Chapter 1

Application overview (1)

Contents (class version)

TO0Introduction ¢ o v i i i i i ittt e e e e e e e e e 1.3
Characteristic functions L e e 1.4
1.1 Linear programming applications ¢t vttt ittt eeesns 1.5
Noiseless compressed SENSING o v v v v v et e e e e e e e e e e e 1.5
Minimax sparse filter design 1.8
Convex relaxation e e e e e e 1.10
1.2 Quadratic/LSproblems it ittt ittt 1.14
Regularization e 1.17
Constrained LS problems e e 1.20
1.3 Strictly convex smooth problemsttt ittt 1.22
Edge-preserving regularization Lo o Lo e 1.22
M-estimation for robustness to noise outliers in regression L. 1.24
1.4 Convex composite problems i v ittt ittt et 1.27
{1 regularized problemso e 1.27
Selecting features / covariates / regressors (LASSO) L o 1.28

1.1

© J. Fessler, January 8, 2020, 17:17 (class version)

Sparse approXimation e e e e e e e e e e e

Signalmodels e e e e

Synthesis sparsity with over-complete dictionary Lo oL

Denoising using synthesis sparsity models oL

Compressed sensing with synthesis form sparsity

From nonsmooth to smooth

Elastic-net regularizer L

Analysis Sparsity e e e e e e e e e e e
Converting ID TVto LASSO o e

To smooth or not smooth? (corner rounding)

Proximal operator for complex arguments L.

1.5 Non-smooth problemsttt tieeneenns

Convex non-smooth problems e

Supervised machine learning for binary classification 0.

Unsupervised clustering using a union of subspaces

1.6 Summary

1.30
1.31
1.32
1.34
1.36
1.37
1.38
1.39
1.44
1.46
1.47
149
1.49
1.51
1.54

1.56

1.2

© J. Fessler, January 8, 2020, 17:17 (class version) 1.3

1.0 Introduction | (Read)

This chapter gives an overview of some of the signal/image processing problems that will be addressed later.
This chapter does not describe any algorithms; just the cost functions are shown.

We will especially focus on unconstrained optimization problems of the form

& = argmin V(x), (1.1)

xcFN
where U : FVY — R denotes a cost function (or loss function) whose minimizer & we seek to estimate a
latent variable x.

The field F will be either R or C depending on the application. These notes use I to maintain generality
when possible, though many results will be presented only for R.

We will also consider many constrained optimization problems of the form

& = argmin V(x), (1.2)
reX

where X C FV denotes a feasible set of possible latent variables such as the nonnegative orthant.

http://en.wikipedia.org/wiki/Mathematical_optimization
http://en.wikipedia.org/wiki/Loss_function
http://en.wikipedia.org/wiki/Loss_function
http://en.wikipedia.org/wiki/Latent_variable
http://en.wikipedia.org/wiki/Field_(mathematics)
http://en.wikipedia.org/wiki/Constrained_optimization
http://en.wikipedia.org/wiki/Feasible_region
http://en.wikipedia.org/wiki/Orthant

© J. Fessler, January 8, 2020, 17:17 (class version) 1.4

Characteristic functions
To unify (1.1) and (1.2), we define the characteristic function used in convex analysis as

wle) = {

o, ¢eX
0, otherwise.

(1.3)

Note that the image of this function is {0, co} and the function’s codomain is the extended real numbers
that includes oo (but is not a field).

With this definition, we rewrite the constrained optimization problem (1.2) in “unconstrained” form as

& = argmin V(x) +xx (). (1.4)

xcFN

Caution. The term characteristic function has multiple meanings. In probability it means the Fourier trans- @
form of the pdf of a distribution (EECS 501). It also is a synonym for the related indicator function:

1, zéXx
Ly(z) = { 0, otherwise. (1.5)

These notes will always refer to (1.3) as the characteristic function and (1.5) as the indicator function.

Subsequent sections consider applications having cost functions of roughly increasing difficulty: linear,
quadratic, convex and smooth, composite, non-smooth.

http://en.wikipedia.org/wiki/Characteristic_function
http://en.wikipedia.org/wiki/Image_(mathematics)
http://en.wikipedia.org/wiki/Codomain
http://en.wikipedia.org/wiki/Extended_real_number_line
http://en.wikipedia.org/wiki/Field_(mathematics)
http://en.wikipedia.org/wiki/Indicator_function

© J. Fessler, January 8, 2020, 17:17 (class version) 1.5

1.1 Linear programming applications

Noiseless compressed sensing

In unrealistic compressed sensing formulations that disregard noise, one might wish to find the sparsest
solution to a set of linear equations:

(1.6)

This is also called a sparse representation problem. Unfortunately, this optimization problem is NP-hard.
Each of the N elements of & is either zero or non-zero; one could solve (1.6) by trying all 2V possible
supports of & and choosing one with the smallest ||z, that satisfies Az = y.

Example. For A and y shown below, there are two optimal solutions, both with ||z ||, = 2: (Read)
1 2 4 8 0 _0 4 8
A=10 1 24, y=1lo|, &= | a=]|_
0001 3 3 3

To find those solutions, we tried all 411 = 4 cases where |||/, = 1, then all (;L) = 6 cases with

|||, = 2, two of which sufficed, so there was no need to look at further cases.

http://en.wikipedia.org/wiki/Compressed_sensing
http://en.wikipedia.org/wiki/Sparse_approximation
http://en.wikipedia.org/wiki/NP-hardness

© J. Fessler, January 8, 2020, 17:17 (class version) 1.6

There are many approximate solution methods for (1.6), such as matching pursuit.

An alternative to using approximate methods is to use the convex relaxation of the problem (see p. 1.10), as

follows:
(L.7)

where A € FM*N is a known sensing matrix and y € F denotes a given measurement vector.

This relaxation (1.7) is still a nontrivial optimization problem because ||-||, is not a differentiable function, so
gradient descent is not applicable.

When F = R, by expressing = w — v where u > 0 and v > 0 so that ||z||, = 1yu + 1yv = 1}z with

z = [Tﬂ , we rewrite (1.7) as a linear programming problem as follows (here the < means element-wise):

A -—-A Y

=1 —I|z2, z=agmin¥(z), U(z)21lyz, Z2{zeR?: -4 4 z< | Y
zEZ N—— _I 0 0

linear o -1 0

However, this approach does not generalize to C nor to noisy formulations considered later.

http://en.wikipedia.org/wiki/Matching_pursuit
http://en.wikipedia.org/wiki/Lasso_(statistics)#Convex_relaxation_interpretation
http://en.wikipedia.org/wiki/Linear_programming

© J. Fessler, January 8, 2020, 17:17 (class version) 1.7

Example. This figure illustrates " o
the contours of a linear cost

function 1’z for a case where 10
the constraints Z consist of three

half planes. 5

of ’ -0
D
N]

Where is the minimizer z?
How many half spaces in Z on preceding page? (Introduce neighbors...)
A:2(N + M) B: 4M C:4 D: M+ N E: None of these

Z2
|

‘\

%

© J. Fessler, January 8, 2020, 17:17 (class version) 1.8

Minimax sparse filter design (Read)

Minimizing the worst-case error, by using ||-|| _, arises in some applications including sparse filter design [1].
A typical formulation looks like the following Chebyshev approximation problem [2, p. 6]:

& = argmin || Az —y|| . (1.8)

xcFN

for some given A € FM*Y and y € FM. This is also called minimax design.

An equivalent form to (1.8) is the following constrained problem:

argminmin¢ such that ||[Axz —y|| < t. (1.9)
xcFN teR

When F = R, another equivalent form (that eliminates the infinity norm) is:

argminmin ¢ such that — 1), < Ax —y < tly,. (1.10)

We can rewrite that problem as the following standard linear program:

arg min min ¢ such that A —lu) @ < v, (1.11)
zeRN tER —A 1y |t -y

http://en.wikipedia.org/wiki/Approximation_theory#Chebyshev_approximation
http://en.wikipedia.org/wiki/Minimax

© J. Fessler, January 8, 2020, 17:17 (class version) 1.9

To be precisely in standard linear program form we can rewrite the latent variables as

t=1[0 1] m

Exercise. What is the size of the preceding 0?

