
February 26, 2020 18:44 1

Homework #7, EECS 598-006, W20. Due Thu. Mar. 13, by 4:00PM

1. [19] Low-rank matrix sensing and recovery

The course notes describe an MM algorithm for low-rank matrix completion (LRMC), a generalization of low-rank matrix
approximation. This problem considers the more general matrix sensing problem where we observe L linear combinations of
the elements of a low-rank M ×N matrix X:

y = A vec(X) +ε

where y ∈ FL and A is a L× (MN) sensing matrix ε ∈ FL is additive noise. A natural formulation of matrix recovery is

X̂ = arg min
X∈X

Ψ(x), Ψ(x) = q(X) +R(X), q(X) =
1

2
‖A vec(X)−y‖22 ,

where the regularizer R(X) and/or the set X should enforce or encourage X to be low rank.

There is no closed-form solution for this optimization problem for a general sensing matrix A, at least not for useful choices of
the regularizer and/or the constraint set X . In general, iterative methods are required to compute X̂ , as explored in subsequent
problems. This problem focuses on the non-iterative special case that is solvable by methods from EECS 551.
(a) [3] If A is a unitary matrix, which implies L = MN , then there is a closed-form solution for X̂ for many typical choices

of (unitarily invariant) regularizers R(X).
Describe mathematically the solution X̂ for the specific case when the constraint set and regularizer are as follows:

X =
{
X ∈ FM×N : rank(X) ≤ K

}
, R(X) = β1|||X|||∗ + β2

1

2
|||X|||2F.

Your solution should be general enough to write JULIA code based on it to solve for X̂ given y,A,β1,β2 and K.
Hint: ‖vec(X)−z‖2 = |||X −Z|||F where Z = reshape (z,M,N), and review an earlier elastic net HW problem.

(b) [10] When A is unitary, the vector y has length MN , so we can write y = vec(Y) where Y is a M ×N matrix.
Write a JULIA function that computes X̂ given (unitary) A, a matrix Y , and the parameters β1,β2, and K.
Your file should be named lrms_un.jl and should contain the following function:

"""
Xh = lrms_un(Y, A ; K, reg1, reg2)

Low-rank matrix recovery: `\\argmin_{X : rank(X) <= K}
1/2 \\|A vec(X) - vec(Y)\\|_2^2 + reg1 \\|X\\|_* reg2/2 \\|X\\|_F^2`
when `A` is a `MN x MN` unitary matrix.

In

* `Y` `M x N` measurement matrix, where `vec(Y) = A vec(X) + noise`

* `A` `MN x MN` sensing matrix; must be unitary!

Option

* `K` rank constraint; default `min(M,N)`

* `reg1` regularization parameter for nuclear norm; default 1

* `reg2` regularization parameter for Frobenius norm; default 0

Output

* `Xh` `[M,N]` solution to matrix sensing problem when `A` is unitary
"""
function lrms_un(

Y::AbstractMatrix{<:Number},
A::AbstractMatrix{<:Number} ;
K::Int = minimum(size(Y)),
reg1::Real = 1,
reg2::Real = 0)

Submit your solution to mailto:eecs556@autograder.eecs.umich.edu.

mailto:eecs556@autograder.eecs.umich.edu

February 26, 2020 18:44 2

(c) [3] Is the optimization problem here strictly convex when K = min(M,N) and β1 > 0 and β2 > 0? Explain.
(d) [3] Find a more general class of non-square matrices A for which this matrix recovery problem has (essentially equally

simple) closed-form solutions, and show how to solve for X̂ for this more general class. Hint. Think about a family of
matrices discussed in EECS 551 that are a generalization of unitary matrices.

2. [37] Low-rank matrix sensing / recovery with an MM algorithm

The previous problem considered matrix sensing and recovery in the special case when the sensing matrix is unitary. An even
simpler special case of that solution is when when the sensing matrix is I . This problem considers the case of a general sensing
matrix, and develops an MM approach, based on a majorizer that exploits that simple case.
(a) [3] Design a quadratic majorizer for the data term q(X) in the previous problem that will lead to a MM algorithm where

the inner minimization step corresponds to the low-rank matrix approximation solution from the previous problem.

