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Homework #2, EECS 598-006, W20. Due Thu. Jan. 23, by 4:00PM

1. [6] Another potential function that is used for edge-preserving regularization is the hyperbola:

ψ(z) = δ2
(√

1 + |z/δ|2 − 1

)
.

(a) [3] Determine the Lipschitz constant of the derivative of this ψ, i.e., a finite value of L such that∣∣∣ψ̇(s)− ψ̇(t)
∣∣∣ ≤ L |s− t| , ∀s, t ∈ C.

(b) [3] Determine the weighting function ωψ(z) = ψ̇(z) /z of this ψ, for any z ∈ C.

2. [3] Consider the regularized least-squares problem

x̂ = arg min
x∈RN

f(x), f(x) ,
1

2
‖Ax− y‖22 + β

1

2
‖Tx‖22

for M ×N matrix A, K ×N matrix T , length-M vector y, and β ≥ 0, all of which are real.

For a given N ×N matrix P , the preconditioned steepest descent algorithm for this problem is:

dk = −P∇f(xk)

αk = arg min
α∈R

f(xk + αdk)

xk+1 = xk + αkdk.

Find an expression for the step size αk that is easily implemented. It will depend on xk, dk, A, T , β and y.

Optional: How does the answer change when x,y,A,T are complex?

3. [3] Let U1, . . . ,UK denote a set of K unitary matrices of size N ×N , and define the tight frame Φ =
[
U1 . . . UK

]
.

We want to represent a vector x ∈ FN as a linear combination of the columns of Φ using a coefficient vector z, i.e., x = Φz,
where z has minimum Euclidean norm. Find a concise and computationally efficient expression for z.

4. [3] Rewrite the following (simplified) MRI RF pulse design optimization problem in form that is solvable as a linear
programming problem:

arg min
x∈RN

‖Ax− y‖∞ such that ‖x‖∞ ≤ b,

where A ∈ RM×N and y ∈ RM and b > 0. Alternatively you can think of this as a filter design problem where y denotes the
desired frequency response, x denotes the filter coefficients, A is some form of Fourier transform, and b denotes a constraint on
the maximum coefficient amplitude.

5. [9] Let C denote a convex set in FN . Prove, or disprove by counter example, the following statements about convexity.
(a) [3] The indicator function f(x) = I{x∈C} is a convex function on FN .
(b) [3] The function g(x) = 1− I{x∈C} is a convex function on FN .
(c) [3] The characteristic function h(x) = χC(x) is a convex function on FN .

Hint. Consider the algebraic properties of the extended real numbers.

http://en.wikipedia.org/wiki/Frame_(linear_algebra)#Tight_frames
http://en.wikipedia.org/wiki/Linear_programming
http://en.wikipedia.org/wiki/Linear_programming
http://en.wikipedia.org/wiki/Extended_real_number_line
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6. [9]
(a) [3] Let T denote a K ×N matrix, and define the regularizer

R(x) ,
1

2
min
z∈FK

‖Tx− z‖22 + α ‖z‖0 .

This expression, with its inner minimization over z, can be convenient for alternating minimization methods, but it is also
useful to have an equivalent expression without any such inner minimization.
In fact, we can express this regularizer directly as

R(x) =

K∑
k=1

ψ([Tx]k),

for some potential function ψ : C 7→ R+. Determine ψ(·).
Hint. The function is sometimes called a “broken parabola” but that term is not easy to search online.

(b) [3] Now generalize the previous part to the more general regularizer

R(x) = min
z∈FK

Φ(Tx− z) + α ‖z‖0 ,

for some function Φ : CK 7→ R+ that has the separable form Φ(z) =
∑K
k=1 φ(zk), where convex function φ : C 7→ R+

satisfies φ(z) = φ(|z|) for all z ∈ C and φ(0) = 0.
(c) [3] A related regularizer defined on FN × FK is

R(x, z) ,
1

2
‖Tx− z‖22 + α ‖z‖1 .

