

Homework #10, EECS 598-006, W20. Due **Thu. Apr. 03**, by 4:00PM

1. [41] **Image super-resolution using wavelet sparsity regularizer**

In a **image super-resolution** problem, we are given a low-resolution image $\mathbf{y} = \text{vec}(\mathbf{Y})$ and the goal is to create a higher resolution image $\mathbf{x} = \text{vec}(\mathbf{X})$ from it. Usually there is noise in the given image too, so an appropriate measurement model is $\mathbf{y} = \mathbf{Ax} + \mathbf{\epsilon}$, where \mathbf{A} is a matrix (linear map) representing the down sampling operation. If we believe that the higher resolution image has sparse wavelet transform coefficients, then a reasonable optimization problem is:

$$\hat{\mathbf{x}} = \arg \min_{\mathbf{x}} \Psi(\mathbf{x}), \quad \Psi(\mathbf{x}) = \frac{1}{2} \|\mathbf{Ax} - \mathbf{y}\|_2^2 + \beta \|\mathbf{DWx}\|_1,$$

where \mathbf{W} denotes an orthogonal discrete wavelet transform, and \mathbf{D} is a diagonal matrix of 0 and 1 values to select the wavelet detail coefficients.

(a) [10] To solve the above optimization problem, we need code for \mathbf{A} , which means we first need a mathematical model for how the low-resolution image \mathbf{y} relates to the high-resolution image \mathbf{x} in the absence of noise. If $x[m, n]$ is a $M \times N$ digital image for $m = 0, \dots, M-1$ and $n = 0, \dots, N-1$, where M and N are even, then a typical model for a factor of two down-sampling is

$$y[m, n] = \frac{1}{4}(x[2m, 2n] + x[2m+1, 2n] + x[2m, 2n+1] + x[2m+1, 2n+1]), \quad \begin{matrix} m = 0, \dots, M/2-1 \\ n = 0, \dots, N/2-1. \end{matrix}$$

Study the following code that implements \mathbf{A} as a `LinearMapAA` object.

```
using LinearMapsAA
(n1,n2) = (64,128) # test size (M,N) just for illustration
down1 = (x) -> (x[1:2:end,:] + x[2:2:end,:])/2 # 1D down-sampling by 2x
down2 = (x) -> down1(down1(x)')' # 2D down-sampling by factor of 2x
A = LinearMapAA(x -> down2(reshape(x,n1,n2))[:, Int((n1/2)*(n2/2)), n1*n2))
```

The size of \mathbf{A} is $(MN/4) \times (MN)$ which would be too large to store for realistic image sizes, so we use `LinearMapAA`. To use this \mathbf{A} for optimization, you will also need a method for implementing the **adjoint** operation corresponding to multiplying by the transpose \mathbf{A}' . Think about the linear operation above and examine `Matrix(A)'` for small image sizes. Then write a subroutine that performs the adjoint operation efficiently. Do not use any `sparse` functions.

Hint. The general ideas here are similar to the earlier HW involving `diff2d_adj`.

Your file should be named `down2_adj.jl` and should contain the following function:

```
"""
x = down2_adj(y)

Let `down2` denote the linear downsampling operation where each 2x2 block
of image pixels is averaged to form one output pixel.
This routine returns the *adjoint* of that linear operation.

in
- `y` `^ [n1 n2]` where `n1` and `n2` are even.

out
- `x` `^ [2*n1 2*n2]`


function down2_adj(array::AbstractArray{<:Number,2})
```

Submit your solution to `mailto:eeecs556@autograder.eecs.umich.edu`.

(b) [0] Use your subroutine as part of the second argument of the `LinearMapAA` call, *i.e.*, `y -> down2_adj ???`
Then test it for a small image size by the command: `Matrix(A)' == Matrix(A')`
Hint: think about `reshape` and `[:,]` here.

(c) [3] Determine the Lipschitz constant of the gradient of the data term above. The answer is a number and you do not need `opnorm` to find it. Hint. First consider the case where the input image size is just 2×2 .

