February 13, 2020 17:42

Homework #6, EECS 598-006, W20. Due Thu. Feb. 21, by 4:00PM

. [22] Nonlinear CG for smooth inverse problems

The generic nonlinear CG (NCG) method in a previous HW problem is applicable to any smooth convex cost function, but it is
inefficient for large-scale inverse problems that have the general cost function ¥(x) = Z}']:1 [j(Bjx) discussed in the course
notes. In this problem you will make a NCG algorithm that is suitable for this broad class of cost functions, assuming each
f; function is convex and has a Lipschitz continuous gradient. This problem is not a warm-up: this is finally a very useful

algorithm for large-scale signal and image processing problems.

The key here is to implement the line-search step efficiently, following the steps you used in your psd_inv code, and to use

the search direction from your ncg_inv code.

(a) [10] Write a JULIA function ncg_inv that implements the NCG iteration given the same inputs used in your psd_inv
code. Your function should implement the same choice of the CG factor as your generic ncg algorithm.

Importantly, your function ncg_inv does not require the Lipschitz constant of V .

Your file should be named ncg_inv. j1 and should contain the following function:

(x,out) = ncg_inv (B, gf, Lgf, x0 ; [options])

Nonlinear preconditioned conjugate gradient algorithm to minimize

a general "inverse problem"

where each "f_3j° has a "Lgf[j] -Lipschitz smooth gradient.

"B’ array of “J° blocks "B_1,...,B_J°

* % X %k H

cost function “sum_{j=1}"J f_J(B_j x)°

"gf’ array of “J° functions for computing gradients of “f_1,...,f_J°
"Lgf’ array of 'J Lipschitz constants for those gradients
"x0° initial guess
Option
* ‘niter’ # number of outer iterations; default 50
* ‘ninner # number of inner iterations of GD for line search; default 10
* “P° preconditioner; default "I°
* ~betahow "beta" method for the search direction: default "~ :dai_yuan’
x ~fun' User-defined function to be evaluated with two arguments ° (x,iter).
It is evaluated at "~ (x0,0) and then after each iteration.
Out
x "x° final iterate
* “out’ " [fun (x0,0), fun(xl,1), ..., fun(x_niter,niter)]’

mnmn

function ncg_inv (
B::AbstractVector{<:Anv},
gf::AbstractVector{<:Function},
Lgf::AbstractVector{<:Real},
x0::AbstractVector{<:Number} ;
niter::Int = 50,
ninner::Int = 10,
P = 1I,
betahow: :Symbol =
fun::Function =

:dai_yuan,
(x,iter) —> undef)

Submit your solution tomailto:eecs556Qautograder.eecs.umich.edu

(b) [3] Write a script that applies both the new ncg_inv algorithm and the previous ncg and

psd_inv algorithms to

mailto:eecs556@autograder.eecs.umich.edu
fessler
Highlight
cut this. from ncg.

February 13, 2020 17:42 2

solve the regularized LS problem & = arg min,, || Az — yl; + B3 ||| with B = 5 for the following data. Initialize with
xo = 0 and use the default P = I preconditioner. (This is just a medium-sized test to confirm that your code works and to
verify that it is faster than the generic nonlinear CG.)

seed! (0); M = 4000; N = 1000; A = randn(M,N); y = randn (M)

Your script should include all the code needed to make the plots in the next two parts.

Your script should call your functions psd_inv, ncg and ncg_inv exactly once each, using an appropriate fun , to
get all of the quantities needed for making these plots.

Submit a screenshot of your code to gradescope to confirm efficiency.

(c) [3] Run each algorithm for 2-3 iterations, as a “warm up” to force JULIA to compile. Immediately afterwards (in the same
script), run each algorithm for 60 iterations, and plot the log10 cost functions log10(¥ (xy) — U (&)) versus elapsed wall time
for all three methods. You should see that the new NCG method converges noticeably faster in time.

(d) [3] Also plot the log10 NRMSD to the solution logl0(||x, — &|| / ||&||) versus elapsed wall time for all three algorithms on
the same axes.
A subsequent problem will use this tool for image denoising.
You can probably find generic nonlinear CG packages online, but it is unlikely that you will find something for solving general
inverse problems like you will have developed here. (Let me know if you do!) Even the Michigan Image Reconstruction
Toolbox (MIRT) (for MATLAB) lacks this generality. JULIA makes it easier to write a method that is both efficient and quite
general.

