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Homework #4, EECS 556, W21. Due Thu. Feb. 18, by 9:00AM

Skills and Concepts
• 2D discrete-space (DS) signals and systems
• DSFT
• 2D filter design

Problems

1. [15] The response of a 2D DS system S to the unit step input step2[m,n] is known to be s[m,n]. For each of the following
cases, determine the class of input images f [m,n] for which we can determine the output g[m,n] in terms of s[m,n].
For each input in the class, express the output in terms of s[m,n].
(a) [5] S is linear, but not shift invariant (SI)
(b) [5] S is SI, but not linear
(c) [5] S is LSI
Hint: express δ2[m,n] in terms of step2[m,n].

2. [10] The course notes give a somewhat messy expression for the sum-pooling layer used in some CNN models.
Find a concise expression using a combination of down-sampling notation and convolution with an appropriate filter.
Is your filter separable? Hint. The filter is quite small.

3. [15]
(a) [10] Find a (2D DS) FT property for up-sampling (using insertion of zeros) by a factor of 2, i.e.,

if g[m,n] = f↑2[m,n] then relate G(Ω1,Ω2) and F (Ω1,Ω2).

(b) [5] Suppose the image with spectrum F (Ω1,Ω2) = rect

(√
p(Ω1)2+p(Ω2)2

2π

)
is up-sampled by a factor of 2, where

p(Ω) = (Ω + π) mod 2π − π ensures that F (Ω1,Ω2) is appropriately periodic.
Carefully sketch the resulting spectrum after up-sampling.

(c) [0] Do you see evidence of aliasing effects? If so, how would you remove them?

4. [10] In continuous space, if g(x, y) = f(x, y) ∗∗h(x, y)
F2←→ G(νX, νY) = F (νX, νY)H(νX, νY), then we have the following

“combined scaling/convolution property” of the 2D FT:

f(2x, 2y) ∗∗ h(2x, 2y)
F2←→ 1
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What about in discrete space? If g[m,n] = f [m,n] ∗∗h[m,n]
DSFT←→ G(Ω1,Ω2) = F (Ω1,Ω2)H(Ω1,Ω2), then is there a

simple relationship betweenG(Ω1,Ω2) and the spectrum of y[m,n] , f↓2[m,n] ∗∗h↓2[m,n] = f [2m, 2n] ∗∗h[2m, 2n]?
If so, find it. If not, at least find an expression for the spectrum of y[m,n] in terms of F (Ω1,Ω2) and H(Ω1,Ω2).
Hint: first derive a down-sampling relation for the 2D DSFT, for which the expression [1 + (−1)n]/2 will be useful.
Hint: arguments like Ω1

2 − π will appear as part of your answer.

5. [10] Using the Hankel transform pair
sin(2πr)

r

F2←→
rect

(
ρ
2

)√
1− ρ2

,

determine analytically the impulse response h[m,n] of the digital filter having frequency response

H(Ω1,Ω2) =


1√

1− 4Ω̃2
1 − 4Ω̃2

2

, Ω̃2
1 + Ω̃2

2 ≤ 1/4

0, otherwise,

where Ω̃ = (Ω + π) mod 2π − π.
Optional questions:
• Is h[m,n] weak-sense circularly symmetric?
• Is h[m,n] strong-sense circularly symmetric?
• Is H(Ω1,Ω2) circularly symmetric?
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6. [10] Because there are many good 1D FIR filter design methods, this problem explores how one might build 2D FIR filters
from 1D designs.
(a) [10] Given a 1D symmetric filter h[n] with frequency response H(Ω), one way to specify a 2D frequency response

is by H(Ω1,Ω2) = H(Ω)
∣∣∣
cos Ω= 1

2 (−1+cos Ω1+cos Ω2+cos Ω1 cos Ω2)
.

For the specific case h[n] = 2 δ[n] + δ[n− 1] + δ[n+ 1], determine the resulting 2D impulse response h[m,n].
(b) [0] Is the resulting filter separable?

(c) [0] An alternative approach would be to use: H(Ω1,Ω2) = H
(√

Ω2
1 + Ω2

2

)
with appropriate modulo 2π consider-

ation.
What would be the primary advantage and primary disadvantage of this alternative?

