March 25, 2020 18:21 1

Homework #10, EECS 598-006, W20. Due Thu. Apr. 03, by 4:00PM

. [41] Image super-resolution using wavelet sparsity regularizer

In a image super-resolution problem, we are given a low-resolution image y = vec(Y') and the goal is to create a higher
resolution image © = vec(X) from it. Usually there is noise in the given image too, so an appropriate measurement model is
y = Ax+e, where A is a matrix (linear map) representing the down sampling operation. If we believe that the higher resolution
image has sparse wavelet transform coefficients, then a reasonable optimization problem is:

& —argmin¥(e), V(@) = 5 |4z~ y|} + | DWe],.
where W denotes an orthogonal discrete wavelet transform, and D is a diagonal matrix of 0 and 1 values to select the wavelet
detail coefficients.

(a) [10] To solve the above optimization problem, we need code for A, which means we first need a mathematical model for
how the low-resolution image y relates to the high-resolution image @ in the absence of noise. If z[m, n] isa M x N digital
image form = 0,...,M —landn = 0,...,N — 1, where M and N are even, then a typical model for a factor of two
down-sampling is

m=0,...,M/2—1

1
ylm, n] = 7 (@[2m, 2n] + #2m + 1,2n] + #2m, 2n + 1] +al2m + L2n+ 1), 2"y

Study the following code that implements A as a LinearMapAA object.

using LinearMapsAA

(nl,n2) = (64,128) # test size (M,N) just for illustration

downl = (x) —> (x[1l:2:end,:] + x[2:2:end,:])/2 # 1D down-sampling by 2x
down2 = (x) —-> downl (downl(x)"')' # 2D down-sampling by factor of 2x

A = LinearMapAA (x —> down2 (reshape(x,nl,n2))[:]1, (Int((nl/2)=*(n2/2)), nl*n2))

The size of A is (M N/4) x (M N) which would be too large to store for realistic image sizes, so we use LinearMapAA .
To use this A for optimization, you will also need a method for implementing the adjoint operation corresponding to multi-
plying by the transpose A’. Think about the linear operation above and examine Matrix (A)’ for small image sizes. Then
write a subroutine that performs the adjoint operation efficiently. Do not use any sparse functions.

Hint. The general ideas here are similar to the earlier HW involving diff2d_adj .
Your file should be named down2_adj. j1 and should contain the following function:

x = down2_adj(y)

Let “down2 denote the linear downsampling operation where each 2x2 block
of image pixels is averaged to form one output pixel.
This routine returns the xadjoint+ of that linear operation.

in
- 'y " [nl n2]° where "nl’ and "n2° are even.

out
- 'x° " [2xnl 2%n2]°

function down2_adj(array::AbstractArray{<:Number,2})

Submit your solution tomailto:eecs556@autograder.eecs.umich.edu.
(b) [0] Use your subroutine as part of the second argument of the LinearMapAA call,ie., y —> down2_adj ?2?7?
Then test it for a small image size by the command: Matrix (A)’ == Matrix(A’)

Hint: think about reshape and [:] here.

http://en.wikipedia.org/wiki/Super-resolution_imaging
http://en.wikipedia.org/wiki/Hermitian_adjoint
mailto:eecs556@autograder.eecs.umich.edu

March 25, 2020 18:21 2

(c) [3] Determine the Lipschitz constant of the gradient of the data term above. The answer is a number and you do not need
opnorm to find it. Hint. First consider the case where the input image size is just 2 x 2.

(d) [10] Write a script that applies 10 iterations of POGM to minimize the cost function above for data generated as follows and
produces the plots and images in the subsequent parts.

using Random: seed!

using LinearMapsAA, Plots

using MIRT: Aodwt, pogm_restart, Jjim, ellipse_im

nx,ny = 192,256

Xtrue = ellipse_im(ny, oversample=2) [Int ((ny-nx)/2+1) :Int (ny—(ny-nx)/2), :]
downl = (x) —> (x[1l:2:end,:] + x[2:2:end,:])/2 # 1D down-sampling by 2x
down2 = (x) -> downl (downl (x)')' # 2D down-sampling by factor of 2x

Ytrue = down2 (Xtrue); seed! (0); sig=0.1; Y = Ytrue + sig * randn(size(Ytrue))
W, scales, mfun = Aodwt ((nx,ny)) # orth. discrete wavelet transform (LinearMap)
plot (jim(Xtrue, "true"), jim(Ytrue, "lo-res"), Jjim(Y, "noisy"))

Use (3 = 0.05 here. Also, for the 1-norm above, only regularize the wavelet detail coefficients, not the wavelet approximation
coefficients, just as you did in a previous HW problem.
Submit a screenshot of your code to gradescope.

