
March 25, 2020 18:21 1

Homework #10, EECS 598-006, W20. Due Thu. Apr. 03, by 4:00PM

1. [41] Image super-resolution using wavelet sparsity regularizer

In a image super-resolution problem, we are given a low-resolution image y = vec(Y ) and the goal is to create a higher
resolution image x = vec(X) from it. Usually there is noise in the given image too, so an appropriate measurement model is
y = Ax+ε, where A is a matrix (linear map) representing the down sampling operation. If we believe that the higher resolution
image has sparse wavelet transform coefficients, then a reasonable optimization problem is:

x̂ = arg min
x

Ψ(x), Ψ(x) =
1

2
‖Ax− y‖22 + β ‖DWx‖1 ,

where W denotes an orthogonal discrete wavelet transform, and D is a diagonal matrix of 0 and 1 values to select the wavelet
detail coefficients.
(a) [10] To solve the above optimization problem, we need code for A, which means we first need a mathematical model for

how the low-resolution image y relates to the high-resolution image x in the absence of noise. If x[m,n] is a M ×N digital
image for m = 0, . . . ,M − 1 and n = 0, . . . , N − 1, where M and N are even, then a typical model for a factor of two
down-sampling is

y[m,n] =
1

4
(x[2m, 2n] + x[2m+ 1, 2n] + x[2m, 2n+ 1] + x[2m+ 1, 2n+ 1]),

m = 0, . . . ,M/2− 1
n = 0, . . . , N/2− 1.

Study the following code that implements A as a LinearMapAA object.

using LinearMapsAA
(n1,n2) = (64,128) # test size (M,N) just for illustration
down1 = (x) -> (x[1:2:end,:] + x[2:2:end,:])/2 # 1D down-sampling by 2x
down2 = (x) -> down1(down1(x)')' # 2D down-sampling by factor of 2x
A = LinearMapAA(x -> down2(reshape(x,n1,n2))[:], (Int((n1/2)*(n2/2)), n1*n2))

The size of A is (MN/4)× (MN) which would be too large to store for realistic image sizes, so we use LinearMapAA .
To use this A for optimization, you will also need a method for implementing the adjoint operation corresponding to multi-
plying by the transpose A′. Think about the linear operation above and examine Matrix(A)’ for small image sizes. Then
write a subroutine that performs the adjoint operation efficiently. Do not use any sparse functions.
Hint. The general ideas here are similar to the earlier HW involving diff2d_adj .
Your file should be named down2_adj.jl and should contain the following function:

"""
x = down2_adj(y)

Let `down2` denote the linear downsampling operation where each 2×2 block
of image pixels is averaged to form one output pixel.
This routine returns the *adjoint* of that linear operation.

in
- `y` `[n1 n2]` where `n1` and `n2` are even.

out
- `x` `[2*n1 2*n2]`

"""
function down2_adj(array::AbstractArray{<:Number,2})

Submit your solution to mailto:eecs556@autograder.eecs.umich.edu.
(b) [0] Use your subroutine as part of the second argument of the LinearMapAA call, i.e., y -> down2_adj ???

Then test it for a small image size by the command: Matrix(A)’ == Matrix(A’)

Hint: think about reshape and [:] here.

http://en.wikipedia.org/wiki/Super-resolution_imaging
http://en.wikipedia.org/wiki/Hermitian_adjoint
mailto:eecs556@autograder.eecs.umich.edu


March 25, 2020 18:21 2

(c) [3] Determine the Lipschitz constant of the gradient of the data term above. The answer is a number and you do not need
opnorm to find it. Hint. First consider the case where the input image size is just 2× 2.

(d) [10] Write a script that applies 10 iterations of POGM to minimize the cost function above for data generated as follows and
produces the plots and images in the subsequent parts.

using Random: seed!
using LinearMapsAA, Plots
using MIRT: Aodwt, pogm_restart, jim, ellipse_im
nx,ny = 192,256
Xtrue = ellipse_im(ny, oversample=2)[Int((ny-nx)/2+1):Int(ny-(ny-nx)/2),:]
down1 = (x) -> (x[1:2:end,:] + x[2:2:end,:])/2 # 1D down-sampling by 2x
down2 = (x) -> down1(down1(x)')' # 2D down-sampling by factor of 2x
Ytrue = down2(Xtrue); seed!(0); sig=0.1; Y = Ytrue + sig * randn(size(Ytrue))
W,scales,mfun = Aodwt((nx,ny)) # orth. discrete wavelet transform (LinearMap)
plot(jim(Xtrue, "true"), jim(Ytrue, "lo-res"), jim(Y, "noisy"))

Use β = 0.05 here. Also, for the 1-norm above, only regularize the wavelet detail coefficients, not the wavelet approximation
coefficients, just as you did in a previous HW problem.
Submit a screenshot of your code to gradescope.

