Homework #4, EECS 556, W21. Due Thu. Feb. 18, by 9:00AM

_ Skills and Concepts

- 2D discrete-space (DS) signals and systems
- DSFT
- 2D filter design

Problems

- [15] The response of a 2D DS system S to the unit step input step₂[m, n] is known to be s[m, n]. For each of the following cases, determine the class of input images f[m, n] for which we can determine the output g[m, n] in terms of s[m, n]. For each input in the class, express the output in terms of s[m, n].
 (a) [5] S is linear, but not shift invariant (SI)
 - (b) [5] S is SI, but not linear
 - (c) [5] S is LSI
 - Hint: express $\delta_2[m, n]$ in terms of step₂[m, n].
- [10] The course notes give a somewhat messy expression for the sum-pooling layer used in some CNN models.
 Find a concise expression using a combination of down-sampling notation and convolution with an appropriate filter. Is your filter separable? Hint. The filter is quite small.
- 3. [15]
 - (a) [10] Find a (2D DS) FT property for **up-sampling** (using insertion of zeros) by a factor of 2, *i.e.*, if $g[m, n] = f_{\uparrow 2}[m, n]$ then relate $G(\Omega_1, \Omega_2)$ and $F(\Omega_1, \Omega_2)$.
 - (b) [5] Suppose the image with spectrum $F(\Omega_1, \Omega_2) = \operatorname{rect}\left(\frac{\sqrt{p(\Omega_1)^2 + p(\Omega_2)^2}}{2\pi}\right)$ is up-sampled by a factor of 2, where $p(\Omega) = (\Omega + \pi) \mod 2\pi \pi$ ensures that $F(\Omega_1, \Omega_2)$ is appropriately periodic.
 - Carefully sketch the resulting spectrum after up-sampling.
 - (c) [0] Do you see evidence of aliasing effects? If so, how would you remove them?
- 4. [10] In continuous space, if $g(x, y) = f(x, y) * h(x, y) \xleftarrow{\mathcal{F}_2} G(\nu_x, \nu_y) = F(\nu_x, \nu_y) H(\nu_x, \nu_y)$, then we have the following "combined scaling/convolution property" of the 2D FT:

$$f(2x,2y) \ast h(2x,2y) \xleftarrow{\mathcal{F}_2} \frac{1}{4} F\left(\frac{\nu_{\rm X}}{2},\frac{\nu_{\rm Y}}{2}\right) \frac{1}{4} H\left(\frac{\nu_{\rm X}}{2},\frac{\nu_{\rm Y}}{2}\right) = \frac{1}{16} G\left(\frac{\nu_{\rm X}}{2},\frac{\nu_{\rm Y}}{2}\right).$$

What about in discrete space? If $g[m,n] = f[m,n] *h[m,n] \stackrel{\text{DSFT}}{\longleftrightarrow} G(\Omega_1,\Omega_2) = F(\Omega_1,\Omega_2) H(\Omega_1,\Omega_2)$, then is there a simple relationship between $G(\Omega_1,\Omega_2)$ and the spectrum of $y[m,n] \triangleq f_{\downarrow 2}[m,n] *h_{\downarrow 2}[m,n] = f[2m,2n] *h[2m,2n]$? If so, find it. If not, at least find an expression for the spectrum of y[m,n] in terms of $F(\Omega_1,\Omega_2)$ and $H(\Omega_1,\Omega_2)$. Hint: first derive a **down-sampling** relation for the 2D DSFT, for which the expression $[1 + (-1)^n]/2$ will be useful. Hint: arguments like $\frac{\Omega_1}{2} - \pi$ will appear as part of your answer.

5. [10] Using the Hankel transform pair

$$\frac{\sin(2\pi r)}{r} \stackrel{\mathcal{F}_2}{\longleftrightarrow} \frac{\operatorname{rect}\left(\frac{\rho}{2}\right)}{\sqrt{1-\rho^2}},$$

determine analytically the **impulse response** h[m, n] of the digital filter having **frequency response**

$$H(\Omega_1, \Omega_2) = \begin{cases} \frac{1}{\sqrt{1 - 4\tilde{\Omega}_1^2 - 4\tilde{\Omega}_2^2}}, & \tilde{\Omega}_1^2 + \tilde{\Omega}_2^2 \le 1/4\\ 0, & \text{otherwise,} \end{cases}$$

where $\tilde{\Omega} = (\Omega + \pi) \mod 2\pi - \pi$. Optional questions:

- Optional questions:
- Is h[m, n] weak-sense circularly symmetric?
- Is h[m, n] strong-sense circularly symmetric?
- Is $H(\Omega_1, \Omega_2)$ circularly symmetric?

1

- 6. [10] Because there are many good 1D FIR filter design methods, this problem explores how one might build 2D FIR filters from 1D designs.
 - (a) [10] Given a 1D symmetric filter h[n] with frequency response $H(\Omega)$, one way to specify a 2D frequency response

is by $H(\Omega_1, \Omega_2) = H(\Omega) \Big|_{\cos \Omega = \frac{1}{2}(-1 + \cos \Omega_1 + \cos \Omega_2 + \cos \Omega_1 \cos \Omega_2)}$. For the specific case $h[n] = 2 \,\delta[n] + \delta[n-1] + \delta[n+1]$, determine the resulting 2D impulse response h[m, n].