MRI RF pulse design (Read)

Designing MRI RF pulses is somewhat similar to filter design [3] except there are also peak amplitude
constraints to to hardware limits, so one formulation of interest is:

& = argmin [|Az — y||, such that [lz| <. (1.12)
xzcFN
For I = R one can also rewrite this constrained optimization problem as a linear program. (HW)

JULIA has linear programming tools (https://www. juliaopt.org/) [4]. Unfortunately, in general,
linear program solvers do not scale well to large scale problems where A is computed on the fly.

https://www.juliaopt.org/
http://en.wikipedia.org/wiki/On_the_fly

© J. Fessler, January 8, 2020, 17:17 (class version) 1.10

Convex relaxation

Define. The sublevel sets of a function f : FV — R are defined as follows:

N 2\ /P
Example. The sublevel sets of the p-norms ||z, = <Zn:1 |, |) forp=1andp=2.

{xeR? : ||z|, <c} {z eR? : |lzfl, < c}

Define. A function whose sublevel sets are all convex sets is called a quasiconvex function.

Every convex function is a quasiconvex function.
A: True B: False

http://en.wikipedia.org/wiki/Level_set#Sublevel_and_superlevel_sets
http://en.wikipedia.org/wiki/Quasiconvex_function
http://en.wikipedia.org/wiki/Convex_function

© J. Fessler, January 8, 2020, 17:17 (class version) 1.11

The converse does not hold.

Example. The function f(x) = 1/|z| is quasiconvex on R, but is not convex. Likewise for f(x) = /|||,
on FV,

1/p
Now consider the sublevel sets of the so-called “p-norms” ||z ||, = <ij:1 |z, [P) for0 <p< 1.

The convex hull of any such sublevel set for 0 < p < 1 i.e., the set of all convex combinations of points
from any such set, is the sublevel set for p = 1.

This is a geometric sense in which |-, is the convex relaxation of [|-||, for 0 < p < 1.

http://en.wikipedia.org/wiki/Convex_hull
http://en.wikipedia.org/wiki/Lasso_(statistics)#Convex_relaxation_interpretation

© J. Fessler, January 8, 2020, 17:17 (class version) 1.12

For more general constructions, one uses the following definitions. (Read)

Define. For a function f : S — R, a convex relaxation
of f on S is any convex function v : § — R such that

u(zx) < f(x), Vxeds.

Example. Figure from

http://www.winlab.rutgers.edu/~crose/322_html/convexity2.pdf

S

By the way, the above URL is an excellent read for an overview of topics like convex function, local mini-
mizer, global minimizer, stationary point, etc.

http://www.winlab.rutgers.edu/~crose/322_html/convexity2.pdf

© J. Fessler, January 8, 2020, 17:17 (class version) 1.13

Define. The lower convex envelope of f on S is the A
supremum of all convex relaxations of f on S.

It is sometimes denoted fs or f or fg.

'
[I

In other words, the lower convex envelope is the tightest convex relaxation of f on S.

When people say “the convex relaxation” of a function, typically they are referring to the lower convex
envelope, and usually they disregard S and constant scale factors.

Example. For f(z) = /[z] and S = [~a, a], we have fs(z) = |z| /va.

More reading: [rutgers] [quora] [dual] [boyd]

http://en.wikipedia.org/wiki/Lower_convex_envelope
http://en.wikipedia.org/wiki/Infimum_and_supremum
http://www.winlab.rutgers.edu/~crose/322_html/convexity2.pdf
https://www.quora.com/What-is-convex-relaxation
https://www.quora.com/Why-is-L1-norm-the-tightest-convex-relaxation-of-L0-norm-in-convex-optimazation
https://web.stanford.edu/class/ee364b/lectures/l1_slides.pdf

© J. Fessler, January 8, 2020, 17:17 (class version) 1.14

1.2 Quadratic / LS problems (Read)

Many applications involve linear models (with noise):
y=Ax+e, (1.13)
where y € FM is a measurement vector, A € FM*¥ is a known matrix = € F" is a latent parameter vector,

and € € FM is an additive noise vector. For such linear models, a common approach to estimating z is to
solve a linear least-squares (quadratic) optimization problem:

1

& = argmin ¥(x), U(z) = - | Az — yl3. (1.14)
zeFN 2

When the noise has a zero-mean Gaussian distribution with covariance 021, i.e., y ~ N(Ax, %I), then the

LS estimator (1.14) is the maximum likelihood estimate, i.e.,

x = argmaxp(y;x) .
N

These types of LS problems (and variations thereof) arise in at least two quite different settings.
¢ In inverse problems, x represents the input to a linear system modeled by A and we want to recover x
from the system output y. Examples include image deblurring and tomographic image reconstruction.
In these problems the matrix A represents a (known) model for the system based on the physics of the
system. Often A is too large to store as a matrix!

© J. Fessler, January 8, 2020, 17:17 (class version) 1.15

e In linear regression problems, the rows of A a consist of data where we want to learn a linear model
relating to the input and the output for the purpose of making future predictions. Examples include fitting
polynomial model like the following cubic.

Ym = S(tm) + €m, m=1,...,M e ‘e
S(t) = oo+ Oélt + 052752 + a3t3 . (S:EJ?)ic from all M=15 points|
1t 2 3] sl
4 1ty 2 8
: > 00
2 3
i Oéo- -05F
— —
Y ’ Q2 -1.0f
Ym as |
O.IOO 0.I25 O.I50 0.I75 l.IOO

t
In statistics (and some machine learning literature) the usual notation for linear regressionisy = X3 + ¢

where the matrix X has the data in it and the coefficients are 3.
Note that the term “linear” here refers to coefficients 3. The matrix X can include nonlinear functions of
the data features, like the powers of ¢,,, in the Vandermonde matrix A above.

http://en.wikipedia.org/wiki/Vandermonde_matrix

© J. Fessler, January 8, 2020, 17:17 (class version) 1.16

Solving least-squares problems

A necessary condition for & to be a minimizer of (1.14) is V ¥ (&) = 0 leading to the normal equations
A'Az = A'y.

Conventional wisdom is to avoid using this form numerically due to finite precision issues.

If A has full column rank, then A’ A is invertible and the solution becomes
z=(A'A)"Ay.

This expression is useful for analysis but not for practical implementation when V is large. When NV is large,
we need iterative algorithms to compute 2.

Furthermore, when A is under-determined (wide) or poorly conditioned, then we need constraints or regular-
izers to make the solution behave better.

The quadratic LS optimization problem will be our starting point for discussing several iterative algorithms:
e (preconditioned) gradient descent (PGD)
e (preconditioned) steepest descent (PSD)
e (preconditioned) conjugate gradients (PCG)
e quasi-Newton methods (BFGS)
e majorize-minimize (MM) methods
e accelerated first-order methods with momentum (FGM), (OGM).

© J. Fessler, January 8, 2020, 17:17 (class version) 1.17

Regularization

When A is wide or is poorly conditioned, then one must use regularization. The simplest approach, called
ridge regression in statistics, is Tikhonov regularization that leads to another quadratic optimization prob-
lem:

. . 1 2 1 2

&—agminV(@), V(@)= ;[Az—y|}+ 5Bl

xzeFN

This quadratic problem again has a (unique, for any A, when 3 > 0) closed-form solution:
z=(A'A+BI) Ay

Again we need iterative algorithms to compute & when N is large.

The Tikhonov regularizer R(z) = * ||:1:||§ discourages large values of x, and it is a reasonable starting point

— 2
for linear regression problems.

For many imaging problems, we expect neighboring pixels to have similar values, so a more reasonable
regularizer discourages differences between neighbors:

. . 1 1
& = argmin ¥(x), U(x) = 3 |Az — y|; + 5(5 | T3, (1.15)

xcFN

http://en.wikipedia.org/wiki/Regularization_(mathematics)
http://en.wikipedia.org/wiki/Tikhonov_regularization

© J. Fessler, January 8, 2020, 17:17 (class version) 1.18

where T is a regularization matrix such as the following matrix that computes finite differences in 1D:

[-1 1 0 0 ... 0]
0 -1 1 0 ...0 Ty — 1
T =Dy % ,soTx = : . (1.16)
0O ... 0 -1 10 TN — TN-1
| 0 ... 0 0 -1 1

For 2D problems with M x N images, usually we want differences along both rows and columns, so a typical
choice uses the Kronecker product ® as follows (EECS 551 HW problem):

(1.17)

When (A’A + BT'T) is invertible, this quadratic problem (1.15) again has a (unique) closed-form solution:
& = (1.18)

Again we need iterative algorithms to compute & when N is large.

