regularized optimization formulation is

(x̂, ĥ) = arg min
x,h

Ψ(x,h), Ψ(x,h) ,
1

2
‖y − h ∗ x‖22 +R1(x) +R2(h),

where the image regularizer R1(x) might be TV is x is piece-wise constant, and the blur regularizer R2(h)
might be ‖h‖1 if the blur PSF is sparse, e.g., for camera shake.

Out-of-focus blur is another common PSF model.

The cost function above is biconvex because of the h ∗ x term.

http://en.wikipedia.org/wiki/Blind_deconvolution
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Phase retrieval (Read)

An classic signal processing problem is that of phase retrieval [15–18], where the measurement model is:

yi = |[Ax]i|2 + εi.

Historically the M × N matrix A corresponded to a Fourier transform operation, but there have been many
generalizations.

The nonlinearity due to the absolute value greatly complicates estimation, and generally necessitates iterative
algorithms, even for small problem sizes.

There has been much recent work due to convex formulations [19] and sparsity models [20–22] and more
[23].

For Gaussian noise, a typical nonconvex optimization formulation is [24]:

x̂ = arg min
x

∑
i

1

2

∣∣yi − ∣∣[Ax]i]
2
∣∣∣∣2 + βR(x),

but the literature has many variations. This cost function is quite nonconvex due to the absolute value.

2.2 Machine learning applications

http://en.wikipedia.org/wiki/Phase_retrieval
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Low-rank approximation (review) (Read)

If Y ∈ FM×N is a given data matrix with rank r having SVD Y = UΣV ′ and Y = X +ε where we believe
rank(X) ≤ K and ε denotes a M ×N noise matrix, then EECS 551 discussed many methods for low-rank
approximation that balance between data-fit and model complexity, all having the general form:

X̂ = arg min
X∈FM×N

1

2
|||Y −X|||2UI + βR(X), (2.7)

for some unitarily invariant matrix norm |||·|||, such as the Frobenius norm |||·|||F, and for some unitarily
invariant regularizer R(X), where R : FM×N 7→ R, such as R(X) = χ{rank(X)≤K} or R(X) = rank(X) or
R(X) = |||X|||∗. Any minimizer has the form

X̂ =
r∑

k=1

ŵk ukv
′
k = UrΣ̂rV

′
r where Σ̂r = diag{ŵk}, ŵk = hk(σ1, . . . , σr;β), Y = UrΣrV

′
r , (2.8)

for some shrinkage or thresholding function hk(·;β) that depends on the data-fit norm and the regularizer.
The matrix product UrΣ̂rV

′
r forms the compact SVD of X̂ where Ur is M × r and Σr is r × r and Vr is

N × r. Typically only K � r elements of Σ̂r are nonzero so one can also write X̂ as a product of N ×K,
K ×K and K ×N matrices: X̂ = UKΣ̂KV

′
K .

Unfortunately, this elegant approach does not scale to problems where both M and N are large, even if the
rank K is very small, because of the SVD operation.

http://en.wikipedia.org/wiki/Low-rank_approximation
http://en.wikipedia.org/wiki/Low-rank_approximation
http://en.wikipedia.org/wiki/Singular-value_decomposition#Reduced_SVDs
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Matrix factorization approach

To overcome this limitation of SVD-based approaches, one can take a matrix factorization approach by
choosing a desired (maximum) rank K and expressing X̂ directly as

X̂ = U︸︷︷︸
M ×K

V︸︷︷︸
K ×N

,

where now U and V should be simply interpreted as latent factors, not as matrices with singular vectors.
With this formulation, a typical optimization problem for finding U and V , and hence X̂ , looks like

X̂ = Û V̂

(Û , V̂ ) = arg min
U∈FM×K , V ∈FK×N

Ψ(U ,V )

Ψ(U ,V ) ,
1

2
|||Y −UV |||2F + β1R1(U) + β2R2(V ), (2.9)

where one must select appropriate regularizers for U and V .

If R1 and R2 are each convex cost functions, then the cost function is:
A: biconvex in (U ,V ) B: jointly convex in (U ,V ) C: none of these ??

We will discuss regularizers and alternating minimization algorithms for Ψ that involve no SVD operations
and scale to large problems.

http://en.wikipedia.org/wiki/Matrix_factorization_(recommender_systems)
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We do not need a regularizer like |||X|||∗ = |||UV |||∗ here because that nuclear norm regularizer is a surrogate
for the rank constraint χ{rank(X)≤K} and rank(UV ) ≤ K by construction!

Example. Denote the set of M ×K matrices with nonnegative elements by

NM =
{
U ∈ RM×K : umk ≥ 0, m = 1, . . . ,M, k = 1, . . . , K

}
.

Then nonnegative matrix factorization, (NMF) or (NNMF), is the matrix factorization problem in (2.9)
above where R1(U) = χNM

(U) and R2 is defined similarly [25–27].

The X = UV approach is sometimes called the Burer-Monteiro style parameterization after [28].

http://en.wikipedia.org/wiki/Non-negative_matrix_factorization
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Low-rank matrix completion (Read)

As discussed in EECS 551, matrix completion problem involves noisy missing data and a sampling mask:

Yij =

{
Xij + εij, (i, j) ∈ Ω
0, otherwise,

Mij ,

{
1, (i, j) ∈ Ω
0, otherwise.

