

Homework #11, EECS 598-006, W20. Due **Thu. Apr. 10**, by 4:00PM

1. [6] **Transform learning from heterogeneous data**

Suppose we want to learn a single **sparsifying transform** from two collections of data vectors: $\mathbf{X}_1 \in \mathbb{F}^{N \times L_1}$ and $\mathbf{X}_2 \in \mathbb{F}^{N \times L_2}$ where we expect the transforms of the training data in \mathbf{X}_2 to be less sparse than those of \mathbf{X}_1 . A natural cost function in this situation is:

$$\arg \min_{\mathbf{T} \in \mathbb{F}^{N \times N} : \mathbf{T}' \mathbf{T} = \mathbf{I}_N} \min_{\mathbf{Z}_1, \mathbf{Z}_2} \Psi(\mathbf{T}, \mathbf{Z}_1, \mathbf{Z}_2), \quad \Psi(\mathbf{T}, \mathbf{Z}_1, \mathbf{Z}_2) \triangleq \frac{1}{2} \|\mathbf{T}\mathbf{X}_1 - \mathbf{Z}_1\|_F^2 + \frac{1}{2} \|\mathbf{T}\mathbf{X}_2 - \mathbf{Z}_2\|_F^2 + \beta_1 \|\mathbf{Z}_1\|_0 + \beta_2 \|\mathbf{Z}_2\|_0,$$

where $0 < \beta_2 < \beta_1$.

An 3-block alternating minimization approach is natural for this **transform learning** optimization problem.

- (a) [3] Derive the update for \mathbf{T} . Hint: you may assume N is small enough to allow for SVD operations.
- (b) [3] Derive the update for \mathbf{Z}_1 .
- (c) [0] Is your approach a **BCM** or **BCD** algorithm?

2. [12] **Compressed sensing with analysis regularizer with PGM and BCD**

Ch. 6 discussed multiple approaches to solving this **analysis regularizer** optimization problem with $\mathbf{A} \in \mathbb{F}^{M \times N}$ and $\mathbf{T} \in \mathbb{F}^{K \times N}$:

$$\hat{\mathbf{x}} = \arg \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{Ax} - \mathbf{y}\|_2^2 + \beta R(\mathbf{x}), \quad R(\mathbf{x}) = \min_{\mathbf{z}} \frac{1}{2} \|\mathbf{T}\mathbf{x} - \mathbf{z}\|_2^2 + \alpha \|\mathbf{z}\|_1.$$

- (a) [3] One approach is to write the cost function as $\Psi(\tilde{\mathbf{x}})$, where $\tilde{\mathbf{x}} = \begin{bmatrix} \mathbf{x} \\ \mathbf{z} \end{bmatrix}$ and then apply the **proximal gradient method (PGM)** to that Ψ . Determine the PGM update. Pay special attention to the **step size** and the soft **threshold**. (Use the best possible Lipschitz constant.)
- (b) [6] Another approach is to apply **BCD** to the following two-block cost function:

$$\Psi(\mathbf{x}, \mathbf{z}) = \frac{1}{2} \|\mathbf{Ax} - \mathbf{y}\|_2^2 + \beta \left(\frac{1}{2} \|\mathbf{T}\mathbf{x} - \mathbf{z}\|_2^2 + \alpha \|\mathbf{z}\|_1 \right).$$

Suppose we apply one iteration of **GD** for the \mathbf{x} update and exact minimization for the \mathbf{z} update.

- Determine the \mathbf{x} update, paying special attention to the **step size**. (Use the best possible Lipschitz constant.)
- Determine the \mathbf{z} update, paying special attention to the soft **threshold**.
- (c) [3] Suppose you know that $\mathbf{T}\mathbf{x}_{\text{true}}$ is a vector having a few significant values near or above some constant c , and the other values are zero or near zero. Discuss how you would set α for the two approaches considered above. Keep in mind that the presence of noise will cause the values of $\mathbf{T}\mathbf{x}_k$ to be spread out some.
- (d) [0] Compare how easy or intuitive it is to set α for the two cases.

3. [30] **Low-rank matrix factorization: large scale**

Given a $M \times N$ data matrix \mathbf{Y} , this problem considers the **low-rank matrix approximation** problem:

$$\hat{\mathbf{X}} = \hat{\mathbf{U}}\hat{\mathbf{V}}, \quad (\hat{\mathbf{U}}, \hat{\mathbf{V}}) = \underset{\mathbf{U} \in \mathcal{V}_K(\mathbb{R}^M), \mathbf{V} \in \mathbb{F}^{K \times N}}{\arg \min} \Psi(\mathbf{U}, \mathbf{V}), \quad \Psi(\mathbf{U}, \mathbf{V}) \triangleq \frac{1}{2} \|\mathbf{Y} - \mathbf{U}\mathbf{V}\|_F^2,$$

where $\mathcal{V}_K(\mathbb{F}^M)$ denotes the **Stiefel manifold** of $M \times K$ matrices having orthonormal columns.