(d) [10] Write a script that applies 10 iterations of POGM to minimize the cost function above for data generated as follows and produces the plots and images in the subsequent parts.

```
using Random: seed!
using LinearMapsAA, Plots
using MIRT: Aodwt, pogm_restart, jim, ellipse_im
nx,ny = 192,256
Xtrue = ellipse_im(ny, oversample=2)[Int((ny-nx)/2+1):Int(ny-(ny-nx)/2), :]
down1 = (x) -> (x[1:2:end,:] + x[2:2:end,:])/2 # 1D down-sampling by 2x
down2 = (x) -> down1(down1(x))' # 2D down-sampling by factor of 2x
Ytrue = down2(Xtrue); seed!(0); sig=0.1; Y = Ytrue + sig * randn(size(Ytrue))
W, scales, mfun = Aodwt((nx,ny)) # orth. discrete wavelet transform (LinearMap)
plot(jim(Xtrue, "true"), jim(Ytrue, "lo-res"), jim(Y, "noisy"))
```

Use $\beta = 0.05$ here. Also, for the 1-norm above, only regularize the wavelet detail coefficients, not the wavelet approximation coefficients, just as you did in a previous HW problem.

Submit a screenshot of your code to `gradescope`.

(e) [5] To apply any iterative algorithm to that cost function, we need an initial image $\mathbf{x}_0 = \text{vec}(\mathbf{X}_0)$. For this application, the initial image \mathbf{x}_0 should be computed from \mathbf{y} by replicating each pixel in \mathbf{y} twice in each direction.

For example, if $\mathbf{Y} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ then $\mathbf{X}_0 = \begin{bmatrix} 1 & 1 & 2 & 2 \\ 1 & 1 & 2 & 2 \\ 3 & 3 & 4 & 4 \\ 3 & 3 & 4 & 4 \end{bmatrix}$, for which $\mathbf{y} = \text{vec}(\mathbf{Y}) = \mathbf{A}\mathbf{x}_0 = \mathbf{A}\text{vec}(\mathbf{X}_0)$.

Submit a screen shot of your initial image to `gradescope`. It should look pretty similar to the true image.

(f) [5] Plot the cost function versus iteration k for the POGM approach.

You should see that POGM converges quite quickly, probably because \mathbf{W} is unitary and $\mathbf{A}'\mathbf{A}$ is block diagonal.

(g) [5] Show images of the true \mathbf{x} , the noisy low-resolution image \mathbf{y} , the initial image \mathbf{x}_0 , and the final image $\hat{\mathbf{x}}$.

(h) [3] Report the NRMSE values of \mathbf{x}_0 and $\hat{\mathbf{x}}$.

(i) [0] You will find that the NRMSE improves only a little. Speculate why.

(j) [0] Optional. Explore other wavelet types <https://github.com/JuliaDSP/Wavelets.jl> using the optional argument of `Aodwt` to try to improve the results.

2. [26] **Compressed sensing MRI**

This problem focuses on a relatively simple version of image reconstruction for magnetic resonance imaging (MRI). A simple model for 2D MRI is that the data consists of samples of the 2D **DFT** of a 2D slice of the object being scanned.

If \mathbf{X} denotes a $M \times N$ (discretized) slice of the patient, then the data model for “fully sampled” 2D MRI is

$$\mathbf{y} = \text{fft}(\mathbf{X})[:, :] + \boldsymbol{\varepsilon} \in \mathbb{C}^{MN}$$

where the JULIA `fft` function computes the 2D FFT of a 2D input argument, and $\boldsymbol{\varepsilon}$ denotes a complex additive Gaussian noise vector of length MN . If we collect such fully sampled measurements, then image reconstruction is a trivial inverse 2D FFT:

$$\hat{\mathbf{X}} = \text{ifft}(\text{reshape}(\mathbf{y}, M, N)).$$

One way to reduce scan time in MRI is to collect fewer than MN samples for a $M \times N$ image and then used **compressed sensing** methods to estimate \mathbf{X} from \mathbf{y} . Let `samp` denote a boolean $M \times N$ array that is `true` for DFT coefficients that we sample, and `false` otherwise and let $K = \text{sum}(\text{samp}) \leq MN$ denote then number of samples. Then for such “under-sampled” scans the measurement model becomes:

$$\mathbf{y} = \text{fft}(\mathbf{X})[:, \text{samp}] + \boldsymbol{\varepsilon} \in \mathbb{C}^K.$$

