
January 25, 2020 11:36 1

Homework #4, EECS 598-006, W20. Due Thu. Feb. 06, by 4:00PM

1. [3] Cost functions for sparsity models

Consider the inverse problem measurement model y = Ax + ε where the latent vector x ∈ FN is thought to be the sum of two
signal components, a foreground signal f ∈ FN and a background signal b ∈ FN . We expect f to be well represented by a
sparse linear combination of atoms from a N ×K dictionary D, and we expect b to be a very smooth function. Write down a
cost function and optimization problem for estimating x, where the cost function should use the stated signal model properties.
Annotate your cost function to explain where your solution captures the different properties.

2. [6] Convexity of transform learning

A previous HW problem showed that the cost function g(x, z) = ‖Tx− z‖22 is jointly convex in (x, z), and this property is
important for regularization with transform sparsity models.

Now transform learning involves the cost function f(T ,Z) =
∑L

l=1 ‖Txl − zl‖22 , where Z ,
[
z1 . . . zL

]
∈ FK×L,

where xl ∈ Fd and T ∈ FK×d. This problem examines convexity of this cost function.
(a) [0] Show to yourself that you can rewrite the cost function as follows:

f(T ,Z) ,
L∑

l=1

‖Txl − zl‖22 = |||TX −Z|||2F,

where X ,
[
x1 . . . xL

]
∈ Fd×L. This Frobenius norm form may be helpful.

(b) [3] Show that f is jointly convex in T and Z.
(c) [0] Convince yourself that the cost function is strictly convex in Z when T is held fixed to any value.
(d) [0] State the necessary and sufficient condition on matrix A such that Ψ(x) = 1

2 ‖Ax− y‖22 is strictly convex in x.
(e) [3] If we hold Z fixed (to any value), then the cost function is of course convex in T , but is it strictly convex in T ? The

answer depends on the training data X . (For example, if X = 0, then definitely the cost function is not strictly convex in T .)
Find a fairly simple necessary and sufficient condition on X that determines whether the cost function is strictly convex.
Hint. My solution uses vec(·) and properties of vec of matrix products that were derived in a previous HW problem. A
starting point is |||A|||F = ‖vec(A)‖2 . There probably are other approaches too.

3. [12] Descent directions and minimizers on CN

Consider Ψ : CN 7→ R defined by Ψ(x) = 1
2 ‖Ax− y‖22 where A ∈ CM×N and y ∈ CM , and define g(x) , A′(Ax− y).

(a) [3] Show that if g(x) = 0, then x is a minimizer of Ψ, i.e., Ψ(x) ≤ Ψ(x + z), ∀z ∈ CN .
Hint. Let r = Ax− y and note that A′r = 0.

(b) [3] Show the converse of (a): if x̂ is a minimizer of Ψ(x) over CN , then g(x̂) = 0.
Hint. Examine Ψ(x̂ + z) for z , −αg(x̂) = −αA′r with r = Ax̂− y.

(c) [3] Show that d = −Pg(x) is a descent direction for Ψ at x when P is a positive definite matrix.
Hint. Examine Ψ(x + εd).
Thus for the purposes of solving optimization problems with Ψ, it is reasonable to write∇Ψ(x) = A′(Ax− y) even in the
complex case, despite Ψ not being differentiable.

(d) [3] Determine (without proof) a descent direction for the cost function used for edge-preserving image recovery on CN :

Ψ(x) =
1

2
‖Ax− y‖22 + β1′K ψ .(Tx)

for some K ×N matrix T , where ψ(z) = δ2 log cosh(|z/δ|). Hint. Use [wiki].

http://en.wikipedia.org/wiki/Hyperbolic_function#Derivatives
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4. [31] Complex edge-preserving image denoising
(a) [3] Here you will use the descent direction derived in the previous problem to do 2D edge-preserving image denoising,

where we want to recover x from the model y = x + ε using the optimization problem

x̂ = arg min
x∈CN

Ψ(x), Ψ(x) =
1

2
‖y − x‖22 + βR(x), R(x) =

∑
k

ψ([Cx]k, δ),

where ψ denotes the Fair potential, and C denotes the 2D first-order finite-differencing matrix.
Following the conjecture in the course notes, determine the Lipschitz constant for the descent direction of Ψ.