(e) [5] To apply any iterative algorithm to that cost function, we need an initial image &y = vec(Xy). For this application, the
initial image x should be computed from y by replicating each pixel in y twice in each direction.

11 2 2
. 1 2 1 1 2 2 .
For example, if Y = [3 4] then X = 3 3 4 4| for which y = vec(Y') = Axzg = Avec(Xy).
3 3 4 4

Submit a screen shot of your initial image to gradescope. It should look pretty similar to the true image.

(f) [5] Plot the cost function versus iteration & for the POGM approach.
You should see that POGM converges quite quickly, probably because W is unitary and A’ A is block diagonal.

(g) [5] Show images of the true x, the noisy low-resolution image y, the initial image x(, and the final image &.
(h) [3] Report the NRMSE values of g and .
(1) [0] You will find that the NRMSE improves only a little. Speculate why.

() [0] Optional. Explore other wavelet types https://github.com/JuliaDSP/Wavelets. jl using the optional argu-
ment of Aodwt to try to improve the results.

https://gradescope.com
https://gradescope.com
https://github.com/JuliaDSP/Wavelets.jl

March 25, 2020 18:21 3

. [26] Compressed sensing MRI

This problem focuses on a relatively simple version of image reconstruction for magnetic resonance imaging (MRI). A simple
model for 2D MRI is that the data consists of samples of the 2D DFT of a 2D slice of the object being scanned.

If X denotes a M x N (discretized) slice of the patient, then the data model for “fully sampled” 2D MRI is

y= fft(x)[:] +eeCMV

where the JULIA f£ft function computes the 2D FFT of a 2D input argument, and € denotes a complex additive Gaussian noise
vector of length M N. If we collect such fully sampled measurements, then image reconstruction is a trivial inverse 2D FFT:

X = ifft (reshape(y, M, N)) .

One way to reduce scan time in MR1 is to collect fewer than M N samples for a M x N image and then used compressed sensing
methods to estimate X from y. Let samp denote a boolean M x N array thatis true for DFT coefficients that we sample,
and false otherwise and let K = sum (samp) < MN denote then number of samples. Then for such “under-sampled”
scans the measurement model becomes:

y= fft(X) [samp] +¢e e CK.

Mathematically we can write this as
y=Fx+e
where x = vec(X) and F' denotes the K x M N matrix consisting of the K rows of the DFT corresponding to the elements of
samp . Two equivalent ways to make F' in JULIA for a 1D signal are:
F = exp. (-2im*pix (findall (samp) .-1) % (0:N-1)"’ /N)
F = exp. (—2im*pi* (0:N-1) % (0:N-1)"’/N) [samp, :]

Such code is incomplete for the 2D DFT, and uses too much memory for large problems anyway.
We must use something like a LinearMapAA to represent F, e.g., as follows:

F = LinearMapARA(x —> fft (reshape(x, M, N)) [samp], (sum(samp), M*N) ; T=ComplexF32)

You should think carefully about all of the arguments used in the above LinearMapAA call!

A typical compressed sensing model is to assume that T'x is sparse for some transform 7', such as a wavelet transform. Under
that model, a reasonable estimator is

. 1 2

& = arg min o [Fz —yll, + B[DTz,

xeCMN

where D is a diagonal weighting matrix. For now, we focus on the case where 7' is a unitary matrix, specifically an orthogonal
discrete wavelet transform. As seen previously, the proximal optimized gradient method (POGM) is well-suited to such
problems.
(a) [3] You are going to apply POGM to data generated as follows:

using Random: seed!

using FFTW: fft

using MIRT: Aodwt, jim

M,N = 192,256; Xtrue = zeros (M,N);

