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Homework #5, EECS 598-006, W20. Due Thu. Feb. 13, by 4:00PM

This HW looks long, but it takes far more lines of text to describe the autograder problems then to implement the code, and there
are a lot of very similar parts so you will be able to recycle a lot of code from one part to another. It is set up this way so that you
can use the autograder to check intermediate stages of your work.

. [3] Cost functions for low-rank plus sparse models

Consider the matrix sensing measurement model y = A(X) + &, where the latent M x N matrix X is thought to be the sum of
two matrices, i.e., X = L + S, where rank(L) < K is a low-rank part, and S is expected to be sparse. The linear operator .A
maps M x N matrices into a vector of length .J and & € F/ denotes additive white Gaussian noise.

Write down a cost function and optimization problem for forming an estimate X of X, where the cost function should use the
stated signal model properties. Annotate your cost function to explain where your solution captures the different properties. Your
cost function must be in a form that does not require an SVD operation to solve.

. [3] Composition of Lipschitz continuous functions

Let f : FM s FE and g : FY — FM be Lipschitz continuous functions with (best) Lipschitz constants L ¢ and L, respectively.

(a) [0] Define h : FN s FX by h(z) 2 f(g(x)) and show that h is Lipschitz continuous with (best) Lipschitz constant
Ly, < LyLg, or devise a simple counter-example where Lj, > L¢L,.

(b) [3] Prove that L, = L¢L, when h = f o g, where o denotes function composition, or devise a simple counter-example
where Lj, < LyL,.

. [28] Preconditioned steepest descent for smooth convex cost functions

The GD method was easy to implement, but is undesirably slow, so we move towards faster optimization methods. This problem
focuses on the preconditioned steepest descent (PSD) method. An EECS 551 HW problem required implementing PSD for
a quadratic cost function. Here we generalize to any cost function U that is a convex function with a Lipschitz continuous
gradient g(x) = V ¥(x), with known Lipschitz constant L. This problem is a warm-up for a subsequent PCG problem.

The trickiest part of PSD is the line search step:

ap = argmin hy, (), hp(a) 2 U(z, + ady)

[0

where the search direction at the kth iteration is denoted
dy. = —PV W(x;) = —Pg(ay,).

(a) [3] Show that hj(«) is convex.

(b) [3] Show that hy () has a Lipschitz continuous derivative and find an expression for the Lipschitz constant of that derivative
in terms of L4 and dj,.

(c) [10] Because hy(«) is convex with a Lipschitz continuous derivative, we can apply the GD method to perform the line search
(the inner minimization over «). You will use your earlier gd function for this. Use the scalar oy = 0 as the initial guess
when applying GD for the line search in this and all subsequent problems, unless otherwise specified; this may not be the
optimal choice but it is convenient for auto-grading.

Write a JULIA function psd that implements the PSD iteration given a function g that computes the cost function gradient,

the Lipschitz constant L, and an initial guess x. Your function should take an optional named argument ninner that
specifies how many inner iterations of GD to use for the line-search step.
Your function should take the usual optional named argument fun for evaluating fun (x, iter) each iteration.

Your file should be named psd. j1 and should contain the following function:

(x,out) = psd(g::Function, Lg::Real, x0::AbstractVector ;
niter::Int=100, ninner::Int=10, P=I, fun::Function = (x,iter) —-> undef)


http://en.wikipedia.org/wiki/Function_composition
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Perform preconditioned steepest descent (PSD)
to minimize a convex cost function having a Lg-Lipschitz smooth gradient.

In

* g function that computes gradient "g(x)  of a convex cost function
* "Lg Lipschitz constant of cost function gradient

+ ~x0° initial guess

Option

* ‘niter’ # number of outer PSD iterations; default “100°

* ‘ninner’ # number of inner iterations of GD for line search; default 10
* P’ preconditioner; default "I°
*

“fun® User-defined function to be evaluated with two arguments ° (x,iter)’
It is evaluated at "~ (x0,0)  and then after each iteration.
Oout
* x final iterate
* ~out® "~ [fun(x0,0), fun(xl,1), ..., fun(x_niter,niter)]’

nmmnn

function psd(g::Function, Lg::Real, x0::AbstractVector ;
niter::Int=100,
ninner::Int=10,
P=1I,
fun::Function = (x,iter) —-> undef)
Submit your solution tomailto:eecs556@autograder.eecs.umich.edu.
Hint. Your gd function returns two arguments but you probably care only about the first argument, so use something like
(alpha, _) = gd( ... )
If you followed the template, your previous gd function included the following argument:
x0::Union{Number, AbstractVector{<:Number}} . We used that Union because in this problem you will
call gd with a scalar initial value for the line search, because « is scalar.