- (b) [0] Is the resulting filter separable?
- (c) [0] An alternative approach would be to use: $H(\Omega_1, \Omega_2) = H\left(\sqrt{\Omega_1^2 + \Omega_2^2}\right)$ with appropriate modulo 2π consideration.

What would be the primary advantage and primary disadvantage of this alternative?

- 7. [80] The purpose of this problem is to explore the design of an (approximately) rotationally invariant filter, *i.e.*, a filter whose frequency response is approximately circularly symmetric.
 - (a) [10] Consider the 1D filter with impulse response $h[n] = [-1/4 \ 0 \ 1/2 \ 0 \ -1/4]$. Determine and plot the frequency response of this 1D filter, and describe qualitatively what kind of filter it is.
 - (b) [10] Specify the (circularly-symmetric) frequency response $H(\Omega_1, \Omega_2)$ of a 2D filter with equivalent behavior.
 - (c) [10] Display that frequency response using imagesc or jim. (As usual, make sure DC is at the center, and remember to include a colorbar.)
 - (d) [10] Find the impulse response h[m, n] of that filter. (You may try to do this analytically, or just do it numerically following the example in the notes.) Clearly record the central 5×5 part of h[m, n] for grading.
 - (e) [10] Extract the central 5×5 portion of h[m, n] (*i.e.*, truncate the impulse response) and compute the frequency response $H_t(\Omega_1, \Omega_2)$ of the truncated filter. Display this frequency response using imagesc or jim.
 - (f) [10] Use the contour command (with an appropriate optional argument to show 8 contour lines at levels from 0.1 to 1) to overlay (use hold or contour!) the contours of the truncated frequency response $H_t(\Omega_1, \Omega_2)$ with those of the ideal response $H(\Omega_1, \Omega_2)$.
 - (g) [20] Overlay plots of the central horizontal profiles $H(\Omega, 0)$ and $H_t(\Omega, 0)$ vs Ω .
 - (h) [0] Do the contours and profiles agree? Explain why or why not. What do you conclude about FIR design of circularly symmetric filters? Experiment with other amounts of truncation, or with non-rectangular truncation.

Optional problems

- 8. [0] This problem is an elementary preview of the principles underlying transform coding with truncation. A typical digital image x[m, n] has a spectrum that decays with increasing spatial frequency.
 - As a concrete model, suppose that $|X(\Omega_1, \Omega_2)| = \begin{cases} A e^{-\alpha \sqrt{\Omega_1^2 + \Omega_2^2}}, & \Omega_1^2 + \Omega_2^2 \le \pi^2 \\ 0, & \text{otherwise.} \end{cases}$ Suppose that we truncate the tails of this spectrum by as follows: $Y(\Omega_1, \Omega_2) = \begin{cases} X(\Omega_1, \Omega_2), & \sqrt{\Omega_1^2 + \Omega_2^2} \le \pi/10 \\ 0, & \text{otherwise,} \end{cases}$

and then reconstruct the signal y[m, n] by an inverse 2D DSFT.

- (a) [0] For $\alpha = 5$, evaluate the normalized root mean-squared error (NRMSE) $\sqrt{\frac{\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} |y[m,n] x[m,n]|^2}{\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} |x[m,n]|^2}}$.
- (b) [0] This procedure retains only the fraction $\pi(\pi/10)^2/(4\pi^2)$, or about 1%, of the frequency components. So it can be thought of as 100-fold data compression. Discuss the distortion caused by this drastic data reduction.

9. [0]

10. [0]

- (a) [0] If $h_l[n]$ is the impulse response of a 1D FIR lowpass filter, then a simple way to design a 1D FIR highpass filter h[n] is by letting $h[n] = (-1)^n h_l[n]$. Show that h[n] is a highpass filter.
- (b) [0] Suppose $h_l[m, n]$ is the impulse response of a good 2D FIR lowpass filter. A natural extension of the above method is to try designing a 2D FIR highpass filter by letting $h[m, n] = (-1)^m (-1)^n h_l[m, n]$. Is this a good method of designing a 2D highpass filter?
- (a) [0] Find the frequency response $H(\Omega_1, \Omega_2)$ and impulse response h[m, n] of a FIR highpass filter whose frequency response satisfies the following:

$$H(\Omega_1, \Omega_2) = \begin{cases} 0, & \Omega_1 = \Omega_2 = 0\\ 1, & (\Omega_1, \Omega_2) \in \{(-\pi, \pm \pi), (0, \pm \pi), (\pi, \pm \pi), (\pm \pi, 0)\}\\ ?, & \text{otherwise.} \end{cases}$$

Try to choose the "?" part of $H(\Omega_1, \Omega_2)$ so that h[m, n] is as simple as possible. Hint: a 3×3 filter suffices.

- (b) [0] Suppose that processing an input image x[m, n] with the above filter h[m, n] yields the output image y[m, n]. Determine $\sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} y[m,n]$.
- (c) [0] Suppose x[m, n] is real and nonnegative; from your preceding answer, describe how y[m, n] will appear on a display where all negative values of y[m, n] appear as black (like zero).