These various quadratic optimization problems are important in their own right, and many such problems
arise as intermediate steps for other more complicated optimization problems, so we will describe several
iterative algorithms for solving quadratic problems.

http://en.wikipedia.org/wiki/Finite_difference
http://en.wikipedia.org/wiki/Kronecker_product

© J. Fessler, January 8, 2020, 17:17 (class version) 1.19

Example. This figure shows a 1D example of the estimate (1.18) for an interpolation problem where A is a
down-sampling operator:

A = sparse(I, N, N)[1l:4:N, :]

and T corresponds to 2nd-order finite differences:

T = spdiagm(-1 => -ones(N-1), 0 => 2xones(N), 1 => -ones(N-1)) [2:end-1, :]
This 1D problem is small enough to use (1.18) directly: xh = (A’A + betaxT’'T) \ y

The resulting estimate & agrees reasonably well with the (noisy) data while also providing a smooth result.

3.0

25+

20

151

true
H data
@® estimate

101

1 1 1 1 1
0.00 0.25 0.50 0.75 1.00

© J. Fessler, January 8, 2020, 17:17 (class version) 1.20

Constrained LS problems (Read)

Often there are constraints on the parameters so we want to solve

1
& = argmin ¥(x), U(x) = 5 Az — y||3, (1.19)

xreX

where X C FV is a set of allowable parameters called the feasible set.

Common constraints (choices for X):
e Nonnegativity constraint > 0, e.g., in imaging problems with quantities like intensity or density.
e Box constraint or bound constraint [< x < w , where [and v denote lower and upper bounds,
respectively.
e Simplex constraint > 0 and 1’z = 1, when « represents fractions or probabilities.
o ...

Constrained problems do not have closed-form solutions in general so they usually require iterative algorithms
even if NV is not large. Often they require different iterative algorithms than unconstrained problems.

Iterative algorithms for constrained problems include
e gradient projection method (with diagonal preconditioner),
e majorize-minimize (MM) methods (with separable majorizers),
e other methods discussed under composite cost functions on p. 1.27.

http://en.wikipedia.org/wiki/Feasible_region

© J. Fessler, January 8, 2020, 17:17 (class version) 1.21

There is one important case where there is a simple solution: when A is diagonal, F = R, and X is a
nonnegativity constraint or more generally a box constraint.

If A is square and diagonal with nonzero diagonal elements ay, . . . , ay, then the quadric cost function (1.19)
simplifies to the sum of NV 1D terms:

(anTn — Yn)” - (1.20)

h)l»—l

N
n=1

Focusing on the nonnegativity constraint, the optimization problem separates into /N 1D problems of the

form
. 1 2 . ai 2
T, = argmin = (a,z, — y,)” = argmin — (z,, — Yn/an)" . (1.21)
220 2 220 2

yn/an’ yn/an = = HlaX(yn/an7 0) \ |

The solution is z,, = { 0, otherwise \ /

Code: xh = max.(y ./ a, 0) \ /
\\\ /

Note the use of JULIA’s powerful broadcast syntax here, shorthand for this:
broadcast ((y,a) —-> max(y/a,0), y, a)

https://docs.julialang.org/en/latest/base/arrays/#Broadcast-and-vectorization-1

© J. Fessler, January 8, 2020, 17:17 (class version) 1.22

1.3 Strictly convex smooth problems

Next we leave behind the simplicity of quadratic problems and consider applications involving optimization
problems that are convex and smooth, i.e., where the cost function is at least differentiable.

Edge-preserving regularization

A drawback of the quadratic finite-difference regularizer (1.15) is that it causes blurring across image edges.
To reduce this blurring, we replace the quadratic regularizer with a non-quadratic function as follows:
1
& =argminV(z), V(z) £ | Az —y|; + BR(z),

xzeFN 2

where now the regularizer is

K
R(x) =) ([Cxli).

k=1

Here ¢ is a potential function. In (1.15), the potential function is quadratic: ¢(z) = |z|* /2, but for edge-
preserving regularization we prefer potential functions that increase linearly rather than quadratically, such

as the Fair potential [5-8]: (2) = 6% (|z] /d — log(1 + |z| /d)) . (See figure below.)

We will focus first on the case where 1) is convex and smooth, and describe suitable iterative algorithms,
including all of the algorithms considered for LS problems!

http://en.wikipedia.org/wiki/Regularization_(mathematics)
http://en.wikipedia.org/wiki/Edge-preserving_smoothing
http://en.wikipedia.org/wiki/Edge-preserving_smoothing

© J. Fessler, January 8, 2020, 17:17 (class version)

Example. This figure compares two potential functions:
e quadratic function (z) = |z|* /2
e Fair potential function ¢(2) = 6% (|z] /6 —log(1 + |2] /§))

—— Quadratic
—Fair,0 =1

03 1 0 1 3

z

Example. See p. 1.45 for an figure showing the benefits of non-quadratic regularization.

1.23

© J. Fessler, January 8, 2020, 17:17 (class version) 1.24

M-estimation for robustness to noise outliers in regression

We can rewrite the least-squares estimation problem as

M N
. . 1
=arguin 3 g([Azl —yn), a2) = 5 1o, (Al = D anar
z m=1 n=1

As mentioned above, this estimator is the maximum-likelihood estimate if the noise is Gaussian, and hence
is asymptotically unbiased and asymptotically efficient (see EECS 564) if A has full column rank, which
are very desirable properties.

But often data is corrupted by non-Gaussian noise, particularly heavy-tailed noise, and the LS estimator is
not robust to outliers in the data.

One popular method for robust estimation is to use an M-estimator

M
& =argmin¥(x), V(@)=Y U([Az]yn— yn), (1.22)
m=1

T

where 1 is a (typically convex and smooth function that increases less rapidly than the quadratic function,
making it more robust to outliers [9]. A particularly popular choice is the Huber function

1 2
_|Z|) |Z| Sé
— 2
viz) {6|z|—62/2, 2> 4,

http://en.wikipedia.org/wiki/Bias_of_an_estimator
http://en.wikipedia.org/wiki/Efficiency_(statistics)#Asymptotic_efficiency
http://en.wikipedia.org/wiki/Heavy-tailed_distribution
http://en.wikipedia.org/wiki/Robust_statistics
http://en.wikipedia.org/wiki/M-estimator
http://en.wikipedia.org/wiki/Huber_loss

© J. Fessler, January 8, 2020, 17:17 (class version) 1.25

for some parameter > 0. This choice has min-max optimality properties [10].

Under certain regularity conditions, one can show that the minimizer satisfies

T = (AW(2)A) AW (2)y, W(zx)= diag{wy([Az]n)}, wy(2)

This is a recursive expression or implicit function, not a closed-form solution for & in terms of y, so it is
useful for insight but not directly for computation. However, we will later derive a closely related majorize-
minimize (MM) algorithm of the form

xi1 = (AW (x,)A) AW (x)y, t=0,1,2,...,

and show that it is convergent under mild assumptions on ¢» when A has full column rank. Unfortunately
this algorithm does not scale well to large-dimension problems, due to the matrix inverse. So we will also
consider other more suitable algorithms.

http://en.wikipedia.org/wiki/Implicit_function
http://en.wikipedia.org/wiki/MM_algorithm
http://en.wikipedia.org/wiki/MM_algorithm

© J. Fessler, January 8, 2020, 17:17 (class version) 1.26

Example. This figure compares an ordinary least-squares cubic polynomial fit using (1.14) with a robust
M-estimator (1.22) using the Fair potential function, minimized using a CG algorithm. The robust fit is much
less sensitive to the outlier and better agrees with the latent function.