Mathematically we can write this as

$$\mathbf{y} = \mathbf{F}\mathbf{x} + \boldsymbol{\varepsilon}$$

where $\mathbf{x} = \text{vec}(\mathbf{X})$ and \mathbf{F} denotes the $K \times MN$ matrix consisting of the K rows of the DFT corresponding to the elements of `samp`. Two equivalent ways to make \mathbf{F} in JULIA for a 1D signal are:

```
F = exp.(-2im*pi*(findall(samp).-1)*(0:N-1)'/N)
F = exp.(-2im*pi*(0:N-1)*(0:N-1)'/N)[samp,:]
```

Such code is incomplete for the 2D DFT, and uses too much memory for large problems anyway.

We must use something like a `LinearMapAA` to represent \mathbf{F} , e.g., as follows:

```
F = LinearMapAA(x -> fft(reshape(x, M, N))[:, samp], (sum(samp), M*N); T=ComplexF32)
```

You should think carefully about all of the arguments used in the above `LinearMapAA` call!

A typical compressed sensing model is to assume that $\mathbf{T}\mathbf{x}$ is sparse for some transform \mathbf{T} , such as a wavelet transform. Under that model, a reasonable estimator is

$$\hat{\mathbf{x}} = \arg \min_{\mathbf{x} \in \mathbb{C}^{MN}} \frac{1}{2} \|\mathbf{F}\mathbf{x} - \mathbf{y}\|_2^2 + \beta \|\mathbf{D}\mathbf{T}\mathbf{x}\|_1,$$

where \mathbf{D} is a diagonal weighting matrix. For now, we focus on the case where \mathbf{T} is a unitary matrix, specifically an **orthogonal discrete wavelet transform**. As seen previously, the **proximal optimized gradient method (POGM)** is well-suited to such problems.

(a) [3] You are going to apply POGM to data generated as follows:

```
using Random: seed!
using FFTW: fft
using MIRT: Aodwt, jim
M,N = 192,256; Xtrue = zeros(M,N);
Xtrue[30:50,20:90] .= 1; Xtrue[90:100,100:110] .= 1; Xtrue[130:150,20:90] .= 1;
Xtrue[20:170,150:200] .= 1; Xtrue[150:151,160:161] .= 0
seed!(0); sampfrac = 0.3; samp = rand(M,N) .< sampfrac; sig = 1
mod2 = (N) -> mod.((0:N-1) .+ Int(N/2), N) .- Int(N/2)
samp .= (abs.(mod2(M)) .< Int(M/8)) .* (abs.(mod2(N)) .< Int(N/8))' # center
ytrue = fft(Xtrue)[samp]; y = ytrue + sig * randn(size(ytrue)) +
    1im * sig * randn(size(ytrue)); # complex noise!
T,scales,mfun = Aodwt((M,N)) # Orthogonal disc. wavelet transform (LinearMapAA)
```

As an easy warm-up, generate the data and then display the true image \mathbf{X}_{true} and the sampling pattern as follows:

```
plot(jim(Xtrue), jim(samp))
```

Make an initial $M \times N$ image \mathbf{X}_0 by taking the inverse FFT of “zero-filled” k-space data, defined as follows:

```
zfill = zeros(eltype(y), M, N); zfill[samp] = y
```

Let \mathbf{X}_0 denote the inverse FFT of that data.

Make a nice display of these initial ingredients:

```
plot(jim(Xtrue, "Xtrue"), jim(samp, "sampling", fft0=true), jim(X0, "X0"))
```

If your code is correct, \mathbf{X}_0 should look like a blurry version of \mathbf{X}_{true} because it is missing many high spatial frequency components that correspond to fine details. (The `fft0=true` option displays the DFT coefficients with 0 in the middle, akin to MATLAB’s `fftshift` command, which is usually more intuitive.)

Optional: also show the wavelet detail coefficients of \mathbf{X}_{true} .

Submit a screenshot of your figure to [gradescope](#).

(b) [0] Can you explain the sampling pattern? If not, ask someone in class who knows about MRI.