Verify for yourself (do not submit) that R(x, z) is convex in x and in z individually (holding the other variable fixed). Now
prove that R(x, z) is jointly convex in x and z on FN+K , or provide a counter-example for some T .

7. [6]

Let C =

[
A
B

]
. The spectral norm of C is relevant to finding the Lipschitz constant of some regularized cost functions. For

practical use, we want easily computed bounds that scale to large problem sizes. Here are some practical upper bounds for the
spectral norm of C ′C:

• |||C|||22 = |||C ′C|||2 ≤ |||C|||1|||C|||∞ , L1

• |||C|||22 = |||C ′C|||2 = |||A′A + B′B|||2 ≤ |||A′A|||2 + |||B′B|||2 = |||A|||22 + |||B|||22 ≤ |||A|||1|||A|||∞ + |||B|||1|||B|||∞ , L2

• |||C|||22 ≤ (|||A|||2 + |||B|||2)
2

=
(√
|||A|||1|||A|||∞ +

√
|||B|||1|||B|||∞

)2
, L3

(a) [3] Show that L1 ≤ (|||A|||1 + |||B|||1) max(|||A|||∞, |||B|||∞) , L4

Smaller Lipschitz constants are preferable, so L1 is preferable to L4 when it is feasible to use it.
(b) [3] Show that L2 ≤ L3, so L2 is preferable to L3

(c) [0] Challenge. Find an inequality relating L1 and L2, or show that none exists in general.

fessler
Highlight
belongs after the min!
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8. [41]
(a) [3] Simplify the elastic net optimization problem

x̂ = arg min
x

1

2
‖Ax− y‖22 + β ‖x‖1 + α

1

2
‖x‖22

into the form of the LASSO optimization problem, so that if you had code for solving the LASSO problem you could apply
it to the elastic net problem simply by passing in appropriate arguments to the LASSO solver.

(b) [3] Determine an analytical solution to the above elastic net optimization problem when A is a unitary matrix.
(c) [10] Write a JULIA function enetu that solves the elastic net optimization problem given A, y, α, β, when A is unitary.

Your file should be named enetu.jl and should contain the following function:

"""
xh = enetu(A, y, r1::Real, r2::Real)

Compute solution to elastic net regularization problem
`argmin_x 1/2 |A x - y|^2 + r1 |x|_1 + r2/2 |x|_2^2`
in the special case where `A` is a unitary matrix.
(The caller must ensure that `A` is unitary.)
Do not use any "for" loop in your solution!

In

* `A` `N x N` unitary matrix

* `y` vector of length N`

* `r1` l1 regularization parameter

* `r2` l2 regularization parameter

Out

* `xh` solution to minimization problem (same size as y)
"""
function enetu(A, y, r1::Real, r2::Real)

Submit your solution to mailto:eecs556@autograder.eecs.umich.edu.
(d) [3] Apply your JULIA function to denoise a sinusoidal signal using the following code.

using LinearAlgebra: norm
using Statistics: mean
using Random: seed!
using Plots
include("enetu.jl") # include your function

N = 128
A = 1/sqrt(N) * [exp(-2im * pi * k * n / N) for k=0:N-1, n=0:N-1]
xfun = n -> 5 * cos(2*pi*7*n/N)
n = 1:N
xtrue = xfun.(n)
seed!(0)
y = xtrue + randn(N)
zh = enetu(A, y, 0.9, 0.05)
xh = real.(A * zh)
@show norm(y - xtrue)/norm(xtrue) # NRMSE of original data
@show norm(xh - xtrue)/norm(xtrue) # NRMSE after denoising

Mathematically, this code is solving the following optimization problem for unitary DFT matrix A:

x̂ = arg min
x

1

2
‖x− y‖22 + β ‖A′x‖1 + α

1

2
‖A′x‖22

x̂ = Aẑ, ẑ = arg min
z

1

2
‖Az − y‖22 + β ‖z‖1 + α

1

2
‖z‖22 ,

mailto:eecs556@autograder.eecs.umich.edu
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which is a reasonable approach when the DFT of x is sparse.
Report (on gradescope) the two normalized root mean squared error (NRMSE) values returned by this code.

