

Homework #4, EECS 598-006, W20. Due **Thu. Feb. 06**, by 4:00PM

1. [3] **Cost functions for sparsity models**

Consider the inverse problem measurement model $\mathbf{y} = \mathbf{Ax} + \varepsilon$ where the latent vector $\mathbf{x} \in \mathbb{F}^N$ is thought to be the sum of two signal components, a foreground signal $\mathbf{f} \in \mathbb{F}^N$ and a background signal $\mathbf{b} \in \mathbb{F}^N$. We expect \mathbf{f} to be well represented by a sparse linear combination of atoms from a $N \times K$ **dictionary** \mathbf{D} , and we expect \mathbf{b} to be a very smooth function. Write down a **cost function** and **optimization problem** for estimating \mathbf{x} , where the cost function should use the stated signal model properties. Annotate your cost function to explain where your solution captures the different properties.

2. [6] **Convexity of transform learning**

A previous HW problem showed that the cost function $g(\mathbf{x}, \mathbf{z}) = \|\mathbf{T}\mathbf{x} - \mathbf{z}\|_2^2$ is jointly convex in (\mathbf{x}, \mathbf{z}) , and this property is important for regularization with **transform sparsity** models.

Now **transform learning** involves the cost function $f(\mathbf{T}, \mathbf{Z}) = \sum_{l=1}^L \|\mathbf{T}\mathbf{x}_l - \mathbf{z}_l\|_2^2$, where $\mathbf{Z} \triangleq [\mathbf{z}_1 \dots \mathbf{z}_L] \in \mathbb{F}^{K \times L}$, where $\mathbf{x}_l \in \mathbb{F}^d$ and $\mathbf{T} \in \mathbb{F}^{K \times d}$. This problem examines convexity of this cost function.

(a) [0] Show to yourself that you can rewrite the cost function as follows:

$$f(\mathbf{T}, \mathbf{Z}) \triangleq \sum_{l=1}^L \|\mathbf{T}\mathbf{x}_l - \mathbf{z}_l\|_2^2 = \|\mathbf{T}\mathbf{X} - \mathbf{Z}\|_{\text{F}}^2,$$

where $\mathbf{X} \triangleq [\mathbf{x}_1 \dots \mathbf{x}_L] \in \mathbb{F}^{d \times L}$. This Frobenius norm form may be helpful.

(b) [3] Show that f is **jointly convex** in \mathbf{T} and \mathbf{Z} .

(c) [0] Convince yourself that the cost function is **strictly convex** in \mathbf{Z} when \mathbf{T} is held fixed to any value.

(d) [0] State the necessary and sufficient condition on matrix \mathbf{A} such that $\Psi(\mathbf{x}) = \frac{1}{2} \|\mathbf{Ax} - \mathbf{y}\|_2^2$ is **strictly convex** in \mathbf{x} .

(e) [3] If we hold \mathbf{Z} fixed (to any value), then the cost function is of course convex in \mathbf{T} , but is it **strictly convex** in \mathbf{T} ? The answer depends on the training data \mathbf{X} . (For example, if $\mathbf{X} = \mathbf{0}$, then definitely the cost function is *not* strictly convex in \mathbf{T} .) Find a fairly simple necessary and sufficient condition on \mathbf{X} that determines whether the cost function is strictly convex.

Hint. My solution uses $\text{vec}(\cdot)$ and properties of vec of matrix products that were derived in a previous HW problem. A starting point is $\|\mathbf{A}\|_{\text{F}} = \|\text{vec}(\mathbf{A})\|_2$. There probably are other approaches too.

3. [12] **Descent directions and minimizers on \mathbb{C}^N**

Consider $\Psi : \mathbb{C}^N \mapsto \mathbb{R}$ defined by $\Psi(\mathbf{x}) = \frac{1}{2} \|\mathbf{Ax} - \mathbf{y}\|_2^2$ where $\mathbf{A} \in \mathbb{C}^{M \times N}$ and $\mathbf{y} \in \mathbb{C}^M$, and define $\mathbf{g}(\mathbf{x}) \triangleq \mathbf{A}'(\mathbf{Ax} - \mathbf{y})$.

(a) [3] Show that if $\mathbf{g}(\mathbf{x}) = \mathbf{0}$, then \mathbf{x} is a minimizer of Ψ , i.e., $\Psi(\mathbf{x}) \leq \Psi(\mathbf{x} + \mathbf{z})$, $\forall \mathbf{z} \in \mathbb{C}^N$.