(c) [3] To apply a gradient-based method, we need the (best) Lipschitz constant L for the data term above. Determine L .

Hint. $\mathbf{F} = \mathbf{P} \sqrt{MN} (\mathbf{Q}_N \otimes \mathbf{Q}_M)$, where \mathbf{Q}_N having elements $Q_{kn} = \frac{1}{\sqrt{N}} \exp(-i2\pi kn/N)$ denotes the $N \times N$ **unitary DFT** matrix, and \mathbf{P} denotes the $K \times MN$ matrix that is all zeros except for a single 1 in each row that selects the DFT coefficients that we sample. Specifically: $\mathbf{P}\mathbf{x} = \mathbf{x}[\text{samp}]$. Now think about $\mathbf{P}'\mathbf{P}$.

(d) [5] The gradient of the data term above is $\mathbf{F}'(\mathbf{F}\mathbf{x} - \mathbf{y})$, so to apply any gradient-based method to this optimization problem, we need the adjoint operation \mathbf{F}' . Modify the initial `LinearMapAA` definition given above to provide that capability.

Hint. If $\mathbf{A} \text{vec}(\mathbf{X}) = \text{fft}(\mathbf{X})[:, :]$, then \mathbf{A} is not unitary, but $\mathbf{A}^{-1} = \frac{1}{MN} \mathbf{A}'$. See [inverse DFT](#).

Hint. MIRT.jl includes a function `embed` that may be useful.

Write a JULIA script that runs POGM and produces the figures below.

Submit a screenshot of your script, including the modified `LinearMapAA` call, to [gradescope](#).

Choose the diagonal weighting matrix \mathbf{D} to regularize only the detail wavelet coefficients.

Use $\beta = 0.004MN$ and 100 iterations.

(e) [5] Plot the cost function $\Psi(\mathbf{x}_k)$ (no logarithm) versus iteration k .

Optional: compare to ISTA and FISTA.

(f) [5] Plot the peak signal-to-noise ratio (PSNR) of \mathbf{x}_k versus iteration k , where PSNR is defined by

$$20 \log_{10} \left(\frac{\|\text{vec}(\mathbf{X}_{\text{true}})\|_{\infty}}{\|\text{vec}(\mathbf{X}_k - \mathbf{X}_{\text{true}})\|_2 / \sqrt{MN}} \right)$$

You should see a dramatic rise in the PSNR, from about 25dB to over 50dB.

(g) [5] Make figure showing \mathbf{X}_{true} , \mathbf{X}_0 , $\hat{\mathbf{X}}$ and the corresponding error images $\mathbf{X}_0 - \mathbf{X}_{\text{true}}$, $\hat{\mathbf{X}} - \mathbf{X}_{\text{true}}$.

You should see that the error is reduced dramatically.

Optional problem(s)

3. [0] Sparsity regularizers

Challenge. Consider the following two optimization formulations for transform sparsity:

$$\hat{\mathbf{x}}_0 = \arg \min_{\mathbf{x}} \Phi_0(\mathbf{x}), \quad \Phi_0(\mathbf{x}) \triangleq f(\mathbf{x}) + \beta \|\mathbf{T}\mathbf{x}\|_1$$

$$\hat{\mathbf{x}}_\alpha = \arg \min_{\mathbf{x}} \Phi(\mathbf{x}; \alpha), \quad \Phi(\mathbf{x}; \alpha) \triangleq f(\mathbf{x}) + \beta R_\alpha(\mathbf{x}), \quad R_\alpha(\mathbf{x}) = \frac{1}{\alpha} \left(\min_{\mathbf{z}} \frac{1}{2} \|\mathbf{T}\mathbf{x} - \mathbf{z}\|_2^2 + \alpha \|\mathbf{z}\|_1 \right),$$

where $\beta > 0$ and $\alpha > 0$. Assume $f(\mathbf{x})$ is convex. You may also assume that $\hat{\mathbf{x}}_0$ and $\hat{\mathbf{x}}_\alpha$ are unique minimizers.

Prove, or disprove this conjecture: $\lim_{\alpha \rightarrow 0} \hat{\mathbf{x}}_\alpha = \hat{\mathbf{x}}_0$.