March 30, 2020 22:45 1

Homework #11, EECS 598-006, W20. Due Thu. Apr. 10, by 4:00PM

. [6] Transform learning from heterogeneous data

Suppose we want to learn a single sparsifying transform from two collections of data vectors: X; € FV*I1 and X, € FN* Lz
where we expect the transforms of the training data in X5 to be less sparse than those of X;. A natural cost function in this
situation is:

. . 1 1
argmln min \I’(T, Z17 ZQ), \I’(T, Zl, Z2) é 7|HTX1 — Zlm% —|— 7|||TX2 — ZQ|||% —|— [31 HZ1||0 + Bg ||ZQHO,
TE]FNXN:T’T:IN Zl,Z2 2 2

where 0 < 32 < ;.

An 3-block alternating minimization approach is natural for this transform learning optimization problem.
(a) [3] Derive the update for T'. Hint: you may assume N is small enough to allow for SVD operations.

(b) [3] Derive the update for Z;.
(c) [0] Is your approach a BCM or BCD algorithm?

. [12] Compressed sensing with analysis regularizer with PGM and BCD

Ch. 6 discussed multiple approaches to solving this analysis regularizer optimization problem with A € FM*N and T € FX*N:

. .1 o1
& = argmin o | Az —y|3 + pR(x), R(z)=ming [Tz - 2||; + allz||, -
T

(a) [3] One approach is to write the cost function as ¥ (&), where & = {ﬂ and then apply the proximal gradient method
(PGM) to that ¥. Determine the PGM update. Pay special attention to the step size and the soft threshold. (Use the best
possible Lipschitz constant.)

(b) [6] Another approach is to apply BCD to the following two-block cost function:

1 9 1 2
¥(e.2) = 3 [Ae— i+ (5 1Tz - 21 +alsl,)

Suppose we apply one iteration of GD for the 2 update and exact minimization for the z update.
e Determine the x update, paying special attention to the step size. (Use the best possible Lipschitz constant.)
e Determine the z update, paying special attention to the soft threshold.

(c) [3] Suppose you know that Tz is a vector having a few significant values near or above some constant ¢, and the other
values are zero or near zero. Discuss how you would set « for the two approaches considered above. Keep in mind that the
presence of noise will cause the values of T'xy, to be spread out some.

(d) [0] Compare how easy or intuitive it is to set « for the two cases.

March 30, 2020 22:45 2

3. [30] Low-rank matrix factorization: large scale

Given a M x N data matrix Y, this problem considers the low-rank matrix approximation problem:

A ~ o~ PPN 1
X=UV, (U7 V) = arg min v(U,V), \I/(U, V) £ f|||Y — UV\H%,
UeVi (RM), VEFKXN 2

where Vi (FM) denotes the Stiefel manifold of M x K matrices having orthonormal columns.

(a) [10] Write a JULIA function that runs niter iterations of a two-block BCM algorithm for computing U and V, as
discussed in class. Your function must evaluated a user-defined function fun at the initial guess (Uy, V) and after each
update, so it will be called 2niter+1 times for niter iterations. Update U first, then update V.

Your code must not use the SVD of Y or any other M x N matrix, but it may use the SVD of any matrix having one or more
dimensions that are K because K is small.
Your file should be named 1rmf_uv.jl and should contain the following function:

mnmn

U,V,out = lrmf_uv (¥, U0, VO ; niter=5)

Low-rank matrix factorization by solving min_{U,V} [X - UV|_F"2"
where “rank (UV) = K << min (M, N)
May use SVD only for small matrices (involving "K')

in

- 'Y MxN' data matrix

— U0 MxK' initial guess for left factor
- VO KxN' initial guess for right factor

option

— ‘niter::Int° # of iterations; default 5

— " fun::Function® user function "~ fun(iter,U,V)"
is evaluated after every update of U or "V

default ° (iter,U,V) —-> undef"

out
- U MxK® final left factor
— "V KxN° final right factor
- ‘out::Array{Any} [fun(0,U,V) ... fun(2*niter,U,V)]"
function lrmf_uv (Y, U0, VO ;
niter::Int=5, fun::Function = (iter, U, V) —> undef)

Submit your solution tomailto:eecsb556@autograder.eecs.umich. edu.

(b) [5] Write a JULIA script that applies your BCM algorithm to the data Y using the initial random estimates U,V shown in
the following code:

using Random: seed!

using LinearAlgebra: dgr

fun = (x,p) > p == 1 ? x == : [x >= p; fun(x - px(x >= p), p/2)]
tmp [0 1411114000 9 158 8 488 15 9 0]

tmp = hcat ([Int. (fun(v, 273)) for v in tmp]...)

tmp = [zeros(Int, 1,19); tmp; zeros(Int, 1,19)]"
Xtrue = kron (10 .+ 80*tmp, ones(100,100)); @show (M,N) = size (Xtrue)
seed! (0); sig = 20; Y = Xtrue + sig » randn(size (Xtrue))

K = 7; U0 = gr(randn(M,K)) .Q[:,1:K]; VO = randn(K,N); # initial guesses of U,V

Note that the code uses K = 7 even though the true rank is lower than that, because in practice the rank is often unknown.

http://en.wikipedia.org/wiki/Stiefel_manifold
mailto:eecs556@autograder.eecs.umich.edu

March 30, 2020 22:45 3

After each update, compute the cost function ¥ above, and also compute the NRMSE UV — Xellp/ | Xl p- Also
compute those two quantities for the initial guesses Uy and V.

Your script should generate all the figures in the next parts.

Submit a screenshot of your test code to gradescope.

(c) [5] Show an image of X=UV. (It should look quite familiar, and fairly reasonable quality.)
(For yourself, also look at Y to see how much the noise was reduced.)

(d) [5] Make a plot of the cost ¥ versus “half iteration” i.e., versus (0:2niter) /2 because a full iteration is an update of
both U and V but we are evaluating the cost and NRMSE after every update (to make sure it is all working correctly).
Hint: the cost function converges surprisingly quickly.

(e) [5] Make a plot of NRMSE versus “half iteration” too.
Hint: The final NRMSE should be about 0.06, which is much less than the NRMSE of 0.46 of the noisy data image Y.

(f) [0] Optional. Compare to the conventional SVD-based low-rank matrix approximation approach from EECS 551.

https://gradescope.com

