
March 16, 2020 17:21 1

Homework #9, EECS 598-006, W20. Due Thu. Mar. 27, by 4:00PM

1. [25] Learning a binary classifier for handwritten digits using 1-norm sparsity regularization

A previous HW problem designed a binary classifier for two handwritten digit images using a Fair potential regularizer.
For this problem you will instead use a 1-norm that truly encourages the feature weights to be sparse:

x̂ = arg min
x

Ψ(x), Ψ(x) = 1′h.(Ax, δh) + β ‖x‖1 ,

where again h denotes the Huber hinge loss function. Because this cost function is composite, i.e., not smooth, we must use a
proximal method rather than a gradient method. POGM is particularly well suited to such applications.

Your starting point should be the template code used in a previous HW problem; use δh = 0.1 again.
That code uses the MIRT package and in that package is pogm_restart that you may use for this problem (or you may
write your own POGM algorithm). Type ?pogm_restart in a jupyter notebook or in REPL to see its documentation.
Hint. POGM uses the mom=:pogm option. FPGM uses the “primary sequence” yk (called zk in the notes), whereas POGM
uses the secondary sequence xk . (The are the same for PGM.) Keep that in mind when defining fun .
(a) [5] Add JULIA code to perform the following steps. Submit a screenshot of your added code to gradescope.

Apply POGM (with its default gradient-based adaptive restart) to minimize the cost function shown above.
Choose a value for β (try between 0.1 and 1) that leads to better classification accuracy than seen in the previous HW.

(b) [5] Make an image of the feature weights x̂ learned by POGM with this 1-norm cost function.
(c) [5] Make a plot that shows the cost function Ψ(xk) versus iteration k for POGM.

Optional: compare to FPGM using the mom=:fpgm option (or write your own FPGM); you should see that POGM con-
verges faster than FPGM, as predicted by the worst-case convergence bounds.
(For my value of β, about 300 iterations was sufficient.)

(d) [5] Report the classification accuracy of your method,
(e) [5] Report the number of nonzero x̂ values for the 1-norm method and the previous Fair potential method. The count

command is useful here.
(f) [0] Optional. If you know of (or devise) a method that you think is faster than POGM for this application, try it out. If it is

faster, then email me a notebook with the results. The first submission of any method that is faster than POGM (in wall time)
will earn 120− 40 max

(
(n− 2.5)2, 2

)
extra credit points on this HW, where n ∈ {1, 2, 3, 4} is the number of students who

collaborated together on the submission. (Collaboration is allowed.) For a given approach, the first team to email me earns
the extra credit for that approach. (Multiple teams can earn extra credit for different approaches.)

https://gradescope.com


March 16, 2020 17:21 2

2. [15] CLS vs POGM for LASSO

The LASSO optimization problem for sparse regression is especially useful in under-determined problems and is given by:

x̂ = arg min
x

1

2
‖Ax− y‖22 + β ‖x‖1 .

Recall that in an earlier HW problem you implemented an algorithm lasso_cls for solving this problem as a constrained
least squares problem with the gradient projection method.

This problem compares lasso_cls to POGM for solving the LASSO problem.
(a) [10] Write a script that applies both lasso_cls and POGM to data generated as follows and produces the plot below:

using Random: seed!
M,N = 50,99; seed!(0)
xtrue = randn(N) .* (rand(N) .< 0.3) # sparse
A = randn(M,N); y = A * xtrue + 0.1*randn(M) # data

Use β = 15 and x0 = 0 here. This is a small problem, so use opnorm .
Submit a screenshot of your code to gradescope.

(b) [5] Plot the cost function versus iteration k for both the CLS approach and the POGM approach for 50 iterations.
You should see that POGM converges much faster.

(c) [0] Optional: also compare to PGM=ISTA and FPGM=FISTA.
(This comparison is optional because I expect POGM will be faster based on results in [1].

https://gradescope.com


March 16, 2020 17:21 3

3. [35] Image inpainting using wavelet sparsity regularizer

Image inpainting is similar to matrix completion: we are given M < N samples of an image having N pixels and we want to
recover the entire image. This is an under-determined problem so clearly regularization is needed. For matrix completion we
usually assume the matrix is low rank, but that is a poor model for natural images. In this problem we assume that the discrete
wavelet transform (DWT) of the image is sparse, so we estimate the image using the following optimization problem:

x̂ = arg min
x

1

2
‖Ax− y‖22 + β ‖Wx‖1 ,

where W denotes a N ×N unitary matrix corresponding to an orthogonal DWT and A is a diagonal matrix where the diagonal
elements are 1 and 0 indicating the sample locations. Keep in mind that x = vec(X) here where X is the 2D image. Because
this course is about optimization, not wavelets, the matrix W is provided in MIRT.jl as a LinearMapAA object by the
Aodwt function that uses the DWT package. Type ?Aodwt to see its documentation.