(d) [3] Write a script that applies both the new psd algorithm and the previous gd algorithm to solve the regularized LS
problem & = argmin, 5 |[Az —y H§ + B ||:c||§ with 3 = 5 for the following data. Initialize with £y = 0 and use the
default P = I preconditioner. (This is a small test to confirm that your code works and to verify that it is faster than GD.)

seed! (0); M = 100; N = 50; A = randn(M,N); y = randn (M)

Your script should include all the code needed to make the plots in the next two parts.

Your script should call your psd and gd function exactly once each, using an appropriate fun , to get all of the quantities
needed for making these plots.

Submit a screenshot of your script to gradescope to confirm efficiency.

(e) [3] Plot the log10 cost function loglO(¥ (x)) — ¥(&)) versus iteration k for both GD and SD on the same axes for k =
0,...,400. To avoid errors about log of complex numbers, use mylog = x —-> 1loglO (max(x,le-16)) where the

le-16 comes from eps (Float64) .

(f) [3] Plot the log10 NRMSD to the solution log10(||xx — || / ||]|) versus iteration k for both GD and SD on the same axes
for k =0,...,400.

(2) [3] You should see that SD converges noticeably faster in your plots. Explain why briefly from a theoretical perspective.
Optional: quantify the asymptotic convergence rate here.

(h) [0] Optional. Are the above plots a fair comparison of GD and SD?


mailto:eecs556@autograder.eecs.umich.edu
https://gradescope.com
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. [19] PSD for smooth inverse problems

The generic PSD method in the previous problem is applicable to any smooth convex cost function, but it is inefficient for large-
scale inverse problems that have the general cost function ¥ (x) = Z‘.Izl fj(Bjx) discussed in the course notes. This problem
makes a PSD algorithm that is suitable for this broad class of cost functions, assuming each f; function is convex and has a
Lipschitz continuous gradient. This problem is a warm-up for a subsequent PCG problem.

The key here is to implement the line-search step efficiently, following the course notes.
(a) [0] As in the course notes, let hy, (o) = E}]:1 fi (ugk) + owj(»k)). Let L; denote the Lipschitz constant of the gradient of f;.
Recall that you found a Lipschitz constant for the derivative of hj, in a previous HW problem.

(b) [10] Because hy(«) is convex with a Lipschitz continuous derivative, we can apply the GD method to perform the line search
(the inner minimization over «). Use your earlier gd function for this.

Write a JULIA function psd_inv that implements the PSD iteration given: an array containing the matrices (or matrix-like
objects) By,..., By, an array of functions for computing the gradients of each f;, i.e., V fi,..., V f;, an array containing
the Lipschitz constants Ly, ..., Ly, and an initial guess x.

Note that your function psd_inv does not require the Lipschitz constant of V .

Your function should take an optional named argument ninner that specifies how many inner iterations of GD to use for
the line-search step.

Your function should take the usual optional named argument fun for evaluating fun (x, iter) each iteration.

Your file should be named psd_inv.j1 and should contain the following function:

(x,out) = psd_inv (B::AbstractVector{<:Any},
gf::AbstractVector{<:Function}, Lgf::AbstractVector{<:Reall,
x0: :AbstractVector{<:Number} ; niter::Int=100, ninner::Int=10,
P=I, fun::Function = (X,iter) —> undef)

Preconditioned steepest descent algorithm
to minimize a general "inverse problem" cost function “sum_{j=1}"J f_Jj(B_j x)°
where each "f_3° has a "'Lgf_j -Lipschitz smooth gradient.

In

* "B’ array of “J° Dblocks "B_1,...,B_J°

* ~gf’ array of "J functions for computing gradients of “f_1,...,f_J°
* "Lgf’ array of “J Lipschitz constants for those gradients

* ~x0° initial guess

Option

* ‘niter’ # number of outer PSD iterations; default 100"

* "ninner’ # number of inner iterations of GD for line search; default “10°
* "P° preconditioner; default "I°

* ~fun® User-defined function to be evaluated with two arguments ~ (x,iter)’
It is evaluated at (x0,0) and then after each iteration.