® v
10 s() °
ordinary LS cubic fit
robust cubic fit using Fair and CG- MN
0.5
> 00
-05F
-1.0+
0.00 0.25 0.50 0.75 1.00

© J. Fessler, January 8, 2020, 17:17 (class version) 1.27

‘ 1.4 Convex composite problems ‘

Many modern SIPML problems involve minimizing composite cost functions of the form

V(z) = f(®) + g(=), (1.23)

where f(x) is convex and smooth and g(x) is convex but nonsmooth, i.e., not differentiable.

The two most important nonsmooth functions are
e the 1-norm ||-||; that arises in optimization problems involving sparsity models,
e the characteristic function for convex constraints as shown in (1.4).

There are numerous applications involving composite cost functions, and numerous minimization algorithms.
Cost functions of this type will be a major theme in the class. Indeed this section is long because so many
applications have this form. We focus here on applications involving the 1-norm,

/1 regularized problems

Probably the most ubiquitous composite cost function is:

& = arg min ¥(x), U(x) 2 (1.24)

x

Here we focus on the unconstrained case, but there are also constrained variants.

http://en.wikipedia.org/wiki/Differentiable_function

© J. Fessler, January 8, 2020, 17:17 (class version)

We focus on the following application settings that motivate (1.24).
e statistics: regressors / covariate selection, related to model selection
machine-learning: feature selection

e sparse approximation problems

e regularization using synthesis model assuming sparsity
o signal/image denoising
o compressed sensing [11]
o inverse problems

1.28

Selecting features / covariates / regressors (LASSO)
Ordinary linear regression measurement model:

y=Ax—+e

where A is M x N. When N < M then usually A has full column rank and the LS estimate of is fine.
But when NV > M then the problem is under-determined and even if we use Tikhonov regularization (aka
ridge regression) to improve the problem conditioning, the resulting model can be hard to interpret. For a
more interpretable (parsimonious) model, often we prefer many of the « elements to be zero, so that only a

subset of the features (columns of A) are used for prediction.

A classical way to do this is called subset selection [12—14] and one formulation uses the K best features:

& = argmin || Az — g2,
x:||lz| <K

(1.25)

http://en.wikipedia.org/wiki/Model_selection
http://en.wikipedia.org/wiki/Sparse_approximation

© J. Fessler, January 8, 2020, 17:17 (class version) 1.29

where K < N is the maximum number of features of interest. Alternative formulations are

& = argmin ||z|, st [|Az —y|: < e
x

x

.1
argmin S || Az — y|3 + B 2]l
x

These optimization problems involving ||-||, are nonconvex and NP hard.

Thus, we often use the convex relaxation of one of the two latter formulations:

& = argmin ||z||, st ||Az —y|) <e
€T

. 1

& = argmin | Az — g + B],
T

The latter has the form (1.24) and, in statistics, is called the least absolute shrinkage and selection operator
LASSO [15] [16].

The LASSO leads to more interpretable prediction methods than ridge regression, because as [3 increases,
more elements of & become zero.

The first formulation (1.25) with the constraint ||x||, < K is rarely relaxed to |||, < c because we rarely
have an upper bound for ||-||,.

http://en.wikipedia.org/wiki/NP-hardness
http://en.wikipedia.org/wiki/Lasso_(statistics)

© J. Fessler, January 8, 2020, 17:17 (class version) 1.30

Sparse approximation

For typical sparse approximation problems we are given a wide matrix D called an over-complete dictio-
nary and we want to approximate a signal x using a linear combination of a subset of the columns of D, i.e.,
we want * ~ Dz where z is a sparse coefficient vector. This problem is also called basis pursuit.

Again there are three natural nonconvex formulations for finding a sparse coefficient vector z:

2 = argmin |Dz — x| z = argmin ||z||, s.t. ||Dz — x||> < e
z:|zllp<K o

. 1
£ = argmin_ |Dz — @} + B |2],.
Again it is typical to relax the latter problem to the following form (1.24) called basis pursuit denoising:
. 1
z:argmm§||Dz—a:||§+B||Z||1. (1.26)

This problem looks so similar to subset/feature selection that one might wonder why even mention it?

e In feature selection, typically the matrix A contains data that is completely unstructured.

e For sparse approximation, often the dictionary D was designed mathematically, e.g., using wavelets, and
for certain assumptions about D there are mathematical guarantees about uniqueness and convergence of
some iterative algorithms to a correct z.

e Recent work relates sparse approximation to CNNs [17].

http://en.wikipedia.org/wiki/Sparse_approximation
http://en.wikipedia.org/wiki/Basis_pursuit
http://en.wikipedia.org/wiki/Basis_pursuit_denoising
http://en.wikipedia.org/wiki/Wavelet

© J. Fessler, January 8, 2020, 17:17 (class version) 1.31

Signal models

Two primary applications of interest here are
e Denoising: y =x + € = Ix + e where M = N
e Compressed sensing: y = Ax + € where M < N

Solving these problems requires some form of dimensionality reduction.

EECS 551 focused on subspace models: ~ Bec, assuming « is near R(B), where B is N xr withr < N.
Often we need richer models involving sparsity.

Two primary sparsity models are synthesis sparsity and analysis sparsity.
The terms come from introductory signals and systems, e.g., the discrete Fourier transform (DFT):

N-1
clk] = z[n] e~ 2mkn/N (analysis) c= W
n=0
L N ,
xln] = N Z c[k] e 2™*/N (synthesis) = =W lc= NW/C’
k=0

where W is a N x N matrix having orthogonal columns, so W is easily computed.
Here the columns of W serve as a basis for CV.

For sparsity signal models we generalize such relationships to non-square matrices.

© J. Fessler, January 8, 2020, 17:17 (class version) 1.32

Synthesis sparsity with over-complete dictionary

Consider signals that are approximately a couple (at most) sinusoids plus a few Kronecker impulses. For
such “wave+spike” signals, a natural synthesis model is

Q I

x~ Dz,

1
D=—
7 |
where
e Qisthe N x N (unitary) inverse discrete cosine transform (DCT) for which Q'Q = Iy

e I is the N x N identity matrix for representing spikes
e Dis N x K with N < K = 2N (wide) and a Parseval tight frame (EECS 551)

W\r" D= SEARENNTS
W 1 e

http://en.wikipedia.org/wiki/Discrete_cosine_transform
http://en.wikipedia.org/wiki/Frame_(linear_algebra)#Tight_frames

© J. Fessler, January 8, 2020, 17:17 (class version) 1.33

Pseudo-inverse coefficients (from 551):

xz = De, ¢=D"z =Dz,
~—~
synthesis

would provide an exact representation, but would not be sparse.

Instead we seek a sparse synthesis representation using (1.26):

. X . 1
z= Dz, 2 =argmin; | Dz — [l + B ||,
N~~~ . z 2 ~—~—
synthesis — synthesis sparsity

where typically p = 0 or p = 1, for which only a few elements of 2 are nonzero.

This is one of many applications using composite cost functions and 1-norm regularization.
Such sparse representations are also useful for data compression.

An in-class task and HW problem will explore the wave+spike model with Ch. 6.

The example above is considered a “hand crafted” signal model because we specified the dictionary D using
signal components chosen mathematically. Later we will consider modern adaptive or data-driven methods
(inspired by machine learning) where we learn D from training data.

We contrast the synthesis and analysis approach a bit later in the chapter.

© J. Fessler, January 8, 2020, 17:17 (class version) 1.34

Denoising using synthesis sparsity models

The previous section considered the case where we have a signal = in hand that we model as being sparse.
Often we have a noisy version:

Yy=x+E¢€, x~ Dz, z is sparse.

This is called a synthesis model because we are synthesizing x using the linear combination D z.
We want to denoise the signal y and recover x, using this sparsity model.

One way to estimate x is as follows

(1.27)

where typically p = 0 or p = 1. An alternative formulation is

(1.28)

Note the min over z here is not an “arg min.”

A HW problem will examine relationships between such formulations.

http://en.wikipedia.org/wiki/Noise_reduction

© J. Fessler, January 8, 2020, 17:17 (class version) 1.35

Denoising with unitary bases

In signal and image processing, the most famous special case is when D is a unitary matrix, such as
a discrete orthogonal wavelet transform. In this special case, because the Euclidean norm is unitarily
invariant, an equivalent form of (1.27) is

(1.29)

This form has a closed-form solution for both p = 0 (hard thresholding) and p = 1 (soft thresholding).
For p = 1 the solution is
& = D soft.(D'y, B)

where soft(y, B) = sign(y) max(|y| — B, 0).