(a) [0] Determine the proximal operator for the regularization term g(x) = β ‖Wx‖1 .
(b) [10] Write a script that applies 20 iterations of POGM to compute x̂ above for β = 0.5, from data generated as follows.

Use x0 = y. Your script should produce the results for the remaining parts. This is a large-scale problem so you must not
use opnorm or any relatives of it. (Hint: you do not need it because of special properties of A and W here.)
Submit a screenshot of your code to gradescope.

using Random: seed!
using Plots; default(markerstrokecolor=:auto)
using MIRT: Aodwt, pogm_restart, jim, ellipse_im
nx,ny = 192,256
Xtrue = ellipse_im(ny, oversample=2)[Int((ny-nx)/2+1):Int(ny-(ny-nx)/2),:]
samp = rand(nx,ny) .< 0.3 # sampling pattern
Ytrue = Xtrue .* samp; seed!(0); sig=0.1; Y = Ytrue + sig * randn(size(Ytrue))
W,scales,mfun = Aodwt((nx,ny)) # orth. discrete wavelet transform (LinearMapAA)
plot(jim(Xtrue, "Xtrue"), jim(Y, "Y"),

jim(mfun(W,Xtrue), "W*x"), jim(scales, "scales"))

(c) [5] Plot the cost function Ψ(xk) versus iteration k to verify that 20 iterations of POGM suffices.
(I had hoped to have you compare lasso_cls to POGM for this application, but lasso_cls currently does not seem
to work with LinearMapAA objects. Anyway, you should expect by now that POGM will be much faster.)

(d) [5] Show the estimated image X̂ and report its NRMSE.
(e) [5] Examine (for yourself) the wavelet coefficients of the true image X by typing:

plot(jim(mfun(W,Xtrue), "W*x"), jim(scales, "scales"))

You will see that the detail coefficients for scales ∈ {1, 2, 3} are sparse, but the approximation coefficients, where
scales .== 0 , are not sparse. Thus, it is better to replace the 1-norm above with a weighted 1-norm that uses 0 weight

for the approximation coefficients. Mathematically, we want R(x) = ‖DWx‖1 where D is a diagonal matrix with 0 ele-
ments along the diagonal in locations corresponding to the approximation coefficients. In JULIA, instead of using the regular-
izer norm(W*x,1) a more appropriate regularizer is norm(d[:] .* (W*x), 1) where d = scales .> 0) ,
because that regularizer shrinks only the detail coefficients and leaves the approximation coefficients unchanged.
Extend your script to also run POGM for this weighted 1-norm regularizer and make the remaining plots.
Submit a screenshot of your code extensions to gradescope.

(f) [5] Make a figure of the inpainted image X̂ for both the standard 1-norm and the weighted 1-norm, and report the NRMSE
values for both estimates.

(g) [5] You should see that the weighted 1-norm gives lower NRMSE, but you might wonder if the same regularization parameter
β is suitable for both regularizers. Perhaps some other value of β will improve the results?
Compute the NRMSE for both the 1-norm case and the weighted 1-norm case for these 11 values of β:
2 .^ LinRange(-4,0,11)

Plot the two NRMSE vs β on the same plot.
What do you conclude about choice of β here and the pros and cons of 1-norm vs weighted 1-norm regularization?

http://en.wikipedia.org/wiki/Inpainting
http://en.wikipedia.org/wiki/Discrete_wavelet_transform
http://en.wikipedia.org/wiki/Discrete_wavelet_transform
https://github.com/JeffFessler/MIRT.jl
https://gradescope.com
https://gradescope.com


March 16, 2020 17:21 4

Non-graded problem(s)

4. [0] Challenge. Find a tight worst-case convergence bound for the PGM.

If you find one, please email me. It might exist in the literature somewhere.
If not, most likely it could be computed numerically using the “PESTO” Matlab package:
http://www.di.ens.fr/~ataylor/share/PESTO_CDC_2017.pdf
https://github.com/AdrienTaylor/Performance-Estimation-Toolbox

The first student to email me a correct, tight, worst-case bound for PGM earns 20 extra credit HW points.
Even more valuable than the points, you will have the satisfaction of knowing that next year’s course notes will be more com-
plete.

[1] D. Kim and J. A. Fessler. “Adaptive restart of the optimized gradient method for convex optimization”. In: J. Optim. Theory Appl. 178.1
(July 2018), 240–63.

http://www.di.ens.fr/~ataylor/share/PESTO_CDC_2017.pdf
https://github.com/AdrienTaylor/Performance-Estimation-Toolbox