Hint. Your majorizer should be of the formQ(X;Xk) =
Lq

2

∣∣∣∣∣∣∣∣∣X − X̃k

∣∣∣∣∣∣∣∣∣2
F

for a matrix X̃k that depends on Xk, A, y, vec(·)

(i.e., [:]) and reshape , where Lq is a (best) Lipschitz constant that you must determine.
(b) [3] Describe mathematically the MM update step

Xk+1 = arg min
X∈X

φk(X), φk(X) = Q(X;Xk) +R(X),

for the specific case when the constraint set and (elastic net type) regularizer are as follows:

X =
{
X ∈ FM×N : rank(X) ≤ K

}
, R(X) = β1|||X|||∗ + β2

1

2
|||X|||2F.

(c) [10] Implement a JULIA function that performs a specified number of MM iterations to find X̂ for the constraint set and
regularizer given above. Hint. MM is somewhat similar to the ISTA method for matrix completion from 551:
http://web.eecs.umich.edu/~fessler/course/551/julia/demo/09_lrmc_nuc.html
Your file should be named lrms_mm.jl and should contain the following function:

"""
(X,out) = lrms_mm(y, A, M::Int, N::Int ; X0, K, ...)

MM algorithm for low-rank matrix sensing: `\\argmin_{X : rank(X) <= K}
1/2 \\|A vec(X) - y\\|_2^2 + reg1 \\|X\\|_* reg2/2 \\|X\\|_F^2`

In

* `y` vector of `L` measurements, where `y = A vec(X) + noise`

* `A` `L x MN` sensing matrix

* `M,N` array size

Option

* `X0` `M x N` initial guess; default `zeros(M,N)`

* `K` rank constraint; default `min(M,N)`

* `reg1` regularization parameter for nuclear norm; default 1

* `reg2` regularization parameter for Frobenius norm; default 0

* `niter` # number of MM iterations; default 50

* `func` User-defined function having the following prototype:
`func(X::AbstractMatrix{<:Number}, iter::Int, cost::Function)`

It is evaluated at (X0,0,cost) and then after each iteration.
It should expect the first argument to be a `M x N` matrix,
the 2nd argument is iteration, and the 3rd is a cost function
having prototype `cost(X::AbstractMatrix{<:Number})`

Output

* `X` `M x N` final iterate

* `out` [func(X0,0,cost), ..., func(X_niter,1,cost)]
"""

http://web.eecs.umich.edu/~fessler/course/551/julia/demo/09_lrmc_nuc.html

February 26, 2020 18:44 3

function lrms_mm(
y::AbstractVector{<:Number},
A::AbstractMatrix{<:Number},
M::Int, N::Int ;
X0::AbstractMatrix{<:Number} = zeros(eltype(y), M, N),
K::Int = min(M,N),
reg1::Real = 1,
reg2::Real = 0,
niter::Int = 50,
func::Function =

(X::AbstractMatrix{<:Number},iter::Int,cost::Function) -> undef,
)

Submit your solution to mailto:eecs556@autograder.eecs.umich.edu.
The function argument func here is more convenient for the user than the fun in previous problem, because lrms_mm
provides the cost function to the calling routine so the caller can evaluate it if desired. If the user wants to evaluate the time,
the cost function and the NRMSE each iteration, then the user should pass a function like this:
func = (X,iter,cost) -> [time(), cost(X), norm(X-Xtrue)]

Computing the cost function takes extra time, so if the user wants speed then they can ignore cost argument and use
something like: func = (X,iter,cost) -> [time(), norm(X-Xtrue)]

(d) [3] Write a JULIA script that self-tests your lrms_mm function as follows.
• Generate a random unitary matrix A, a random low-rank matrix X , and a data vector y = A vec(X) +ε.
• Compute the minimizer X̂ using that analytical solution from the previous HW problem.
• Apply your MM algorithm to the data and plot the NRMSD

∣∣∣∣∣∣∣∣∣Xk − X̂
∣∣∣∣∣∣∣∣∣
F
/
∣∣∣∣∣∣∣∣∣X̂∣∣∣∣∣∣∣∣∣

F
versus iteration k.

The purpose of this part is to help encourage you to write your own test cases for your optimization algorithm code, especially
when there is a reference analytical solution.
Submit a screenshot of your test code to gradescope.

(e) [3] Submit the plot of NRMSD to gradescope. NRMSD should converge to near zero in one iteration!
(f) [0] The test in the previous two parts is imperfect because if your solution to the previous problem is incorrect and you use

that solution in your MM algorithm then your NRMSD will likely go to zero anyway. Can you think of another test that
avoids that flaw?