Oout
* "x° final iterate
* “out® "~ [fun(x0,0), fun(xl,1), ..., fun(x_niter,niter)]’

function psd_inv (
B::AbstractVector{<:Anvy},
gf::AbstractVector{<:Function},
Lgf::AbstractVector{<:Real},
x0::AbstractVector{<:Number} ;
niter::Int = 100,
ninner::Int = 10,
P =1,
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fun::Function = (xX,iter) —-> undef)

Submit your solution tomailto:eecs556@autograder.eecs.umich.edu.

(c) [3] Write a script that applies both the new psd_inv algorithm and the previous gd and psd algorithms to solve the
regularized LS problem & = argmin, 1 || Az — y||§ + B3 Ha:Hg with 3 = 5 for the following data. Initialize with g = O
and use the default P = I preconditioner. (This is just a small test to confirm that your code works and to verify that it is
faster than GD.)

seed! (0); M = 4000; N = 1000; A = randn(M,N); y = randn (M)

Note that this time the problem size is larger to better illustrate the timing differences!

Your script should include all the code needed to make the plots in the next two parts.

Your script should call your functions psd_inv, psd and gd exactly once each, using an appropriate fun , to get all
of the quantities needed for making these plots.

Submit a screenshot of your code to gradescope to confirm efficiency.

(d) [3] Run each algorithm for 2-3 iterations, as a “warm up” to force JULIA to compile. Immediately afterwards (in the same
script), run each algorithm for 400 iterations, and plot the log;, cost functions log;(¥(x) — W(&)) versus elapsed wall
time for all three methods. You should see that the new PSD method converges noticeably faster in time. Use your fun

to keep track of elapsed time, using the time () function. Be sure to label the units of your time axes, and your time axis
should start at ¢ = 0.

(e) [3] Also plot the log;, NRMSD to the solution log,,(||xx — &|| / ||€]|) versus elapsed wall time for all three algorithms on
the same axes.

(f) [0] Optional. Now are the above plots a fair comparison?

(g) [0] Optional. Compare GD and your new SD for the image denoising cost function considered in previous HW.

5. [19] Nonlinear CG for smooth convex cost functions

The nonlinear conjugate gradient (CG) method can converge much faster than PSD because it chooses better search directions.
This problem implements a general PCG method for a convex function ¥ with a Lipschitz continuous gradient g(x) = V ¥ (),
with known Lipschitz constant L,. You should start with your general psd code (after it passes the autograder) and make a
fairly small modification to it.


mailto:eecs556@autograder.eecs.umich.edu
https://gradescope.com
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(a) [10] Write a JULIA function ncg that implements the CG iteration given a function g that computes the cost function
gradient, the Lipschitz constant L, and an initial guess xq. See template below for all the options.
As mentioned in the Fessler book Ch. 11 (and the wikipedia page linked above), there are many methods for choosing the
CG § factor that controls the search direction. Your function must implement the (default) Dai-Yuan choice. (Other choices
are optional.) Be sure to implement the preconditioned version from the reading, not the unpreconditioned one on wikipedia.
Your file should be named ncg. j1 and should contain the following function:

(x,out) = ncg(g::Function, Lg::Real, x0::AbstractVector ;
niter::Int=100, ninner::Int=10, P=I,
betahow: :Symbol=:dai_yuan, fun::Function = (x,iter) —-> undef)

Perform nonlinear (preconditioned) conjugate gradient (PCG)
to minimize a convex cost function having a "Lg -Lipschitz smooth gradient.

In

* g function that computes gradient "g(x)  of a convex cost function
* "Lg  Lipschitz constant of cost function gradient

* ~x0° initial guess

Option
* ‘niter’ # number of outer PCG iterations; default “100°

* ‘ninner  # number of inner iterations of GD for line search; default “10°

* "P° preconditioner; default "I°

* “betahow™ "beta" method for the search direction; default " :dai_yuan’

% ~fun® User-defined function to be evaluated with two arguments ° (x,iter)’
It is evaluated at " (x0,0)  and then after each iteration.