For small-scale problems where D can be stored as a matrix, the following two lines of JULIA code look very
similar to the math and solve (1.29) non-iteratively:

soft = (y,reg) —-> sign(y) *» max(abs(y) - reg, 0)

xh = D » soft. (D"*y, req)

When D is not unitary, then solving (1.27) or (1.28) requires iterative algorithms in general.

Challenge. If D is a Parseval tight frame, does (1.27) simplify?

http://en.wikipedia.org/wiki/Orthogonal_wavelet

© J. Fessler, January 8, 2020, 17:17 (class version) 1.36

Compressed sensing with synthesis form sparsity

For compressed sensing the usual measurement model with A € FM*¥ ig: y=Azx+e,
where “compressed” here means M < N, so the problem of finding « is under-determined.

Typical assumption is that « has a sparse representation or sparse transformation. We focus first on the
synthesis form where one assumes ~ Dz where the coefficient vector z is modeled as sparse.

As usual one can have nonconvex formulations using ||z||,. Two typical convex formulations are
(1.30)

(1.31)

The latter allows & ~ Dz, whereas the former enforces strict “synthesis” equality.
A HW problem examines the convexity of (1.31).

There are recovery guarantees for (1.30) under certain assumptions about the product matrix A D that may
not hold for your favorite application [18-21].

These approaches are popular for solving inverse problems even when the conditions are not guaranteed to
hold, and often still described as “compressed sensing.”

http://en.wikipedia.org/wiki/Compressed_sensing

© J. Fessler, January 8, 2020, 17:17 (class version) 1.37

From nonsmooth to smooth
The challenge with minimizing nonsmooth cost functions like (1.24) is that ||-||, is not differentiable.
Consider the simplest form (1.24) of a 1-norm regularizer, repeated here:

. 1
zczargmmiHAa:—yHS‘i‘BHle. (1.32)

xcFN

When F = R, here is a technique for converting this nonsmooth cost function into a box-constrained smooth
cost function [22, 23] for which one can use iterative algorithms designed for constrained problems like
gradient projection method [24].

Let v = max(«,0) and v = max(—x,0) denote the positive and negative parts of « so that x = u — v.
Then
lz||, = Tu+ 1'v

so (1.32) becomes the following bound-constrained quadratic program:

(1.33)

A HW problem explores this approach.

© J. Fessler, January 8, 2020, 17:17 (class version) 1.38

Elastic-net regularizer (Read)

For problems where columns of A are highly correlated, the 1-norm regularizer has been reported to be
suboptimal [25] and the following combination of the 1-norm and 2-norm, dubbed the elastic net regularizer,
has been proposed:

N 1 1
& = argmin || Az — yll; + B], + o3 [z, (134)

where now one must tune both o and 3 somehow.
Although proposed originally for variable selection problems, it has also been used for inverse problems [26].

Although this might at first look like yet another cost function that requires its own iterative algorithms to
minimize, one can combine the quadratic terms and simplify the elastic net problem into the form of the
original LASSO problem (1.24). See HW .

http://en.wikipedia.org/wiki/Elastic_net_regularization
http://en.wikipedia.org/wiki/Lasso_(statistics)#Elastic_net

© J. Fessler, January 8, 2020, 17:17 (class version) 1.39

Analysis sparsity

So far we have focused on 1-norm regularizers where either x itself is sparse, or where * ~ Dz where z is
sparse. These lead to “simple” regularizers of the form ||z||; and || z||,.

An alternative family of models assumes that some transformation of x is sparse, e.g., one assumes T'x
is sparse for some type of transformation matrix 7. Some evidence suggests analysis priors outperform
synthesis priors [27].

Example. Consider 1D signals @ that are piece-wise smooth or even piece-wise constant, as illustrated below.
It is unclear what basis one would use for a parsimonious synthesis representation. But if we compute T'x
using T' = Dy in (1.16), then T'x is sparse, as illustrated below.

Twwﬁ—_ﬁfﬂﬁfj

xTr

RPN ————

Note that | T'z||, < N here, so this sparsifying transform provides a form of dimensionality reduction.

© J. Fessler, January 8, 2020, 17:17 (class version) 1.40

As usual there are both non-convex and convex variations of transform sparsity models, also called analysis
regularizers. The most popular convex formulation is

. 1
& = argmin 3 || Az — y[[; + B | T, (1.35)

where the || Tz ||, term captures the model that T’z is sparse.

We write an ordinary 1-norm here, but in practice (e.g., in clinical MRI scanners), a weighted norm may be
used that weights/regularizes the high-frequency components more when 7' is a wavelet transform [28].

If T is an invertible matrix (e.g., unitary), then we can define z = T'x and rewrite (1.35) as
1
&=T"2 z=agming ATz —y[,+ Bz, (1.36)
z

which is the simple 1-norm regularizer.

However, T' = Dy is not invertible, so that simplification is not directly applicable when using finite differ-
ences as the sparsifying transform.

© J. Fessler, January 8, 2020, 17:17 (class version)

Total variation (TV)

1.41

The most famous analysis regularizer is called total variation (TV) and in discrete-space problems corre-

sponds to using the finite-difference matrix 7" in (1.16) or (1.17).

For 1D problems, the TV regularizer is simply || Tz||, , where T is the finite difference matrix in (1.16).
For 2D problems, the simplest form of TV regularization is called anisotropic TV and uses the stacked

matrix in (1.17) as follows (c¢f. EECS 551 HW):

_|{{m ® DN
ral, = | o=

= (I @ Dy) ||, + |(Dy @ In) x|,
1

which is the sum of the absolute horizontal and vertical finite differences.

For a continuous-space 2D function f(x,y), this anisotropic TV regularizer looks like

LR

There is also an isotropic TV version that for a continuous-space 2D function f(z,y) looks like

/] \/ (2sw) +(2sew) aray

(1.37)

http://en.wikipedia.org/wiki/Total_variation
http://en.wikipedia.org/wiki/Total_variation_denoising

© J. Fessler, January 8, 2020, 17:17 (class version) 1.42

The discrete version is not easy to write in matrix form, but in summation form for a 2D function f[m, n],
the isotropic TV is roughly

S Sl — fm— 1)) + (Flmon] — flm,n— 1))

This is a convex function of f, but is nonsmooth due to the square root.

The simplified form (1.36) is applicable to
A: 1D TV using (1.16) B: 2D anisotropic TV using (1.37) C: both D: neither

https://www.google.com/search?g=plot (abs (x) %$2B (abs (y)) |z1| + |22]
https://www.google.com/search?g=plot (sqrt (x"2%2By"2)) 1/]21\2 + |zg\2

Eg)

\‘E-:i

/A et
A

V5 4

Anisotropic: =E Isotropic:

https://www.google.com/search?q=plot(abs(x)%2B(abs(y))
https://www.google.com/search?q=plot(sqrt(x^2%2By^2))

© J. Fessler, January 8, 2020, 17:17 (class version) 1.43

Algorithms for composite optimization problems

The general problem (1.35) is quite challenging typically, and has motivated the development of numerous
iterative algorithms and we will discuss many of them.
e interior-point methods [29]
e ADMM [30] [31]
e coordinate descent [32, 33]
e primal-dual methods [34]
e proximal methods, with inner iterations to compute the proximal operator
o ISTA [35]
o FISTA [36]
o POGM [37, 38]
o [39]

http://en.wikipedia.org/wiki/Proximal_gradient_methods_for_learning
http://en.wikipedia.org/wiki/Proximal_operator

© J. Fessler, January 8, 2020, 17:17 (class version) 1.44

Converting 1D TV to LASSO (Read)

In general the analysis problem (1.35) is harder to solve than the LASSO-type problem (1.24), due to the
term || T'xz||,. However, for the specific case where T' = D, as defined in (1.16), there is a special trick (cf.