(e) [3] Suppose each function f; is a simple quadratic of the form f;(u) = ;3 [|u — 2, ||§ for some positive constants y; and
vectors z; € R, How many inner iterations should one use for the line search? Explain your answer with both words and
equation(s).

. [19] OGM with a line search for smooth inverse problems

The generic OGM is applicable to any smooth convex cost function, but it is inefficient for large-scale inverse problems that have
the general cost function ¥(x) = Z}]=1 f;j(Bjz). This problem makes a line-search version of OGM that is suitable for this
broad class of cost functions, assuming each f; function is convex and has a Lipschitz continuous gradient.

This course is designed to prepare you to be able to read modern optimization algorithms in the literature and understand their
properties and implement them. You have implemented several algorithms from course notes, and now it is time to pursue
something truly recent. This very recent paper http://doi.org/10.1007/s10107-019-01410-2 describes the OGM
line-search approach on p. 22, and the definition of 6; is a couple pages earlier. (You need not study the whole paper.)

Think about efficiency when implementing this algorithm! Use recursive updates similar to psd_inv and ncg_inv . Also,

one term in the algorithm is Z;;B 6;V ¥(x;) . Do not write a loop to recompute this sum every iteration. Compute this sum
incrementally by using += to add the latest gradient to a running sum each iteration.

My solution uses 5 loops over J each iteration, one of which updates B;x; and one of which updates B;y;. If you find an

efficient way to do it with 4 or fewer loops please let me know! As usual, the key here is to implement the line-search step

efficiently, following the steps used in earlier problems. You should be able to reuse a lot of your previous code.

(a) [10] Write a JULIA function ogm_inv that implements the line-search OGM from the above paper, given the same inputs
used in your psd_inv code. Note that your function ogm_inv does not require the Lipschitz constant of V W.

Your file should be named ogm_inv.j1 and should contain the following function:

wnnn

(x,out) = ogm_inv (B, gf, Lgf, x0 ; niter=?, ninner=?, fun=?)

OGM with line search; Drori&Taylor http://doi.org/10.1007/s10107-019-01410-2
to minimize a general "inverse problem" cost function “sum_{j=1}"J f_J(B_j x)°
where each "f_7J° has a 'Lgf[j] -Lipschitz smooth gradient.

Uses 1D GD for the line search.

In
* B° array of "J blocks 'B_1,...,B_J°

https://gradescope.com
http://doi.org/10.1007/s10107-019-01410-2

February 13, 2020 17:42 3

* ~gf’ array of "J° functions for computing gradients of “f_1,...,f_J°

x ~Lgf’® array of "J° Lipschitz constants for those gradients

* ~x0° initial guess

Option

* ‘niter’ # number of outer iterations; default 50

* ‘ninner’ # number of inner iterations of GD for line search; default 10
* ~fun’ User-defined function to be evaluated with arguments °~ (x,iter)’
It is evaluated at "~ (x0,0) and then after each iteration.

Out

x final iterate

out [fun(x0,0), fun(xl,1), ..., fun(x_niter,niter)]

function ogm_inv (
B::AbstractVector{<:Anvy},
gf::AbstractVector{<:Function},
Lgf::AbstractVector{<:Real},
x0::AbstractVector{<:Number} ;
niter::Int=50,
ninner::Int=10,
fun::Function = (x,iter) —> undef)

Submit your solution tomailto:eecs556@autograder.eecs.umich.edu.
(b) [3] Write a script that applies both the new ogm_inv algorithm and the previous ncg_inv algorithms to solve the

regularized LS problem & = argmin,, 5 || Az — y||§ + B3 ||ac||§ with B = 5 for the following data. Initialize with o = 0
and use the default P = I preconditioner for CG. (This is just a medium-sized test to confirm that your code works and to
compare it to nonlinear CG.)

seed! (0); M = 4000; N = 1000; A = randn(M,N); y = randn (M)

Your script should include all the code needed to make the plots in the next two parts. As usual, your script should call your
functions exactly once each to get all of the quantities needed for making these plots.
Submit a screenshot of your code to gradescope to confirm efficiency.