Out

* “x° final iterate

* ~out® [fun(x0,0), fun(xl,1), ..., fun(x_niter,niter)]

nmmnn

function ncg(g::Function, Lg::Real, x0::AbstractVector ;
niter::Int = 100,

ninner::Int = 10,

P = I,

betahow: :Symbol = :dai_yuan,
fun::Function = (x,iter) —> undef)

Submit your solution tomailto:eecs556Qautograder.eecs.umich.edu
(b) [3] Write a JULIA script that applies your JULIA functions ncg and psd to solve the regularized LS problem

& = argming, 1 | Az — y||3+B3 ||2||” for the following data with f = 5. Initialize with 2y = 0 and use the default P = I.
seed! (0); M = 100; N = 50; A = randn(M,N); y = randn (M)

You should call your functions exactly once, using an appropriate fun , to get all of the quantities needed for making the
following plots.
Submit a screenshot of your code to gradescope to confirm efficiency.

(c) [3] Run both methods for 200 iterations and (as usual) plot log, (¥ (xx) — ¥(&)) versus iteration k for both methods on one
axes. Use mylog again as above.

(d) [3] Also make a plot of log,,(||er — &|| / ||&||) versus iteration k for both methods.
(e) [0] Compare quantitatively the asymptotic convergence rates.

The next HW will develop a version of PCG for inverse problems, analogous to psd_inv , and compare its wall time to the
other algorithms for both a test case and for a larger image denoising application. It would be logical to have that problem here
as the “grand finale” of the PSD/PCG sequence, but this HW seemed long enough already.


mailto:eecs556@autograder.eecs.umich.edu
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In-class task problem(s)

The following problem(s) were started in class. They are repeated here for completeness because they are due with this HW.

. [33] 2D finite differences efficiently

A previous HW did 1D signal denoising using a first-order finite-difference matrix created using one of these two commands:
D = spdiagm(0 => -ones(N-1), 1 => ones(N-1))

D = spdiagm(0 => -ones(N-1), 1 => ones(N-1))[l:end-1,:]
In this work we will use the latter form because the former has an unnecessary (though harmless) extra row of zeros at the end.

To work with 2D images of size M x N (instead of 1D signals) we need often use regularization based on the following finite

difference matrix:
C— {I N® DM:|

1
Dy ® Iy M

where D denotes the (N — 1) x N matrix created by the 2nd JULIA command above.

Here you will first create the matrix C' in JULIA using a sparse array, and then you will make a more efficient version using the
LinearMapsAA package.
(a) [10] Write a JULIA function that creates the sparse matrix in (1) given the image dimensions M x N.

Hint. Use the spdiagm functioninthe SparseArrays package, the kron function,and I (n) .

Your file should be named diff2d_sp.jl and should contain the following function:

C = diff2d_sp(M::Int, N::Int)

Create a sparse matrix for computing first-order finite differences
along both dimensions. Mathematically:

C = [(I_N \\otimes D_M); (D_N \\otimes I_M)]"

where "D_N' denotes the "N-1 x N 1D finite difference matrix

and " \\otimes' denotes the Kronecker product.

In
* "M,N° 2D image size

Oout
* ~C' sparse matrix of size ~ (Nx(M-1) + (N-1)#*M) x (M*N)"

function diff2d_sp(M::Int, N::Int)

Submit your solution tomailto:eecs556@autograder.eecs.umich. edu.

(b) [10] The sparse matrix approach is expedient for medium-sized problems, but is inefficient for large problems. So now we
move towards a more efficient approach that may not use any SparseArrays functions like spdiagm.
First we need a JULIA function that computes d = C vec(x) directly, without any explicit matrix operations.
Write a JULIA function di££2d_forw that takes as input a M x N array x and returns the N - (M — 1)+ (N —1) - M
length vector d = C'vec(x). Hint. The diff function is useful. It works for 2D arrays with an optional 2nd argument!
Your file should be named diff2d_forw.j1 and should contain the following function:

nmun

d = diff2d_forw(x::AbstractMatrix)

Compute 2D finite differences along both dimensions.

Performs the same operations as

*d = [(I_N \\otimes D_M); (D_N \\otimes I _M)] x[:]°

where "D_N' denotes the 'N-1 x N° 1D finite difference matrix

and "“\\otimes' denotes the Kronecker product,

but does it efficiently without using any " SparseArrays functions.


mailto:eecs556@autograder.eecs.umich.edu
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In

* "x° "M x N array (typically a 2D image).