[40]). Let W = diag{w} where w = [} and define the (invertible!) N x N matrix

1y
10 0 0 0 1 00 . 0 0
1014n_1 -1 1 0 0 ... 0 » 1 1 0 0 0
SZ{T}—0—110 o =5 =111 0 0
111 1
We can now rewrite (1.35) for this particular 7" as
1
& = argmin ; || Az — yl, + B |[WSz],
xeFN
Now make the change of variables z = Sz, leading to the optimization problem
1
@=S5"2 z=agming||ASz —y|;+BWz],. (1.38)
zeFN

Here, Sz = cumsum(x) and (S§7')'z = reverse (cumsum(reverse (x))) .

© J. Fessler, January 8, 2020, 17:17 (class version) 1.45

Example. Here is a 1D step-function signal with noise that is denoised using (1.38) with POGM from Ch. 5.
The step function is well preserved using the 1-norm regularizer. In contrast, using the 2-norm regularizer
leads to “blur” of the signal edge. The NRMSE of the original data y, of & with 1-norm and of & with 2-norm
are 2.9%, 1.6%, 8.0%, respectively.

mYy
® Ttrue
’ e 7 with /4
. e 7 with [y
0 - g e g e o
1 u u 1 1
1 40 80
One can apply a modified version of (1.33) to solve (1.38). (HW)

Unfortunately this approach does not seem to generalize to 2D TV.

© J. Fessler, January 8, 2020, 17:17 (class version) 1.46

To smooth or not smooth? (corner rounding) (Read)

Given the challenge of minimizing composite cost functions like those involving the 1-norm, one might
wonder if a smooth approximation to the 1-norm would be sufficient in practice.

Often papers claim in the introduction to use TV or the 1-norm, but later in the details one sees approximations

such as
o~V -
which is essentially the hyperbola potential function.
Another approximation is |z| & ¢ 1(z;), where ¢(+; 6) is the Huber function or Fair potential.
Such approximations to the 1-norm are sometimes called corner rounding.
In low-dose CT reconstruction, the smooth version provides images that doctors find preferable [41].

Although such approximations are always differentiable (and typically have Lipschitz smooth derivatives),
if § is too small then 1/§1(z;0) has very high curvature (large Lipschitz constant). This property can
cause slow convergence of conventional gradient-based algorithms. So algorithms designed for non-smooth
problems can be useful even for smooth but “nearly non-smooth” cost functions.

© J. Fessler, January 8, 2020, 17:17 (class version) 1.47

Proximal operator for complex arguments (Read)

Section 6.3 of the EECS 551 notes describes the proximal operator and gives some examples involving R.
Here is an illustration of how to determine the proximal operator when using complex numbers. We focus on
a 1D problem for simplicity. (More details in Ch. 5.) (This example should help in a HW problem.)

For v € C and ¢ : R — R, consider
1 2
prox,(v) = argmin - [v — z|* + 9 (|2]) .
zeC 2

To simplify this minimization problem, write z € C in polar coordinates as z = m e'* where m € [0, c0) is
the magnitude and ¢ € R is the phase. Then
~ w; ~ . 1 1 2
prox, (v) = me', (m,¢) = argmin - |v—me”|" +¢(m).
me[0,00), pER

We first consider the inner minimization over the phase ¢:
1

. 2 .1 2
argmin = [v — me*?|” = argmin - |[v| "’ — me*?|” = ZLv.
$eR geR 2

http://en.wikipedia.org/wiki/Proximal_operator

© J. Fessler, January 8, 2020, 17:17 (class version) 1.48

Now consider the minimization over m:

1 712 1

i = axgmin - [[o] " — me| 4 (m) = argmin - |[o] ¢ — me“*]* 4 g(m)
me[0,00) me[0,00) 2

1/ v

1
— argmin 2 |fo] — mf? + p(m) = proxy(fe).
me[0,00) 2

Combining, our final solution is

prox,,(v) = e’ prox,(|v]) .
So when the proximal operator depends only on the magnitude, as in ¢)(|z|) above, we simply determine the
proximal operator of the magnitude |v| of the argument, and then apply the sign at the end.

In JULIA code: prox_complex (v) = sign(v) * prox_real (abs(v))
Example. EECS 551 lecture notes derive the soft thresholding proximal mapping
proxg,., (o) = max(oc — $3,0)
when ¢ is real and nonnegative. The generalization to complex numbers is then
proxg. (v) = sign(v) max(|v| — 3,0).
The generalization to complex vectors in JULIA code is:

soft (v, reg) = sign(v) * max(abs(v) - reg,0)

prox (v, reg) = soft. (v, reqg)

© J. Fessler, January 8, 2020, 17:17 (class version) 1.49

1.5 Non-smooth problems

So far, all of the cost functions considered above have at least one smooth term in them, so gradient operations
are at least partially applicable.

There are also applications where all terms in the cost function are non-smooth. Some applications are
convex, and some are not.

Convex non-smooth problems

Robust regression with sparsity regularization (Read)
Many of the M-estimators on p. 1.24 involve smooth functions, but a particularly robust convex function is

the 1-norm. Including sparsity based regularization leads to the following non-smooth optimization problem:

&= argminU(z), U(a) = |Az - y||, + B 2], . (1.39)

xr

This is a convex optimization problem, but the two non-smooth 1-norms make it challenging. The subgradi-
ent method and the alternating direction method of multipliers (ADMM) are the two algorithms we will
discuss for this application.

See [42] for a linear programming approach and a Newton-like method.

http://en.wikipedia.org/wiki/Subgradient_method
http://en.wikipedia.org/wiki/Subgradient_method
http://en.wikipedia.org/wiki/Augmented_Lagrangian_method#Alternating_direction_method_of_multipliers

© J. Fessler, January 8, 2020, 17:17 (class version) 1.50

Example. This figure shows polynomial regression from noisy samples of a smooth function, corrupted by
an outlier point. Compared to ordinary LS estimation, the robust cost function (1.39) yields a fit that better
agrees with the underlying truth.

]
m oy =
ir True s(t)
Ordinary LS :arg min ||Az — y||2
——— LASSO : argmin 0.5)| Az — y||3 + Bllz|1
Robust : arg mlxn Az — yll1
> 0r
bl |
1
-~ |
0

© J. Fessler, January 8, 2020, 17:17 (class version) 1.51

Supervised machine learning for binary classification (Read)
(Mostly review from EECS 551.)

To learn weights « € RY of a binary classifier given feature vectors {v;} € R" (training data) and
labels {y; = +1 : i=1,..., M}, we can minimize a cost function with a regularization parameter 3 > 0:

M N

& = argmin ¥(x), U(x) = Zh(yl (x,vi))+ B Z@b(xn) =1\,h.(Azx) + By ¢ .(x), (1.40)
z i=1 n=1

where the mth row of the M x N matrix A is y,,v., and where the second term is a regularizer like

1y ¢ .(x) = |[x]; when ¢(2) = |z|. Such a regularization term is especially important in the typical
case where the feature vector dimension N is large relative to the sample size M. Tikhonov regularization,
where 1(z) = 2%/2, is also common.

For good classification accuracy using the (almost linear) classifier sign({(x, v;)), we want:
o (x, v;) >0ify; = +1 and

° <33, 'l)l‘> < Olfy, = —1,

o ic., (x, y;v;) > 0, or equivalently [Ax]; > 0.

Solving (1.40) is related to classification using a support-vector machine (SVM). SVM descriptions often
include a learned offset parameter b in the data term by using h(y;({x, v;) —b)). By replacing v; with (v;, 1),
the effect of b is absorbed into the inner product, where z (or x 1) has the role of b, so the form (1.40) is
sufficiently general to include an offset.

http://en.wikipedia.org/wiki/Binary_classification
http://en.wikipedia.org/wiki/Support-vector_machine#Regularization_and_stability
http://en.wikipedia.org/wiki/Support-vector_machine

© J. Fessler, January 8, 2020, 17:17 (class version)

The 0-1 loss function h(z) = Ij.<q is natural be-
cause it counts how many training samples are mis-
classified, but it is nonconvex and nondifferentiable,
so very difficult to use for optimization. Instead one
usually uses surrogate loss functions.

The hinge loss function h(z) = max(1 — z,0) is
related to the soft-margin SVM and is convex, but
non-differentiable. We will use ADMM and SGM
for it. Here the data-fit term turns out to be propor-
tional to the distance to the margin.

The logistic loss function is convex and has a Lips- "

chitz continuous derivative:

Y(z) =log(l+e 7).