Hint. Let $\mathbf{r} = \mathbf{Ax} - \mathbf{y}$ and note that $\mathbf{A}'\mathbf{r} = \mathbf{0}$.

(b) [3] Show the converse of (a): if $\hat{\mathbf{x}}$ is a minimizer of $\Psi(\mathbf{x})$ over \mathbb{C}^N , then $\mathbf{g}(\hat{\mathbf{x}}) = \mathbf{0}$.

Hint. Examine $\Psi(\hat{\mathbf{x}} + \mathbf{z})$ for $\mathbf{z} \triangleq -\alpha \mathbf{g}(\hat{\mathbf{x}}) = -\alpha \mathbf{A}'\mathbf{r}$ with $\mathbf{r} = \mathbf{A}\hat{\mathbf{x}} - \mathbf{y}$.

(c) [3] Show that $\mathbf{d} = -\mathbf{P}\mathbf{g}(\mathbf{x})$ is a **descent direction** for Ψ at \mathbf{x} when \mathbf{P} is a positive definite matrix.

Hint. Examine $\Psi(\mathbf{x} + \epsilon \mathbf{d})$.

Thus for the purposes of solving optimization problems with Ψ , it is reasonable to write $\nabla \Psi(\mathbf{x}) = \mathbf{A}'(\mathbf{Ax} - \mathbf{y})$ even in the complex case, despite Ψ not being differentiable.

(d) [3] Determine (without proof) a descent direction for the cost function used for **edge-preserving image recovery** on \mathbb{C}^N :

$$\Psi(\mathbf{x}) = \frac{1}{2} \|\mathbf{Ax} - \mathbf{y}\|_2^2 + \beta \mathbf{1}_K' \psi . (\mathbf{T}\mathbf{x})$$

for some $K \times N$ matrix \mathbf{T} , where $\psi(z) = \delta^2 \log \cosh(|z/\delta|)$. Hint. Use [\[wiki\]](#).

4. [31] Complex edge-preserving image denoising

(a) [3] Here you will use the **descent direction** derived in the previous problem to do 2D edge-preserving **image denoising**, where we want to recover \mathbf{x} from the model $\mathbf{y} = \mathbf{x} + \mathbf{\epsilon}$ using the optimization problem

$$\hat{\mathbf{x}} = \arg \min_{\mathbf{x} \in \mathbb{C}^N} \Psi(\mathbf{x}), \quad \Psi(\mathbf{x}) = \frac{1}{2} \|\mathbf{y} - \mathbf{x}\|_2^2 + \beta R(\mathbf{x}), \quad R(\mathbf{x}) = \sum_k \psi([C\mathbf{x}]_k, \delta),$$

where ψ denotes the **Fair potential**, and C denotes the 2D first-order finite-differencing matrix.

Following the conjecture in the course notes, determine the Lipschitz constant for the descent direction of Ψ .

(b) [10] Write a JULIA function that uses your `gd` code for GD to minimize this cost function. Your function must return $\hat{\mathbf{x}}$, the cost function evaluated at each iteration, and the usual optional `out` array if the user requests. (You will need this array below to compute the NRMSE each iteration.) Your function must be able to handle **complex** images. Your function must work for large-scale problems, so it *cannot* use expensive and memory hungry operations like `svd` `svdvals` `eigen` `eigvals` `opnorm` etc.

Hint. The functions `spdiags` and `kron` and `I(n)` are useful, though other ways to implement C are faster.

Your file should be named `dn2cx.jl` and should contain the following function:

```
"""
(x,cost,out) = dn2cx(y::AbstractMatrix ; x0::AbstractMatrix = y,
    reg::Real = 1, del::Real = 2, niter::Int = 100,
    fun::Function = (x,iter) -> undef)

Perform 2D edge-preserving image denoising using GD,
to "solve" the minimization problem
`argmin_x 1/2 \|y - x\|^2 + reg * sum_k pot([C x]_k,del)`
where `pot()` is the Fair potential with parameter `del`
and `C` denotes the 2D first-order finite differencing matrix.

This code is (must be) general enough to handle complex-valued images!
(Uses "gd" function from previous problem.)
```

In

```
* `y` 2D noisy grayscale image of size ` [M,N]`, possibly complex-valued
```