(e) [5] To apply any iterative algorithm to that cost function, we need an initial image x0 = vec(X0). For this application, the
initial image x0 should be computed from y by replicating each pixel in y twice in each direction.

For example, if Y =

[
1 2
3 4

]
then X0 =


1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4

 , for which y = vec(Y ) = Ax0 = A vec(X0) .

Submit a screen shot of your initial image to gradescope. It should look pretty similar to the true image.
(f) [5] Plot the cost function versus iteration k for the POGM approach.

You should see that POGM converges quite quickly, probably because W is unitary and A′A is block diagonal.
(g) [5] Show images of the true x, the noisy low-resolution image y, the initial image x0, and the final image x̂.
(h) [3] Report the NRMSE values of x0 and x̂.
(i) [0] You will find that the NRMSE improves only a little. Speculate why.
(j) [0] Optional. Explore other wavelet types https://github.com/JuliaDSP/Wavelets.jl using the optional argu-

ment of Aodwt to try to improve the results.

https://gradescope.com
https://gradescope.com
https://github.com/JuliaDSP/Wavelets.jl


March 25, 2020 18:21 3

2. [26] Compressed sensing MRI

This problem focuses on a relatively simple version of image reconstruction for magnetic resonance imaging (MRI). A simple
model for 2D MRI is that the data consists of samples of the 2D DFT of a 2D slice of the object being scanned.

If X denotes a M ×N (discretized) slice of the patient, then the data model for “fully sampled” 2D MRI is

y = fft(X)[:] + ε ∈ CMN

where the JULIA fft function computes the 2D FFT of a 2D input argument, and ε denotes a complex additive Gaussian noise
vector of length MN . If we collect such fully sampled measurements, then image reconstruction is a trivial inverse 2D FFT:

X̂ = ifft(reshape(y, M, N)) .

One way to reduce scan time in MRI is to collect fewer thanMN samples for aM×N image and then used compressed sensing
methods to estimate X from y. Let samp denote a boolean M ×N array that is true for DFT coefficients that we sample,
and false otherwise and let K = sum(samp) ≤ MN denote then number of samples. Then for such “under-sampled”
scans the measurement model becomes:

y = fft(X)[samp] + ε ∈ CK .

Mathematically we can write this as
y = Fx + ε

where x = vec(X) and F denotes the K ×MN matrix consisting of the K rows of the DFT corresponding to the elements of
samp . Two equivalent ways to make F in JULIA for a 1D signal are:
F = exp.(-2im*pi*(findall(samp).-1)*(0:N-1)’/N)

F = exp.(-2im*pi*(0:N-1)*(0:N-1)’/N)[samp,:]

Such code is incomplete for the 2D DFT, and uses too much memory for large problems anyway.
We must use something like a LinearMapAA to represent F , e.g., as follows:
F = LinearMapAA(x -> fft(reshape(x, M, N))[samp], (sum(samp), M*N) ; T=ComplexF32)

You should think carefully about all of the arguments used in the above LinearMapAA call!

A typical compressed sensing model is to assume that Tx is sparse for some transform T , such as a wavelet transform. Under
that model, a reasonable estimator is

x̂ = arg min
x∈CMN

1

2
‖Fx− y‖22 + β ‖DTx‖1 ,

where D is a diagonal weighting matrix. For now, we focus on the case where T is a unitary matrix, specifically an orthogonal
discrete wavelet transform. As seen previously, the proximal optimized gradient method (POGM) is well-suited to such
problems.
(a) [3] You are going to apply POGM to data generated as follows:

using Random: seed!
using FFTW: fft
using MIRT: Aodwt, jim
M,N = 192,256; Xtrue = zeros(M,N);
Xtrue[30:50,20:90] .= 1; Xtrue[90:100,100:110] .= 1; Xtrue[130:150,20:90] .= 1;
Xtrue[20:170,150:200] .= 1; Xtrue[150:151,160:161] .= 0
seed!(0); sampfrac = 0.3; samp = rand(M,N) .< sampfrac; sig = 1
mod2 = (N) -> mod.((0:N-1) .+ Int(N/2), N) .- Int(N/2)
samp .|= (abs.(mod2(M)) .< Int(M/8)) * (abs.(mod2(N)) .< Int(N/8))' # center
ytrue = fft(Xtrue)[samp]; y = ytrue + sig * randn(size(ytrue)) +