(2.10)

We want to find X̂ where M�X̂ ≈M�Y and also X̂ is low-rank. A typical low-rank matrix completion
(LRMC) formulation is

X̂ = arg min
X∈M×N

1

2
|||M � (X − Y )|||2F + βR(X), (2.11)

where R is a rank constraint or rank penalty or nuclear norm penalty, etc. Other than in trivial cases such as
when Y is zero, this optimization problem always requires iterative algorithms to solve.

EECS 551 described majorize-minimize (MM) algorithms for this family of optimization problems. These
MM algorithms have an inner step of the form:

Xk+1 = arg min
X∈FM×N

1

2

∣∣∣∣∣∣X − X̄k

∣∣∣∣∣∣2 + βR(X), X̄k = M̄ �X + M � Y .

Unfortunately, this inner form is a low-rank matrix approximation problem and the standard solutions use
SVD operations. Likewise, ADMM algorithms for this problem also use an inner SVD step.

This class will discuss matrix factorization approaches that scale to problems where both M and N are
large, as long as the rank K is small enough.

http://en.wikipedia.org/wiki/Matrix_completion
http://en.wikipedia.org/wiki/MM_algorithm
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Matrix sensing / matrix recovery

The measurement model (2.10) involves samples of the elements of the matrix X , with additive noise.

A more general measurement model that arises in a variety of applications (including dynamic MRI image
reconstruction) involves linear combinations of the elements of X ∈ FM×N [29, 30]. Suppose we have a
vector y ∈ FL of measurements, each of which is a linear combination of the elements of X , plus noise. The
concise way to write this model is

y = A(X) + ε,

where ε ∈ FL is a noise vector and where A : FM×N 7→ FL is a linear map or linear operator that maps a
M ×N matrix into a vector in FL.
The goal in such matrix sensing or matrix recovery problems is to recover X from y.

The operator A is not a matrix, but it is linear. To write this model in matrix form we use

y = A vec(X) +ε, A[:,(n−1)M+m] , A(emẽ
′
n).

The size of the matrix A here is:
A: M ×N B: (LM)×N C: (LN)×M D: L× (MN) E: none of these ??

Example.

A(X) =

[
1′MX1N

7X1,1 −X3,1

]
=⇒ A =

[
1 1 1 1 1 1
7 0 −1 0 0 0

]
.

http://en.wikipedia.org/wiki/Linear_map
http://en.wikipedia.org/wiki/Linear_map
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The matrix completion problem is a special case of the matrix sensing problem where roughly

A(X) = vec(M �X) .

Actually that expression is not quite accurate because in matrix sensing L is the number of observed mea-
surements. In matrix completion that number is

L =
∑
i

∑
j

Mij = 1′MM1N .

It is not easy to write A in terms of M in “math,” but it is easy to write the operation in JULIA:

A(X) = X[M] ,

where M is a Bool array.

Because matrix completion is a special case of matrix sensing, we can also write its measurement model as

y = A vec(X) +ε.

In this form, each row of A has:
A: exactly one 1 and the rest zeros B: at most one 1 and the rest zeros C: none of these ??
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For problems of moderate size, a typical matrix sensing optimization formulation is

X̂ = arg min
X∈FM×N

1

2
‖y −A(X)‖22 + βR(X)

or equivalently

X̂ = arg min
X∈FM×N

1

2
‖y −A vec(X)‖22 + βR(X).

Typical solutions involve assuming that X is low-rank, and there are MM and ADMM iterative algorithms
(and more) that involve inner steps that are low-rank matrix approximation problems that involve SVD
operations.

We will discuss matrix factorization approaches that scale to large problems.

Group activity: write down what you think the matrix factorization approaches look like.

X̂ = Û V̂

(Û , V̂ ) = arg min
U∈FM×K , V ∈FK×N

Ψ(U ,V )

Ψ(U ,V ) ,
1

2
‖y −A(UV )‖22 + β1R1(U) + β2R2(V ).



© J. Fessler, January 16, 2020, 08:04 (class version) 2.25

2.3 Summary

This chapter and the preceding chapter describe several SIPML applications with optimization formulations
that do not have closed-form solutions and thus require iterative algorithms to solve.

There are other problems of interest that we may discuss if time permits
• manifold problems like subspace learning
• machine learning like probabilistic PCA
• CNN training
• learned regularizers like BCD-net, momentum net

All of these problems, like most in this chapter, are nonconvex, and there is growing progress on guarantees
for certain nonconvex optimization problems; see:
https://m.huffpost.com/us/entry/9563882/amp

The next chapter begins to discuss iterative optimization methods. We will start with the simpler cost func-
tions (quadratic), then move to convex and smooth problems, then convex and non-smooth problems, and
then eventually to non-convex problems.

We will not discuss direct search methods such as the Nelder-Mead simplex algorithm [31, 32] because
such methods do not scale well to large-scale problems.

https://m.huffpost.com/us/entry/9563882/amp
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