() [3] Run each algorithm for 2 iterations, as a “warm up” to force JULIA to compile. Immediately afterwards (in the same
script), run each algorithm for 30 iterations, and plot the log10 cost functions log,o (¥ (xx) — U (&)) versus elapsed wall time
for both methods. You should see that OGM starts out like CG but eventually lags, which is unsurprising because CG is
especially useful for quadratic problems.

(d) [3] Also plot the log10 NRMSD to the solution log,,(||zx — || / ||]|) versus elapsed wall time for both algorithms.

(e) [0] Optional. Also plot the cost and NRMSD versus iteration to eliminate the effects of possibly inefficient implementations.
(For my implementation, OGM is only a tiny bit slower than CG per iteration.)

mailto:eecs556@autograder.eecs.umich.edu
https://gradescope.com

February 13, 2020 17:42 4

. [22] Edge-preserving image denoising using fast algorithms

This problem investigates the edge-preserving image denoising application, where we want to recover an image « from noisy
measurements y under the model y = « + € using the optimization problem

zeCN

b= argminW(x), @)= |y - al}+pR@), R(z)= 3 w(Cals0),
k

where 1 denotes the Fair potential, and C' denotes the 2D first-order finite-differencing matrix. For simplicity, we focus on the
case of real-valued images here. You will compare two optimization algorithms developed in a previous problems: the efficient
CG algorithm ncg_inv and the OGM line-search algorithm ogm_inv .
(a) [10] Write a JULIA function dn2cg that uses your ncg_inv or your ogm_inv code to minimize the above cost
function. Your function must work for large-scale problems, so it cannot use expensive and memory hungry operations like
svd svdvals eigen eigvals opnorm etc. And for further speed, it must use LinearMapAA for C, instead
of spdiagm sparse kron . The prototype below provides the specifications.

Your file should be named dn2cg. j1 and should contain the following function:

(x,cost,out) = dn2cg(y ; x0=?, [options])

Performs 2D edge-preserving image denoising using either the NCG

algorithm or the OGM line-search algorithm, to "solve" the minimization problem
‘argmin_x 1/2 |y - x|"2 + reg * sum_k pot ([C x]_k,del)"

where "pot () 1is the Fair potential with parameter “del’

and "C° denotes the 2D first-order finite differencing matrix.

Uses these functions from previous problems:
‘ncg_inv ogm_inv diff2d_forw diff2d_adj"

May not use any " SparseArrays functions, SVD, etc.

In
Ty 2D noisy real grayscale image of size " [M,N]°
Option
* “how’ “:cg’ (default) to use CG or " :ogm to use OGM
* ~x0° 2D initial guess of size "~ [M,N] ; default "y
*x reg’ regularization parameter; default 1
* ~del” potential function parameter; default 2
* “P° preconditioner for CG; default "I°
* ‘niter’ # number of iterations; default 100
* “ninner’ # number inner GD iterations for line search; default 10
* ~fun’ user-defined function to be evaluated with two arguments ° (x,iter)’
It is evaluated at "~ (x0,0) and then after each iteration
Out
* T x° 2D final iterate image of size ~ [M,N]°
* ~cost [niter+1]" cost function each iteration
* ~out [fun(x0,0), fun(xl,1), ..., fun(x_niter,niter)]

function dn2cg(y::AbstractMatrix ;
how: :Symbol = :cg,
x0::AbstractMatrix = vy,
reg::Real = 1,
del::Real = 2,
P=T,
niter::Int = 100,

fessler
Highlight
R not C here!

February 13, 2020 17:42 5

ninner::Int = 10,
fun: :Function = (x,iter) —> undef)

Submit your solution tomailto:eecs556@autograder.eecs.umich.edu.

(b) [3] Write a JULIA script that applies your 2D image denoising method dn2cg to the 2D noisy image generated by the
following code, using 20 iterations of CG.

using Random: seed!

tmp = [
zeros (1, 20);
0100001000211 11011110;
01 0000100001001001O0 O0;
01 000010000100O0O0O0T11O0QO0;
00111100001 10000O0110;
zeros (1, 20)

xtrue = kron (10 .+ 80*tmp, ones(13,13)) # note bigger size!
seed! (0)
y = xtrue + 20 x randn(size (xtrue))

Submit a screenshot of your script code for the next part to gradescope.