(b) [10] Write a JULIA function that uses your gd code for GD to minimize this cost function. Your function must return x̂,
the cost function evaluated at each iteration, and the usual optional out array if the user requests. (You will need this array
below to compute the NRMSE each iteration.) Your function must be able to handle complex images.
Your function must work for large-scale problems, so it cannot use expensive and memory hungry operations like svd

svdvals eigen eigvals opnorm etc.
Hint. The functions spdiagm and kron and I(n) are useful, though other ways to implement C are faster.
Your file should be named dn2cx.jl and should contain the following function:

"""
(x,cost,out) = dn2cx(y::AbstractMatrix ; x0::AbstractMatrix = y,
reg::Real = 1, del::Real = 2, niter::Int = 100,
fun::Function = (x,iter) -> undef)

Perform 2D edge-preserving image denoising using GD,
to "solve" the minimization problem
`argmin_x 1/2 |y - x|^2 + reg * sum_k pot([C x]_k,del)`
where `pot()` is the Fair potential with parameter `del`
and `C` denotes the 2D first-order finite differencing matrix.

This code is (must be) general enough to handle complex-valued images!
(Uses "gd" function from previous problem.)

In

* `y` 2D noisy grayscale image of size `[M,N]`, possibly complex-valued

Option

* `x0` 2D initial guess of size `[M,N]`; default = `y`

* `niter` # number of iterations; default `100`

* `reg` regularization parameter; default `1`

* `del` potential function parameter; default `2`

* `fun` user-defined function to be evaluated with two arguments `(x,iter)`
evaluated at `(x0,0)` and then after each iteration

Out

* `x` 2D final iterate image of size `[M,N]`

* `cost` `[niter+1]` cost function each iteration

* `out` `[niter+1]` `[fun(x0,0), fun(x1,1), ..., fun(x_niter,niter)]`
"""
function dn2cx(y::AbstractMatrix ;

x0::AbstractMatrix = y,
reg::Real = 1,
del::Real = 2,
niter::Int = 100,
fun::Function = (x,iter) -> undef)

Submit your solution to mailto:eecs556@autograder.eecs.umich.edu.
Hint. Note that the inputs y and x0 and the output x̂ are all 2D images, but GD is designed to work with vectors. You will
need to use [:] and reshape .

mailto:eecs556@autograder.eecs.umich.edu
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(c) [3] Apply your 2D denoising method dn2cx with δ = 2 and β = 12 to the 2D noisy signal generated by the following
code, using 300 iterations.

using Random: seed!
using MIRT: jim
using Plots: plot

tmp = [
zeros(1,20);
0 1 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 1 1 0;
0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0;
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0;
0 0 1 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 1 0;
zeros(1,20)

]';
xtrue = kron(10 .+ 80*tmp, ones(9,9))
xtrue = xtrue + 1im * reverse(xtrue, dims=1) # make a complex image
seed!(0) # add complex noise:
y = xtrue + 20 * (randn(size(xtrue)) + 1im * randn(size(xtrue)))
clim = [0,100]
plot(jim(real.(xtrue), title="x real", clim=clim),

jim(imag.(xtrue), title="x imag", clim=clim),
jim(real.(y), title="y real", clim=clim),
jim(imag.(y), title="y imag", clim=clim))

Submit a screenshot of your plotting code for the next two parts to gradescope.
(d) [3] Make a plot of log10(Ψ(xk)) versus iteration k to confirm that your method is working and that we have enough iterations.
(e) [3] Make a plot of the NRMSE ‖xk − xtrue‖ / ‖xtrue‖ versus iteration k to see how the error evolves.

A single call to your dn2cx function should suffice to get the data needed for both of these plots!
(f) [3] Make images of the real and imaginary parts of xtrue, y, x̂, and x̂− xtrue.

This will be 8 total images so group them into two separate figures with 4 images each (one for the real part, one for the
imaginary part).
To display grayscale images, use the jim function in the MIRT library as shown above.
For more examples, see:
http://web.eecs.umich.edu/~fessler/course/551/julia/demo/09_lrmc_nuc.html
To put multiple axes into a single plot (like subplot in MATLAB), use the example above or something like this:
p1 = jim(...); p2 = jim(...); plot(p1, p2)

(g) [3] Does this cost function Ψ have a unique minimizer x̂? Explain why or why not.
(h) [3] Does the cost function Ψ(xk) decrease monotonically as k increases?

Does the NRMSE function decrease monotonically as k increases?
Discuss whether or not these two sequences are guaranteed to decrease monotonically.

5. [3] Line-search for smooth inverse problems

Consider a large-scale inverse problems having the general cost function Ψ(x) =
∑J

j=1 fj(Bjx) discussed in the course notes.
Assume each fj function is convex and has a Lipschitz continuous gradient. For later use in implementing an efficient line
search, let hk(α) ,

∑J
j=1 fj

(
u
(k)
j + αv

(k)
j

)
. Let Lj denote a Lipschitz constant for the gradient of fj . Determine a Lipschitz

constant of the derivative of hk.

https://gradescope.com
http://web.eecs.umich.edu/~fessler/course/551/julia/demo/09_lrmc_nuc.html