7. [80] The purpose of this problem is to explore the design of an (approximately) rotationally invariant filter, i.e., a filter whose
frequency response is approximately circularly symmetric.
(a) [10] Consider the 1D filter with impulse response h[n] = [−1/4 0 1/2 0 − 1/4].

Determine and plot the frequency response of this 1D filter, and describe qualitatively what kind of filter it is.
(b) [10] Specify the (circularly-symmetric) frequency response H(Ω1,Ω2) of a 2D filter with equivalent behavior.
(c) [10] Display that frequency response using imagesc or jim . (As usual, make sure DC is at the center, and

remember to include a colorbar .)
(d) [10] Find the impulse response h[m,n] of that filter. (You may try to do this analytically, or just do it numerically

following the example in the notes.) Clearly record the central 5× 5 part of h[m,n] for grading.
(e) [10] Extract the central 5 × 5 portion of h[m,n] (i.e., truncate the impulse response) and compute the frequency

response Ht(Ω1,Ω2) of the truncated filter. Display this frequency response using imagesc or jim .

(f) [10] Use the contour command (with an appropriate optional argument to show 8 contour lines at levels from
0.1 to 1) to overlay (use hold or contour! ) the contours of the truncated frequency responseHt(Ω1,Ω2) with
those of the ideal response H(Ω1,Ω2).

(g) [20] Overlay plots of the central horizontal profiles H(Ω, 0) and Ht(Ω, 0) vs Ω.
(h) [0] Do the contours and profiles agree? Explain why or why not.

What do you conclude about FIR design of circularly symmetric filters?
Experiment with other amounts of truncation, or with non-rectangular truncation.
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Optional problems

8. [0] This problem is an elementary preview of the principles underlying transform coding with truncation.
A typical digital image x[m,n] has a spectrum that decays with increasing spatial frequency.

As a concrete model, suppose that |X(Ω1,Ω2)| =

{
A e−α

√
Ω2

1+Ω2
2 , Ω2

1 + Ω2
2 ≤ π2

0, otherwise.

Suppose that we truncate the tails of this spectrum by as follows: Y (Ω1,Ω2) =

{
X(Ω1,Ω2),

√
Ω2

1 + Ω2
2 ≤ π/10

0, otherwise,
and then reconstruct the signal y[m,n] by an inverse 2D DSFT.

(a) [0] For α = 5, evaluate the normalized root mean-squared error (NRMSE)
√∑∞

m=−∞
∑∞

n=−∞|y[m,n]− x[m,n]|2∑∞
m=−∞

∑∞
n=−∞|x[m,n]|2 .

(b) [0] This procedure retains only the fraction π(π/10)2/(4π2), or about 1%, of the frequency components. So it can
be thought of as 100-fold data compression. Discuss the distortion caused by this drastic data reduction.

9. [0]
(a) [0] If hl[n] is the impulse response of a 1D FIR lowpass filter, then a simple way to design a 1D FIR highpass filter

h[n] is by letting h[n] = (−1)n hl[n] . Show that h[n] is a highpass filter.
(b) [0] Suppose hl[m,n] is the impulse response of a good 2D FIR lowpass filter. A natural extension of the above

method is to try designing a 2D FIR highpass filter by letting h[m,n] = (−1)m(−1)n hl[m,n] .
Is this a good method of designing a 2D highpass filter?

10. [0]
(a) [0] Find the frequency response H(Ω1,Ω2) and impulse response h[m,n] of a FIR highpass filter whose frequency

response satisfies the following:

H(Ω1,Ω2) =

 0, Ω1 = Ω2 = 0
1, (Ω1,Ω2) ∈ {(−π,±π), (0,±π), (π,±π), (±π, 0)}
?, otherwise.

Try to choose the “?” part of H(Ω1,Ω2) so that h[m,n] is as simple as possible. Hint: a 3× 3 filter suffices.
(b) [0] Suppose that processing an input image x[m,n] with the above filter h[m,n] yields the output image y[m,n].

Determine
∑∞
m=−∞

∑∞
n=−∞ y[m,n] .

(c) [0] Suppose x[m,n] is real and nonnegative; from your preceding answer, describe how y[m,n] will appear on a
display where all negative values of y[m,n] appear as black (like zero).