Xtrue[30:50,20:90] .= 1; Xtrue[90:100,100:110] .= 1; Xtrue[l1l30:150,20:90] .= 1;
Xtrue[20:170,150:200] .= 1; Xtrue[150:151,160:161] .= 0

seed! (0); sampfrac = 0.3; samp = rand(M,N) .< sampfrac; sig = 1

mod2 = (N) -> mod. ((0:N-1) .+ Int(N/2), N) .- Int(N/2)

samp .|= (abs.(mod2 (M)) .< Int(M/8)) * (abs.(mod2(N)) .< Int(N/8))' # center
ytrue = fft (Xtrue) [samp]; y = ytrue + sig » randn(size(ytrue)) +

lim * sig * randn(size(ytrue)); # complex noise!
T,scales,mfun = Aodwt ((M,N)) # Orthogonal disc. wavelet transform (LinearMapAA)

As an easy warm-up, generate the data and then display the true image X, and the sampling pattern as follows:
plot (jim (Xtrue), Jjim(samp))

http://en.wikipedia.org/wiki/Discrete_Fourier_transform

March 25, 2020 18:21 4

Make an initial M x N image X by taking the inverse FFT of “zero-filled” k-space data, defined as follows:
zfill = zeros(eltype(y), M,N); zfill[samp] =y
Let X0 denote the inverse FFT of that data.
Make a nice display of these initial ingredients:
plot (jim (Xtrue, "Xtrue"), jim(samp, "sampling", fftO=true), Jjim(X0,"X0"))
If your code is correct, X should look like a blurry version of X because it is missing many high spatial frequency
components that correspond to fine details. (The fftO=true option displays the DFT coefficients with 0 in the middle,

akin to MATLAB’s fftshift command, which is usually more intuitive.)
Optional: also show the wavelet detail coefficients of X.
Submit a screenshot of your figure to gradescope.

(b) [0] Can you explain the sampling pattern? If not, ask someone in class who knows about MRI.

(c) [3] To apply a gradient-based method, we need the (best) Lipschitz constant L for the data term above. Determine L.

Hint. F = PVMN(Qn ® Qr), where Qn having elements Q,, = ﬁ exp(—2mkn/N) denotes the N x N unitary
DFT matrix, and P denotes the K x M N matrix that is all zeros except for a single 1 in each row that selects the DFT
coefficients that we sample. Specifically: Px = x[samp] . Now think about P’'P.

(d) [5] The gradient of the data term above is F’(Fx — y), so to apply any gradient-based method to this optimization problem,
we need the adjoint operation F’. Modify the initial LinearMapAA definition given above to provide that capability.
Hint. If Avec(X) = ££t (X) [:] , then A is not unitary, but A~ = 1= A’. See inverse DFT.

Hint. MIRT,jl includes a function embed that may be useful.

Write a JULIA script that runs POGM and produces the figures below.

Submit a screenshot of your script, including the modified LinearMapAA call, to gradescope.
Choose the diagonal weighting matrix D to regularize only the detail wavelet coefficients.

Use 3 = 0.004M N and 100 iterations.

(e) [5] Plot the cost function ¥ () (no logarithm) versus iteration k.
Optional: compare to ISTA and FISTA.

(f) [5] Plot the peak signal-to-noise ratio (PSNR) of &, versus iteration k, where PSNR is defined by

||VeC(Xlrue)||
2010 o0
g”(nvec(Xk = Xoue)lo /VMN

You should see a dramatic rise in the PSNR, from about 25dB to over 50dB.

(g) [5] Make figure showing Xe, Xo, X and the corresponding error images Xy — Xue, X — Xirue-
You should see that the error is reduced dramatically.

Optional problem(s)

3. [0] Sparsity regularizers
Challenge. Consider the following two optimization formulations for transform sparsity:

&0 = argmin ®g(z), Po(x) = f(z) + B || T,

x

x

1 1
2o = argmin ®(z;0), @(z;0) 2 f(x) + BR(z), Ro(z)= > (mzln 3 | T — z||§ +a ||z||1>)

where 3 > 0 and o > 0. Assume f(x) is convex. You may also assume that &, and &, are unique minimizers.

Prove, or disprove this conjecture: lim,_,g &, = Z¢.

https://gradescope.com
http://en.wikipedia.org/wiki/Discrete_Fourier_transform#Inverse_transform
https://github.com/JeffFessler/MIRT.jl/blob/master/src/fbp/image_geom.jl
https://gradescope.com