We will use gradient-based methods for it.

The exponential loss function is convex and differ-
entiable, but its derivative is not Lipschitz continu-
ous. We will not consider it further.

1.52

Loss functions (surrogates)

exponential
hinge
logistic
— 0-1

http://en.wikipedia.org/wiki/Loss_functions_for_classification
http://en.wikipedia.org/wiki/Support-vector_machine#Soft-margin
http://en.wikipedia.org/wiki/Logistic_function

© J. Fessler, January 8, 2020, 17:17 (class version)

Example. This figure illustrates the design
of a binary classifier using (1.40) with the
hinge loss function. This is a synthetic ex-
ample designed to illustrate in 2D the po-
tential benefits of sparsity-based regulariza-
tion. Here N = 3 and v = [vy, 1o, 1].

The black line shows the ideal decisionS 4l
boundary for separating the two classes
(based on the ensemble distribution). 3
The magenta line shows the unregularized
design where 3 = 0. There is an unneces- 2
sary dependence on feature v;.

The green line shows the decision bound-

1.53

ary when 3 = 23, and where we used
a weighted 1-norm |[Wz||, where W =
diag{w} and here w = [1,1, 0] so that we
avoid shrinking the offset term.

o ® ° ® classl
e % °° ® class2
. ° . L unregularized
. o0 ° regularized
e o . ideal
[]
L ..
[]
L]
[]
(X] []
° []
[] L]
° °
[LX) ° [] .)
e L0 o ® e . .
L] : ° d °
] °
1 1 1
0 10 20

Note that when we use the hinge loss and a 1-norm regularizer, every term in the the cost function (1.40) is
nonsmooth. So V is not of the composite form (1.23) and specialized optimization algorithms are required.

The above example used ADMM,; see Ch. 6.

http://en.wikipedia.org/wiki/Decision_boundary
http://en.wikipedia.org/wiki/Decision_boundary

© J. Fessler, January 8, 2020, 17:17 (class version) 1.54

Unsupervised clustering using a union of subspaces (Read)

The previous binary classification application is a supervised machine learning problem because we are
given labeled training data. Some machine learning problems are unsupervised, such as clustering, where
we are given a set of vectors {x1,...,xy}, eachin F M "and we want to assign each of them to one of, say,
K classes. There are many unsupervised clustering methods (see EECS 545).

One approach is to assume each x,, lies approximately in a union of sub-
spaces, as illustrated in the figure for M/ = 2. One union-of-subspaces
approach builds upon sparse subspace clustering methods [43—47]. If
we expect that the columns of the M x N matrix X £ [z, ... xy] lie
in a union of subspaces, then we should be able to express any column of
X in terms of a linear combination of a small (say K) number of other
columns of X. In other words, X should have self similarity:

X~XZ,

where Z is a N x NN matrix in the (nonconvex) set of matrices with K-
sparse columns:

ZEZNZk, Z02{ZeFVY : Z,=0,Vn}, ZxE£2{ZecFV" :|Z,],<K, Vn}.

http://en.wikipedia.org/wiki/Unsupervised_learning
http://en.wikipedia.org/wiki/Cluster_analysis

© J. Fessler, January 8, 2020, 17:17 (class version) 1.55
What should K be in the above figure?
A: 0 B: 1 C:2 D: 3 E: 4

One could try to learn the coefficients Z by tackling the following hard nonconvex optimization problem:

Z £ argmin | X — ZX|}.
ZcZ

In the absence of noise, one could use the following convex optimization problem [47]:

Z £ argmin |vec(Z)||, st. X = X Z.
ZeZy

In the presence of noise, a convex cost function that balances the self similarity criterion with sparsity may
be preferable:
A 1 5
Z = argmin §||\X — XZ|p+ Blvec(2)]|, -
ZEZO

After computing Z, one can apply spectral clustering [48, 49] to it to complete the unsupervised clustering.

We will explore such optimization problems for unsupervised machine learning in HW problems.

http://en.wikipedia.org/wiki/Spectral_clustering

© J. Fessler, January 8, 2020, 17:17 (class version) 1.56

1.6 Summary

This chapter has focused on applications involving convex optimization problems (but not exclusively so),
most of which require iterative algorithms to solve.

Signal processing applications considered include: compressed sensing, sparse representation, sparse filter
design, regularized inverse problems sparse approximation, data compression, signal denoising, and TV reg-
ularization,

Machine learning applications considered include: linear regression, ridge regression, robust regression,
sparse regression, supervised binary classification, and unsupervised clustering.

The next chapter has more applications involving nonconvex optimization problems.

Bibliography

[1] T. Baran, D. Wei, and A. V. Oppenheim. “Linear programming algorithms for sparse filter design”. In: IEEE Trans. Sig. Proc. 58.3 (Mar. 2010), 1605-17
(cit. on p. 1.8).

[2] S.Boyd and L. Vandenberghe. Convex optimization. UK: Cambridge, 2004 (cit. on p. 1.8).

[3] H.Sun, D.S. Weller, A. Chu, S. Ramani, D. Yoon, J. F. Nielsen, and J. A. Fessler. “Spoke pulse design in magnetic resonance imaging using greedy
minimax algorithm”. In: Proc. IEEE Intl. Symp. Biomed. Imag. 2013, 696-9 (cit. on p. 1.9).

[4] I Dunning, J. Huchette, and M. Lubin. “JuMP: A modeling language for mathematical optimization”. In: SIAM Review 59.2 (2017), 295-320 (cit. on
p.- 1.9).

[5]1 R.C. Fair. “On the robust estimation of econometric models”. In: Ann. Econ. Social Measurement 2 (Oct. 1974), 667-77 (cit. on p. 1.22).

[6] P W. Holland and R. E. Welsch. “Robust regression using iteratively reweighted least-squares”. In: Comm. in Statistics—Theory and Methods 6.9
(1977), 813-27 (cit. on p. 1.22).

© J. Fessler, January 8, 2020, 17:17 (class version) 1.57

[7]
[8]

[9]
[10]
(11]
(12]
[13]
[14]

(15]
[16]
[17]

(18]

[19]

(20]

[21]
(22]

[23]

W. J.J. Rey. Introduction to robust and quasi-robust statistical methods. Berlin: Springer, 1983 (cit. on p. 1.22).

K. Lange. “Convergence of EM image reconstruction algorithms with Gibbs smoothing”. In: IEEE Trans. Med. Imag. 9.4 (Dec. 1990). Corrections,
T-MI, 10:2(288), June 1991., 43946 (cit. on p. 1.22).

P. J. Huber. Robust statistics. New York: Wiley, 1981 (cit. on p. 1.24).

P. J. Huber. “Robust estimation of a location parameter”. In: Ann. Math. Stat. 35.1 (Mar. 1964), 73-101 (cit. on p. 1.25).

K. Bryan and T. Leise. “Making do with less: an introduction to compressed sensing”. In: SIAM Review 55.3 (2013), 547-66 (cit. on p. 1.28).
C. L. Mallows. “Some comments on C,”. In: Technometrics 15.4 (Nov. 1973), 661-75 (cit. on p. 1.28).

L. Breiman. “Better subset regression using the nonnegative garrote”. In: Technometrics 37.4 (Nov. 1995), 373-84 (cit. on p. 1.28).

C. Couvreur and Y. Bresler. “On the optimality of the backward greedy algorithm for the subset selection problem”. In: SIAM J. Matrix. Anal. Appl. 21.3
(2000), 797-808 (cit. on p. 1.28).

R. Tibshirani. “Regression shrinkage and selection via the LASSO”. In: J. Royal Stat. Soc. Ser. B 58.1 (1996), 267-88 (cit. on p. 1.29).
E. J. Candes and Y. Plan. “Near-ideal model selection by #; minimization”. In: Ann. Stat. 37.5a (2009), 2145-77 (cit. on p. 1.29).

V. Papyan, Y. Romano, and M. Elad. “Convolutional neural networks analyzed via convolutional sparse coding”. In: J. Mach. Learning Res. 18.83
(2017), 1-52 (cit. on p. 1.30).

E. J. Candes, J. Romberg, and T. Tao. “Stable signal recovery from incomplete and inaccurate measurements”. In: Comm. Pure Appl. Math. 59.8 (2006),
1207-23 (cit. on p. 1.36).

