
March 30, 2020 22:45 1

Homework #11, EECS 598-006, W20. Due Thu. Apr. 10, by 4:00PM

1. [6] Transform learning from heterogeneous data

Suppose we want to learn a single sparsifying transform from two collections of data vectors: X1 ∈ FN×L1 and X2 ∈ FN×L2

where we expect the transforms of the training data in X2 to be less sparse than those of X1. A natural cost function in this
situation is:

arg min
T∈FN×N :T ′T=IN

min
Z1,Z2

Ψ(T ,Z1,Z2), Ψ(T ,Z1,Z2) ,
1

2
|||TX1 −Z1|||2F +

1

2
|||TX2 −Z2|||2F + β1 ‖Z1‖0 + β2 ‖Z2‖0 ,

where 0 < β2 < β1.

An 3-block alternating minimization approach is natural for this transform learning optimization problem.
(a) [3] Derive the update for T . Hint: you may assume N is small enough to allow for SVD operations.
(b) [3] Derive the update for Z1.
(c) [0] Is your approach a BCM or BCD algorithm?

2. [12] Compressed sensing with analysis regularizer with PGM and BCD

Ch. 6 discussed multiple approaches to solving this analysis regularizer optimization problem with A ∈ FM×N and T ∈ FK×N :

x̂ = arg min
x

1

2
‖Ax− y‖22 + βR(x), R(x) = min

z

1

2
‖Tx− z‖22 + α ‖z‖1 .

(a) [3] One approach is to write the cost function as Ψ(x̃), where x̃ =

[
x
z

]
and then apply the proximal gradient method

(PGM) to that Ψ. Determine the PGM update. Pay special attention to the step size and the soft threshold. (Use the best
possible Lipschitz constant.)

(b) [6] Another approach is to apply BCD to the following two-block cost function:

Ψ(x, z) =
1

2
‖Ax− y‖22 + β

(
1

2
‖Tx− z‖22 + α ‖z‖1

)
.

Suppose we apply one iteration of GD for the x update and exact minimization for the z update.
• Determine the x update, paying special attention to the step size. (Use the best possible Lipschitz constant.)
• Determine the z update, paying special attention to the soft threshold.

(c) [3] Suppose you know that Txtrue is a vector having a few significant values near or above some constant c, and the other
values are zero or near zero. Discuss how you would set α for the two approaches considered above. Keep in mind that the
presence of noise will cause the values of Txk to be spread out some.

(d) [0] Compare how easy or intuitive it is to set α for the two cases.

March 30, 2020 22:45 2

3. [30] Low-rank matrix factorization: large scale

Given a M ×N data matrix Y , this problem considers the low-rank matrix approximation problem:

X̂ = Û V̂ , (Û , V̂) = arg min
U∈VK(RM), V ∈FK×N

Ψ(U ,V), Ψ(U ,V) ,
1

2
|||Y −UV |||2F,

where VK(FM) denotes the Stiefel manifold of M ×K matrices having orthonormal columns.
(a) [10] Write a JULIA function that runs niter iterations of a two-block BCM algorithm for computing Û and V̂ , as

discussed in class. Your function must evaluated a user-defined function fun at the initial guess (U0,V0) and after each
update, so it will be called 2niter+1 times for niter iterations. Update U first, then update V .
Your code must not use the SVD of Y or any other M ×N matrix, but it may use the SVD of any matrix having one or more
dimensions that are K because K is small.
Your file should be named lrmf_uv.jl and should contain the following function:

"""
U,V,out = lrmf_uv(Y, U0, V0 ; niter=5)

Low-rank matrix factorization by solving `min_{U,V} |X - UV|_F^2`
where `rank(UV) = K << min(M,N)`
May use SVD only for small matrices (involving `K`)

in
- `Y M×N` data matrix
- `U0 M×K` initial guess for left factor
- `V0 K×N` initial guess for right factor

option
- `niter::Int` # of iterations; default 5
- `fun::Function` user function `fun(iter,U,V)`
is evaluated after every update of `U` or `V`
default `(iter,U,V) -> undef`

out
- `U M×K` final left factor
- `V K×N` final right factor
- `out::Array{Any} [fun(0,U,V) ... fun(2*niter,U,V)]`
"""
function lrmf_uv(Y, U0, V0 ;

niter::Int=5, fun::Function = (iter, U, V) -> undef)

Submit your solution to mailto:eecs556@autograder.eecs.umich.edu.
(b) [5] Write a JULIA script that applies your BCM algorithm to the data Y using the initial random estimates U0,V0 shown in

the following code:

using Random: seed!
using LinearAlgebra: qr
fun = (x,p) -> p == 1 ? x == 1 : [x >= p; fun(x - p*(x >= p), p/2)]
tmp = [0 14 1 1 1 14 0 0 0 9 15 8 8 4 8 8 15 9 0]
tmp = hcat([Int.(fun(v, 2^3)) for v in tmp]...)
tmp = [zeros(Int, 1,19); tmp; zeros(Int, 1,19)]'
Xtrue = kron(10 .+ 80*tmp, ones(100,100)); @show (M,N) = size(Xtrue)
seed!(0); sig = 20; Y = Xtrue + sig * randn(size(Xtrue))
K = 7; U0 = qr(randn(M,K)).Q[:,1:K]; V0 = randn(K,N); # initial guesses of U,V

Note that the code uses K = 7 even though the true rank is lower than that, because in practice the rank is often unknown.

http://en.wikipedia.org/wiki/Stiefel_manifold
mailto:eecs556@autograder.eecs.umich.edu

March 30, 2020 22:45 3

After each update, compute the cost function Ψ above, and also compute the NRMSE |||UV −Xtrue|||F/|||Xtrue|||F. Also
compute those two quantities for the initial guesses U0 and V0.
Your script should generate all the figures in the next parts.
Submit a screenshot of your test code to gradescope.

(c) [5] Show an image of X̂ = Û V̂ . (It should look quite familiar, and fairly reasonable quality.)
(For yourself, also look at Y to see how much the noise was reduced.)

(d) [5] Make a plot of the cost Ψ versus “half iteration” i.e., versus (0:2niter)/2 because a full iteration is an update of
both U and V but we are evaluating the cost and NRMSE after every update (to make sure it is all working correctly).
Hint: the cost function converges surprisingly quickly.

(e) [5] Make a plot of NRMSE versus “half iteration” too.
Hint: The final NRMSE should be about 0.06, which is much less than the NRMSE of 0.46 of the noisy data image Y .

(f) [0] Optional. Compare to the conventional SVD-based low-rank matrix approximation approach from EECS 551.

https://gradescope.com