(g) [3] Write a script that applies 500 iterations of your MM algorithm to the following synthetic data and makes the plots for the
next two parts.

seed!(0); M = 60; N = 30; Kt = 5; L = 3*Kt*(M+N); reg1 = 0.01; reg2 = 0
Xtrue = svd(randn(M,Kt)).U * Diagonal(1:Kt) * svd(randn(N,Kt)).U'
A = randn(L,M*N); sig = 0.01; y = A * Xtrue[:] + sig * randn(L)

As shown in the code above, use β1 = 0.01 and β2 = 0. Use K = 9 for the rank constraint in X , even though the true
rank(X) = 5, because in practice one will not know the exact rank. Use the default zero initialization for X0.
Submit a screenshot of your script to gradescope.

(h) [3] Plot the cost function versus iteration on the usual log10 scale.
(i) [3] Plot the NRMSE versus iteration on the usual log10 scale.
(j) [3] Apply your MM to data y generated as follows:

using Random: seed!
fun = (x,p) -> p == 1 ? x == 1 : [x >= p; fun(x - p*(x >= p), p/2)]
tmp = [0 14 1 1 1 14 0 0 0 9 15 8 8 4 8 8 15 9 0]
tmp = hcat([Int.(fun(v, 2^3)) for v in tmp]...)
tmp = [zeros(Int, 1,19); tmp; zeros(Int, 1,19)]'
Xtrue = kron(10 .+ 80*tmp, ones(5,5)); (M,N) = size(Xtrue)
seed!(0); L = 6*(M+N); A = randn(L, M*N); sig = 5
y = A * Xtrue[:] + sig * randn(L);

mailto:eecs556@autograder.eecs.umich.edu
https://gradescope.com
https://gradescope.com
https://gradescope.com

February 26, 2020 18:44 4

This is a more realistic problem where you have to select the rank K, the regularization parameters β1, β2, and the number
of iterations yourself. I found parameters that gave a SNR of over 45dB, where SNR = 20 log10

(
|||X|||F/

∣∣∣∣∣∣∣∣∣X̂ −X
∣∣∣∣∣∣∣∣∣
F

)
. You

should strive for results at least that good. Submit a picture of your X̂ and your error image X̂ −X and report what values
you used for all parameters.

(k) [3] Speculate about what is the minimum possible value of L here (in terms of K, M and N). How close to that minimum is
L in the previous part?

3. [3] Page 4.13 of the course notes derives a quadratic majorizer for the data term of the LASSO problem. That derivation
has two constants: c1 and c2. Determine the values of those constants. (The constants themselves are not so important, but it is
important that you are able to understand all of the steps of those derivations.)

4. [3] Suppose Ψ : RN 7→ R has a S-Lipschitz gradient, for an invertible matrix S. We have a search direction d and we want
to perform the line search arg minα∈R h(α), h(α) = Ψ(xk + αd) . Determine a Lipschitz constant for ḣ.

Hint: 〈x, z〉 = 〈S−1x, S′z〉 .

Optional: generalize to the case where Ψ : CN 7→ R.

Optional problem(s)

5. [0] GD convergence in 1 step

If f(x) is a 1D convex quadratic function whose derivative has (best) Lipschitz constant L, then the GD algorithm with step size
1/L is the same as Newton’s method and it converges in one iteration from any starting point, i.e.,
xk = x∗ = arg minx f(x), ∀k ∈ N.
Prove or disprove the following converse: if f(x) is a 1D smooth convex function whose derivative has (best) Lipschitz constant
L, and the GD algorithm with step size 1/L converges in one iteration from any starting point, i.e., x1 = x∗ = arg minx f(x),
then f(x) is a quadratic function.

6. [0] Lipschitz continuity

A function g is S-Lipschitz continuous for an invertible matrix S iff
∥∥S−1 (g(x)− g(z))

∥∥
2
≤ ‖S′ (x− z)‖2 , ∀x, z.

(a) Prove that g is Lipschitz continuous with some Lipschitz constant L and specify L. Hint. All norms are equivalent.
(b) Is your L the best Lipschitz constant? Prove or disprove with a counter-example.

7. [0] Continuity of rank1 matrix approximation

For any M ×N matrix X with M,N > 1, let R1(X) denote the best rank-1 approximation of X in the Frobenius norm sense.
Determine whether R1(·) is a Lipschitz continuous function and, if so, find its best Lipschitz constant.

Optional challenge: generalize to the low-rank matrix approximation method that uses singular-value soft-thresholding.