Option

```
* `x0` 2D initial guess of size ` [M,N]`; default = `y`
* `niter` # number of iterations; default `100`
* `reg` regularization parameter; default `1`
* `del` potential function parameter; default `2`
* `fun` user-defined function to be evaluated with two arguments `(x,iter)`
    evaluated at `(x0,0)` and then after each iteration
```

Out

```
* `x` 2D final iterate image of size ` [M,N]`
* `cost` ` [niter+1]` cost function each iteration
* `out` ` [niter+1]` ` [fun(x0,0), fun(x1,1), ..., fun(x_niter,niter)]`
```

```
"""
function dn2cx(y::AbstractMatrix ;
    x0::AbstractMatrix = y,
    reg::Real = 1,
    del::Real = 2,
    niter::Int = 100,
    fun::Function = (x,iter) -> undef)
```

Submit your solution to <mailto:eeecs556@autograder.eecs.umich.edu>.

Hint. Note that the inputs \mathbf{y} and \mathbf{x}_0 and the output $\hat{\mathbf{x}}$ are all 2D images, but GD is designed to work with vectors. You will need to use `[:] and reshape`.

(c) [3] Apply your 2D denoising method `dn2cx` with $\delta = 2$ and $\beta = 12$ to the 2D noisy signal generated by the following code, using 300 iterations.

```

using Random: seed!
using MIRT: jim
using Plots: plot

tmp = [
    zeros(1,20);
    0 1 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 1 0;
    0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 0;
    0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0;
    0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 0;
    zeros(1,20)
];
xtrue = kron(10 .+ 80*tmp, ones(9,9))
xtrue = xtrue + lim * reverse(xtrue, dims=1) # make a complex image
seed!(0) # add complex noise:
y = xtrue + 20 * (randn(size(xtrue)) + lim * randn(size(xtrue)))
clim = [0,100]
plot(jim(real.(xtrue), title="x real", clim=clim),
    jim(imag.(xtrue), title="x imag", clim=clim),
    jim(real.(y), title="y real", clim=clim),
    jim(imag.(y), title="y imag", clim=clim))

```

Submit a screenshot of your plotting code for the next two parts to [gradescope](#).

(d) [3] Make a plot of $\log_{10}(\Psi(\mathbf{x}_k))$ versus iteration k to confirm that your method is working and that we have enough iterations.
 (e) [3] Make a plot of the NRMSE $\|\mathbf{x}_k - \mathbf{x}_{\text{true}}\| / \|\mathbf{x}_{\text{true}}\|$ versus iteration k to see how the error evolves.
 A single call to your `dn2cx` function should suffice to get the data needed for both of these plots!

(f) [3] Make images of the real and imaginary parts of \mathbf{x}_{true} , \mathbf{y} , $\hat{\mathbf{x}}$, and $\hat{\mathbf{x}} - \mathbf{x}_{\text{true}}$.
 This will be 8 total images so group them into two separate figures with 4 images each (one for the real part, one for the imaginary part).

To display grayscale images, use the `jim` function in the `MIRT` library as shown above.

For more examples, see:

http://web.eecs.umich.edu/~fessler/course/551/julia/demo/09_lrmc_nuc.html

To put multiple axes into a single plot (like `subplot` in MATLAB), use the example above or something like this:

```
p1 = jim(...); p2 = jim(...); plot(p1, p2)
```

(g) [3] Does this cost function Ψ have a unique minimizer $\hat{\mathbf{x}}$? Explain why or why not.

(h) [3] Does the cost function $\Psi(\mathbf{x}_k)$ decrease monotonically as k increases?

Does the NRMSE function decrease monotonically as k increases?

Discuss whether or not these two sequences are guaranteed to decrease monotonically.

5. [3] Line-search for smooth inverse problems

Consider a large-scale inverse problems having the general cost function $\Psi(\mathbf{x}) = \sum_{j=1}^J f_j(\mathbf{B}_j \mathbf{x})$ discussed in the course notes. Assume each f_j function is **convex** and has a **Lipschitz continuous** gradient. For later use in implementing an efficient **line search**, let $h_k(\alpha) \triangleq \sum_{j=1}^J f_j\left(\mathbf{u}_j^{(k)} + \alpha \mathbf{v}_j^{(k)}\right)$. Let L_j denote a Lipschitz constant for the gradient of f_j . Determine a Lipschitz constant of the derivative of h_k .