It cannot be a “Vector ! (But it can be a "Mxl' or "1xN' 2D array.)
Out

* ~d’ vector of length "Nx (M-1) + (N-1)=xM"

nmmnn

function diff2d_forw(x::AbstractMatrix)

Submit your solution tomailto:eecs556@autograder.eecs.umich.edu.

(c) [10] Next we need a JULIA function that computes the effect of multiplying by the transpose z = C"d, but without any
matrix operations. This is also called the adjoint operation.
Write a JULIA function diff2d_adj that takes as input a vector d of length N - (M — 1) 4+ (N — 1) - M, along with M
and N, and returns a M x N array z corresponding to (a reshaped version of) z = C’d.
Keep in mind that adjoint is not the same as inverse!
Hint. My solution uses transpose a couple times because array[1l, : ] produces a column vector, not a row vector

like in MATLAB. Do not use Hermitian transpose ’ or your code will fail for complex inputs.
Hint. Using properties of the transpose of a block matrix and of the Kronecker product, the transpose of C in (1) is

CT:Z[INC§1)MV fVQQIM].

The dif££1 notebook discussed in class showed how to implement multiplication by D’ so you can adapt that code. My
solution uses reshape and [:] and indeed those operations arise frequently in image processing applications.
Your file should be named diff2d_adj.jl and should contain the following function:

nmmnn

z = diff2d_adj(d::AbstractVector{<:Number}, M::Int, N::Int ; out2d=false)

Compute adjoint of 2D finite differences along both dimensions.
Performs the same operations as

“z = [(I_N \\otimes D_M); (D_N \\otimes I_M)]' x d°

where "D_N' denotes the 'N-1 x N° 1D finite difference matrix
and " \\otimes' denotes the Kronecker product, but does it
efficiently without using any "~ SparseArrays functions.

In
* ~d’ vector of length "Nx (M-1) + (N-1)=xM"
* "M,N° desired output size

Option
* ~out2d::Bool’ if “true’ return M x N array, else "M«xN' vector; default "false’

Out

* ~z° "MxN' vector or 'M x N array (typically a 2D image)
nmmnn

function diff2d_adj(
d::AbstractVector{<:Number}, M::Int, N::Int ; out2d::Bool=false)
Submit your solution tomailto:eecs556@autograder.eecs.umich.edu.
(d) [0] Create a LinearMapAA object that uses your diff2d_forw and diff2d_adj functions using the command
Clm = LinearMapAA( ... ) withappropriate arguments, for a test image of size (M, N) = 4, 5.
Verify yourself that your object is correct by first creating a sparse matrix Csp in JULIA corresponding to (1) using
Csp = diff2d_sp (M, N) ,and then typing Matrix (Csp) == Matrix (Clm)

If this check does not return true then look at Matrix (Csp) and Matrix (Clm) for small values of M and N to
debug your code.

(e) [0] Now test your adjoint function by typing these commands:


mailto:eecs556@autograder.eecs.umich.edu
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®

Matrix (Csp’) == Matrix(Clm’)

Matrix (Clm’) == Matrix (Clm)"'

When these checks pass, then congratulations! You now have working code for computing 2D finite differences of large
images efficiently.

[3] Test your LinearMapAA object visually as follows:

using Plots

using LinearMapsAA

using MIRT: jim, ellipse_im

include ("diff2d_ans.jl") # use your file's name

M,N = 60, 64
xtest = ellipse_im (M, N)

forw = x -> diff2d_forw(reshape(x,M,N))
adj = d -> diff2d_adj(d,M,N)
Clm = LinearMapAA (forw, adj, (N*(M-1) + (N-1)=xM, MxN))

CtCx = reshape(Clm'x (Clmxxtest[:]), M,N)
plot (jim(xtest, "x"), Jim(CtCx, "C'*xCxx"))
#savefig("diff2d-see.pdf")

Think about whether the resulting image makes sense and upload it to gradescope.
o At this point we do not have any way to autograde your LinearMapAA object, but a future HW problem will use it for
an image processing application. You may even use it for HW4 if you want.
o If you finish early, then please help others at your table or nearby.
e Optional challenge. The methods here only provide horizontal and vertical finite differences. It can be helpful to also use
diagonal finite differences. Think about how you would implement that.
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