(c) [3] Make a figure showing the original image @y, the noisy data y, and the denoised images & for both (3,d) = (5,100)
and (B,9) = (5,3). The case 6 = 100 is essentially the same as quadratic regularization, which causes edge blurring,
whereas the small value of § provides edge-preserving regularization. Label the image y and each & with their NRMSE
values || — Zyue|| / || True |-

(d) [0] Optional: adopt the generic code for FGM and/or OGM (with gradient-based restart) online here:
https://gitlab.eecs.umich.edu/michigan-fast-optimization/ogm-adaptive-restart
for this denoising application.

(e) [3] Write a script that applies 20 iterations of CG and OGM line-search with ({3,) = (5, 3) to the same noisy image.
Submit a screenshot of your script code for the next part to gradescope.

(f) [3]Plotlog,o(¥(xy)) for both CG and OGM line-search vs k and vs elapsed time. Be sure to “warm up” your algorithms so
that time starts at zero. Optionally compared to the generic FGM/OGM.

4. 9] OGM for S-Lipschitz continuous gradients

The optimized gradient method (OGM) presented in the course notes and in the original paper http://doi.org/10.
1007/510107-015-0949-3 is for a cost function f : R +— R whose gradient is smooth with Lipschitz constant L.
Suppose cost function ¥ : RY + R is known to have a S-Lipschitz continuous gradient, for some invertible matrix S.
(a) [3] Apply the change of variables method presented in the course notes to derive (easily!) a generalized version of OGM that
uses the matrix S instead of the constant L.
Hint. Your generalized OGM should revert to the original OGM when S = v/LI.

(b) [3] For your generalized OGM, give a useful upper bound on the cost function gap ¥(x,,) — ¥(x,) in terms of S and other
relevant quantities. Explain briefly why your bound is correct.

(c) [3] Is your bound for your generalized OGM tight? Explain why or why not.

mailto:eecs556@autograder.eecs.umich.edu
https://gradescope.com
https://gitlab.eecs.umich.edu/michigan-fast-optimization/ogm-adaptive-restart
https://gradescope.com
http://doi.org/10.1007/s10107-015-0949-3
http://doi.org/10.1007/s10107-015-0949-3

February 13, 2020 17:42 6

5. [3] Best Lipschitz constant for edge-preserving regularizer

As discussed in Ch. 3, a typical edge-preserving regularizer has the form R(x) = 1"+ .(Cx), where C'is a ' x N matrix and
x € RY. Assume that ¢ satisfies Huber’s conditions with wy,(0) = lim,_,o ¢ (r) /r and assume that L, = wy(0). Show that
the best Lipschitz constant for VR is

Lyr = Ly|C'Cl,.

Hint. As one possible approach, take z = 0 and * = ev; where v; denotes the first right singular vector of C.

Optional challenge: prove or disprove when 1 does not necessarily satisfy Huber’s conditions.

6. [10] Make a clearly stated problem that is suitable for an exam in this course, based on the material in Ch. 1-3 (HW 1-6),
and provide your own solution to the problem. Your problem could include something about JULIA, but in that case it should be
about concepts, not mere syntax, and should not require submitting code to an autograder.

If you make a good problem (not too trivial, not too hard) then it might be used on an actual exam. To earn full credit:

e Your problem and solution must fit on a single page with a horizontal line that clearly separates the question (above) from the
answer (below).

e Your solution to the problem must be correct.

e Your problem should not be excessively trivial (nor beyond the scope of the course).
Ideally it should use ideas from this course that go beyond what was covered in EECS 551, although some overlap with the
last two chapters of EECS 551 (optimization and matrix completion) is fine.

e Your problem must not be identical to homework or clicker problems from 551 or this course.

e Upload your problem/solution to gradescope as usual for grading.
Also submit your problem/solution in pdf format to Canvas for distribution by the deadline for this HW.
We can export from Canvas easily but not from gradescope.

e Do not submit any other parts of your HW assignment to Canvas; only this 1 page pdf file.

e Do not put your name on the problem/solution that you upload to Canvas because we plan to export all problems/solutions to
distribute as practice problems.

Optional problem(s)

7. [0] Consider the function f : C¥ + R defined by f(x) = real{v'z} for some vector v € C¥.
Show that d = —v' is a descent direction for f, so that it is natural to define V f(x) = v.

https://gradescope.com
https://gradescope.com