1im * sig * randn(size(ytrue)); # complex noise!
T,scales,mfun = Aodwt((M,N)) # Orthogonal disc. wavelet transform (LinearMapAA)

As an easy warm-up, generate the data and then display the true image Xtrue and the sampling pattern as follows:
plot(jim(Xtrue), jim(samp))

http://en.wikipedia.org/wiki/Discrete_Fourier_transform


March 25, 2020 18:21 4

Make an initial M ×N image X0 by taking the inverse FFT of “zero-filled” k-space data, defined as follows:
zfill = zeros(eltype(y), M,N); zfill[samp] = y

Let X0 denote the inverse FFT of that data.
Make a nice display of these initial ingredients:
plot(jim(Xtrue,"Xtrue"), jim(samp, "sampling", fft0=true), jim(X0,"X0"))

If your code is correct, X0 should look like a blurry version of Xtrue because it is missing many high spatial frequency
components that correspond to fine details. (The fft0=true option displays the DFT coefficients with 0 in the middle,
akin to MATLAB’s fftshift command, which is usually more intuitive.)
Optional: also show the wavelet detail coefficients of Xtrue.
Submit a screenshot of your figure to gradescope.

(b) [0] Can you explain the sampling pattern? If not, ask someone in class who knows about MRI.
(c) [3] To apply a gradient-based method, we need the (best) Lipschitz constant L for the data term above. Determine L.

Hint. F = P
√
MN(QN ⊗QM ), where QN having elements Qkn = 1√

N
exp(−ı2πkn/N) denotes the N × N unitary

DFT matrix, and P denotes the K ×MN matrix that is all zeros except for a single 1 in each row that selects the DFT
coefficients that we sample. Specifically: Px = x[samp] . Now think about P ′P .

(d) [5] The gradient of the data term above is F ′(Fx− y), so to apply any gradient-based method to this optimization problem,
we need the adjoint operation F ′. Modify the initial LinearMapAA definition given above to provide that capability.
Hint. If A vec(X) = fft(X)[:] , then A is not unitary, but A−1 = 1

MNA′. See inverse DFT.
Hint. MIRT.jl includes a function embed that may be useful.

Write a JULIA script that runs POGM and produces the figures below.
Submit a screenshot of your script, including the modified LinearMapAA call, to gradescope.
Choose the diagonal weighting matrix D to regularize only the detail wavelet coefficients.
Use β = 0.004MN and 100 iterations.

(e) [5] Plot the cost function Ψ(xk) (no logarithm) versus iteration k.
Optional: compare to ISTA and FISTA.

(f) [5] Plot the peak signal-to-noise ratio (PSNR) of xk versus iteration k, where PSNR is defined by

20 log10

(
‖vec(Xtrue)‖∞

‖vec(Xk −Xtrue)‖2 /
√
MN

)

You should see a dramatic rise in the PSNR, from about 25dB to over 50dB.
(g) [5] Make figure showing Xtrue, X0, X̂ and the corresponding error images X0 −Xtrue, X̂ −Xtrue.

You should see that the error is reduced dramatically.

Optional problem(s)

3. [0] Sparsity regularizers

Challenge. Consider the following two optimization formulations for transform sparsity:

x̂0 = arg min
x

Φ0(x), Φ0(x) , f(x) + β ‖Tx‖1

x̂α = arg min
x

Φ(x;α), Φ(x;α) , f(x) + βRα(x), Rα(x) =
1

α

(
min
z

1

2
‖Tx− z‖22 + α ‖z‖1

)
,

where β > 0 and α > 0. Assume f(x) is convex. You may also assume that x̂0 and x̂α are unique minimizers.

Prove, or disprove this conjecture: limα→0 x̂α = x̂0.

https://gradescope.com
http://en.wikipedia.org/wiki/Discrete_Fourier_transform#Inverse_transform
https://github.com/JeffFessler/MIRT.jl/blob/master/src/fbp/image_geom.jl
https://gradescope.com