(a) [10] Write a JULIA function that runs `niter` iterations of a two-block **BCM** algorithm for computing $\hat{\mathbf{U}}$ and $\hat{\mathbf{V}}$, as discussed in class. Your function must evaluate a user-defined function `fun` at the initial guess $(\mathbf{U}_0, \mathbf{V}_0)$ and after *each update*, so it will be called `2niter+1` times for `niter` iterations. Update \mathbf{U} first, then update \mathbf{V} .

Your code must *not* use the **SVD** of \mathbf{Y} or any other $M \times N$ matrix, but it may use the SVD of any matrix having one or more dimensions that are K because K is small.

Your file should be named `lrmf_uv.jl` and should contain the following function:

```
"""
U,V,out = lrmf_uv(Y, U0, V0 ; niter=5)

Low-rank matrix factorization by solving `min_{U,V} \|X - UV\|_F^2`
where `rank(UV) = K << min(M,N)`
May use SVD only for small matrices (involving `K`)

in
- `Y M×N` data matrix
- `U0 M×K` initial guess for left factor
- `V0 K×N` initial guess for right factor

option
- `niter::Int` # of iterations; default 5
- `fun::Function` user function `fun(iter,U,V)`
  is evaluated after every update of `U` or `V`
default `(iter,U,V) -> undef`

out
- `U M×K` final left factor
- `V K×N` final right factor
- `out::Array{Any}` [fun(0,U,V) ... fun(2*niter,U,V)]`

"""
function lrmf_uv(Y, U0, V0 ;
    niter=5, fun::Function = (iter, U, V) -> undef)
```

Submit your solution to <mailto:eeecs556@autograder.eecs.umich.edu>.

(b) [5] Write a JULIA script that applies your **BCM** algorithm to the data \mathbf{Y} using the initial random estimates $\mathbf{U}_0, \mathbf{V}_0$ shown in the following code:

```
using Random: seed!
using LinearAlgebra: qr
fun = (x,p) -> p == 1 ? x == 1 : [x >= p; fun(x - p*(x >= p), p/2)]
tmp = [0 14 1 1 1 14 0 0 0 9 15 8 8 4 8 8 15 9 0]
tmp = hcat([Int.(fun(v, 2^3)) for v in tmp]...)
tmp = [zeros(Int, 1, 19); tmp; zeros(Int, 1, 19)]'
Xtrue = kron(10 .+ 80*tmp, ones(100,100)); @show (M,N) = size(Xtrue)
seed!(0); sig = 20; Y = Xtrue + sig * randn(size(Xtrue))
K = 7; U0 = qr(randn(M,K)).Q[:,1:K]; V0 = randn(K,N); # initial guesses of U,V
```

Note that the code uses $K = 7$ even though the true rank is lower than that, because in practice the rank is often unknown.

After *each update*, compute the cost function Ψ above, and also compute the NRMSE $\|\mathbf{U}\mathbf{V} - \mathbf{X}_{\text{true}}\|_{\text{F}}/\|\mathbf{X}_{\text{true}}\|_{\text{F}}$. Also compute those two quantities for the initial guesses \mathbf{U}_0 and \mathbf{V}_0 .

Your script should generate all the figures in the next parts.

Submit a screenshot of your test code to [gradescopy](#).

- (c) [5] Show an image of $\hat{\mathbf{X}} = \hat{\mathbf{U}}\hat{\mathbf{V}}$. (It should look quite familiar, and fairly reasonable quality.)
(For yourself, also look at \mathbf{Y} to see how much the noise was reduced.)
- (d) [5] Make a plot of the cost Ψ versus “half iteration” *i.e.*, versus `(0:2niter)/2` because a full iteration is an update of both \mathbf{U} and \mathbf{V} but we are evaluating the cost and NRMSE after every update (to make sure it is all working correctly).
Hint: the cost function converges surprisingly quickly.
- (e) [5] Make a plot of NRMSE versus “half iteration” too.
Hint: The final NRMSE should be about 0.06, which is much less than the NRMSE of 0.46 of the noisy data image \mathbf{Y} .
- (f) [0] Optional. Compare to the conventional SVD-based low-rank matrix approximation approach from EECS 551.