(e) [3] Make a single figure that shows the original sinusoidal signal xtrue , the noisy signal y and the denoised signal xh
(on the same axes) and submit a screen shot of it to gradescope.

(f) [3] Plot the magnitude DFT spectra of the noisy signal and of the denoised signal to see how they compare.
Hint: abs.(A*y) is the magnitude DFT spectrum of y .

(g) [3] Express the spectral norms of
[
A
−A

]
and

[
A −A

]
in terms of the spectral norm of A.

Hint. One of these will be useful in a later subproblem.
(h) [10] The gradient projection (GP) method, aka projected gradient descent method, for minimizing a function Ψ having

smooth gradient with Lipschitz constant L, subject to the constraint x ∈ C for a convex set C, is given in general by

xk+1 = PC
(
xk −

1

L
∇Ψ(xk)

)
.

Following the course notes where x = max(x,0)−max(−x,0), write a GP algorithm for solving the LASSO problem as a
constrained least-squares problem. Write a JULIA function that performs this iterative algorithm given A, y, β and optionally
an initial guess x0. Your function should have an optional argument where the caller can specify the step size. If the caller
does not specify the step, then your function should use the default which is the reciprocal of the relevant Lipschitz constant.
Think carefully about what L should be here!
Your function should take an optional named argument fun for evaluating fun(x) each iteration, and return a tuple of
the final x and a vector of length niter+1 with the values fun(x0), . . . , fun(xniter). If fun is not provided, then the
second output argument is a vector of undef values. Initialize the out array to undef values by using:
out = Array{Any}(undef, niter+1)

All of the iterative algorithms in this course will need this optional user function argument so that you can compute quantities
like Ψ(xk) and ‖xk − x̂‖2 while the iterative algorithm is running.
Your file should be named lasso_cls.jl and should contain the following function:

"""
xh,out = lasso_cls(A, y, reg ; niter, x0, step, fun)

Iterative algorithm for the LASSO problem
`argmin_x 1/2 |A x - y|^2 + reg |x|_1`

Uses the constrained least-squares approach and gradient projection method
where we write `x = u - v = max(x,0) - max(-x,0)` and `|x|_1 = 1'u + 1'v`
Only suitable when `A` and `y` are real so that `x` is also real!

In

* `A` `M x N` real matrix

* `y::AbstractVector{<:Real}` vector of length `M`

* `reg::Real` regularization parameter

Option

* `x0::AbstractVector{<:Real}` initial guess (default A'y)

* `niter::Integer` number of iterations (default 10)

* `step::Real` step size (default 0 means use `1/Lipschitz`)

* `fun::Function` user-defined function evaluated at `x0` and at each iteration
default: `x -> undef`

Out

* `xh` "solution to" minimization problem after `niter` iterations

* `out` `[fun(x0), fun(x1), ..., fun(x_niter)]`
"""
function lasso_cls(A, y::AbstractVector{<:Real}, reg::Real ;

niter::Integer=10,
x0::AbstractVector{<:Real} = A'y,
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step::Real=0,
fun::Function = x->undef)

Submit your solution to mailto:eecs556@autograder.eecs.umich.edu.
(i) [3] Apply your formula from (a) and use your lasso_cls function to solve (iteratively) the elastic net regularized LS

problem for the following data and parameters.

N = 99
seed!(0)
A = svd(rand(N,N)).U
xtrue = randn(N)
y = xtrue + randn(N)
xh = enetu(A, y, 2.5, 0.2)

Plot log(‖xk − x̂‖ / ‖x̂‖) vs k for k = 0, . . . , 20, where x̂ is the (noniterative) solution from part (c). Initialize with x0 = 0.
Of course it is not necessary to use an iterative method for this case where A is unitary, but using the unitary case where we
know x̂ is a good way to test your LASSO / elastic net code.
Later you will use this same LASSO code for other cases where A is not unitary, and compare to other iterative methods for
solving LASSO problems.

mailto:eecs556@autograder.eecs.umich.edu