E. J. Candes, J. Romberg, and T. Tao. “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information”. In:
IEEE Trans. Info. Theory 52.2 (Feb. 2006), 489-509 (cit. on p. 1.36).

R. G. Baraniuk, V. Cevher, and M. B. Wakin. “Low-dimensional models for dimensionality reduction and signal recovery: A geometric perspective”. In:
Proc. IEEE 98.6 (June 2010), 959-971 (cit. on p. 1.36).

D. L. Donoho and J. Tanner. “Precise undersampling theorems”. In: Proc. IEEE 98.6 (June 2010), 913-924 (cit. on p. 1.36).

R. M. Leahy and B. D. Jeffs. “On the design of maximally sparse beamforming arrays”. In: IEEE Trans. Attenas. Propagat. 39.8 (Aug. 1991), 1178-87
(cit. on p. 1.37).

S. S. Chen, D. L. Donoho, and M. A. Saunders. “Atomic decomposition by basis pursuit”. In: SIAM J. Sci. Comp. 20.1 (1998), 33-61 (cit. on p. 1.37).

© J. Fessler, January 8, 2020, 17:17 (class version) 1.58

[24]

[25]
(26]

(27]
[28]

[29]

[30]

[31]
(32]
[33]

[34]

[35]

[36]

[37]

[38]

M. Figueiredo, R. Nowak, and S. J. Wright. “Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse
problems”. In: IEEE J. Sel. Top. Sig. Proc. 1.4 (Dec. 2007), 586-97 (cit. on p. 1.37).

H. Zou and T. Hastie. “Regularization and variable selection via the elastic net”. In: J. Royal Stat. Soc. Ser. B 67.2 (2005), 301-20 (cit. on p. 1.38).

T. Nguyen-Duc and W-K. Jeong. “Compressed sensing dynamic MRI reconstruction using multi-scale 3D convolutional sparse coding with elastic net
regularization”. In: Proc. IEEE Intl. Symp. Biomed. Imag. 2018, 3325 (cit. on p. 1.38).

M. Elad, P. Milanfar, and R. Rubinstein. “Analysis versus synthesis in signal priors”. In: Inverse Prob. 23.3 (June 2007), 947-68 (cit. on p. 1.39).

J. Liu, J. Rapin, T. Chang, A. Lefebvre, M. Zenge, E. Mueller, and M. S. Nadar. “Dynamic cardiac MRI reconstruction with weighted redundant Haar
wavelets”. In: Proc. Intl. Soc. Mag. Res. Med. 2012, p. 4249 (cit. on p. 1.40).

S-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky. “An interior-point method for large-scale /1 -regularized least squares”. In: IEEE J. Sel. Top.
Sig. Proc. 1.4 (Dec. 2007), 606—17 (cit. on p. 1.43).

J. Eckstein and W. Yao. “Relative-error approximate versions of Douglas-Rachford splitting and special cases of the ADMM?”. In: Mathematical
Programming 170.2 (Aug. 2018), 417-44 (cit. on p. 1.43).

D. Kim. Accelerated proximal point method for maximally monotone operators. 2019 (cit. on p. 1.43).
T. T. Wu and K. Lange. “Coordinate descent algorithms for lasso penalized regression”. In: annapplstat 2.1 (2008), 22444 (cit. on p. 1.43).

Y. Li and S. Osher. “Coordinate descent optimization for {1 minimization with application to compressed sensing; a greedy algorithm”. In: Inverse Prob.
and Imaging 3.3 (Aug. 2009), 487-503 (cit. on p. 1.43).

A. Chambolle and T. Pock. “A first-order primal-dual algorithm for convex problems with applications to imaging”. In: J. Math. Im. Vision 40.1 (2011),
120-145 (cit. on p. 1.43).

I. Daubechies, M. Defrise, and C. De Mol. “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint”. In: Comm. Pure
Appl. Math. 57.11 (Nov. 2004), 1413-57 (cit. on p. 1.43).

A. Beck and M. Teboulle. “A fast iterative shrinkage-thresholding algorithm for linear inverse problems”. In: SIAM J. Imaging Sci. 2.1 (2009), 183-202
(cit. on p. 1.43).

A. B. Taylor, J. M. Hendrickx, and Francois Glineur. “Exact worst-case performance of first-order methods for composite convex optimization”. In:
SIAM J. Optim. 27.3 (Jan. 2017), 1283-313 (cit. on p. 1.43).

D. Kim and J. A. Fessler. “Adaptive restart of the optimized gradient method for convex optimization™. In: J. Optim. Theory Appl. 178.1 (July 2018),
240-63 (cit. on p. 1.43).

© J. Fessler, January 8, 2020, 17:17 (class version) 1.59

[39] A.S.Lewis and S. J. Wright. “A proximal method for composite minimization”. In: Mathematical Programming 158.1 (July 2016), 501-46 (cit. on
p. 1.43).

[40] V.M. Patel, R. Maleh, A. C. Gilbert, and R. Chellappa. “Gradient-based image recovery methods from incomplete Fourier measurements”. In: /[EEE
Trans. Im. Proc. 21.1 (Jan. 2012), 94105 (cit. on p. 1.44).

[41] J-B. Thibault, K. Sauer, C. Bouman, and J. Hsieh. “A three-dimensional statistical approach to improved image quality for multi-slice helical CT”. In:
Med. Phys. 34.11 (Nov. 2007), 452644 (cit. on p. 1.46).

[42] T.F. Coleman and Y. Li. “A globally and quadratically convergent affine scaling method for linear {1 problems”. In: Mathematical Programming 56
(Aug. 1992), 189-222 (cit. on p. 1.49).

[43] E. Elhamifar and R. Vidal. “Sparse subspace clustering”. In: Proc. IEEE Conf. on Comp. Vision and Pattern Recognition. Vol. 2790-7. 2009 (cit. on
p- 1.54).

[44] R. Vidal. “Subspace clustering”. In: I[EEE Sig. Proc. Mag. 28.2 (Mar. 2011), 52-68 (cit. on p. 1.54).
[45] M. Soltanolkotabi and E. J. Candes. “A geometric analysis of subspace clustering with outliers”. In: Ann. Stat. 40.4 (2012), 2195-238 (cit. on p. 1.54).

[46] A. Adler, M. Elad, and Y. Hel-Or. “Probabilistic subspace clustering via sparse representations”. In: IEEE Signal Proc. Letters 20.1 (Jan. 2013), 63-6
(cit. on p. 1.54).

[47] E.Elhamifar and R. Vidal. “Sparse subspace clustering: algorithm, theory, and applications”. In: IEEE Trans. Patt. Anal. Mach. Int. 35.11 (Nov. 2013),
2765-81 (cit. on pp. 1.54, 1.55).

[48] A.Ng, Y. Weiss, and M. Jordan. “On spectral clustering: analysis and an algorithm”. In: Neural Info. Proc. Sys. 2001, 849-56 (cit. on p. 1.55).
[49] U. von Luxburg. “A tutorial on spectral clustering”. In: statcomp 17.4 (2007), 395-416 (cit. on p. 1.55).

	Application overview (1)
	1.0 Introduction
	Characteristic functions

	1.1 Linear programming applications
	Noiseless compressed sensing
	Minimax sparse filter design
	Convex relaxation

	1.2 Quadratic / LS problems
	Regularization
	Constrained LS problems

	1.3 Strictly convex smooth problems
	Edge-preserving regularization
	M-estimation for robustness to noise outliers in regression

	1.4 Convex composite problems
	l1 regularized problems
	Selecting features / covariates / regressors (LASSO)
	Sparse approximation
	Signal models
	Synthesis sparsity with over-complete dictionary
	Denoising using synthesis sparsity models
	Compressed sensing with synthesis form sparsity
	From nonsmooth to smooth
	Elastic-net regularizer
	Analysis sparsity
	Converting 1D TV to LASSO
	To smooth or not smooth? (corner rounding)
	Proximal operator for complex arguments

	1.5 Non-smooth problems
	Convex non-smooth problems
	Supervised machine learning for binary classification
	Unsupervised clustering using a union of subspaces

	1.6 Summary

